Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * linux/drivers/char/keyboard.c |
| 3 | * |
| 4 | * Written for linux by Johan Myreen as a translation from |
| 5 | * the assembly version by Linus (with diacriticals added) |
| 6 | * |
| 7 | * Some additional features added by Christoph Niemann (ChN), March 1993 |
| 8 | * |
| 9 | * Loadable keymaps by Risto Kankkunen, May 1993 |
| 10 | * |
| 11 | * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993 |
| 12 | * Added decr/incr_console, dynamic keymaps, Unicode support, |
| 13 | * dynamic function/string keys, led setting, Sept 1994 |
| 14 | * `Sticky' modifier keys, 951006. |
| 15 | * |
| 16 | * 11-11-96: SAK should now work in the raw mode (Martin Mares) |
| 17 | * |
| 18 | * Modified to provide 'generic' keyboard support by Hamish Macdonald |
| 19 | * Merge with the m68k keyboard driver and split-off of the PC low-level |
| 20 | * parts by Geert Uytterhoeven, May 1997 |
| 21 | * |
| 22 | * 27-05-97: Added support for the Magic SysRq Key (Martin Mares) |
| 23 | * 30-07-98: Dead keys redone, aeb@cwi.nl. |
| 24 | * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik) |
| 25 | */ |
| 26 | |
| 27 | #include <linux/config.h> |
| 28 | #include <linux/module.h> |
| 29 | #include <linux/sched.h> |
| 30 | #include <linux/tty.h> |
| 31 | #include <linux/tty_flip.h> |
| 32 | #include <linux/mm.h> |
| 33 | #include <linux/string.h> |
| 34 | #include <linux/init.h> |
| 35 | #include <linux/slab.h> |
| 36 | |
| 37 | #include <linux/kbd_kern.h> |
| 38 | #include <linux/kbd_diacr.h> |
| 39 | #include <linux/vt_kern.h> |
| 40 | #include <linux/sysrq.h> |
| 41 | #include <linux/input.h> |
| 42 | |
| 43 | static void kbd_disconnect(struct input_handle *handle); |
| 44 | extern void ctrl_alt_del(void); |
| 45 | |
| 46 | /* |
| 47 | * Exported functions/variables |
| 48 | */ |
| 49 | |
| 50 | #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META)) |
| 51 | |
| 52 | /* |
| 53 | * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on. |
| 54 | * This seems a good reason to start with NumLock off. On HIL keyboards |
| 55 | * of PARISC machines however there is no NumLock key and everyone expects the keypad |
| 56 | * to be used for numbers. |
| 57 | */ |
| 58 | |
| 59 | #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD)) |
| 60 | #define KBD_DEFLEDS (1 << VC_NUMLOCK) |
| 61 | #else |
| 62 | #define KBD_DEFLEDS 0 |
| 63 | #endif |
| 64 | |
| 65 | #define KBD_DEFLOCK 0 |
| 66 | |
| 67 | void compute_shiftstate(void); |
| 68 | |
| 69 | /* |
| 70 | * Handler Tables. |
| 71 | */ |
| 72 | |
| 73 | #define K_HANDLERS\ |
| 74 | k_self, k_fn, k_spec, k_pad,\ |
| 75 | k_dead, k_cons, k_cur, k_shift,\ |
| 76 | k_meta, k_ascii, k_lock, k_lowercase,\ |
| 77 | k_slock, k_dead2, k_ignore, k_ignore |
| 78 | |
| 79 | typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value, |
| 80 | char up_flag, struct pt_regs *regs); |
| 81 | static k_handler_fn K_HANDLERS; |
| 82 | static k_handler_fn *k_handler[16] = { K_HANDLERS }; |
| 83 | |
| 84 | #define FN_HANDLERS\ |
| 85 | fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\ |
| 86 | fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\ |
| 87 | fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\ |
| 88 | fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\ |
| 89 | fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num |
| 90 | |
| 91 | typedef void (fn_handler_fn)(struct vc_data *vc, struct pt_regs *regs); |
| 92 | static fn_handler_fn FN_HANDLERS; |
| 93 | static fn_handler_fn *fn_handler[] = { FN_HANDLERS }; |
| 94 | |
| 95 | /* |
| 96 | * Variables exported for vt_ioctl.c |
| 97 | */ |
| 98 | |
| 99 | /* maximum values each key_handler can handle */ |
| 100 | const int max_vals[] = { |
| 101 | 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1, |
| 102 | NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1, |
| 103 | 255, NR_LOCK - 1, 255 |
| 104 | }; |
| 105 | |
| 106 | const int NR_TYPES = ARRAY_SIZE(max_vals); |
| 107 | |
| 108 | struct kbd_struct kbd_table[MAX_NR_CONSOLES]; |
| 109 | static struct kbd_struct *kbd = kbd_table; |
| 110 | static struct kbd_struct kbd0; |
| 111 | |
| 112 | int spawnpid, spawnsig; |
| 113 | |
| 114 | /* |
| 115 | * Variables exported for vt.c |
| 116 | */ |
| 117 | |
| 118 | int shift_state = 0; |
| 119 | |
| 120 | /* |
| 121 | * Internal Data. |
| 122 | */ |
| 123 | |
| 124 | static struct input_handler kbd_handler; |
| 125 | static unsigned long key_down[NBITS(KEY_MAX)]; /* keyboard key bitmap */ |
| 126 | static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */ |
| 127 | static int dead_key_next; |
| 128 | static int npadch = -1; /* -1 or number assembled on pad */ |
| 129 | static unsigned char diacr; |
| 130 | static char rep; /* flag telling character repeat */ |
| 131 | |
| 132 | static unsigned char ledstate = 0xff; /* undefined */ |
| 133 | static unsigned char ledioctl; |
| 134 | |
| 135 | static struct ledptr { |
| 136 | unsigned int *addr; |
| 137 | unsigned int mask; |
| 138 | unsigned char valid:1; |
| 139 | } ledptrs[3]; |
| 140 | |
| 141 | /* Simple translation table for the SysRq keys */ |
| 142 | |
| 143 | #ifdef CONFIG_MAGIC_SYSRQ |
| 144 | unsigned char kbd_sysrq_xlate[KEY_MAX + 1] = |
| 145 | "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */ |
| 146 | "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */ |
| 147 | "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */ |
| 148 | "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */ |
| 149 | "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */ |
| 150 | "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */ |
| 151 | "\r\000/"; /* 0x60 - 0x6f */ |
| 152 | static int sysrq_down; |
| 153 | #endif |
| 154 | static int sysrq_alt; |
| 155 | |
| 156 | /* |
| 157 | * Translation of scancodes to keycodes. We set them on only the first attached |
| 158 | * keyboard - for per-keyboard setting, /dev/input/event is more useful. |
| 159 | */ |
| 160 | int getkeycode(unsigned int scancode) |
| 161 | { |
| 162 | struct list_head * node; |
| 163 | struct input_dev *dev = NULL; |
| 164 | |
| 165 | list_for_each(node,&kbd_handler.h_list) { |
| 166 | struct input_handle * handle = to_handle_h(node); |
| 167 | if (handle->dev->keycodesize) { |
| 168 | dev = handle->dev; |
| 169 | break; |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | if (!dev) |
| 174 | return -ENODEV; |
| 175 | |
| 176 | if (scancode >= dev->keycodemax) |
| 177 | return -EINVAL; |
| 178 | |
| 179 | return INPUT_KEYCODE(dev, scancode); |
| 180 | } |
| 181 | |
| 182 | int setkeycode(unsigned int scancode, unsigned int keycode) |
| 183 | { |
| 184 | struct list_head * node; |
| 185 | struct input_dev *dev = NULL; |
| 186 | unsigned int i, oldkey; |
| 187 | |
| 188 | list_for_each(node,&kbd_handler.h_list) { |
| 189 | struct input_handle *handle = to_handle_h(node); |
| 190 | if (handle->dev->keycodesize) { |
| 191 | dev = handle->dev; |
| 192 | break; |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | if (!dev) |
| 197 | return -ENODEV; |
| 198 | |
| 199 | if (scancode >= dev->keycodemax) |
| 200 | return -EINVAL; |
| 201 | if (keycode > KEY_MAX) |
| 202 | return -EINVAL; |
| 203 | if (keycode < 0 || keycode > KEY_MAX) |
| 204 | return -EINVAL; |
| 205 | |
| 206 | oldkey = SET_INPUT_KEYCODE(dev, scancode, keycode); |
| 207 | |
| 208 | clear_bit(oldkey, dev->keybit); |
| 209 | set_bit(keycode, dev->keybit); |
| 210 | |
| 211 | for (i = 0; i < dev->keycodemax; i++) |
| 212 | if (INPUT_KEYCODE(dev,i) == oldkey) |
| 213 | set_bit(oldkey, dev->keybit); |
| 214 | |
| 215 | return 0; |
| 216 | } |
| 217 | |
| 218 | /* |
| 219 | * Making beeps and bells. |
| 220 | */ |
| 221 | static void kd_nosound(unsigned long ignored) |
| 222 | { |
| 223 | struct list_head * node; |
| 224 | |
| 225 | list_for_each(node,&kbd_handler.h_list) { |
| 226 | struct input_handle *handle = to_handle_h(node); |
| 227 | if (test_bit(EV_SND, handle->dev->evbit)) { |
| 228 | if (test_bit(SND_TONE, handle->dev->sndbit)) |
| 229 | input_event(handle->dev, EV_SND, SND_TONE, 0); |
| 230 | if (test_bit(SND_BELL, handle->dev->sndbit)) |
| 231 | input_event(handle->dev, EV_SND, SND_BELL, 0); |
| 232 | } |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | static struct timer_list kd_mksound_timer = |
| 237 | TIMER_INITIALIZER(kd_nosound, 0, 0); |
| 238 | |
| 239 | void kd_mksound(unsigned int hz, unsigned int ticks) |
| 240 | { |
| 241 | struct list_head * node; |
| 242 | |
| 243 | del_timer(&kd_mksound_timer); |
| 244 | |
| 245 | if (hz) { |
| 246 | list_for_each_prev(node,&kbd_handler.h_list) { |
| 247 | struct input_handle *handle = to_handle_h(node); |
| 248 | if (test_bit(EV_SND, handle->dev->evbit)) { |
| 249 | if (test_bit(SND_TONE, handle->dev->sndbit)) { |
| 250 | input_event(handle->dev, EV_SND, SND_TONE, hz); |
| 251 | break; |
| 252 | } |
| 253 | if (test_bit(SND_BELL, handle->dev->sndbit)) { |
| 254 | input_event(handle->dev, EV_SND, SND_BELL, 1); |
| 255 | break; |
| 256 | } |
| 257 | } |
| 258 | } |
| 259 | if (ticks) |
| 260 | mod_timer(&kd_mksound_timer, jiffies + ticks); |
| 261 | } else |
| 262 | kd_nosound(0); |
| 263 | } |
| 264 | |
| 265 | /* |
| 266 | * Setting the keyboard rate. |
| 267 | */ |
| 268 | |
| 269 | int kbd_rate(struct kbd_repeat *rep) |
| 270 | { |
| 271 | struct list_head *node; |
| 272 | unsigned int d = 0; |
| 273 | unsigned int p = 0; |
| 274 | |
| 275 | list_for_each(node,&kbd_handler.h_list) { |
| 276 | struct input_handle *handle = to_handle_h(node); |
| 277 | struct input_dev *dev = handle->dev; |
| 278 | |
| 279 | if (test_bit(EV_REP, dev->evbit)) { |
| 280 | if (rep->delay > 0) |
| 281 | input_event(dev, EV_REP, REP_DELAY, rep->delay); |
| 282 | if (rep->period > 0) |
| 283 | input_event(dev, EV_REP, REP_PERIOD, rep->period); |
| 284 | d = dev->rep[REP_DELAY]; |
| 285 | p = dev->rep[REP_PERIOD]; |
| 286 | } |
| 287 | } |
| 288 | rep->delay = d; |
| 289 | rep->period = p; |
| 290 | return 0; |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * Helper Functions. |
| 295 | */ |
| 296 | static void put_queue(struct vc_data *vc, int ch) |
| 297 | { |
| 298 | struct tty_struct *tty = vc->vc_tty; |
| 299 | |
| 300 | if (tty) { |
| 301 | tty_insert_flip_char(tty, ch, 0); |
| 302 | con_schedule_flip(tty); |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | static void puts_queue(struct vc_data *vc, char *cp) |
| 307 | { |
| 308 | struct tty_struct *tty = vc->vc_tty; |
| 309 | |
| 310 | if (!tty) |
| 311 | return; |
| 312 | |
| 313 | while (*cp) { |
| 314 | tty_insert_flip_char(tty, *cp, 0); |
| 315 | cp++; |
| 316 | } |
| 317 | con_schedule_flip(tty); |
| 318 | } |
| 319 | |
| 320 | static void applkey(struct vc_data *vc, int key, char mode) |
| 321 | { |
| 322 | static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; |
| 323 | |
| 324 | buf[1] = (mode ? 'O' : '['); |
| 325 | buf[2] = key; |
| 326 | puts_queue(vc, buf); |
| 327 | } |
| 328 | |
| 329 | /* |
| 330 | * Many other routines do put_queue, but I think either |
| 331 | * they produce ASCII, or they produce some user-assigned |
| 332 | * string, and in both cases we might assume that it is |
| 333 | * in utf-8 already. UTF-8 is defined for words of up to 31 bits, |
| 334 | * but we need only 16 bits here |
| 335 | */ |
| 336 | static void to_utf8(struct vc_data *vc, ushort c) |
| 337 | { |
| 338 | if (c < 0x80) |
| 339 | /* 0******* */ |
| 340 | put_queue(vc, c); |
| 341 | else if (c < 0x800) { |
| 342 | /* 110***** 10****** */ |
| 343 | put_queue(vc, 0xc0 | (c >> 6)); |
| 344 | put_queue(vc, 0x80 | (c & 0x3f)); |
| 345 | } else { |
| 346 | /* 1110**** 10****** 10****** */ |
| 347 | put_queue(vc, 0xe0 | (c >> 12)); |
| 348 | put_queue(vc, 0x80 | ((c >> 6) & 0x3f)); |
| 349 | put_queue(vc, 0x80 | (c & 0x3f)); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * Called after returning from RAW mode or when changing consoles - recompute |
| 355 | * shift_down[] and shift_state from key_down[] maybe called when keymap is |
| 356 | * undefined, so that shiftkey release is seen |
| 357 | */ |
| 358 | void compute_shiftstate(void) |
| 359 | { |
| 360 | unsigned int i, j, k, sym, val; |
| 361 | |
| 362 | shift_state = 0; |
| 363 | memset(shift_down, 0, sizeof(shift_down)); |
| 364 | |
| 365 | for (i = 0; i < ARRAY_SIZE(key_down); i++) { |
| 366 | |
| 367 | if (!key_down[i]) |
| 368 | continue; |
| 369 | |
| 370 | k = i * BITS_PER_LONG; |
| 371 | |
| 372 | for (j = 0; j < BITS_PER_LONG; j++, k++) { |
| 373 | |
| 374 | if (!test_bit(k, key_down)) |
| 375 | continue; |
| 376 | |
| 377 | sym = U(key_maps[0][k]); |
| 378 | if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK) |
| 379 | continue; |
| 380 | |
| 381 | val = KVAL(sym); |
| 382 | if (val == KVAL(K_CAPSSHIFT)) |
| 383 | val = KVAL(K_SHIFT); |
| 384 | |
| 385 | shift_down[val]++; |
| 386 | shift_state |= (1 << val); |
| 387 | } |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * We have a combining character DIACR here, followed by the character CH. |
| 393 | * If the combination occurs in the table, return the corresponding value. |
| 394 | * Otherwise, if CH is a space or equals DIACR, return DIACR. |
| 395 | * Otherwise, conclude that DIACR was not combining after all, |
| 396 | * queue it and return CH. |
| 397 | */ |
| 398 | static unsigned char handle_diacr(struct vc_data *vc, unsigned char ch) |
| 399 | { |
| 400 | int d = diacr; |
| 401 | unsigned int i; |
| 402 | |
| 403 | diacr = 0; |
| 404 | |
| 405 | for (i = 0; i < accent_table_size; i++) { |
| 406 | if (accent_table[i].diacr == d && accent_table[i].base == ch) |
| 407 | return accent_table[i].result; |
| 408 | } |
| 409 | |
| 410 | if (ch == ' ' || ch == d) |
| 411 | return d; |
| 412 | |
| 413 | put_queue(vc, d); |
| 414 | return ch; |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * Special function handlers |
| 419 | */ |
| 420 | static void fn_enter(struct vc_data *vc, struct pt_regs *regs) |
| 421 | { |
| 422 | if (diacr) { |
| 423 | put_queue(vc, diacr); |
| 424 | diacr = 0; |
| 425 | } |
| 426 | put_queue(vc, 13); |
| 427 | if (vc_kbd_mode(kbd, VC_CRLF)) |
| 428 | put_queue(vc, 10); |
| 429 | } |
| 430 | |
| 431 | static void fn_caps_toggle(struct vc_data *vc, struct pt_regs *regs) |
| 432 | { |
| 433 | if (rep) |
| 434 | return; |
| 435 | chg_vc_kbd_led(kbd, VC_CAPSLOCK); |
| 436 | } |
| 437 | |
| 438 | static void fn_caps_on(struct vc_data *vc, struct pt_regs *regs) |
| 439 | { |
| 440 | if (rep) |
| 441 | return; |
| 442 | set_vc_kbd_led(kbd, VC_CAPSLOCK); |
| 443 | } |
| 444 | |
| 445 | static void fn_show_ptregs(struct vc_data *vc, struct pt_regs *regs) |
| 446 | { |
| 447 | if (regs) |
| 448 | show_regs(regs); |
| 449 | } |
| 450 | |
| 451 | static void fn_hold(struct vc_data *vc, struct pt_regs *regs) |
| 452 | { |
| 453 | struct tty_struct *tty = vc->vc_tty; |
| 454 | |
| 455 | if (rep || !tty) |
| 456 | return; |
| 457 | |
| 458 | /* |
| 459 | * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty); |
| 460 | * these routines are also activated by ^S/^Q. |
| 461 | * (And SCROLLOCK can also be set by the ioctl KDSKBLED.) |
| 462 | */ |
| 463 | if (tty->stopped) |
| 464 | start_tty(tty); |
| 465 | else |
| 466 | stop_tty(tty); |
| 467 | } |
| 468 | |
| 469 | static void fn_num(struct vc_data *vc, struct pt_regs *regs) |
| 470 | { |
| 471 | if (vc_kbd_mode(kbd,VC_APPLIC)) |
| 472 | applkey(vc, 'P', 1); |
| 473 | else |
| 474 | fn_bare_num(vc, regs); |
| 475 | } |
| 476 | |
| 477 | /* |
| 478 | * Bind this to Shift-NumLock if you work in application keypad mode |
| 479 | * but want to be able to change the NumLock flag. |
| 480 | * Bind this to NumLock if you prefer that the NumLock key always |
| 481 | * changes the NumLock flag. |
| 482 | */ |
| 483 | static void fn_bare_num(struct vc_data *vc, struct pt_regs *regs) |
| 484 | { |
| 485 | if (!rep) |
| 486 | chg_vc_kbd_led(kbd, VC_NUMLOCK); |
| 487 | } |
| 488 | |
| 489 | static void fn_lastcons(struct vc_data *vc, struct pt_regs *regs) |
| 490 | { |
| 491 | /* switch to the last used console, ChN */ |
| 492 | set_console(last_console); |
| 493 | } |
| 494 | |
| 495 | static void fn_dec_console(struct vc_data *vc, struct pt_regs *regs) |
| 496 | { |
| 497 | int i, cur = fg_console; |
| 498 | |
| 499 | /* Currently switching? Queue this next switch relative to that. */ |
| 500 | if (want_console != -1) |
| 501 | cur = want_console; |
| 502 | |
| 503 | for (i = cur-1; i != cur; i--) { |
| 504 | if (i == -1) |
| 505 | i = MAX_NR_CONSOLES-1; |
| 506 | if (vc_cons_allocated(i)) |
| 507 | break; |
| 508 | } |
| 509 | set_console(i); |
| 510 | } |
| 511 | |
| 512 | static void fn_inc_console(struct vc_data *vc, struct pt_regs *regs) |
| 513 | { |
| 514 | int i, cur = fg_console; |
| 515 | |
| 516 | /* Currently switching? Queue this next switch relative to that. */ |
| 517 | if (want_console != -1) |
| 518 | cur = want_console; |
| 519 | |
| 520 | for (i = cur+1; i != cur; i++) { |
| 521 | if (i == MAX_NR_CONSOLES) |
| 522 | i = 0; |
| 523 | if (vc_cons_allocated(i)) |
| 524 | break; |
| 525 | } |
| 526 | set_console(i); |
| 527 | } |
| 528 | |
| 529 | static void fn_send_intr(struct vc_data *vc, struct pt_regs *regs) |
| 530 | { |
| 531 | struct tty_struct *tty = vc->vc_tty; |
| 532 | |
| 533 | if (!tty) |
| 534 | return; |
| 535 | tty_insert_flip_char(tty, 0, TTY_BREAK); |
| 536 | con_schedule_flip(tty); |
| 537 | } |
| 538 | |
| 539 | static void fn_scroll_forw(struct vc_data *vc, struct pt_regs *regs) |
| 540 | { |
| 541 | scrollfront(vc, 0); |
| 542 | } |
| 543 | |
| 544 | static void fn_scroll_back(struct vc_data *vc, struct pt_regs *regs) |
| 545 | { |
| 546 | scrollback(vc, 0); |
| 547 | } |
| 548 | |
| 549 | static void fn_show_mem(struct vc_data *vc, struct pt_regs *regs) |
| 550 | { |
| 551 | show_mem(); |
| 552 | } |
| 553 | |
| 554 | static void fn_show_state(struct vc_data *vc, struct pt_regs *regs) |
| 555 | { |
| 556 | show_state(); |
| 557 | } |
| 558 | |
| 559 | static void fn_boot_it(struct vc_data *vc, struct pt_regs *regs) |
| 560 | { |
| 561 | ctrl_alt_del(); |
| 562 | } |
| 563 | |
| 564 | static void fn_compose(struct vc_data *vc, struct pt_regs *regs) |
| 565 | { |
| 566 | dead_key_next = 1; |
| 567 | } |
| 568 | |
| 569 | static void fn_spawn_con(struct vc_data *vc, struct pt_regs *regs) |
| 570 | { |
| 571 | if (spawnpid) |
| 572 | if(kill_proc(spawnpid, spawnsig, 1)) |
| 573 | spawnpid = 0; |
| 574 | } |
| 575 | |
| 576 | static void fn_SAK(struct vc_data *vc, struct pt_regs *regs) |
| 577 | { |
| 578 | struct tty_struct *tty = vc->vc_tty; |
| 579 | |
| 580 | /* |
| 581 | * SAK should also work in all raw modes and reset |
| 582 | * them properly. |
| 583 | */ |
| 584 | if (tty) |
| 585 | do_SAK(tty); |
| 586 | reset_vc(vc); |
| 587 | } |
| 588 | |
| 589 | static void fn_null(struct vc_data *vc, struct pt_regs *regs) |
| 590 | { |
| 591 | compute_shiftstate(); |
| 592 | } |
| 593 | |
| 594 | /* |
| 595 | * Special key handlers |
| 596 | */ |
| 597 | static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 598 | { |
| 599 | } |
| 600 | |
| 601 | static void k_spec(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 602 | { |
| 603 | if (up_flag) |
| 604 | return; |
| 605 | if (value >= ARRAY_SIZE(fn_handler)) |
| 606 | return; |
| 607 | if ((kbd->kbdmode == VC_RAW || |
| 608 | kbd->kbdmode == VC_MEDIUMRAW) && |
| 609 | value != KVAL(K_SAK)) |
| 610 | return; /* SAK is allowed even in raw mode */ |
| 611 | fn_handler[value](vc, regs); |
| 612 | } |
| 613 | |
| 614 | static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 615 | { |
| 616 | printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n"); |
| 617 | } |
| 618 | |
| 619 | static void k_self(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 620 | { |
| 621 | if (up_flag) |
| 622 | return; /* no action, if this is a key release */ |
| 623 | |
| 624 | if (diacr) |
| 625 | value = handle_diacr(vc, value); |
| 626 | |
| 627 | if (dead_key_next) { |
| 628 | dead_key_next = 0; |
| 629 | diacr = value; |
| 630 | return; |
| 631 | } |
| 632 | put_queue(vc, value); |
| 633 | } |
| 634 | |
| 635 | /* |
| 636 | * Handle dead key. Note that we now may have several |
| 637 | * dead keys modifying the same character. Very useful |
| 638 | * for Vietnamese. |
| 639 | */ |
| 640 | static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 641 | { |
| 642 | if (up_flag) |
| 643 | return; |
| 644 | diacr = (diacr ? handle_diacr(vc, value) : value); |
| 645 | } |
| 646 | |
| 647 | /* |
| 648 | * Obsolete - for backwards compatibility only |
| 649 | */ |
| 650 | static void k_dead(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 651 | { |
| 652 | static unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' }; |
| 653 | value = ret_diacr[value]; |
| 654 | k_dead2(vc, value, up_flag, regs); |
| 655 | } |
| 656 | |
| 657 | static void k_cons(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 658 | { |
| 659 | if (up_flag) |
| 660 | return; |
| 661 | set_console(value); |
| 662 | } |
| 663 | |
| 664 | static void k_fn(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 665 | { |
| 666 | unsigned v; |
| 667 | |
| 668 | if (up_flag) |
| 669 | return; |
| 670 | v = value; |
| 671 | if (v < ARRAY_SIZE(func_table)) { |
| 672 | if (func_table[value]) |
| 673 | puts_queue(vc, func_table[value]); |
| 674 | } else |
| 675 | printk(KERN_ERR "k_fn called with value=%d\n", value); |
| 676 | } |
| 677 | |
| 678 | static void k_cur(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 679 | { |
| 680 | static const char *cur_chars = "BDCA"; |
| 681 | |
| 682 | if (up_flag) |
| 683 | return; |
| 684 | applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE)); |
| 685 | } |
| 686 | |
| 687 | static void k_pad(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 688 | { |
| 689 | static const char *pad_chars = "0123456789+-*/\015,.?()#"; |
| 690 | static const char *app_map = "pqrstuvwxylSRQMnnmPQS"; |
| 691 | |
| 692 | if (up_flag) |
| 693 | return; /* no action, if this is a key release */ |
| 694 | |
| 695 | /* kludge... shift forces cursor/number keys */ |
| 696 | if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) { |
| 697 | applkey(vc, app_map[value], 1); |
| 698 | return; |
| 699 | } |
| 700 | |
| 701 | if (!vc_kbd_led(kbd, VC_NUMLOCK)) |
| 702 | switch (value) { |
| 703 | case KVAL(K_PCOMMA): |
| 704 | case KVAL(K_PDOT): |
| 705 | k_fn(vc, KVAL(K_REMOVE), 0, regs); |
| 706 | return; |
| 707 | case KVAL(K_P0): |
| 708 | k_fn(vc, KVAL(K_INSERT), 0, regs); |
| 709 | return; |
| 710 | case KVAL(K_P1): |
| 711 | k_fn(vc, KVAL(K_SELECT), 0, regs); |
| 712 | return; |
| 713 | case KVAL(K_P2): |
| 714 | k_cur(vc, KVAL(K_DOWN), 0, regs); |
| 715 | return; |
| 716 | case KVAL(K_P3): |
| 717 | k_fn(vc, KVAL(K_PGDN), 0, regs); |
| 718 | return; |
| 719 | case KVAL(K_P4): |
| 720 | k_cur(vc, KVAL(K_LEFT), 0, regs); |
| 721 | return; |
| 722 | case KVAL(K_P6): |
| 723 | k_cur(vc, KVAL(K_RIGHT), 0, regs); |
| 724 | return; |
| 725 | case KVAL(K_P7): |
| 726 | k_fn(vc, KVAL(K_FIND), 0, regs); |
| 727 | return; |
| 728 | case KVAL(K_P8): |
| 729 | k_cur(vc, KVAL(K_UP), 0, regs); |
| 730 | return; |
| 731 | case KVAL(K_P9): |
| 732 | k_fn(vc, KVAL(K_PGUP), 0, regs); |
| 733 | return; |
| 734 | case KVAL(K_P5): |
| 735 | applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC)); |
| 736 | return; |
| 737 | } |
| 738 | |
| 739 | put_queue(vc, pad_chars[value]); |
| 740 | if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) |
| 741 | put_queue(vc, 10); |
| 742 | } |
| 743 | |
| 744 | static void k_shift(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 745 | { |
| 746 | int old_state = shift_state; |
| 747 | |
| 748 | if (rep) |
| 749 | return; |
| 750 | /* |
| 751 | * Mimic typewriter: |
| 752 | * a CapsShift key acts like Shift but undoes CapsLock |
| 753 | */ |
| 754 | if (value == KVAL(K_CAPSSHIFT)) { |
| 755 | value = KVAL(K_SHIFT); |
| 756 | if (!up_flag) |
| 757 | clr_vc_kbd_led(kbd, VC_CAPSLOCK); |
| 758 | } |
| 759 | |
| 760 | if (up_flag) { |
| 761 | /* |
| 762 | * handle the case that two shift or control |
| 763 | * keys are depressed simultaneously |
| 764 | */ |
| 765 | if (shift_down[value]) |
| 766 | shift_down[value]--; |
| 767 | } else |
| 768 | shift_down[value]++; |
| 769 | |
| 770 | if (shift_down[value]) |
| 771 | shift_state |= (1 << value); |
| 772 | else |
| 773 | shift_state &= ~(1 << value); |
| 774 | |
| 775 | /* kludge */ |
| 776 | if (up_flag && shift_state != old_state && npadch != -1) { |
| 777 | if (kbd->kbdmode == VC_UNICODE) |
| 778 | to_utf8(vc, npadch & 0xffff); |
| 779 | else |
| 780 | put_queue(vc, npadch & 0xff); |
| 781 | npadch = -1; |
| 782 | } |
| 783 | } |
| 784 | |
| 785 | static void k_meta(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 786 | { |
| 787 | if (up_flag) |
| 788 | return; |
| 789 | |
| 790 | if (vc_kbd_mode(kbd, VC_META)) { |
| 791 | put_queue(vc, '\033'); |
| 792 | put_queue(vc, value); |
| 793 | } else |
| 794 | put_queue(vc, value | 0x80); |
| 795 | } |
| 796 | |
| 797 | static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 798 | { |
| 799 | int base; |
| 800 | |
| 801 | if (up_flag) |
| 802 | return; |
| 803 | |
| 804 | if (value < 10) { |
| 805 | /* decimal input of code, while Alt depressed */ |
| 806 | base = 10; |
| 807 | } else { |
| 808 | /* hexadecimal input of code, while AltGr depressed */ |
| 809 | value -= 10; |
| 810 | base = 16; |
| 811 | } |
| 812 | |
| 813 | if (npadch == -1) |
| 814 | npadch = value; |
| 815 | else |
| 816 | npadch = npadch * base + value; |
| 817 | } |
| 818 | |
| 819 | static void k_lock(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 820 | { |
| 821 | if (up_flag || rep) |
| 822 | return; |
| 823 | chg_vc_kbd_lock(kbd, value); |
| 824 | } |
| 825 | |
| 826 | static void k_slock(struct vc_data *vc, unsigned char value, char up_flag, struct pt_regs *regs) |
| 827 | { |
| 828 | k_shift(vc, value, up_flag, regs); |
| 829 | if (up_flag || rep) |
| 830 | return; |
| 831 | chg_vc_kbd_slock(kbd, value); |
| 832 | /* try to make Alt, oops, AltGr and such work */ |
| 833 | if (!key_maps[kbd->lockstate ^ kbd->slockstate]) { |
| 834 | kbd->slockstate = 0; |
| 835 | chg_vc_kbd_slock(kbd, value); |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | /* |
| 840 | * The leds display either (i) the status of NumLock, CapsLock, ScrollLock, |
| 841 | * or (ii) whatever pattern of lights people want to show using KDSETLED, |
| 842 | * or (iii) specified bits of specified words in kernel memory. |
| 843 | */ |
| 844 | unsigned char getledstate(void) |
| 845 | { |
| 846 | return ledstate; |
| 847 | } |
| 848 | |
| 849 | void setledstate(struct kbd_struct *kbd, unsigned int led) |
| 850 | { |
| 851 | if (!(led & ~7)) { |
| 852 | ledioctl = led; |
| 853 | kbd->ledmode = LED_SHOW_IOCTL; |
| 854 | } else |
| 855 | kbd->ledmode = LED_SHOW_FLAGS; |
| 856 | set_leds(); |
| 857 | } |
| 858 | |
| 859 | static inline unsigned char getleds(void) |
| 860 | { |
| 861 | struct kbd_struct *kbd = kbd_table + fg_console; |
| 862 | unsigned char leds; |
| 863 | int i; |
| 864 | |
| 865 | if (kbd->ledmode == LED_SHOW_IOCTL) |
| 866 | return ledioctl; |
| 867 | |
| 868 | leds = kbd->ledflagstate; |
| 869 | |
| 870 | if (kbd->ledmode == LED_SHOW_MEM) { |
| 871 | for (i = 0; i < 3; i++) |
| 872 | if (ledptrs[i].valid) { |
| 873 | if (*ledptrs[i].addr & ledptrs[i].mask) |
| 874 | leds |= (1 << i); |
| 875 | else |
| 876 | leds &= ~(1 << i); |
| 877 | } |
| 878 | } |
| 879 | return leds; |
| 880 | } |
| 881 | |
| 882 | /* |
| 883 | * This routine is the bottom half of the keyboard interrupt |
| 884 | * routine, and runs with all interrupts enabled. It does |
| 885 | * console changing, led setting and copy_to_cooked, which can |
| 886 | * take a reasonably long time. |
| 887 | * |
| 888 | * Aside from timing (which isn't really that important for |
| 889 | * keyboard interrupts as they happen often), using the software |
| 890 | * interrupt routines for this thing allows us to easily mask |
| 891 | * this when we don't want any of the above to happen. |
| 892 | * This allows for easy and efficient race-condition prevention |
| 893 | * for kbd_refresh_leds => input_event(dev, EV_LED, ...) => ... |
| 894 | */ |
| 895 | |
| 896 | static void kbd_bh(unsigned long dummy) |
| 897 | { |
| 898 | struct list_head * node; |
| 899 | unsigned char leds = getleds(); |
| 900 | |
| 901 | if (leds != ledstate) { |
| 902 | list_for_each(node,&kbd_handler.h_list) { |
| 903 | struct input_handle * handle = to_handle_h(node); |
| 904 | input_event(handle->dev, EV_LED, LED_SCROLLL, !!(leds & 0x01)); |
| 905 | input_event(handle->dev, EV_LED, LED_NUML, !!(leds & 0x02)); |
| 906 | input_event(handle->dev, EV_LED, LED_CAPSL, !!(leds & 0x04)); |
| 907 | input_sync(handle->dev); |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | ledstate = leds; |
| 912 | } |
| 913 | |
| 914 | DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0); |
| 915 | |
| 916 | /* |
| 917 | * This allows a newly plugged keyboard to pick the LED state. |
| 918 | */ |
| 919 | static void kbd_refresh_leds(struct input_handle *handle) |
| 920 | { |
| 921 | unsigned char leds = ledstate; |
| 922 | |
| 923 | tasklet_disable(&keyboard_tasklet); |
| 924 | if (leds != 0xff) { |
| 925 | input_event(handle->dev, EV_LED, LED_SCROLLL, !!(leds & 0x01)); |
| 926 | input_event(handle->dev, EV_LED, LED_NUML, !!(leds & 0x02)); |
| 927 | input_event(handle->dev, EV_LED, LED_CAPSL, !!(leds & 0x04)); |
| 928 | input_sync(handle->dev); |
| 929 | } |
| 930 | tasklet_enable(&keyboard_tasklet); |
| 931 | } |
| 932 | |
| 933 | #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\ |
| 934 | defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC32) ||\ |
| 935 | defined(CONFIG_SPARC64) || defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\ |
| 936 | (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) |
| 937 | |
| 938 | #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\ |
| 939 | ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001)) |
| 940 | |
| 941 | static unsigned short x86_keycodes[256] = |
| 942 | { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 943 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 944 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 945 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| 946 | 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, |
| 947 | 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92, |
| 948 | 284,285,309,298,312, 91,327,328,329,331,333,335,336,337,338,339, |
| 949 | 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349, |
| 950 | 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355, |
| 951 | 103,104,105,275,287,279,306,106,274,107,294,364,358,363,362,361, |
| 952 | 291,108,381,281,290,272,292,305,280, 99,112,257,258,359,113,114, |
| 953 | 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116, |
| 954 | 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307, |
| 955 | 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330, |
| 956 | 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 }; |
| 957 | |
| 958 | #ifdef CONFIG_MAC_EMUMOUSEBTN |
| 959 | extern int mac_hid_mouse_emulate_buttons(int, int, int); |
| 960 | #endif /* CONFIG_MAC_EMUMOUSEBTN */ |
| 961 | |
| 962 | #if defined(CONFIG_SPARC32) || defined(CONFIG_SPARC64) |
| 963 | static int sparc_l1_a_state = 0; |
| 964 | extern void sun_do_break(void); |
| 965 | #endif |
| 966 | |
| 967 | static int emulate_raw(struct vc_data *vc, unsigned int keycode, |
| 968 | unsigned char up_flag) |
| 969 | { |
| 970 | if (keycode > 255 || !x86_keycodes[keycode]) |
| 971 | return -1; |
| 972 | |
| 973 | switch (keycode) { |
| 974 | case KEY_PAUSE: |
| 975 | put_queue(vc, 0xe1); |
| 976 | put_queue(vc, 0x1d | up_flag); |
| 977 | put_queue(vc, 0x45 | up_flag); |
| 978 | return 0; |
| 979 | case KEY_HANGUEL: |
| 980 | if (!up_flag) put_queue(vc, 0xf1); |
| 981 | return 0; |
| 982 | case KEY_HANJA: |
| 983 | if (!up_flag) put_queue(vc, 0xf2); |
| 984 | return 0; |
| 985 | } |
| 986 | |
| 987 | if (keycode == KEY_SYSRQ && sysrq_alt) { |
| 988 | put_queue(vc, 0x54 | up_flag); |
| 989 | return 0; |
| 990 | } |
| 991 | |
| 992 | if (x86_keycodes[keycode] & 0x100) |
| 993 | put_queue(vc, 0xe0); |
| 994 | |
| 995 | put_queue(vc, (x86_keycodes[keycode] & 0x7f) | up_flag); |
| 996 | |
| 997 | if (keycode == KEY_SYSRQ) { |
| 998 | put_queue(vc, 0xe0); |
| 999 | put_queue(vc, 0x37 | up_flag); |
| 1000 | } |
| 1001 | |
| 1002 | return 0; |
| 1003 | } |
| 1004 | |
| 1005 | #else |
| 1006 | |
| 1007 | #define HW_RAW(dev) 0 |
| 1008 | |
| 1009 | #warning "Cannot generate rawmode keyboard for your architecture yet." |
| 1010 | |
| 1011 | static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag) |
| 1012 | { |
| 1013 | if (keycode > 127) |
| 1014 | return -1; |
| 1015 | |
| 1016 | put_queue(vc, keycode | up_flag); |
| 1017 | return 0; |
| 1018 | } |
| 1019 | #endif |
| 1020 | |
| 1021 | static void kbd_rawcode(unsigned char data) |
| 1022 | { |
| 1023 | struct vc_data *vc = vc_cons[fg_console].d; |
| 1024 | kbd = kbd_table + fg_console; |
| 1025 | if (kbd->kbdmode == VC_RAW) |
| 1026 | put_queue(vc, data); |
| 1027 | } |
| 1028 | |
| 1029 | void kbd_keycode(unsigned int keycode, int down, int hw_raw, struct pt_regs *regs) |
| 1030 | { |
| 1031 | struct vc_data *vc = vc_cons[fg_console].d; |
| 1032 | unsigned short keysym, *key_map; |
| 1033 | unsigned char type, raw_mode; |
| 1034 | struct tty_struct *tty; |
| 1035 | int shift_final; |
| 1036 | |
| 1037 | tty = vc->vc_tty; |
| 1038 | |
| 1039 | if (tty && (!tty->driver_data)) { |
| 1040 | /* No driver data? Strange. Okay we fix it then. */ |
| 1041 | tty->driver_data = vc; |
| 1042 | } |
| 1043 | |
| 1044 | kbd = kbd_table + fg_console; |
| 1045 | |
| 1046 | if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT) |
| 1047 | sysrq_alt = down; |
| 1048 | #if defined(CONFIG_SPARC32) || defined(CONFIG_SPARC64) |
| 1049 | if (keycode == KEY_STOP) |
| 1050 | sparc_l1_a_state = down; |
| 1051 | #endif |
| 1052 | |
| 1053 | rep = (down == 2); |
| 1054 | |
| 1055 | #ifdef CONFIG_MAC_EMUMOUSEBTN |
| 1056 | if (mac_hid_mouse_emulate_buttons(1, keycode, down)) |
| 1057 | return; |
| 1058 | #endif /* CONFIG_MAC_EMUMOUSEBTN */ |
| 1059 | |
| 1060 | if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw) |
| 1061 | if (emulate_raw(vc, keycode, !down << 7)) |
| 1062 | if (keycode < BTN_MISC) |
| 1063 | printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode); |
| 1064 | |
| 1065 | #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */ |
| 1066 | if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) { |
| 1067 | sysrq_down = down; |
| 1068 | return; |
| 1069 | } |
| 1070 | if (sysrq_down && down && !rep) { |
| 1071 | handle_sysrq(kbd_sysrq_xlate[keycode], regs, tty); |
| 1072 | return; |
| 1073 | } |
| 1074 | #endif |
| 1075 | #if defined(CONFIG_SPARC32) || defined(CONFIG_SPARC64) |
| 1076 | if (keycode == KEY_A && sparc_l1_a_state) { |
| 1077 | sparc_l1_a_state = 0; |
| 1078 | sun_do_break(); |
| 1079 | } |
| 1080 | #endif |
| 1081 | |
| 1082 | if (kbd->kbdmode == VC_MEDIUMRAW) { |
| 1083 | /* |
| 1084 | * This is extended medium raw mode, with keys above 127 |
| 1085 | * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing |
| 1086 | * the 'up' flag if needed. 0 is reserved, so this shouldn't |
| 1087 | * interfere with anything else. The two bytes after 0 will |
| 1088 | * always have the up flag set not to interfere with older |
| 1089 | * applications. This allows for 16384 different keycodes, |
| 1090 | * which should be enough. |
| 1091 | */ |
| 1092 | if (keycode < 128) { |
| 1093 | put_queue(vc, keycode | (!down << 7)); |
| 1094 | } else { |
| 1095 | put_queue(vc, !down << 7); |
| 1096 | put_queue(vc, (keycode >> 7) | 0x80); |
| 1097 | put_queue(vc, keycode | 0x80); |
| 1098 | } |
| 1099 | raw_mode = 1; |
| 1100 | } |
| 1101 | |
| 1102 | if (down) |
| 1103 | set_bit(keycode, key_down); |
| 1104 | else |
| 1105 | clear_bit(keycode, key_down); |
| 1106 | |
| 1107 | if (rep && (!vc_kbd_mode(kbd, VC_REPEAT) || (tty && |
| 1108 | (!L_ECHO(tty) && tty->driver->chars_in_buffer(tty))))) { |
| 1109 | /* |
| 1110 | * Don't repeat a key if the input buffers are not empty and the |
| 1111 | * characters get aren't echoed locally. This makes key repeat |
| 1112 | * usable with slow applications and under heavy loads. |
| 1113 | */ |
| 1114 | return; |
| 1115 | } |
| 1116 | |
| 1117 | shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate; |
| 1118 | key_map = key_maps[shift_final]; |
| 1119 | |
| 1120 | if (!key_map) { |
| 1121 | compute_shiftstate(); |
| 1122 | kbd->slockstate = 0; |
| 1123 | return; |
| 1124 | } |
| 1125 | |
| 1126 | if (keycode > NR_KEYS) |
| 1127 | return; |
| 1128 | |
| 1129 | keysym = key_map[keycode]; |
| 1130 | type = KTYP(keysym); |
| 1131 | |
| 1132 | if (type < 0xf0) { |
| 1133 | if (down && !raw_mode) to_utf8(vc, keysym); |
| 1134 | return; |
| 1135 | } |
| 1136 | |
| 1137 | type -= 0xf0; |
| 1138 | |
| 1139 | if (raw_mode && type != KT_SPEC && type != KT_SHIFT) |
| 1140 | return; |
| 1141 | |
| 1142 | if (type == KT_LETTER) { |
| 1143 | type = KT_LATIN; |
| 1144 | if (vc_kbd_led(kbd, VC_CAPSLOCK)) { |
| 1145 | key_map = key_maps[shift_final ^ (1 << KG_SHIFT)]; |
| 1146 | if (key_map) |
| 1147 | keysym = key_map[keycode]; |
| 1148 | } |
| 1149 | } |
| 1150 | |
| 1151 | (*k_handler[type])(vc, keysym & 0xff, !down, regs); |
| 1152 | |
| 1153 | if (type != KT_SLOCK) |
| 1154 | kbd->slockstate = 0; |
| 1155 | } |
| 1156 | |
| 1157 | static void kbd_event(struct input_handle *handle, unsigned int event_type, |
| 1158 | unsigned int event_code, int value) |
| 1159 | { |
| 1160 | if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev)) |
| 1161 | kbd_rawcode(value); |
| 1162 | if (event_type == EV_KEY) |
| 1163 | kbd_keycode(event_code, value, HW_RAW(handle->dev), handle->dev->regs); |
| 1164 | tasklet_schedule(&keyboard_tasklet); |
| 1165 | do_poke_blanked_console = 1; |
| 1166 | schedule_console_callback(); |
| 1167 | } |
| 1168 | |
| 1169 | static char kbd_name[] = "kbd"; |
| 1170 | |
| 1171 | /* |
| 1172 | * When a keyboard (or other input device) is found, the kbd_connect |
| 1173 | * function is called. The function then looks at the device, and if it |
| 1174 | * likes it, it can open it and get events from it. In this (kbd_connect) |
| 1175 | * function, we should decide which VT to bind that keyboard to initially. |
| 1176 | */ |
| 1177 | static struct input_handle *kbd_connect(struct input_handler *handler, |
| 1178 | struct input_dev *dev, |
| 1179 | struct input_device_id *id) |
| 1180 | { |
| 1181 | struct input_handle *handle; |
| 1182 | int i; |
| 1183 | |
| 1184 | for (i = KEY_RESERVED; i < BTN_MISC; i++) |
| 1185 | if (test_bit(i, dev->keybit)) break; |
| 1186 | |
| 1187 | if ((i == BTN_MISC) && !test_bit(EV_SND, dev->evbit)) |
| 1188 | return NULL; |
| 1189 | |
| 1190 | if (!(handle = kmalloc(sizeof(struct input_handle), GFP_KERNEL))) |
| 1191 | return NULL; |
| 1192 | memset(handle, 0, sizeof(struct input_handle)); |
| 1193 | |
| 1194 | handle->dev = dev; |
| 1195 | handle->handler = handler; |
| 1196 | handle->name = kbd_name; |
| 1197 | |
| 1198 | input_open_device(handle); |
| 1199 | kbd_refresh_leds(handle); |
| 1200 | |
| 1201 | return handle; |
| 1202 | } |
| 1203 | |
| 1204 | static void kbd_disconnect(struct input_handle *handle) |
| 1205 | { |
| 1206 | input_close_device(handle); |
| 1207 | kfree(handle); |
| 1208 | } |
| 1209 | |
| 1210 | static struct input_device_id kbd_ids[] = { |
| 1211 | { |
| 1212 | .flags = INPUT_DEVICE_ID_MATCH_EVBIT, |
| 1213 | .evbit = { BIT(EV_KEY) }, |
| 1214 | }, |
| 1215 | |
| 1216 | { |
| 1217 | .flags = INPUT_DEVICE_ID_MATCH_EVBIT, |
| 1218 | .evbit = { BIT(EV_SND) }, |
| 1219 | }, |
| 1220 | |
| 1221 | { }, /* Terminating entry */ |
| 1222 | }; |
| 1223 | |
| 1224 | MODULE_DEVICE_TABLE(input, kbd_ids); |
| 1225 | |
| 1226 | static struct input_handler kbd_handler = { |
| 1227 | .event = kbd_event, |
| 1228 | .connect = kbd_connect, |
| 1229 | .disconnect = kbd_disconnect, |
| 1230 | .name = "kbd", |
| 1231 | .id_table = kbd_ids, |
| 1232 | }; |
| 1233 | |
| 1234 | int __init kbd_init(void) |
| 1235 | { |
| 1236 | int i; |
| 1237 | |
| 1238 | kbd0.ledflagstate = kbd0.default_ledflagstate = KBD_DEFLEDS; |
| 1239 | kbd0.ledmode = LED_SHOW_FLAGS; |
| 1240 | kbd0.lockstate = KBD_DEFLOCK; |
| 1241 | kbd0.slockstate = 0; |
| 1242 | kbd0.modeflags = KBD_DEFMODE; |
| 1243 | kbd0.kbdmode = VC_XLATE; |
| 1244 | |
| 1245 | for (i = 0 ; i < MAX_NR_CONSOLES ; i++) |
| 1246 | kbd_table[i] = kbd0; |
| 1247 | |
| 1248 | input_register_handler(&kbd_handler); |
| 1249 | |
| 1250 | tasklet_enable(&keyboard_tasklet); |
| 1251 | tasklet_schedule(&keyboard_tasklet); |
| 1252 | |
| 1253 | return 0; |
| 1254 | } |