Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Common Flash Interface support: |
| 3 | * Intel Extended Vendor Command Set (ID 0x0001) |
| 4 | * |
| 5 | * (C) 2000 Red Hat. GPL'd |
| 6 | * |
| 7 | * $Id: cfi_cmdset_0001.c,v 1.164 2004/11/16 18:29:00 dwmw2 Exp $ |
| 8 | * |
| 9 | * |
| 10 | * 10/10/2000 Nicolas Pitre <nico@cam.org> |
| 11 | * - completely revamped method functions so they are aware and |
| 12 | * independent of the flash geometry (buswidth, interleave, etc.) |
| 13 | * - scalability vs code size is completely set at compile-time |
| 14 | * (see include/linux/mtd/cfi.h for selection) |
| 15 | * - optimized write buffer method |
| 16 | * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com> |
| 17 | * - reworked lock/unlock/erase support for var size flash |
| 18 | */ |
| 19 | |
| 20 | #include <linux/module.h> |
| 21 | #include <linux/types.h> |
| 22 | #include <linux/kernel.h> |
| 23 | #include <linux/sched.h> |
| 24 | #include <linux/init.h> |
| 25 | #include <asm/io.h> |
| 26 | #include <asm/byteorder.h> |
| 27 | |
| 28 | #include <linux/errno.h> |
| 29 | #include <linux/slab.h> |
| 30 | #include <linux/delay.h> |
| 31 | #include <linux/interrupt.h> |
| 32 | #include <linux/mtd/xip.h> |
| 33 | #include <linux/mtd/map.h> |
| 34 | #include <linux/mtd/mtd.h> |
| 35 | #include <linux/mtd/compatmac.h> |
| 36 | #include <linux/mtd/cfi.h> |
| 37 | |
| 38 | /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */ |
| 39 | /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */ |
| 40 | |
| 41 | // debugging, turns off buffer write mode if set to 1 |
| 42 | #define FORCE_WORD_WRITE 0 |
| 43 | |
| 44 | #define MANUFACTURER_INTEL 0x0089 |
| 45 | #define I82802AB 0x00ad |
| 46 | #define I82802AC 0x00ac |
| 47 | #define MANUFACTURER_ST 0x0020 |
| 48 | #define M50LPW080 0x002F |
| 49 | |
| 50 | static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); |
| 51 | //static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); |
| 52 | //static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); |
| 53 | static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); |
| 54 | static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); |
| 55 | static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *); |
| 56 | static void cfi_intelext_sync (struct mtd_info *); |
| 57 | static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len); |
| 58 | static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len); |
| 59 | static int cfi_intelext_suspend (struct mtd_info *); |
| 60 | static void cfi_intelext_resume (struct mtd_info *); |
| 61 | |
| 62 | static void cfi_intelext_destroy(struct mtd_info *); |
| 63 | |
| 64 | struct mtd_info *cfi_cmdset_0001(struct map_info *, int); |
| 65 | |
| 66 | static struct mtd_info *cfi_intelext_setup (struct mtd_info *); |
| 67 | static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **); |
| 68 | |
| 69 | static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, |
| 70 | size_t *retlen, u_char **mtdbuf); |
| 71 | static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, |
| 72 | size_t len); |
| 73 | |
| 74 | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); |
| 75 | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); |
| 76 | #include "fwh_lock.h" |
| 77 | |
| 78 | |
| 79 | |
| 80 | /* |
| 81 | * *********** SETUP AND PROBE BITS *********** |
| 82 | */ |
| 83 | |
| 84 | static struct mtd_chip_driver cfi_intelext_chipdrv = { |
| 85 | .probe = NULL, /* Not usable directly */ |
| 86 | .destroy = cfi_intelext_destroy, |
| 87 | .name = "cfi_cmdset_0001", |
| 88 | .module = THIS_MODULE |
| 89 | }; |
| 90 | |
| 91 | /* #define DEBUG_LOCK_BITS */ |
| 92 | /* #define DEBUG_CFI_FEATURES */ |
| 93 | |
| 94 | #ifdef DEBUG_CFI_FEATURES |
| 95 | static void cfi_tell_features(struct cfi_pri_intelext *extp) |
| 96 | { |
| 97 | int i; |
| 98 | printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); |
| 99 | printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); |
| 100 | printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); |
| 101 | printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); |
| 102 | printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); |
| 103 | printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); |
| 104 | printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); |
| 105 | printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); |
| 106 | printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); |
| 107 | printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); |
| 108 | printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported"); |
| 109 | for (i=10; i<32; i++) { |
| 110 | if (extp->FeatureSupport & (1<<i)) |
| 111 | printk(" - Unknown Bit %X: supported\n", i); |
| 112 | } |
| 113 | |
| 114 | printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); |
| 115 | printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); |
| 116 | for (i=1; i<8; i++) { |
| 117 | if (extp->SuspendCmdSupport & (1<<i)) |
| 118 | printk(" - Unknown Bit %X: supported\n", i); |
| 119 | } |
| 120 | |
| 121 | printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); |
| 122 | printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); |
| 123 | printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); |
| 124 | for (i=2; i<16; i++) { |
| 125 | if (extp->BlkStatusRegMask & (1<<i)) |
| 126 | printk(" - Unknown Bit %X Active: yes\n",i); |
| 127 | } |
| 128 | |
| 129 | printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", |
| 130 | extp->VccOptimal >> 4, extp->VccOptimal & 0xf); |
| 131 | if (extp->VppOptimal) |
| 132 | printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", |
| 133 | extp->VppOptimal >> 4, extp->VppOptimal & 0xf); |
| 134 | } |
| 135 | #endif |
| 136 | |
| 137 | #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE |
| 138 | /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ |
| 139 | static void fixup_intel_strataflash(struct mtd_info *mtd, void* param) |
| 140 | { |
| 141 | struct map_info *map = mtd->priv; |
| 142 | struct cfi_private *cfi = map->fldrv_priv; |
| 143 | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; |
| 144 | |
| 145 | printk(KERN_WARNING "cfi_cmdset_0001: Suspend " |
| 146 | "erase on write disabled.\n"); |
| 147 | extp->SuspendCmdSupport &= ~1; |
| 148 | } |
| 149 | #endif |
| 150 | |
| 151 | #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND |
| 152 | static void fixup_no_write_suspend(struct mtd_info *mtd, void* param) |
| 153 | { |
| 154 | struct map_info *map = mtd->priv; |
| 155 | struct cfi_private *cfi = map->fldrv_priv; |
| 156 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; |
| 157 | |
| 158 | if (cfip && (cfip->FeatureSupport&4)) { |
| 159 | cfip->FeatureSupport &= ~4; |
| 160 | printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n"); |
| 161 | } |
| 162 | } |
| 163 | #endif |
| 164 | |
| 165 | static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param) |
| 166 | { |
| 167 | struct map_info *map = mtd->priv; |
| 168 | struct cfi_private *cfi = map->fldrv_priv; |
| 169 | |
| 170 | cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */ |
| 171 | cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */ |
| 172 | } |
| 173 | |
| 174 | static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param) |
| 175 | { |
| 176 | struct map_info *map = mtd->priv; |
| 177 | struct cfi_private *cfi = map->fldrv_priv; |
| 178 | |
| 179 | /* Note this is done after the region info is endian swapped */ |
| 180 | cfi->cfiq->EraseRegionInfo[1] = |
| 181 | (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; |
| 182 | }; |
| 183 | |
| 184 | static void fixup_use_point(struct mtd_info *mtd, void *param) |
| 185 | { |
| 186 | struct map_info *map = mtd->priv; |
| 187 | if (!mtd->point && map_is_linear(map)) { |
| 188 | mtd->point = cfi_intelext_point; |
| 189 | mtd->unpoint = cfi_intelext_unpoint; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | static void fixup_use_write_buffers(struct mtd_info *mtd, void *param) |
| 194 | { |
| 195 | struct map_info *map = mtd->priv; |
| 196 | struct cfi_private *cfi = map->fldrv_priv; |
| 197 | if (cfi->cfiq->BufWriteTimeoutTyp) { |
| 198 | printk(KERN_INFO "Using buffer write method\n" ); |
| 199 | mtd->write = cfi_intelext_write_buffers; |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | static struct cfi_fixup cfi_fixup_table[] = { |
| 204 | #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE |
| 205 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL }, |
| 206 | #endif |
| 207 | #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND |
| 208 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL }, |
| 209 | #endif |
| 210 | #if !FORCE_WORD_WRITE |
| 211 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL }, |
| 212 | #endif |
| 213 | { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL }, |
| 214 | { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL }, |
| 215 | { 0, 0, NULL, NULL } |
| 216 | }; |
| 217 | |
| 218 | static struct cfi_fixup jedec_fixup_table[] = { |
| 219 | { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, }, |
| 220 | { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, }, |
| 221 | { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, }, |
| 222 | { 0, 0, NULL, NULL } |
| 223 | }; |
| 224 | static struct cfi_fixup fixup_table[] = { |
| 225 | /* The CFI vendor ids and the JEDEC vendor IDs appear |
| 226 | * to be common. It is like the devices id's are as |
| 227 | * well. This table is to pick all cases where |
| 228 | * we know that is the case. |
| 229 | */ |
| 230 | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL }, |
| 231 | { 0, 0, NULL, NULL } |
| 232 | }; |
| 233 | |
| 234 | static inline struct cfi_pri_intelext * |
| 235 | read_pri_intelext(struct map_info *map, __u16 adr) |
| 236 | { |
| 237 | struct cfi_pri_intelext *extp; |
| 238 | unsigned int extp_size = sizeof(*extp); |
| 239 | |
| 240 | again: |
| 241 | extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp"); |
| 242 | if (!extp) |
| 243 | return NULL; |
| 244 | |
| 245 | /* Do some byteswapping if necessary */ |
| 246 | extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport); |
| 247 | extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask); |
| 248 | extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr); |
| 249 | |
| 250 | if (extp->MajorVersion == '1' && extp->MinorVersion == '3') { |
| 251 | unsigned int extra_size = 0; |
| 252 | int nb_parts, i; |
| 253 | |
| 254 | /* Protection Register info */ |
| 255 | extra_size += (extp->NumProtectionFields - 1) * (4 + 6); |
| 256 | |
| 257 | /* Burst Read info */ |
| 258 | extra_size += 6; |
| 259 | |
| 260 | /* Number of hardware-partitions */ |
| 261 | extra_size += 1; |
| 262 | if (extp_size < sizeof(*extp) + extra_size) |
| 263 | goto need_more; |
| 264 | nb_parts = extp->extra[extra_size - 1]; |
| 265 | |
| 266 | for (i = 0; i < nb_parts; i++) { |
| 267 | struct cfi_intelext_regioninfo *rinfo; |
| 268 | rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size]; |
| 269 | extra_size += sizeof(*rinfo); |
| 270 | if (extp_size < sizeof(*extp) + extra_size) |
| 271 | goto need_more; |
| 272 | rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions); |
| 273 | extra_size += (rinfo->NumBlockTypes - 1) |
| 274 | * sizeof(struct cfi_intelext_blockinfo); |
| 275 | } |
| 276 | |
| 277 | if (extp_size < sizeof(*extp) + extra_size) { |
| 278 | need_more: |
| 279 | extp_size = sizeof(*extp) + extra_size; |
| 280 | kfree(extp); |
| 281 | if (extp_size > 4096) { |
| 282 | printk(KERN_ERR |
| 283 | "%s: cfi_pri_intelext is too fat\n", |
| 284 | __FUNCTION__); |
| 285 | return NULL; |
| 286 | } |
| 287 | goto again; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | return extp; |
| 292 | } |
| 293 | |
| 294 | /* This routine is made available to other mtd code via |
| 295 | * inter_module_register. It must only be accessed through |
| 296 | * inter_module_get which will bump the use count of this module. The |
| 297 | * addresses passed back in cfi are valid as long as the use count of |
| 298 | * this module is non-zero, i.e. between inter_module_get and |
| 299 | * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. |
| 300 | */ |
| 301 | struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) |
| 302 | { |
| 303 | struct cfi_private *cfi = map->fldrv_priv; |
| 304 | struct mtd_info *mtd; |
| 305 | int i; |
| 306 | |
| 307 | mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); |
| 308 | if (!mtd) { |
| 309 | printk(KERN_ERR "Failed to allocate memory for MTD device\n"); |
| 310 | return NULL; |
| 311 | } |
| 312 | memset(mtd, 0, sizeof(*mtd)); |
| 313 | mtd->priv = map; |
| 314 | mtd->type = MTD_NORFLASH; |
| 315 | |
| 316 | /* Fill in the default mtd operations */ |
| 317 | mtd->erase = cfi_intelext_erase_varsize; |
| 318 | mtd->read = cfi_intelext_read; |
| 319 | mtd->write = cfi_intelext_write_words; |
| 320 | mtd->sync = cfi_intelext_sync; |
| 321 | mtd->lock = cfi_intelext_lock; |
| 322 | mtd->unlock = cfi_intelext_unlock; |
| 323 | mtd->suspend = cfi_intelext_suspend; |
| 324 | mtd->resume = cfi_intelext_resume; |
| 325 | mtd->flags = MTD_CAP_NORFLASH; |
| 326 | mtd->name = map->name; |
| 327 | |
| 328 | if (cfi->cfi_mode == CFI_MODE_CFI) { |
| 329 | /* |
| 330 | * It's a real CFI chip, not one for which the probe |
| 331 | * routine faked a CFI structure. So we read the feature |
| 332 | * table from it. |
| 333 | */ |
| 334 | __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; |
| 335 | struct cfi_pri_intelext *extp; |
| 336 | |
| 337 | extp = read_pri_intelext(map, adr); |
| 338 | if (!extp) { |
| 339 | kfree(mtd); |
| 340 | return NULL; |
| 341 | } |
| 342 | |
| 343 | /* Install our own private info structure */ |
| 344 | cfi->cmdset_priv = extp; |
| 345 | |
| 346 | cfi_fixup(mtd, cfi_fixup_table); |
| 347 | |
| 348 | #ifdef DEBUG_CFI_FEATURES |
| 349 | /* Tell the user about it in lots of lovely detail */ |
| 350 | cfi_tell_features(extp); |
| 351 | #endif |
| 352 | |
| 353 | if(extp->SuspendCmdSupport & 1) { |
| 354 | printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n"); |
| 355 | } |
| 356 | } |
| 357 | else if (cfi->cfi_mode == CFI_MODE_JEDEC) { |
| 358 | /* Apply jedec specific fixups */ |
| 359 | cfi_fixup(mtd, jedec_fixup_table); |
| 360 | } |
| 361 | /* Apply generic fixups */ |
| 362 | cfi_fixup(mtd, fixup_table); |
| 363 | |
| 364 | for (i=0; i< cfi->numchips; i++) { |
| 365 | cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; |
| 366 | cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; |
| 367 | cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; |
| 368 | cfi->chips[i].ref_point_counter = 0; |
| 369 | } |
| 370 | |
| 371 | map->fldrv = &cfi_intelext_chipdrv; |
| 372 | |
| 373 | return cfi_intelext_setup(mtd); |
| 374 | } |
| 375 | |
| 376 | static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) |
| 377 | { |
| 378 | struct map_info *map = mtd->priv; |
| 379 | struct cfi_private *cfi = map->fldrv_priv; |
| 380 | unsigned long offset = 0; |
| 381 | int i,j; |
| 382 | unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; |
| 383 | |
| 384 | //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); |
| 385 | |
| 386 | mtd->size = devsize * cfi->numchips; |
| 387 | |
| 388 | mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; |
| 389 | mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) |
| 390 | * mtd->numeraseregions, GFP_KERNEL); |
| 391 | if (!mtd->eraseregions) { |
| 392 | printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); |
| 393 | goto setup_err; |
| 394 | } |
| 395 | |
| 396 | for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { |
| 397 | unsigned long ernum, ersize; |
| 398 | ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; |
| 399 | ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; |
| 400 | |
| 401 | if (mtd->erasesize < ersize) { |
| 402 | mtd->erasesize = ersize; |
| 403 | } |
| 404 | for (j=0; j<cfi->numchips; j++) { |
| 405 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; |
| 406 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; |
| 407 | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; |
| 408 | } |
| 409 | offset += (ersize * ernum); |
| 410 | } |
| 411 | |
| 412 | if (offset != devsize) { |
| 413 | /* Argh */ |
| 414 | printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); |
| 415 | goto setup_err; |
| 416 | } |
| 417 | |
| 418 | for (i=0; i<mtd->numeraseregions;i++){ |
| 419 | printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n", |
| 420 | i,mtd->eraseregions[i].offset, |
| 421 | mtd->eraseregions[i].erasesize, |
| 422 | mtd->eraseregions[i].numblocks); |
| 423 | } |
| 424 | |
| 425 | #if 0 |
| 426 | mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg; |
| 427 | mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; |
| 428 | #endif |
| 429 | |
| 430 | /* This function has the potential to distort the reality |
| 431 | a bit and therefore should be called last. */ |
| 432 | if (cfi_intelext_partition_fixup(mtd, &cfi) != 0) |
| 433 | goto setup_err; |
| 434 | |
| 435 | __module_get(THIS_MODULE); |
| 436 | return mtd; |
| 437 | |
| 438 | setup_err: |
| 439 | if(mtd) { |
| 440 | if(mtd->eraseregions) |
| 441 | kfree(mtd->eraseregions); |
| 442 | kfree(mtd); |
| 443 | } |
| 444 | kfree(cfi->cmdset_priv); |
| 445 | return NULL; |
| 446 | } |
| 447 | |
| 448 | static int cfi_intelext_partition_fixup(struct mtd_info *mtd, |
| 449 | struct cfi_private **pcfi) |
| 450 | { |
| 451 | struct map_info *map = mtd->priv; |
| 452 | struct cfi_private *cfi = *pcfi; |
| 453 | struct cfi_pri_intelext *extp = cfi->cmdset_priv; |
| 454 | |
| 455 | /* |
| 456 | * Probing of multi-partition flash ships. |
| 457 | * |
| 458 | * To support multiple partitions when available, we simply arrange |
| 459 | * for each of them to have their own flchip structure even if they |
| 460 | * are on the same physical chip. This means completely recreating |
| 461 | * a new cfi_private structure right here which is a blatent code |
| 462 | * layering violation, but this is still the least intrusive |
| 463 | * arrangement at this point. This can be rearranged in the future |
| 464 | * if someone feels motivated enough. --nico |
| 465 | */ |
| 466 | if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3' |
| 467 | && extp->FeatureSupport & (1 << 9)) { |
| 468 | struct cfi_private *newcfi; |
| 469 | struct flchip *chip; |
| 470 | struct flchip_shared *shared; |
| 471 | int offs, numregions, numparts, partshift, numvirtchips, i, j; |
| 472 | |
| 473 | /* Protection Register info */ |
| 474 | offs = (extp->NumProtectionFields - 1) * (4 + 6); |
| 475 | |
| 476 | /* Burst Read info */ |
| 477 | offs += 6; |
| 478 | |
| 479 | /* Number of partition regions */ |
| 480 | numregions = extp->extra[offs]; |
| 481 | offs += 1; |
| 482 | |
| 483 | /* Number of hardware partitions */ |
| 484 | numparts = 0; |
| 485 | for (i = 0; i < numregions; i++) { |
| 486 | struct cfi_intelext_regioninfo *rinfo; |
| 487 | rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs]; |
| 488 | numparts += rinfo->NumIdentPartitions; |
| 489 | offs += sizeof(*rinfo) |
| 490 | + (rinfo->NumBlockTypes - 1) * |
| 491 | sizeof(struct cfi_intelext_blockinfo); |
| 492 | } |
| 493 | |
| 494 | /* |
| 495 | * All functions below currently rely on all chips having |
| 496 | * the same geometry so we'll just assume that all hardware |
| 497 | * partitions are of the same size too. |
| 498 | */ |
| 499 | partshift = cfi->chipshift - __ffs(numparts); |
| 500 | |
| 501 | if ((1 << partshift) < mtd->erasesize) { |
| 502 | printk( KERN_ERR |
| 503 | "%s: bad number of hw partitions (%d)\n", |
| 504 | __FUNCTION__, numparts); |
| 505 | return -EINVAL; |
| 506 | } |
| 507 | |
| 508 | numvirtchips = cfi->numchips * numparts; |
| 509 | newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL); |
| 510 | if (!newcfi) |
| 511 | return -ENOMEM; |
| 512 | shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL); |
| 513 | if (!shared) { |
| 514 | kfree(newcfi); |
| 515 | return -ENOMEM; |
| 516 | } |
| 517 | memcpy(newcfi, cfi, sizeof(struct cfi_private)); |
| 518 | newcfi->numchips = numvirtchips; |
| 519 | newcfi->chipshift = partshift; |
| 520 | |
| 521 | chip = &newcfi->chips[0]; |
| 522 | for (i = 0; i < cfi->numchips; i++) { |
| 523 | shared[i].writing = shared[i].erasing = NULL; |
| 524 | spin_lock_init(&shared[i].lock); |
| 525 | for (j = 0; j < numparts; j++) { |
| 526 | *chip = cfi->chips[i]; |
| 527 | chip->start += j << partshift; |
| 528 | chip->priv = &shared[i]; |
| 529 | /* those should be reset too since |
| 530 | they create memory references. */ |
| 531 | init_waitqueue_head(&chip->wq); |
| 532 | spin_lock_init(&chip->_spinlock); |
| 533 | chip->mutex = &chip->_spinlock; |
| 534 | chip++; |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips " |
| 539 | "--> %d partitions of %d KiB\n", |
| 540 | map->name, cfi->numchips, cfi->interleave, |
| 541 | newcfi->numchips, 1<<(newcfi->chipshift-10)); |
| 542 | |
| 543 | map->fldrv_priv = newcfi; |
| 544 | *pcfi = newcfi; |
| 545 | kfree(cfi); |
| 546 | } |
| 547 | |
| 548 | return 0; |
| 549 | } |
| 550 | |
| 551 | /* |
| 552 | * *********** CHIP ACCESS FUNCTIONS *********** |
| 553 | */ |
| 554 | |
| 555 | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) |
| 556 | { |
| 557 | DECLARE_WAITQUEUE(wait, current); |
| 558 | struct cfi_private *cfi = map->fldrv_priv; |
| 559 | map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01); |
| 560 | unsigned long timeo; |
| 561 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; |
| 562 | |
| 563 | resettime: |
| 564 | timeo = jiffies + HZ; |
| 565 | retry: |
| 566 | if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)) { |
| 567 | /* |
| 568 | * OK. We have possibility for contension on the write/erase |
| 569 | * operations which are global to the real chip and not per |
| 570 | * partition. So let's fight it over in the partition which |
| 571 | * currently has authority on the operation. |
| 572 | * |
| 573 | * The rules are as follows: |
| 574 | * |
| 575 | * - any write operation must own shared->writing. |
| 576 | * |
| 577 | * - any erase operation must own _both_ shared->writing and |
| 578 | * shared->erasing. |
| 579 | * |
| 580 | * - contension arbitration is handled in the owner's context. |
| 581 | * |
| 582 | * The 'shared' struct can be read when its lock is taken. |
| 583 | * However any writes to it can only be made when the current |
| 584 | * owner's lock is also held. |
| 585 | */ |
| 586 | struct flchip_shared *shared = chip->priv; |
| 587 | struct flchip *contender; |
| 588 | spin_lock(&shared->lock); |
| 589 | contender = shared->writing; |
| 590 | if (contender && contender != chip) { |
| 591 | /* |
| 592 | * The engine to perform desired operation on this |
| 593 | * partition is already in use by someone else. |
| 594 | * Let's fight over it in the context of the chip |
| 595 | * currently using it. If it is possible to suspend, |
| 596 | * that other partition will do just that, otherwise |
| 597 | * it'll happily send us to sleep. In any case, when |
| 598 | * get_chip returns success we're clear to go ahead. |
| 599 | */ |
| 600 | int ret = spin_trylock(contender->mutex); |
| 601 | spin_unlock(&shared->lock); |
| 602 | if (!ret) |
| 603 | goto retry; |
| 604 | spin_unlock(chip->mutex); |
| 605 | ret = get_chip(map, contender, contender->start, mode); |
| 606 | spin_lock(chip->mutex); |
| 607 | if (ret) { |
| 608 | spin_unlock(contender->mutex); |
| 609 | return ret; |
| 610 | } |
| 611 | timeo = jiffies + HZ; |
| 612 | spin_lock(&shared->lock); |
| 613 | } |
| 614 | |
| 615 | /* We now own it */ |
| 616 | shared->writing = chip; |
| 617 | if (mode == FL_ERASING) |
| 618 | shared->erasing = chip; |
| 619 | if (contender && contender != chip) |
| 620 | spin_unlock(contender->mutex); |
| 621 | spin_unlock(&shared->lock); |
| 622 | } |
| 623 | |
| 624 | switch (chip->state) { |
| 625 | |
| 626 | case FL_STATUS: |
| 627 | for (;;) { |
| 628 | status = map_read(map, adr); |
| 629 | if (map_word_andequal(map, status, status_OK, status_OK)) |
| 630 | break; |
| 631 | |
| 632 | /* At this point we're fine with write operations |
| 633 | in other partitions as they don't conflict. */ |
| 634 | if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS)) |
| 635 | break; |
| 636 | |
| 637 | if (time_after(jiffies, timeo)) { |
| 638 | printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n", |
| 639 | status.x[0]); |
| 640 | return -EIO; |
| 641 | } |
| 642 | spin_unlock(chip->mutex); |
| 643 | cfi_udelay(1); |
| 644 | spin_lock(chip->mutex); |
| 645 | /* Someone else might have been playing with it. */ |
| 646 | goto retry; |
| 647 | } |
| 648 | |
| 649 | case FL_READY: |
| 650 | case FL_CFI_QUERY: |
| 651 | case FL_JEDEC_QUERY: |
| 652 | return 0; |
| 653 | |
| 654 | case FL_ERASING: |
| 655 | if (!cfip || |
| 656 | !(cfip->FeatureSupport & 2) || |
| 657 | !(mode == FL_READY || mode == FL_POINT || |
| 658 | (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1)))) |
| 659 | goto sleep; |
| 660 | |
| 661 | |
| 662 | /* Erase suspend */ |
| 663 | map_write(map, CMD(0xB0), adr); |
| 664 | |
| 665 | /* If the flash has finished erasing, then 'erase suspend' |
| 666 | * appears to make some (28F320) flash devices switch to |
| 667 | * 'read' mode. Make sure that we switch to 'read status' |
| 668 | * mode so we get the right data. --rmk |
| 669 | */ |
| 670 | map_write(map, CMD(0x70), adr); |
| 671 | chip->oldstate = FL_ERASING; |
| 672 | chip->state = FL_ERASE_SUSPENDING; |
| 673 | chip->erase_suspended = 1; |
| 674 | for (;;) { |
| 675 | status = map_read(map, adr); |
| 676 | if (map_word_andequal(map, status, status_OK, status_OK)) |
| 677 | break; |
| 678 | |
| 679 | if (time_after(jiffies, timeo)) { |
| 680 | /* Urgh. Resume and pretend we weren't here. */ |
| 681 | map_write(map, CMD(0xd0), adr); |
| 682 | /* Make sure we're in 'read status' mode if it had finished */ |
| 683 | map_write(map, CMD(0x70), adr); |
| 684 | chip->state = FL_ERASING; |
| 685 | chip->oldstate = FL_READY; |
| 686 | printk(KERN_ERR "Chip not ready after erase " |
| 687 | "suspended: status = 0x%lx\n", status.x[0]); |
| 688 | return -EIO; |
| 689 | } |
| 690 | |
| 691 | spin_unlock(chip->mutex); |
| 692 | cfi_udelay(1); |
| 693 | spin_lock(chip->mutex); |
| 694 | /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. |
| 695 | So we can just loop here. */ |
| 696 | } |
| 697 | chip->state = FL_STATUS; |
| 698 | return 0; |
| 699 | |
| 700 | case FL_XIP_WHILE_ERASING: |
| 701 | if (mode != FL_READY && mode != FL_POINT && |
| 702 | (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1))) |
| 703 | goto sleep; |
| 704 | chip->oldstate = chip->state; |
| 705 | chip->state = FL_READY; |
| 706 | return 0; |
| 707 | |
| 708 | case FL_POINT: |
| 709 | /* Only if there's no operation suspended... */ |
| 710 | if (mode == FL_READY && chip->oldstate == FL_READY) |
| 711 | return 0; |
| 712 | |
| 713 | default: |
| 714 | sleep: |
| 715 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 716 | add_wait_queue(&chip->wq, &wait); |
| 717 | spin_unlock(chip->mutex); |
| 718 | schedule(); |
| 719 | remove_wait_queue(&chip->wq, &wait); |
| 720 | spin_lock(chip->mutex); |
| 721 | goto resettime; |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) |
| 726 | { |
| 727 | struct cfi_private *cfi = map->fldrv_priv; |
| 728 | |
| 729 | if (chip->priv) { |
| 730 | struct flchip_shared *shared = chip->priv; |
| 731 | spin_lock(&shared->lock); |
| 732 | if (shared->writing == chip && chip->oldstate == FL_READY) { |
| 733 | /* We own the ability to write, but we're done */ |
| 734 | shared->writing = shared->erasing; |
| 735 | if (shared->writing && shared->writing != chip) { |
| 736 | /* give back ownership to who we loaned it from */ |
| 737 | struct flchip *loaner = shared->writing; |
| 738 | spin_lock(loaner->mutex); |
| 739 | spin_unlock(&shared->lock); |
| 740 | spin_unlock(chip->mutex); |
| 741 | put_chip(map, loaner, loaner->start); |
| 742 | spin_lock(chip->mutex); |
| 743 | spin_unlock(loaner->mutex); |
| 744 | wake_up(&chip->wq); |
| 745 | return; |
| 746 | } |
| 747 | shared->erasing = NULL; |
| 748 | shared->writing = NULL; |
| 749 | } else if (shared->erasing == chip && shared->writing != chip) { |
| 750 | /* |
| 751 | * We own the ability to erase without the ability |
| 752 | * to write, which means the erase was suspended |
| 753 | * and some other partition is currently writing. |
| 754 | * Don't let the switch below mess things up since |
| 755 | * we don't have ownership to resume anything. |
| 756 | */ |
| 757 | spin_unlock(&shared->lock); |
| 758 | wake_up(&chip->wq); |
| 759 | return; |
| 760 | } |
| 761 | spin_unlock(&shared->lock); |
| 762 | } |
| 763 | |
| 764 | switch(chip->oldstate) { |
| 765 | case FL_ERASING: |
| 766 | chip->state = chip->oldstate; |
| 767 | /* What if one interleaved chip has finished and the |
| 768 | other hasn't? The old code would leave the finished |
| 769 | one in READY mode. That's bad, and caused -EROFS |
| 770 | errors to be returned from do_erase_oneblock because |
| 771 | that's the only bit it checked for at the time. |
| 772 | As the state machine appears to explicitly allow |
| 773 | sending the 0x70 (Read Status) command to an erasing |
| 774 | chip and expecting it to be ignored, that's what we |
| 775 | do. */ |
| 776 | map_write(map, CMD(0xd0), adr); |
| 777 | map_write(map, CMD(0x70), adr); |
| 778 | chip->oldstate = FL_READY; |
| 779 | chip->state = FL_ERASING; |
| 780 | break; |
| 781 | |
| 782 | case FL_XIP_WHILE_ERASING: |
| 783 | chip->state = chip->oldstate; |
| 784 | chip->oldstate = FL_READY; |
| 785 | break; |
| 786 | |
| 787 | case FL_READY: |
| 788 | case FL_STATUS: |
| 789 | case FL_JEDEC_QUERY: |
| 790 | /* We should really make set_vpp() count, rather than doing this */ |
| 791 | DISABLE_VPP(map); |
| 792 | break; |
| 793 | default: |
| 794 | printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate); |
| 795 | } |
| 796 | wake_up(&chip->wq); |
| 797 | } |
| 798 | |
| 799 | #ifdef CONFIG_MTD_XIP |
| 800 | |
| 801 | /* |
| 802 | * No interrupt what so ever can be serviced while the flash isn't in array |
| 803 | * mode. This is ensured by the xip_disable() and xip_enable() functions |
| 804 | * enclosing any code path where the flash is known not to be in array mode. |
| 805 | * And within a XIP disabled code path, only functions marked with __xipram |
| 806 | * may be called and nothing else (it's a good thing to inspect generated |
| 807 | * assembly to make sure inline functions were actually inlined and that gcc |
| 808 | * didn't emit calls to its own support functions). Also configuring MTD CFI |
| 809 | * support to a single buswidth and a single interleave is also recommended. |
| 810 | * Note that not only IRQs are disabled but the preemption count is also |
| 811 | * increased to prevent other locking primitives (namely spin_unlock) from |
| 812 | * decrementing the preempt count to zero and scheduling the CPU away while |
| 813 | * not in array mode. |
| 814 | */ |
| 815 | |
| 816 | static void xip_disable(struct map_info *map, struct flchip *chip, |
| 817 | unsigned long adr) |
| 818 | { |
| 819 | /* TODO: chips with no XIP use should ignore and return */ |
| 820 | (void) map_read(map, adr); /* ensure mmu mapping is up to date */ |
| 821 | preempt_disable(); |
| 822 | local_irq_disable(); |
| 823 | } |
| 824 | |
| 825 | static void __xipram xip_enable(struct map_info *map, struct flchip *chip, |
| 826 | unsigned long adr) |
| 827 | { |
| 828 | struct cfi_private *cfi = map->fldrv_priv; |
| 829 | if (chip->state != FL_POINT && chip->state != FL_READY) { |
| 830 | map_write(map, CMD(0xff), adr); |
| 831 | chip->state = FL_READY; |
| 832 | } |
| 833 | (void) map_read(map, adr); |
| 834 | asm volatile (".rep 8; nop; .endr"); /* fill instruction prefetch */ |
| 835 | local_irq_enable(); |
| 836 | preempt_enable(); |
| 837 | } |
| 838 | |
| 839 | /* |
| 840 | * When a delay is required for the flash operation to complete, the |
| 841 | * xip_udelay() function is polling for both the given timeout and pending |
| 842 | * (but still masked) hardware interrupts. Whenever there is an interrupt |
| 843 | * pending then the flash erase or write operation is suspended, array mode |
| 844 | * restored and interrupts unmasked. Task scheduling might also happen at that |
| 845 | * point. The CPU eventually returns from the interrupt or the call to |
| 846 | * schedule() and the suspended flash operation is resumed for the remaining |
| 847 | * of the delay period. |
| 848 | * |
| 849 | * Warning: this function _will_ fool interrupt latency tracing tools. |
| 850 | */ |
| 851 | |
| 852 | static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, |
| 853 | unsigned long adr, int usec) |
| 854 | { |
| 855 | struct cfi_private *cfi = map->fldrv_priv; |
| 856 | struct cfi_pri_intelext *cfip = cfi->cmdset_priv; |
| 857 | map_word status, OK = CMD(0x80); |
| 858 | unsigned long suspended, start = xip_currtime(); |
| 859 | flstate_t oldstate, newstate; |
| 860 | |
| 861 | do { |
| 862 | cpu_relax(); |
| 863 | if (xip_irqpending() && cfip && |
| 864 | ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) || |
| 865 | (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) && |
| 866 | (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { |
| 867 | /* |
| 868 | * Let's suspend the erase or write operation when |
| 869 | * supported. Note that we currently don't try to |
| 870 | * suspend interleaved chips if there is already |
| 871 | * another operation suspended (imagine what happens |
| 872 | * when one chip was already done with the current |
| 873 | * operation while another chip suspended it, then |
| 874 | * we resume the whole thing at once). Yes, it |
| 875 | * can happen! |
| 876 | */ |
| 877 | map_write(map, CMD(0xb0), adr); |
| 878 | map_write(map, CMD(0x70), adr); |
| 879 | usec -= xip_elapsed_since(start); |
| 880 | suspended = xip_currtime(); |
| 881 | do { |
| 882 | if (xip_elapsed_since(suspended) > 100000) { |
| 883 | /* |
| 884 | * The chip doesn't want to suspend |
| 885 | * after waiting for 100 msecs. |
| 886 | * This is a critical error but there |
| 887 | * is not much we can do here. |
| 888 | */ |
| 889 | return; |
| 890 | } |
| 891 | status = map_read(map, adr); |
| 892 | } while (!map_word_andequal(map, status, OK, OK)); |
| 893 | |
| 894 | /* Suspend succeeded */ |
| 895 | oldstate = chip->state; |
| 896 | if (oldstate == FL_ERASING) { |
| 897 | if (!map_word_bitsset(map, status, CMD(0x40))) |
| 898 | break; |
| 899 | newstate = FL_XIP_WHILE_ERASING; |
| 900 | chip->erase_suspended = 1; |
| 901 | } else { |
| 902 | if (!map_word_bitsset(map, status, CMD(0x04))) |
| 903 | break; |
| 904 | newstate = FL_XIP_WHILE_WRITING; |
| 905 | chip->write_suspended = 1; |
| 906 | } |
| 907 | chip->state = newstate; |
| 908 | map_write(map, CMD(0xff), adr); |
| 909 | (void) map_read(map, adr); |
| 910 | asm volatile (".rep 8; nop; .endr"); |
| 911 | local_irq_enable(); |
| 912 | preempt_enable(); |
| 913 | asm volatile (".rep 8; nop; .endr"); |
| 914 | cond_resched(); |
| 915 | |
| 916 | /* |
| 917 | * We're back. However someone else might have |
| 918 | * decided to go write to the chip if we are in |
| 919 | * a suspended erase state. If so let's wait |
| 920 | * until it's done. |
| 921 | */ |
| 922 | preempt_disable(); |
| 923 | while (chip->state != newstate) { |
| 924 | DECLARE_WAITQUEUE(wait, current); |
| 925 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 926 | add_wait_queue(&chip->wq, &wait); |
| 927 | preempt_enable(); |
| 928 | schedule(); |
| 929 | remove_wait_queue(&chip->wq, &wait); |
| 930 | preempt_disable(); |
| 931 | } |
| 932 | /* Disallow XIP again */ |
| 933 | local_irq_disable(); |
| 934 | |
| 935 | /* Resume the write or erase operation */ |
| 936 | map_write(map, CMD(0xd0), adr); |
| 937 | map_write(map, CMD(0x70), adr); |
| 938 | chip->state = oldstate; |
| 939 | start = xip_currtime(); |
| 940 | } else if (usec >= 1000000/HZ) { |
| 941 | /* |
| 942 | * Try to save on CPU power when waiting delay |
| 943 | * is at least a system timer tick period. |
| 944 | * No need to be extremely accurate here. |
| 945 | */ |
| 946 | xip_cpu_idle(); |
| 947 | } |
| 948 | status = map_read(map, adr); |
| 949 | } while (!map_word_andequal(map, status, OK, OK) |
| 950 | && xip_elapsed_since(start) < usec); |
| 951 | } |
| 952 | |
| 953 | #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec) |
| 954 | |
| 955 | /* |
| 956 | * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while |
| 957 | * the flash is actively programming or erasing since we have to poll for |
| 958 | * the operation to complete anyway. We can't do that in a generic way with |
| 959 | * a XIP setup so do it before the actual flash operation in this case. |
| 960 | */ |
| 961 | #undef INVALIDATE_CACHED_RANGE |
| 962 | #define INVALIDATE_CACHED_RANGE(x...) |
| 963 | #define XIP_INVAL_CACHED_RANGE(map, from, size) \ |
| 964 | do { if(map->inval_cache) map->inval_cache(map, from, size); } while(0) |
| 965 | |
| 966 | /* |
| 967 | * Extra notes: |
| 968 | * |
| 969 | * Activating this XIP support changes the way the code works a bit. For |
| 970 | * example the code to suspend the current process when concurrent access |
| 971 | * happens is never executed because xip_udelay() will always return with the |
| 972 | * same chip state as it was entered with. This is why there is no care for |
| 973 | * the presence of add_wait_queue() or schedule() calls from within a couple |
| 974 | * xip_disable()'d areas of code, like in do_erase_oneblock for example. |
| 975 | * The queueing and scheduling are always happening within xip_udelay(). |
| 976 | * |
| 977 | * Similarly, get_chip() and put_chip() just happen to always be executed |
| 978 | * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state |
| 979 | * is in array mode, therefore never executing many cases therein and not |
| 980 | * causing any problem with XIP. |
| 981 | */ |
| 982 | |
| 983 | #else |
| 984 | |
| 985 | #define xip_disable(map, chip, adr) |
| 986 | #define xip_enable(map, chip, adr) |
| 987 | |
| 988 | #define UDELAY(map, chip, adr, usec) cfi_udelay(usec) |
| 989 | |
| 990 | #define XIP_INVAL_CACHED_RANGE(x...) |
| 991 | |
| 992 | #endif |
| 993 | |
| 994 | static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) |
| 995 | { |
| 996 | unsigned long cmd_addr; |
| 997 | struct cfi_private *cfi = map->fldrv_priv; |
| 998 | int ret = 0; |
| 999 | |
| 1000 | adr += chip->start; |
| 1001 | |
| 1002 | /* Ensure cmd read/writes are aligned. */ |
| 1003 | cmd_addr = adr & ~(map_bankwidth(map)-1); |
| 1004 | |
| 1005 | spin_lock(chip->mutex); |
| 1006 | |
| 1007 | ret = get_chip(map, chip, cmd_addr, FL_POINT); |
| 1008 | |
| 1009 | if (!ret) { |
| 1010 | if (chip->state != FL_POINT && chip->state != FL_READY) |
| 1011 | map_write(map, CMD(0xff), cmd_addr); |
| 1012 | |
| 1013 | chip->state = FL_POINT; |
| 1014 | chip->ref_point_counter++; |
| 1015 | } |
| 1016 | spin_unlock(chip->mutex); |
| 1017 | |
| 1018 | return ret; |
| 1019 | } |
| 1020 | |
| 1021 | static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf) |
| 1022 | { |
| 1023 | struct map_info *map = mtd->priv; |
| 1024 | struct cfi_private *cfi = map->fldrv_priv; |
| 1025 | unsigned long ofs; |
| 1026 | int chipnum; |
| 1027 | int ret = 0; |
| 1028 | |
| 1029 | if (!map->virt || (from + len > mtd->size)) |
| 1030 | return -EINVAL; |
| 1031 | |
| 1032 | *mtdbuf = (void *)map->virt + from; |
| 1033 | *retlen = 0; |
| 1034 | |
| 1035 | /* Now lock the chip(s) to POINT state */ |
| 1036 | |
| 1037 | /* ofs: offset within the first chip that the first read should start */ |
| 1038 | chipnum = (from >> cfi->chipshift); |
| 1039 | ofs = from - (chipnum << cfi->chipshift); |
| 1040 | |
| 1041 | while (len) { |
| 1042 | unsigned long thislen; |
| 1043 | |
| 1044 | if (chipnum >= cfi->numchips) |
| 1045 | break; |
| 1046 | |
| 1047 | if ((len + ofs -1) >> cfi->chipshift) |
| 1048 | thislen = (1<<cfi->chipshift) - ofs; |
| 1049 | else |
| 1050 | thislen = len; |
| 1051 | |
| 1052 | ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen); |
| 1053 | if (ret) |
| 1054 | break; |
| 1055 | |
| 1056 | *retlen += thislen; |
| 1057 | len -= thislen; |
| 1058 | |
| 1059 | ofs = 0; |
| 1060 | chipnum++; |
| 1061 | } |
| 1062 | return 0; |
| 1063 | } |
| 1064 | |
| 1065 | static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len) |
| 1066 | { |
| 1067 | struct map_info *map = mtd->priv; |
| 1068 | struct cfi_private *cfi = map->fldrv_priv; |
| 1069 | unsigned long ofs; |
| 1070 | int chipnum; |
| 1071 | |
| 1072 | /* Now unlock the chip(s) POINT state */ |
| 1073 | |
| 1074 | /* ofs: offset within the first chip that the first read should start */ |
| 1075 | chipnum = (from >> cfi->chipshift); |
| 1076 | ofs = from - (chipnum << cfi->chipshift); |
| 1077 | |
| 1078 | while (len) { |
| 1079 | unsigned long thislen; |
| 1080 | struct flchip *chip; |
| 1081 | |
| 1082 | chip = &cfi->chips[chipnum]; |
| 1083 | if (chipnum >= cfi->numchips) |
| 1084 | break; |
| 1085 | |
| 1086 | if ((len + ofs -1) >> cfi->chipshift) |
| 1087 | thislen = (1<<cfi->chipshift) - ofs; |
| 1088 | else |
| 1089 | thislen = len; |
| 1090 | |
| 1091 | spin_lock(chip->mutex); |
| 1092 | if (chip->state == FL_POINT) { |
| 1093 | chip->ref_point_counter--; |
| 1094 | if(chip->ref_point_counter == 0) |
| 1095 | chip->state = FL_READY; |
| 1096 | } else |
| 1097 | printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */ |
| 1098 | |
| 1099 | put_chip(map, chip, chip->start); |
| 1100 | spin_unlock(chip->mutex); |
| 1101 | |
| 1102 | len -= thislen; |
| 1103 | ofs = 0; |
| 1104 | chipnum++; |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) |
| 1109 | { |
| 1110 | unsigned long cmd_addr; |
| 1111 | struct cfi_private *cfi = map->fldrv_priv; |
| 1112 | int ret; |
| 1113 | |
| 1114 | adr += chip->start; |
| 1115 | |
| 1116 | /* Ensure cmd read/writes are aligned. */ |
| 1117 | cmd_addr = adr & ~(map_bankwidth(map)-1); |
| 1118 | |
| 1119 | spin_lock(chip->mutex); |
| 1120 | ret = get_chip(map, chip, cmd_addr, FL_READY); |
| 1121 | if (ret) { |
| 1122 | spin_unlock(chip->mutex); |
| 1123 | return ret; |
| 1124 | } |
| 1125 | |
| 1126 | if (chip->state != FL_POINT && chip->state != FL_READY) { |
| 1127 | map_write(map, CMD(0xff), cmd_addr); |
| 1128 | |
| 1129 | chip->state = FL_READY; |
| 1130 | } |
| 1131 | |
| 1132 | map_copy_from(map, buf, adr, len); |
| 1133 | |
| 1134 | put_chip(map, chip, cmd_addr); |
| 1135 | |
| 1136 | spin_unlock(chip->mutex); |
| 1137 | return 0; |
| 1138 | } |
| 1139 | |
| 1140 | static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) |
| 1141 | { |
| 1142 | struct map_info *map = mtd->priv; |
| 1143 | struct cfi_private *cfi = map->fldrv_priv; |
| 1144 | unsigned long ofs; |
| 1145 | int chipnum; |
| 1146 | int ret = 0; |
| 1147 | |
| 1148 | /* ofs: offset within the first chip that the first read should start */ |
| 1149 | chipnum = (from >> cfi->chipshift); |
| 1150 | ofs = from - (chipnum << cfi->chipshift); |
| 1151 | |
| 1152 | *retlen = 0; |
| 1153 | |
| 1154 | while (len) { |
| 1155 | unsigned long thislen; |
| 1156 | |
| 1157 | if (chipnum >= cfi->numchips) |
| 1158 | break; |
| 1159 | |
| 1160 | if ((len + ofs -1) >> cfi->chipshift) |
| 1161 | thislen = (1<<cfi->chipshift) - ofs; |
| 1162 | else |
| 1163 | thislen = len; |
| 1164 | |
| 1165 | ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); |
| 1166 | if (ret) |
| 1167 | break; |
| 1168 | |
| 1169 | *retlen += thislen; |
| 1170 | len -= thislen; |
| 1171 | buf += thislen; |
| 1172 | |
| 1173 | ofs = 0; |
| 1174 | chipnum++; |
| 1175 | } |
| 1176 | return ret; |
| 1177 | } |
| 1178 | |
| 1179 | #if 0 |
| 1180 | static int __xipram cfi_intelext_read_prot_reg (struct mtd_info *mtd, |
| 1181 | loff_t from, size_t len, |
| 1182 | size_t *retlen, |
| 1183 | u_char *buf, |
| 1184 | int base_offst, int reg_sz) |
| 1185 | { |
| 1186 | struct map_info *map = mtd->priv; |
| 1187 | struct cfi_private *cfi = map->fldrv_priv; |
| 1188 | struct cfi_pri_intelext *extp = cfi->cmdset_priv; |
| 1189 | struct flchip *chip; |
| 1190 | int ofs_factor = cfi->interleave * cfi->device_type; |
| 1191 | int count = len; |
| 1192 | int chip_num, offst; |
| 1193 | int ret; |
| 1194 | |
| 1195 | chip_num = ((unsigned int)from/reg_sz); |
| 1196 | offst = from - (reg_sz*chip_num)+base_offst; |
| 1197 | |
| 1198 | while (count) { |
| 1199 | /* Calculate which chip & protection register offset we need */ |
| 1200 | |
| 1201 | if (chip_num >= cfi->numchips) |
| 1202 | goto out; |
| 1203 | |
| 1204 | chip = &cfi->chips[chip_num]; |
| 1205 | |
| 1206 | spin_lock(chip->mutex); |
| 1207 | ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY); |
| 1208 | if (ret) { |
| 1209 | spin_unlock(chip->mutex); |
| 1210 | return (len-count)?:ret; |
| 1211 | } |
| 1212 | |
| 1213 | xip_disable(map, chip, chip->start); |
| 1214 | |
| 1215 | if (chip->state != FL_JEDEC_QUERY) { |
| 1216 | map_write(map, CMD(0x90), chip->start); |
| 1217 | chip->state = FL_JEDEC_QUERY; |
| 1218 | } |
| 1219 | |
| 1220 | while (count && ((offst-base_offst) < reg_sz)) { |
| 1221 | *buf = map_read8(map,(chip->start+((extp->ProtRegAddr+1)*ofs_factor)+offst)); |
| 1222 | buf++; |
| 1223 | offst++; |
| 1224 | count--; |
| 1225 | } |
| 1226 | |
| 1227 | xip_enable(map, chip, chip->start); |
| 1228 | put_chip(map, chip, chip->start); |
| 1229 | spin_unlock(chip->mutex); |
| 1230 | |
| 1231 | /* Move on to the next chip */ |
| 1232 | chip_num++; |
| 1233 | offst = base_offst; |
| 1234 | } |
| 1235 | |
| 1236 | out: |
| 1237 | return len-count; |
| 1238 | } |
| 1239 | |
| 1240 | static int cfi_intelext_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) |
| 1241 | { |
| 1242 | struct map_info *map = mtd->priv; |
| 1243 | struct cfi_private *cfi = map->fldrv_priv; |
| 1244 | struct cfi_pri_intelext *extp=cfi->cmdset_priv; |
| 1245 | int base_offst,reg_sz; |
| 1246 | |
| 1247 | /* Check that we actually have some protection registers */ |
| 1248 | if(!extp || !(extp->FeatureSupport&64)){ |
| 1249 | printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name); |
| 1250 | return 0; |
| 1251 | } |
| 1252 | |
| 1253 | base_offst=(1<<extp->FactProtRegSize); |
| 1254 | reg_sz=(1<<extp->UserProtRegSize); |
| 1255 | |
| 1256 | return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz); |
| 1257 | } |
| 1258 | |
| 1259 | static int cfi_intelext_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) |
| 1260 | { |
| 1261 | struct map_info *map = mtd->priv; |
| 1262 | struct cfi_private *cfi = map->fldrv_priv; |
| 1263 | struct cfi_pri_intelext *extp=cfi->cmdset_priv; |
| 1264 | int base_offst,reg_sz; |
| 1265 | |
| 1266 | /* Check that we actually have some protection registers */ |
| 1267 | if(!extp || !(extp->FeatureSupport&64)){ |
| 1268 | printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name); |
| 1269 | return 0; |
| 1270 | } |
| 1271 | |
| 1272 | base_offst=0; |
| 1273 | reg_sz=(1<<extp->FactProtRegSize); |
| 1274 | |
| 1275 | return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz); |
| 1276 | } |
| 1277 | #endif |
| 1278 | |
| 1279 | static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, |
| 1280 | unsigned long adr, map_word datum) |
| 1281 | { |
| 1282 | struct cfi_private *cfi = map->fldrv_priv; |
| 1283 | map_word status, status_OK; |
| 1284 | unsigned long timeo; |
| 1285 | int z, ret=0; |
| 1286 | |
| 1287 | adr += chip->start; |
| 1288 | |
| 1289 | /* Let's determine this according to the interleave only once */ |
| 1290 | status_OK = CMD(0x80); |
| 1291 | |
| 1292 | spin_lock(chip->mutex); |
| 1293 | ret = get_chip(map, chip, adr, FL_WRITING); |
| 1294 | if (ret) { |
| 1295 | spin_unlock(chip->mutex); |
| 1296 | return ret; |
| 1297 | } |
| 1298 | |
| 1299 | XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); |
| 1300 | ENABLE_VPP(map); |
| 1301 | xip_disable(map, chip, adr); |
| 1302 | map_write(map, CMD(0x40), adr); |
| 1303 | map_write(map, datum, adr); |
| 1304 | chip->state = FL_WRITING; |
| 1305 | |
| 1306 | spin_unlock(chip->mutex); |
| 1307 | INVALIDATE_CACHED_RANGE(map, adr, map_bankwidth(map)); |
| 1308 | UDELAY(map, chip, adr, chip->word_write_time); |
| 1309 | spin_lock(chip->mutex); |
| 1310 | |
| 1311 | timeo = jiffies + (HZ/2); |
| 1312 | z = 0; |
| 1313 | for (;;) { |
| 1314 | if (chip->state != FL_WRITING) { |
| 1315 | /* Someone's suspended the write. Sleep */ |
| 1316 | DECLARE_WAITQUEUE(wait, current); |
| 1317 | |
| 1318 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 1319 | add_wait_queue(&chip->wq, &wait); |
| 1320 | spin_unlock(chip->mutex); |
| 1321 | schedule(); |
| 1322 | remove_wait_queue(&chip->wq, &wait); |
| 1323 | timeo = jiffies + (HZ / 2); /* FIXME */ |
| 1324 | spin_lock(chip->mutex); |
| 1325 | continue; |
| 1326 | } |
| 1327 | |
| 1328 | status = map_read(map, adr); |
| 1329 | if (map_word_andequal(map, status, status_OK, status_OK)) |
| 1330 | break; |
| 1331 | |
| 1332 | /* OK Still waiting */ |
| 1333 | if (time_after(jiffies, timeo)) { |
| 1334 | chip->state = FL_STATUS; |
| 1335 | xip_enable(map, chip, adr); |
| 1336 | printk(KERN_ERR "waiting for chip to be ready timed out in word write\n"); |
| 1337 | ret = -EIO; |
| 1338 | goto out; |
| 1339 | } |
| 1340 | |
| 1341 | /* Latency issues. Drop the lock, wait a while and retry */ |
| 1342 | spin_unlock(chip->mutex); |
| 1343 | z++; |
| 1344 | UDELAY(map, chip, adr, 1); |
| 1345 | spin_lock(chip->mutex); |
| 1346 | } |
| 1347 | if (!z) { |
| 1348 | chip->word_write_time--; |
| 1349 | if (!chip->word_write_time) |
| 1350 | chip->word_write_time++; |
| 1351 | } |
| 1352 | if (z > 1) |
| 1353 | chip->word_write_time++; |
| 1354 | |
| 1355 | /* Done and happy. */ |
| 1356 | chip->state = FL_STATUS; |
| 1357 | |
| 1358 | /* check for lock bit */ |
| 1359 | if (map_word_bitsset(map, status, CMD(0x02))) { |
| 1360 | /* clear status */ |
| 1361 | map_write(map, CMD(0x50), adr); |
| 1362 | /* put back into read status register mode */ |
| 1363 | map_write(map, CMD(0x70), adr); |
| 1364 | ret = -EROFS; |
| 1365 | } |
| 1366 | |
| 1367 | xip_enable(map, chip, adr); |
| 1368 | out: put_chip(map, chip, adr); |
| 1369 | spin_unlock(chip->mutex); |
| 1370 | |
| 1371 | return ret; |
| 1372 | } |
| 1373 | |
| 1374 | |
| 1375 | static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) |
| 1376 | { |
| 1377 | struct map_info *map = mtd->priv; |
| 1378 | struct cfi_private *cfi = map->fldrv_priv; |
| 1379 | int ret = 0; |
| 1380 | int chipnum; |
| 1381 | unsigned long ofs; |
| 1382 | |
| 1383 | *retlen = 0; |
| 1384 | if (!len) |
| 1385 | return 0; |
| 1386 | |
| 1387 | chipnum = to >> cfi->chipshift; |
| 1388 | ofs = to - (chipnum << cfi->chipshift); |
| 1389 | |
| 1390 | /* If it's not bus-aligned, do the first byte write */ |
| 1391 | if (ofs & (map_bankwidth(map)-1)) { |
| 1392 | unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); |
| 1393 | int gap = ofs - bus_ofs; |
| 1394 | int n; |
| 1395 | map_word datum; |
| 1396 | |
| 1397 | n = min_t(int, len, map_bankwidth(map)-gap); |
| 1398 | datum = map_word_ff(map); |
| 1399 | datum = map_word_load_partial(map, datum, buf, gap, n); |
| 1400 | |
| 1401 | ret = do_write_oneword(map, &cfi->chips[chipnum], |
| 1402 | bus_ofs, datum); |
| 1403 | if (ret) |
| 1404 | return ret; |
| 1405 | |
| 1406 | len -= n; |
| 1407 | ofs += n; |
| 1408 | buf += n; |
| 1409 | (*retlen) += n; |
| 1410 | |
| 1411 | if (ofs >> cfi->chipshift) { |
| 1412 | chipnum ++; |
| 1413 | ofs = 0; |
| 1414 | if (chipnum == cfi->numchips) |
| 1415 | return 0; |
| 1416 | } |
| 1417 | } |
| 1418 | |
| 1419 | while(len >= map_bankwidth(map)) { |
| 1420 | map_word datum = map_word_load(map, buf); |
| 1421 | |
| 1422 | ret = do_write_oneword(map, &cfi->chips[chipnum], |
| 1423 | ofs, datum); |
| 1424 | if (ret) |
| 1425 | return ret; |
| 1426 | |
| 1427 | ofs += map_bankwidth(map); |
| 1428 | buf += map_bankwidth(map); |
| 1429 | (*retlen) += map_bankwidth(map); |
| 1430 | len -= map_bankwidth(map); |
| 1431 | |
| 1432 | if (ofs >> cfi->chipshift) { |
| 1433 | chipnum ++; |
| 1434 | ofs = 0; |
| 1435 | if (chipnum == cfi->numchips) |
| 1436 | return 0; |
| 1437 | } |
| 1438 | } |
| 1439 | |
| 1440 | if (len & (map_bankwidth(map)-1)) { |
| 1441 | map_word datum; |
| 1442 | |
| 1443 | datum = map_word_ff(map); |
| 1444 | datum = map_word_load_partial(map, datum, buf, 0, len); |
| 1445 | |
| 1446 | ret = do_write_oneword(map, &cfi->chips[chipnum], |
| 1447 | ofs, datum); |
| 1448 | if (ret) |
| 1449 | return ret; |
| 1450 | |
| 1451 | (*retlen) += len; |
| 1452 | } |
| 1453 | |
| 1454 | return 0; |
| 1455 | } |
| 1456 | |
| 1457 | |
| 1458 | static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, |
| 1459 | unsigned long adr, const u_char *buf, int len) |
| 1460 | { |
| 1461 | struct cfi_private *cfi = map->fldrv_priv; |
| 1462 | map_word status, status_OK; |
| 1463 | unsigned long cmd_adr, timeo; |
| 1464 | int wbufsize, z, ret=0, bytes, words; |
| 1465 | |
| 1466 | wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; |
| 1467 | adr += chip->start; |
| 1468 | cmd_adr = adr & ~(wbufsize-1); |
| 1469 | |
| 1470 | /* Let's determine this according to the interleave only once */ |
| 1471 | status_OK = CMD(0x80); |
| 1472 | |
| 1473 | spin_lock(chip->mutex); |
| 1474 | ret = get_chip(map, chip, cmd_adr, FL_WRITING); |
| 1475 | if (ret) { |
| 1476 | spin_unlock(chip->mutex); |
| 1477 | return ret; |
| 1478 | } |
| 1479 | |
| 1480 | XIP_INVAL_CACHED_RANGE(map, adr, len); |
| 1481 | ENABLE_VPP(map); |
| 1482 | xip_disable(map, chip, cmd_adr); |
| 1483 | |
| 1484 | /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set |
| 1485 | [...], the device will not accept any more Write to Buffer commands". |
| 1486 | So we must check here and reset those bits if they're set. Otherwise |
| 1487 | we're just pissing in the wind */ |
| 1488 | if (chip->state != FL_STATUS) |
| 1489 | map_write(map, CMD(0x70), cmd_adr); |
| 1490 | status = map_read(map, cmd_adr); |
| 1491 | if (map_word_bitsset(map, status, CMD(0x30))) { |
| 1492 | xip_enable(map, chip, cmd_adr); |
| 1493 | printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]); |
| 1494 | xip_disable(map, chip, cmd_adr); |
| 1495 | map_write(map, CMD(0x50), cmd_adr); |
| 1496 | map_write(map, CMD(0x70), cmd_adr); |
| 1497 | } |
| 1498 | |
| 1499 | chip->state = FL_WRITING_TO_BUFFER; |
| 1500 | |
| 1501 | z = 0; |
| 1502 | for (;;) { |
| 1503 | map_write(map, CMD(0xe8), cmd_adr); |
| 1504 | |
| 1505 | status = map_read(map, cmd_adr); |
| 1506 | if (map_word_andequal(map, status, status_OK, status_OK)) |
| 1507 | break; |
| 1508 | |
| 1509 | spin_unlock(chip->mutex); |
| 1510 | UDELAY(map, chip, cmd_adr, 1); |
| 1511 | spin_lock(chip->mutex); |
| 1512 | |
| 1513 | if (++z > 20) { |
| 1514 | /* Argh. Not ready for write to buffer */ |
| 1515 | map_word Xstatus; |
| 1516 | map_write(map, CMD(0x70), cmd_adr); |
| 1517 | chip->state = FL_STATUS; |
| 1518 | Xstatus = map_read(map, cmd_adr); |
| 1519 | /* Odd. Clear status bits */ |
| 1520 | map_write(map, CMD(0x50), cmd_adr); |
| 1521 | map_write(map, CMD(0x70), cmd_adr); |
| 1522 | xip_enable(map, chip, cmd_adr); |
| 1523 | printk(KERN_ERR "Chip not ready for buffer write. status = %lx, Xstatus = %lx\n", |
| 1524 | status.x[0], Xstatus.x[0]); |
| 1525 | ret = -EIO; |
| 1526 | goto out; |
| 1527 | } |
| 1528 | } |
| 1529 | |
| 1530 | /* Write length of data to come */ |
| 1531 | bytes = len & (map_bankwidth(map)-1); |
| 1532 | words = len / map_bankwidth(map); |
| 1533 | map_write(map, CMD(words - !bytes), cmd_adr ); |
| 1534 | |
| 1535 | /* Write data */ |
| 1536 | z = 0; |
| 1537 | while(z < words * map_bankwidth(map)) { |
| 1538 | map_word datum = map_word_load(map, buf); |
| 1539 | map_write(map, datum, adr+z); |
| 1540 | |
| 1541 | z += map_bankwidth(map); |
| 1542 | buf += map_bankwidth(map); |
| 1543 | } |
| 1544 | |
| 1545 | if (bytes) { |
| 1546 | map_word datum; |
| 1547 | |
| 1548 | datum = map_word_ff(map); |
| 1549 | datum = map_word_load_partial(map, datum, buf, 0, bytes); |
| 1550 | map_write(map, datum, adr+z); |
| 1551 | } |
| 1552 | |
| 1553 | /* GO GO GO */ |
| 1554 | map_write(map, CMD(0xd0), cmd_adr); |
| 1555 | chip->state = FL_WRITING; |
| 1556 | |
| 1557 | spin_unlock(chip->mutex); |
| 1558 | INVALIDATE_CACHED_RANGE(map, adr, len); |
| 1559 | UDELAY(map, chip, cmd_adr, chip->buffer_write_time); |
| 1560 | spin_lock(chip->mutex); |
| 1561 | |
| 1562 | timeo = jiffies + (HZ/2); |
| 1563 | z = 0; |
| 1564 | for (;;) { |
| 1565 | if (chip->state != FL_WRITING) { |
| 1566 | /* Someone's suspended the write. Sleep */ |
| 1567 | DECLARE_WAITQUEUE(wait, current); |
| 1568 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 1569 | add_wait_queue(&chip->wq, &wait); |
| 1570 | spin_unlock(chip->mutex); |
| 1571 | schedule(); |
| 1572 | remove_wait_queue(&chip->wq, &wait); |
| 1573 | timeo = jiffies + (HZ / 2); /* FIXME */ |
| 1574 | spin_lock(chip->mutex); |
| 1575 | continue; |
| 1576 | } |
| 1577 | |
| 1578 | status = map_read(map, cmd_adr); |
| 1579 | if (map_word_andequal(map, status, status_OK, status_OK)) |
| 1580 | break; |
| 1581 | |
| 1582 | /* OK Still waiting */ |
| 1583 | if (time_after(jiffies, timeo)) { |
| 1584 | chip->state = FL_STATUS; |
| 1585 | xip_enable(map, chip, cmd_adr); |
| 1586 | printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); |
| 1587 | ret = -EIO; |
| 1588 | goto out; |
| 1589 | } |
| 1590 | |
| 1591 | /* Latency issues. Drop the lock, wait a while and retry */ |
| 1592 | spin_unlock(chip->mutex); |
| 1593 | UDELAY(map, chip, cmd_adr, 1); |
| 1594 | z++; |
| 1595 | spin_lock(chip->mutex); |
| 1596 | } |
| 1597 | if (!z) { |
| 1598 | chip->buffer_write_time--; |
| 1599 | if (!chip->buffer_write_time) |
| 1600 | chip->buffer_write_time++; |
| 1601 | } |
| 1602 | if (z > 1) |
| 1603 | chip->buffer_write_time++; |
| 1604 | |
| 1605 | /* Done and happy. */ |
| 1606 | chip->state = FL_STATUS; |
| 1607 | |
| 1608 | /* check for lock bit */ |
| 1609 | if (map_word_bitsset(map, status, CMD(0x02))) { |
| 1610 | /* clear status */ |
| 1611 | map_write(map, CMD(0x50), cmd_adr); |
| 1612 | /* put back into read status register mode */ |
| 1613 | map_write(map, CMD(0x70), adr); |
| 1614 | ret = -EROFS; |
| 1615 | } |
| 1616 | |
| 1617 | xip_enable(map, chip, cmd_adr); |
| 1618 | out: put_chip(map, chip, cmd_adr); |
| 1619 | spin_unlock(chip->mutex); |
| 1620 | return ret; |
| 1621 | } |
| 1622 | |
| 1623 | static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, |
| 1624 | size_t len, size_t *retlen, const u_char *buf) |
| 1625 | { |
| 1626 | struct map_info *map = mtd->priv; |
| 1627 | struct cfi_private *cfi = map->fldrv_priv; |
| 1628 | int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; |
| 1629 | int ret = 0; |
| 1630 | int chipnum; |
| 1631 | unsigned long ofs; |
| 1632 | |
| 1633 | *retlen = 0; |
| 1634 | if (!len) |
| 1635 | return 0; |
| 1636 | |
| 1637 | chipnum = to >> cfi->chipshift; |
| 1638 | ofs = to - (chipnum << cfi->chipshift); |
| 1639 | |
| 1640 | /* If it's not bus-aligned, do the first word write */ |
| 1641 | if (ofs & (map_bankwidth(map)-1)) { |
| 1642 | size_t local_len = (-ofs)&(map_bankwidth(map)-1); |
| 1643 | if (local_len > len) |
| 1644 | local_len = len; |
| 1645 | ret = cfi_intelext_write_words(mtd, to, local_len, |
| 1646 | retlen, buf); |
| 1647 | if (ret) |
| 1648 | return ret; |
| 1649 | ofs += local_len; |
| 1650 | buf += local_len; |
| 1651 | len -= local_len; |
| 1652 | |
| 1653 | if (ofs >> cfi->chipshift) { |
| 1654 | chipnum ++; |
| 1655 | ofs = 0; |
| 1656 | if (chipnum == cfi->numchips) |
| 1657 | return 0; |
| 1658 | } |
| 1659 | } |
| 1660 | |
| 1661 | while(len) { |
| 1662 | /* We must not cross write block boundaries */ |
| 1663 | int size = wbufsize - (ofs & (wbufsize-1)); |
| 1664 | |
| 1665 | if (size > len) |
| 1666 | size = len; |
| 1667 | ret = do_write_buffer(map, &cfi->chips[chipnum], |
| 1668 | ofs, buf, size); |
| 1669 | if (ret) |
| 1670 | return ret; |
| 1671 | |
| 1672 | ofs += size; |
| 1673 | buf += size; |
| 1674 | (*retlen) += size; |
| 1675 | len -= size; |
| 1676 | |
| 1677 | if (ofs >> cfi->chipshift) { |
| 1678 | chipnum ++; |
| 1679 | ofs = 0; |
| 1680 | if (chipnum == cfi->numchips) |
| 1681 | return 0; |
| 1682 | } |
| 1683 | } |
| 1684 | return 0; |
| 1685 | } |
| 1686 | |
| 1687 | static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, |
| 1688 | unsigned long adr, int len, void *thunk) |
| 1689 | { |
| 1690 | struct cfi_private *cfi = map->fldrv_priv; |
| 1691 | map_word status, status_OK; |
| 1692 | unsigned long timeo; |
| 1693 | int retries = 3; |
| 1694 | DECLARE_WAITQUEUE(wait, current); |
| 1695 | int ret = 0; |
| 1696 | |
| 1697 | adr += chip->start; |
| 1698 | |
| 1699 | /* Let's determine this according to the interleave only once */ |
| 1700 | status_OK = CMD(0x80); |
| 1701 | |
| 1702 | retry: |
| 1703 | spin_lock(chip->mutex); |
| 1704 | ret = get_chip(map, chip, adr, FL_ERASING); |
| 1705 | if (ret) { |
| 1706 | spin_unlock(chip->mutex); |
| 1707 | return ret; |
| 1708 | } |
| 1709 | |
| 1710 | XIP_INVAL_CACHED_RANGE(map, adr, len); |
| 1711 | ENABLE_VPP(map); |
| 1712 | xip_disable(map, chip, adr); |
| 1713 | |
| 1714 | /* Clear the status register first */ |
| 1715 | map_write(map, CMD(0x50), adr); |
| 1716 | |
| 1717 | /* Now erase */ |
| 1718 | map_write(map, CMD(0x20), adr); |
| 1719 | map_write(map, CMD(0xD0), adr); |
| 1720 | chip->state = FL_ERASING; |
| 1721 | chip->erase_suspended = 0; |
| 1722 | |
| 1723 | spin_unlock(chip->mutex); |
| 1724 | INVALIDATE_CACHED_RANGE(map, adr, len); |
| 1725 | UDELAY(map, chip, adr, chip->erase_time*1000/2); |
| 1726 | spin_lock(chip->mutex); |
| 1727 | |
| 1728 | /* FIXME. Use a timer to check this, and return immediately. */ |
| 1729 | /* Once the state machine's known to be working I'll do that */ |
| 1730 | |
| 1731 | timeo = jiffies + (HZ*20); |
| 1732 | for (;;) { |
| 1733 | if (chip->state != FL_ERASING) { |
| 1734 | /* Someone's suspended the erase. Sleep */ |
| 1735 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 1736 | add_wait_queue(&chip->wq, &wait); |
| 1737 | spin_unlock(chip->mutex); |
| 1738 | schedule(); |
| 1739 | remove_wait_queue(&chip->wq, &wait); |
| 1740 | spin_lock(chip->mutex); |
| 1741 | continue; |
| 1742 | } |
| 1743 | if (chip->erase_suspended) { |
| 1744 | /* This erase was suspended and resumed. |
| 1745 | Adjust the timeout */ |
| 1746 | timeo = jiffies + (HZ*20); /* FIXME */ |
| 1747 | chip->erase_suspended = 0; |
| 1748 | } |
| 1749 | |
| 1750 | status = map_read(map, adr); |
| 1751 | if (map_word_andequal(map, status, status_OK, status_OK)) |
| 1752 | break; |
| 1753 | |
| 1754 | /* OK Still waiting */ |
| 1755 | if (time_after(jiffies, timeo)) { |
| 1756 | map_word Xstatus; |
| 1757 | map_write(map, CMD(0x70), adr); |
| 1758 | chip->state = FL_STATUS; |
| 1759 | Xstatus = map_read(map, adr); |
| 1760 | /* Clear status bits */ |
| 1761 | map_write(map, CMD(0x50), adr); |
| 1762 | map_write(map, CMD(0x70), adr); |
| 1763 | xip_enable(map, chip, adr); |
| 1764 | printk(KERN_ERR "waiting for erase at %08lx to complete timed out. status = %lx, Xstatus = %lx.\n", |
| 1765 | adr, status.x[0], Xstatus.x[0]); |
| 1766 | ret = -EIO; |
| 1767 | goto out; |
| 1768 | } |
| 1769 | |
| 1770 | /* Latency issues. Drop the lock, wait a while and retry */ |
| 1771 | spin_unlock(chip->mutex); |
| 1772 | UDELAY(map, chip, adr, 1000000/HZ); |
| 1773 | spin_lock(chip->mutex); |
| 1774 | } |
| 1775 | |
| 1776 | /* We've broken this before. It doesn't hurt to be safe */ |
| 1777 | map_write(map, CMD(0x70), adr); |
| 1778 | chip->state = FL_STATUS; |
| 1779 | status = map_read(map, adr); |
| 1780 | |
| 1781 | /* check for lock bit */ |
| 1782 | if (map_word_bitsset(map, status, CMD(0x3a))) { |
| 1783 | unsigned char chipstatus; |
| 1784 | |
| 1785 | /* Reset the error bits */ |
| 1786 | map_write(map, CMD(0x50), adr); |
| 1787 | map_write(map, CMD(0x70), adr); |
| 1788 | xip_enable(map, chip, adr); |
| 1789 | |
| 1790 | chipstatus = status.x[0]; |
| 1791 | if (!map_word_equal(map, status, CMD(chipstatus))) { |
| 1792 | int i, w; |
| 1793 | for (w=0; w<map_words(map); w++) { |
| 1794 | for (i = 0; i<cfi_interleave(cfi); i++) { |
| 1795 | chipstatus |= status.x[w] >> (cfi->device_type * 8); |
| 1796 | } |
| 1797 | } |
| 1798 | printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", |
| 1799 | status.x[0], chipstatus); |
| 1800 | } |
| 1801 | |
| 1802 | if ((chipstatus & 0x30) == 0x30) { |
| 1803 | printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); |
| 1804 | ret = -EIO; |
| 1805 | } else if (chipstatus & 0x02) { |
| 1806 | /* Protection bit set */ |
| 1807 | ret = -EROFS; |
| 1808 | } else if (chipstatus & 0x8) { |
| 1809 | /* Voltage */ |
| 1810 | printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); |
| 1811 | ret = -EIO; |
| 1812 | } else if (chipstatus & 0x20) { |
| 1813 | if (retries--) { |
| 1814 | printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); |
| 1815 | timeo = jiffies + HZ; |
| 1816 | put_chip(map, chip, adr); |
| 1817 | spin_unlock(chip->mutex); |
| 1818 | goto retry; |
| 1819 | } |
| 1820 | printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); |
| 1821 | ret = -EIO; |
| 1822 | } |
| 1823 | } else { |
| 1824 | xip_enable(map, chip, adr); |
| 1825 | ret = 0; |
| 1826 | } |
| 1827 | |
| 1828 | out: put_chip(map, chip, adr); |
| 1829 | spin_unlock(chip->mutex); |
| 1830 | return ret; |
| 1831 | } |
| 1832 | |
| 1833 | int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) |
| 1834 | { |
| 1835 | unsigned long ofs, len; |
| 1836 | int ret; |
| 1837 | |
| 1838 | ofs = instr->addr; |
| 1839 | len = instr->len; |
| 1840 | |
| 1841 | ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); |
| 1842 | if (ret) |
| 1843 | return ret; |
| 1844 | |
| 1845 | instr->state = MTD_ERASE_DONE; |
| 1846 | mtd_erase_callback(instr); |
| 1847 | |
| 1848 | return 0; |
| 1849 | } |
| 1850 | |
| 1851 | static void cfi_intelext_sync (struct mtd_info *mtd) |
| 1852 | { |
| 1853 | struct map_info *map = mtd->priv; |
| 1854 | struct cfi_private *cfi = map->fldrv_priv; |
| 1855 | int i; |
| 1856 | struct flchip *chip; |
| 1857 | int ret = 0; |
| 1858 | |
| 1859 | for (i=0; !ret && i<cfi->numchips; i++) { |
| 1860 | chip = &cfi->chips[i]; |
| 1861 | |
| 1862 | spin_lock(chip->mutex); |
| 1863 | ret = get_chip(map, chip, chip->start, FL_SYNCING); |
| 1864 | |
| 1865 | if (!ret) { |
| 1866 | chip->oldstate = chip->state; |
| 1867 | chip->state = FL_SYNCING; |
| 1868 | /* No need to wake_up() on this state change - |
| 1869 | * as the whole point is that nobody can do anything |
| 1870 | * with the chip now anyway. |
| 1871 | */ |
| 1872 | } |
| 1873 | spin_unlock(chip->mutex); |
| 1874 | } |
| 1875 | |
| 1876 | /* Unlock the chips again */ |
| 1877 | |
| 1878 | for (i--; i >=0; i--) { |
| 1879 | chip = &cfi->chips[i]; |
| 1880 | |
| 1881 | spin_lock(chip->mutex); |
| 1882 | |
| 1883 | if (chip->state == FL_SYNCING) { |
| 1884 | chip->state = chip->oldstate; |
| 1885 | wake_up(&chip->wq); |
| 1886 | } |
| 1887 | spin_unlock(chip->mutex); |
| 1888 | } |
| 1889 | } |
| 1890 | |
| 1891 | #ifdef DEBUG_LOCK_BITS |
| 1892 | static int __xipram do_printlockstatus_oneblock(struct map_info *map, |
| 1893 | struct flchip *chip, |
| 1894 | unsigned long adr, |
| 1895 | int len, void *thunk) |
| 1896 | { |
| 1897 | struct cfi_private *cfi = map->fldrv_priv; |
| 1898 | int status, ofs_factor = cfi->interleave * cfi->device_type; |
| 1899 | |
| 1900 | xip_disable(map, chip, adr+(2*ofs_factor)); |
| 1901 | cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); |
| 1902 | chip->state = FL_JEDEC_QUERY; |
| 1903 | status = cfi_read_query(map, adr+(2*ofs_factor)); |
| 1904 | xip_enable(map, chip, 0); |
| 1905 | printk(KERN_DEBUG "block status register for 0x%08lx is %x\n", |
| 1906 | adr, status); |
| 1907 | return 0; |
| 1908 | } |
| 1909 | #endif |
| 1910 | |
| 1911 | #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1) |
| 1912 | #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2) |
| 1913 | |
| 1914 | static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip, |
| 1915 | unsigned long adr, int len, void *thunk) |
| 1916 | { |
| 1917 | struct cfi_private *cfi = map->fldrv_priv; |
| 1918 | map_word status, status_OK; |
| 1919 | unsigned long timeo = jiffies + HZ; |
| 1920 | int ret; |
| 1921 | |
| 1922 | adr += chip->start; |
| 1923 | |
| 1924 | /* Let's determine this according to the interleave only once */ |
| 1925 | status_OK = CMD(0x80); |
| 1926 | |
| 1927 | spin_lock(chip->mutex); |
| 1928 | ret = get_chip(map, chip, adr, FL_LOCKING); |
| 1929 | if (ret) { |
| 1930 | spin_unlock(chip->mutex); |
| 1931 | return ret; |
| 1932 | } |
| 1933 | |
| 1934 | ENABLE_VPP(map); |
| 1935 | xip_disable(map, chip, adr); |
| 1936 | |
| 1937 | map_write(map, CMD(0x60), adr); |
| 1938 | if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { |
| 1939 | map_write(map, CMD(0x01), adr); |
| 1940 | chip->state = FL_LOCKING; |
| 1941 | } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { |
| 1942 | map_write(map, CMD(0xD0), adr); |
| 1943 | chip->state = FL_UNLOCKING; |
| 1944 | } else |
| 1945 | BUG(); |
| 1946 | |
| 1947 | spin_unlock(chip->mutex); |
| 1948 | UDELAY(map, chip, adr, 1000000/HZ); |
| 1949 | spin_lock(chip->mutex); |
| 1950 | |
| 1951 | /* FIXME. Use a timer to check this, and return immediately. */ |
| 1952 | /* Once the state machine's known to be working I'll do that */ |
| 1953 | |
| 1954 | timeo = jiffies + (HZ*20); |
| 1955 | for (;;) { |
| 1956 | |
| 1957 | status = map_read(map, adr); |
| 1958 | if (map_word_andequal(map, status, status_OK, status_OK)) |
| 1959 | break; |
| 1960 | |
| 1961 | /* OK Still waiting */ |
| 1962 | if (time_after(jiffies, timeo)) { |
| 1963 | map_word Xstatus; |
| 1964 | map_write(map, CMD(0x70), adr); |
| 1965 | chip->state = FL_STATUS; |
| 1966 | Xstatus = map_read(map, adr); |
| 1967 | xip_enable(map, chip, adr); |
| 1968 | printk(KERN_ERR "waiting for unlock to complete timed out. status = %lx, Xstatus = %lx.\n", |
| 1969 | status.x[0], Xstatus.x[0]); |
| 1970 | put_chip(map, chip, adr); |
| 1971 | spin_unlock(chip->mutex); |
| 1972 | return -EIO; |
| 1973 | } |
| 1974 | |
| 1975 | /* Latency issues. Drop the lock, wait a while and retry */ |
| 1976 | spin_unlock(chip->mutex); |
| 1977 | UDELAY(map, chip, adr, 1); |
| 1978 | spin_lock(chip->mutex); |
| 1979 | } |
| 1980 | |
| 1981 | /* Done and happy. */ |
| 1982 | chip->state = FL_STATUS; |
| 1983 | xip_enable(map, chip, adr); |
| 1984 | put_chip(map, chip, adr); |
| 1985 | spin_unlock(chip->mutex); |
| 1986 | return 0; |
| 1987 | } |
| 1988 | |
| 1989 | static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len) |
| 1990 | { |
| 1991 | int ret; |
| 1992 | |
| 1993 | #ifdef DEBUG_LOCK_BITS |
| 1994 | printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", |
| 1995 | __FUNCTION__, ofs, len); |
| 1996 | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, |
| 1997 | ofs, len, 0); |
| 1998 | #endif |
| 1999 | |
| 2000 | ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, |
| 2001 | ofs, len, DO_XXLOCK_ONEBLOCK_LOCK); |
| 2002 | |
| 2003 | #ifdef DEBUG_LOCK_BITS |
| 2004 | printk(KERN_DEBUG "%s: lock status after, ret=%d\n", |
| 2005 | __FUNCTION__, ret); |
| 2006 | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, |
| 2007 | ofs, len, 0); |
| 2008 | #endif |
| 2009 | |
| 2010 | return ret; |
| 2011 | } |
| 2012 | |
| 2013 | static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) |
| 2014 | { |
| 2015 | int ret; |
| 2016 | |
| 2017 | #ifdef DEBUG_LOCK_BITS |
| 2018 | printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", |
| 2019 | __FUNCTION__, ofs, len); |
| 2020 | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, |
| 2021 | ofs, len, 0); |
| 2022 | #endif |
| 2023 | |
| 2024 | ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, |
| 2025 | ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK); |
| 2026 | |
| 2027 | #ifdef DEBUG_LOCK_BITS |
| 2028 | printk(KERN_DEBUG "%s: lock status after, ret=%d\n", |
| 2029 | __FUNCTION__, ret); |
| 2030 | cfi_varsize_frob(mtd, do_printlockstatus_oneblock, |
| 2031 | ofs, len, 0); |
| 2032 | #endif |
| 2033 | |
| 2034 | return ret; |
| 2035 | } |
| 2036 | |
| 2037 | static int cfi_intelext_suspend(struct mtd_info *mtd) |
| 2038 | { |
| 2039 | struct map_info *map = mtd->priv; |
| 2040 | struct cfi_private *cfi = map->fldrv_priv; |
| 2041 | int i; |
| 2042 | struct flchip *chip; |
| 2043 | int ret = 0; |
| 2044 | |
| 2045 | for (i=0; !ret && i<cfi->numchips; i++) { |
| 2046 | chip = &cfi->chips[i]; |
| 2047 | |
| 2048 | spin_lock(chip->mutex); |
| 2049 | |
| 2050 | switch (chip->state) { |
| 2051 | case FL_READY: |
| 2052 | case FL_STATUS: |
| 2053 | case FL_CFI_QUERY: |
| 2054 | case FL_JEDEC_QUERY: |
| 2055 | if (chip->oldstate == FL_READY) { |
| 2056 | chip->oldstate = chip->state; |
| 2057 | chip->state = FL_PM_SUSPENDED; |
| 2058 | /* No need to wake_up() on this state change - |
| 2059 | * as the whole point is that nobody can do anything |
| 2060 | * with the chip now anyway. |
| 2061 | */ |
| 2062 | } else { |
| 2063 | /* There seems to be an operation pending. We must wait for it. */ |
| 2064 | printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate); |
| 2065 | ret = -EAGAIN; |
| 2066 | } |
| 2067 | break; |
| 2068 | default: |
| 2069 | /* Should we actually wait? Once upon a time these routines weren't |
| 2070 | allowed to. Or should we return -EAGAIN, because the upper layers |
| 2071 | ought to have already shut down anything which was using the device |
| 2072 | anyway? The latter for now. */ |
| 2073 | printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate); |
| 2074 | ret = -EAGAIN; |
| 2075 | case FL_PM_SUSPENDED: |
| 2076 | break; |
| 2077 | } |
| 2078 | spin_unlock(chip->mutex); |
| 2079 | } |
| 2080 | |
| 2081 | /* Unlock the chips again */ |
| 2082 | |
| 2083 | if (ret) { |
| 2084 | for (i--; i >=0; i--) { |
| 2085 | chip = &cfi->chips[i]; |
| 2086 | |
| 2087 | spin_lock(chip->mutex); |
| 2088 | |
| 2089 | if (chip->state == FL_PM_SUSPENDED) { |
| 2090 | /* No need to force it into a known state here, |
| 2091 | because we're returning failure, and it didn't |
| 2092 | get power cycled */ |
| 2093 | chip->state = chip->oldstate; |
| 2094 | chip->oldstate = FL_READY; |
| 2095 | wake_up(&chip->wq); |
| 2096 | } |
| 2097 | spin_unlock(chip->mutex); |
| 2098 | } |
| 2099 | } |
| 2100 | |
| 2101 | return ret; |
| 2102 | } |
| 2103 | |
| 2104 | static void cfi_intelext_resume(struct mtd_info *mtd) |
| 2105 | { |
| 2106 | struct map_info *map = mtd->priv; |
| 2107 | struct cfi_private *cfi = map->fldrv_priv; |
| 2108 | int i; |
| 2109 | struct flchip *chip; |
| 2110 | |
| 2111 | for (i=0; i<cfi->numchips; i++) { |
| 2112 | |
| 2113 | chip = &cfi->chips[i]; |
| 2114 | |
| 2115 | spin_lock(chip->mutex); |
| 2116 | |
| 2117 | /* Go to known state. Chip may have been power cycled */ |
| 2118 | if (chip->state == FL_PM_SUSPENDED) { |
| 2119 | map_write(map, CMD(0xFF), cfi->chips[i].start); |
| 2120 | chip->oldstate = chip->state = FL_READY; |
| 2121 | wake_up(&chip->wq); |
| 2122 | } |
| 2123 | |
| 2124 | spin_unlock(chip->mutex); |
| 2125 | } |
| 2126 | } |
| 2127 | |
| 2128 | static void cfi_intelext_destroy(struct mtd_info *mtd) |
| 2129 | { |
| 2130 | struct map_info *map = mtd->priv; |
| 2131 | struct cfi_private *cfi = map->fldrv_priv; |
| 2132 | kfree(cfi->cmdset_priv); |
| 2133 | kfree(cfi->cfiq); |
| 2134 | kfree(cfi->chips[0].priv); |
| 2135 | kfree(cfi); |
| 2136 | kfree(mtd->eraseregions); |
| 2137 | } |
| 2138 | |
| 2139 | static char im_name_1[]="cfi_cmdset_0001"; |
| 2140 | static char im_name_3[]="cfi_cmdset_0003"; |
| 2141 | |
| 2142 | static int __init cfi_intelext_init(void) |
| 2143 | { |
| 2144 | inter_module_register(im_name_1, THIS_MODULE, &cfi_cmdset_0001); |
| 2145 | inter_module_register(im_name_3, THIS_MODULE, &cfi_cmdset_0001); |
| 2146 | return 0; |
| 2147 | } |
| 2148 | |
| 2149 | static void __exit cfi_intelext_exit(void) |
| 2150 | { |
| 2151 | inter_module_unregister(im_name_1); |
| 2152 | inter_module_unregister(im_name_3); |
| 2153 | } |
| 2154 | |
| 2155 | module_init(cfi_intelext_init); |
| 2156 | module_exit(cfi_intelext_exit); |
| 2157 | |
| 2158 | MODULE_LICENSE("GPL"); |
| 2159 | MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); |
| 2160 | MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips"); |