Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. |
| 3 | * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) |
| 4 | * |
| 5 | * This version of the driver is specific to the FADS implementation, |
| 6 | * since the board contains control registers external to the processor |
| 7 | * for the control of the LevelOne LXT970 transceiver. The MPC860T manual |
| 8 | * describes connections using the internal parallel port I/O, which |
| 9 | * is basically all of Port D. |
| 10 | * |
| 11 | * Right now, I am very watseful with the buffers. I allocate memory |
| 12 | * pages and then divide them into 2K frame buffers. This way I know I |
| 13 | * have buffers large enough to hold one frame within one buffer descriptor. |
| 14 | * Once I get this working, I will use 64 or 128 byte CPM buffers, which |
| 15 | * will be much more memory efficient and will easily handle lots of |
| 16 | * small packets. |
| 17 | * |
| 18 | * Much better multiple PHY support by Magnus Damm. |
| 19 | * Copyright (c) 2000 Ericsson Radio Systems AB. |
| 20 | * |
| 21 | * Support for FEC controller of ColdFire/5270/5271/5272/5274/5275/5280/5282. |
| 22 | * Copyrught (c) 2001-2004 Greg Ungerer (gerg@snapgear.com) |
| 23 | */ |
| 24 | |
| 25 | #include <linux/config.h> |
| 26 | #include <linux/module.h> |
| 27 | #include <linux/kernel.h> |
| 28 | #include <linux/string.h> |
| 29 | #include <linux/ptrace.h> |
| 30 | #include <linux/errno.h> |
| 31 | #include <linux/ioport.h> |
| 32 | #include <linux/slab.h> |
| 33 | #include <linux/interrupt.h> |
| 34 | #include <linux/pci.h> |
| 35 | #include <linux/init.h> |
| 36 | #include <linux/delay.h> |
| 37 | #include <linux/netdevice.h> |
| 38 | #include <linux/etherdevice.h> |
| 39 | #include <linux/skbuff.h> |
| 40 | #include <linux/spinlock.h> |
| 41 | #include <linux/workqueue.h> |
| 42 | #include <linux/bitops.h> |
| 43 | |
| 44 | #include <asm/irq.h> |
| 45 | #include <asm/uaccess.h> |
| 46 | #include <asm/io.h> |
| 47 | #include <asm/pgtable.h> |
| 48 | |
| 49 | #if defined(CONFIG_M527x) || defined(CONFIG_M5272) || defined(CONFIG_M528x) |
| 50 | #include <asm/coldfire.h> |
| 51 | #include <asm/mcfsim.h> |
| 52 | #include "fec.h" |
| 53 | #else |
| 54 | #include <asm/8xx_immap.h> |
| 55 | #include <asm/mpc8xx.h> |
| 56 | #include "commproc.h" |
| 57 | #endif |
| 58 | |
| 59 | #if defined(CONFIG_FEC2) |
| 60 | #define FEC_MAX_PORTS 2 |
| 61 | #else |
| 62 | #define FEC_MAX_PORTS 1 |
| 63 | #endif |
| 64 | |
| 65 | /* |
| 66 | * Define the fixed address of the FEC hardware. |
| 67 | */ |
| 68 | static unsigned int fec_hw[] = { |
| 69 | #if defined(CONFIG_M5272) |
| 70 | (MCF_MBAR + 0x840), |
| 71 | #elif defined(CONFIG_M527x) |
| 72 | (MCF_MBAR + 0x1000), |
| 73 | (MCF_MBAR + 0x1800), |
| 74 | #elif defined(CONFIG_M528x) |
| 75 | (MCF_MBAR + 0x1000), |
| 76 | #else |
| 77 | &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec), |
| 78 | #endif |
| 79 | }; |
| 80 | |
| 81 | static unsigned char fec_mac_default[] = { |
| 82 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 83 | }; |
| 84 | |
| 85 | /* |
| 86 | * Some hardware gets it MAC address out of local flash memory. |
| 87 | * if this is non-zero then assume it is the address to get MAC from. |
| 88 | */ |
| 89 | #if defined(CONFIG_NETtel) |
| 90 | #define FEC_FLASHMAC 0xf0006006 |
| 91 | #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) |
| 92 | #define FEC_FLASHMAC 0xf0006000 |
| 93 | #elif defined (CONFIG_MTD_KeyTechnology) |
| 94 | #define FEC_FLASHMAC 0xffe04000 |
| 95 | #elif defined(CONFIG_CANCam) |
| 96 | #define FEC_FLASHMAC 0xf0020000 |
| 97 | #else |
| 98 | #define FEC_FLASHMAC 0 |
| 99 | #endif |
| 100 | |
| 101 | unsigned char *fec_flashmac = (unsigned char *) FEC_FLASHMAC; |
| 102 | |
| 103 | /* Forward declarations of some structures to support different PHYs |
| 104 | */ |
| 105 | |
| 106 | typedef struct { |
| 107 | uint mii_data; |
| 108 | void (*funct)(uint mii_reg, struct net_device *dev); |
| 109 | } phy_cmd_t; |
| 110 | |
| 111 | typedef struct { |
| 112 | uint id; |
| 113 | char *name; |
| 114 | |
| 115 | const phy_cmd_t *config; |
| 116 | const phy_cmd_t *startup; |
| 117 | const phy_cmd_t *ack_int; |
| 118 | const phy_cmd_t *shutdown; |
| 119 | } phy_info_t; |
| 120 | |
| 121 | /* The number of Tx and Rx buffers. These are allocated from the page |
| 122 | * pool. The code may assume these are power of two, so it it best |
| 123 | * to keep them that size. |
| 124 | * We don't need to allocate pages for the transmitter. We just use |
| 125 | * the skbuffer directly. |
| 126 | */ |
| 127 | #define FEC_ENET_RX_PAGES 8 |
| 128 | #define FEC_ENET_RX_FRSIZE 2048 |
| 129 | #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) |
| 130 | #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) |
| 131 | #define FEC_ENET_TX_FRSIZE 2048 |
| 132 | #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE) |
| 133 | #define TX_RING_SIZE 16 /* Must be power of two */ |
| 134 | #define TX_RING_MOD_MASK 15 /* for this to work */ |
| 135 | |
| 136 | /* Interrupt events/masks. |
| 137 | */ |
| 138 | #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ |
| 139 | #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ |
| 140 | #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ |
| 141 | #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ |
| 142 | #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ |
| 143 | #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ |
| 144 | #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ |
| 145 | #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ |
| 146 | #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ |
| 147 | #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ |
| 148 | |
| 149 | /* The FEC stores dest/src/type, data, and checksum for receive packets. |
| 150 | */ |
| 151 | #define PKT_MAXBUF_SIZE 1518 |
| 152 | #define PKT_MINBUF_SIZE 64 |
| 153 | #define PKT_MAXBLR_SIZE 1520 |
| 154 | |
| 155 | |
| 156 | /* |
| 157 | * The 5270/5271/5280/5282 RX control register also contains maximum frame |
| 158 | * size bits. Other FEC hardware does not, so we need to take that into |
| 159 | * account when setting it. |
| 160 | */ |
| 161 | #if defined(CONFIG_M527x) || defined(CONFIG_M528x) |
| 162 | #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) |
| 163 | #else |
| 164 | #define OPT_FRAME_SIZE 0 |
| 165 | #endif |
| 166 | |
| 167 | /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and |
| 168 | * tx_bd_base always point to the base of the buffer descriptors. The |
| 169 | * cur_rx and cur_tx point to the currently available buffer. |
| 170 | * The dirty_tx tracks the current buffer that is being sent by the |
| 171 | * controller. The cur_tx and dirty_tx are equal under both completely |
| 172 | * empty and completely full conditions. The empty/ready indicator in |
| 173 | * the buffer descriptor determines the actual condition. |
| 174 | */ |
| 175 | struct fec_enet_private { |
| 176 | /* Hardware registers of the FEC device */ |
| 177 | volatile fec_t *hwp; |
| 178 | |
| 179 | /* The saved address of a sent-in-place packet/buffer, for skfree(). */ |
| 180 | unsigned char *tx_bounce[TX_RING_SIZE]; |
| 181 | struct sk_buff* tx_skbuff[TX_RING_SIZE]; |
| 182 | ushort skb_cur; |
| 183 | ushort skb_dirty; |
| 184 | |
| 185 | /* CPM dual port RAM relative addresses. |
| 186 | */ |
| 187 | cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ |
| 188 | cbd_t *tx_bd_base; |
| 189 | cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ |
| 190 | cbd_t *dirty_tx; /* The ring entries to be free()ed. */ |
| 191 | struct net_device_stats stats; |
| 192 | uint tx_full; |
| 193 | spinlock_t lock; |
| 194 | |
| 195 | uint phy_id; |
| 196 | uint phy_id_done; |
| 197 | uint phy_status; |
| 198 | uint phy_speed; |
| 199 | phy_info_t *phy; |
| 200 | struct work_struct phy_task; |
| 201 | |
| 202 | uint sequence_done; |
| 203 | uint mii_phy_task_queued; |
| 204 | |
| 205 | uint phy_addr; |
| 206 | |
| 207 | int index; |
| 208 | int opened; |
| 209 | int link; |
| 210 | int old_link; |
| 211 | int full_duplex; |
| 212 | unsigned char mac_addr[ETH_ALEN]; |
| 213 | }; |
| 214 | |
| 215 | static int fec_enet_open(struct net_device *dev); |
| 216 | static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); |
| 217 | static void fec_enet_mii(struct net_device *dev); |
| 218 | static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs); |
| 219 | static void fec_enet_tx(struct net_device *dev); |
| 220 | static void fec_enet_rx(struct net_device *dev); |
| 221 | static int fec_enet_close(struct net_device *dev); |
| 222 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev); |
| 223 | static void set_multicast_list(struct net_device *dev); |
| 224 | static void fec_restart(struct net_device *dev, int duplex); |
| 225 | static void fec_stop(struct net_device *dev); |
| 226 | static void fec_set_mac_address(struct net_device *dev); |
| 227 | |
| 228 | |
| 229 | /* MII processing. We keep this as simple as possible. Requests are |
| 230 | * placed on the list (if there is room). When the request is finished |
| 231 | * by the MII, an optional function may be called. |
| 232 | */ |
| 233 | typedef struct mii_list { |
| 234 | uint mii_regval; |
| 235 | void (*mii_func)(uint val, struct net_device *dev); |
| 236 | struct mii_list *mii_next; |
| 237 | } mii_list_t; |
| 238 | |
| 239 | #define NMII 20 |
| 240 | mii_list_t mii_cmds[NMII]; |
| 241 | mii_list_t *mii_free; |
| 242 | mii_list_t *mii_head; |
| 243 | mii_list_t *mii_tail; |
| 244 | |
| 245 | static int mii_queue(struct net_device *dev, int request, |
| 246 | void (*func)(uint, struct net_device *)); |
| 247 | |
| 248 | /* Make MII read/write commands for the FEC. |
| 249 | */ |
| 250 | #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) |
| 251 | #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ |
| 252 | (VAL & 0xffff)) |
| 253 | #define mk_mii_end 0 |
| 254 | |
| 255 | /* Transmitter timeout. |
| 256 | */ |
| 257 | #define TX_TIMEOUT (2*HZ) |
| 258 | |
| 259 | /* Register definitions for the PHY. |
| 260 | */ |
| 261 | |
| 262 | #define MII_REG_CR 0 /* Control Register */ |
| 263 | #define MII_REG_SR 1 /* Status Register */ |
| 264 | #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */ |
| 265 | #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */ |
| 266 | #define MII_REG_ANAR 4 /* A-N Advertisement Register */ |
| 267 | #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */ |
| 268 | #define MII_REG_ANER 6 /* A-N Expansion Register */ |
| 269 | #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */ |
| 270 | #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */ |
| 271 | |
| 272 | /* values for phy_status */ |
| 273 | |
| 274 | #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ |
| 275 | #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ |
| 276 | #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ |
| 277 | #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ |
| 278 | #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ |
| 279 | #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ |
| 280 | #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ |
| 281 | |
| 282 | #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ |
| 283 | #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ |
| 284 | #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ |
| 285 | #define PHY_STAT_SPMASK 0xf000 /* mask for speed */ |
| 286 | #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ |
| 287 | #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ |
| 288 | #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ |
| 289 | #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ |
| 290 | |
| 291 | |
| 292 | static int |
| 293 | fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 294 | { |
| 295 | struct fec_enet_private *fep; |
| 296 | volatile fec_t *fecp; |
| 297 | volatile cbd_t *bdp; |
| 298 | |
| 299 | fep = netdev_priv(dev); |
| 300 | fecp = (volatile fec_t*)dev->base_addr; |
| 301 | |
| 302 | if (!fep->link) { |
| 303 | /* Link is down or autonegotiation is in progress. */ |
| 304 | return 1; |
| 305 | } |
| 306 | |
| 307 | /* Fill in a Tx ring entry */ |
| 308 | bdp = fep->cur_tx; |
| 309 | |
| 310 | #ifndef final_version |
| 311 | if (bdp->cbd_sc & BD_ENET_TX_READY) { |
| 312 | /* Ooops. All transmit buffers are full. Bail out. |
| 313 | * This should not happen, since dev->tbusy should be set. |
| 314 | */ |
| 315 | printk("%s: tx queue full!.\n", dev->name); |
| 316 | return 1; |
| 317 | } |
| 318 | #endif |
| 319 | |
| 320 | /* Clear all of the status flags. |
| 321 | */ |
| 322 | bdp->cbd_sc &= ~BD_ENET_TX_STATS; |
| 323 | |
| 324 | /* Set buffer length and buffer pointer. |
| 325 | */ |
| 326 | bdp->cbd_bufaddr = __pa(skb->data); |
| 327 | bdp->cbd_datlen = skb->len; |
| 328 | |
| 329 | /* |
| 330 | * On some FEC implementations data must be aligned on |
| 331 | * 4-byte boundaries. Use bounce buffers to copy data |
| 332 | * and get it aligned. Ugh. |
| 333 | */ |
| 334 | if (bdp->cbd_bufaddr & 0x3) { |
| 335 | unsigned int index; |
| 336 | index = bdp - fep->tx_bd_base; |
| 337 | memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen); |
| 338 | bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]); |
| 339 | } |
| 340 | |
| 341 | /* Save skb pointer. |
| 342 | */ |
| 343 | fep->tx_skbuff[fep->skb_cur] = skb; |
| 344 | |
| 345 | fep->stats.tx_bytes += skb->len; |
| 346 | fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; |
| 347 | |
| 348 | /* Push the data cache so the CPM does not get stale memory |
| 349 | * data. |
| 350 | */ |
| 351 | flush_dcache_range((unsigned long)skb->data, |
| 352 | (unsigned long)skb->data + skb->len); |
| 353 | |
| 354 | spin_lock_irq(&fep->lock); |
| 355 | |
| 356 | /* Send it on its way. Tell FEC its ready, interrupt when done, |
| 357 | * its the last BD of the frame, and to put the CRC on the end. |
| 358 | */ |
| 359 | |
| 360 | bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR |
| 361 | | BD_ENET_TX_LAST | BD_ENET_TX_TC); |
| 362 | |
| 363 | dev->trans_start = jiffies; |
| 364 | |
| 365 | /* Trigger transmission start */ |
| 366 | fecp->fec_x_des_active = 0x01000000; |
| 367 | |
| 368 | /* If this was the last BD in the ring, start at the beginning again. |
| 369 | */ |
| 370 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) { |
| 371 | bdp = fep->tx_bd_base; |
| 372 | } else { |
| 373 | bdp++; |
| 374 | } |
| 375 | |
| 376 | if (bdp == fep->dirty_tx) { |
| 377 | fep->tx_full = 1; |
| 378 | netif_stop_queue(dev); |
| 379 | } |
| 380 | |
| 381 | fep->cur_tx = (cbd_t *)bdp; |
| 382 | |
| 383 | spin_unlock_irq(&fep->lock); |
| 384 | |
| 385 | return 0; |
| 386 | } |
| 387 | |
| 388 | static void |
| 389 | fec_timeout(struct net_device *dev) |
| 390 | { |
| 391 | struct fec_enet_private *fep = netdev_priv(dev); |
| 392 | |
| 393 | printk("%s: transmit timed out.\n", dev->name); |
| 394 | fep->stats.tx_errors++; |
| 395 | #ifndef final_version |
| 396 | { |
| 397 | int i; |
| 398 | cbd_t *bdp; |
| 399 | |
| 400 | printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n", |
| 401 | (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "", |
| 402 | (unsigned long)fep->dirty_tx, |
| 403 | (unsigned long)fep->cur_rx); |
| 404 | |
| 405 | bdp = fep->tx_bd_base; |
| 406 | printk(" tx: %u buffers\n", TX_RING_SIZE); |
| 407 | for (i = 0 ; i < TX_RING_SIZE; i++) { |
| 408 | printk(" %08x: %04x %04x %08x\n", |
| 409 | (uint) bdp, |
| 410 | bdp->cbd_sc, |
| 411 | bdp->cbd_datlen, |
| 412 | (int) bdp->cbd_bufaddr); |
| 413 | bdp++; |
| 414 | } |
| 415 | |
| 416 | bdp = fep->rx_bd_base; |
| 417 | printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE); |
| 418 | for (i = 0 ; i < RX_RING_SIZE; i++) { |
| 419 | printk(" %08x: %04x %04x %08x\n", |
| 420 | (uint) bdp, |
| 421 | bdp->cbd_sc, |
| 422 | bdp->cbd_datlen, |
| 423 | (int) bdp->cbd_bufaddr); |
| 424 | bdp++; |
| 425 | } |
| 426 | } |
| 427 | #endif |
| 428 | fec_restart(dev, 0); |
| 429 | netif_wake_queue(dev); |
| 430 | } |
| 431 | |
| 432 | /* The interrupt handler. |
| 433 | * This is called from the MPC core interrupt. |
| 434 | */ |
| 435 | static irqreturn_t |
| 436 | fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs) |
| 437 | { |
| 438 | struct net_device *dev = dev_id; |
| 439 | volatile fec_t *fecp; |
| 440 | uint int_events; |
| 441 | int handled = 0; |
| 442 | |
| 443 | fecp = (volatile fec_t*)dev->base_addr; |
| 444 | |
| 445 | /* Get the interrupt events that caused us to be here. |
| 446 | */ |
| 447 | while ((int_events = fecp->fec_ievent) != 0) { |
| 448 | fecp->fec_ievent = int_events; |
| 449 | |
| 450 | /* Handle receive event in its own function. |
| 451 | */ |
| 452 | if (int_events & FEC_ENET_RXF) { |
| 453 | handled = 1; |
| 454 | fec_enet_rx(dev); |
| 455 | } |
| 456 | |
| 457 | /* Transmit OK, or non-fatal error. Update the buffer |
| 458 | descriptors. FEC handles all errors, we just discover |
| 459 | them as part of the transmit process. |
| 460 | */ |
| 461 | if (int_events & FEC_ENET_TXF) { |
| 462 | handled = 1; |
| 463 | fec_enet_tx(dev); |
| 464 | } |
| 465 | |
| 466 | if (int_events & FEC_ENET_MII) { |
| 467 | handled = 1; |
| 468 | fec_enet_mii(dev); |
| 469 | } |
| 470 | |
| 471 | } |
| 472 | return IRQ_RETVAL(handled); |
| 473 | } |
| 474 | |
| 475 | |
| 476 | static void |
| 477 | fec_enet_tx(struct net_device *dev) |
| 478 | { |
| 479 | struct fec_enet_private *fep; |
| 480 | volatile cbd_t *bdp; |
| 481 | struct sk_buff *skb; |
| 482 | |
| 483 | fep = netdev_priv(dev); |
| 484 | spin_lock(&fep->lock); |
| 485 | bdp = fep->dirty_tx; |
| 486 | |
| 487 | while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) { |
| 488 | if (bdp == fep->cur_tx && fep->tx_full == 0) break; |
| 489 | |
| 490 | skb = fep->tx_skbuff[fep->skb_dirty]; |
| 491 | /* Check for errors. */ |
| 492 | if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | |
| 493 | BD_ENET_TX_RL | BD_ENET_TX_UN | |
| 494 | BD_ENET_TX_CSL)) { |
| 495 | fep->stats.tx_errors++; |
| 496 | if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ |
| 497 | fep->stats.tx_heartbeat_errors++; |
| 498 | if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ |
| 499 | fep->stats.tx_window_errors++; |
| 500 | if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ |
| 501 | fep->stats.tx_aborted_errors++; |
| 502 | if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ |
| 503 | fep->stats.tx_fifo_errors++; |
| 504 | if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ |
| 505 | fep->stats.tx_carrier_errors++; |
| 506 | } else { |
| 507 | fep->stats.tx_packets++; |
| 508 | } |
| 509 | |
| 510 | #ifndef final_version |
| 511 | if (bdp->cbd_sc & BD_ENET_TX_READY) |
| 512 | printk("HEY! Enet xmit interrupt and TX_READY.\n"); |
| 513 | #endif |
| 514 | /* Deferred means some collisions occurred during transmit, |
| 515 | * but we eventually sent the packet OK. |
| 516 | */ |
| 517 | if (bdp->cbd_sc & BD_ENET_TX_DEF) |
| 518 | fep->stats.collisions++; |
| 519 | |
| 520 | /* Free the sk buffer associated with this last transmit. |
| 521 | */ |
| 522 | dev_kfree_skb_any(skb); |
| 523 | fep->tx_skbuff[fep->skb_dirty] = NULL; |
| 524 | fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; |
| 525 | |
| 526 | /* Update pointer to next buffer descriptor to be transmitted. |
| 527 | */ |
| 528 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) |
| 529 | bdp = fep->tx_bd_base; |
| 530 | else |
| 531 | bdp++; |
| 532 | |
| 533 | /* Since we have freed up a buffer, the ring is no longer |
| 534 | * full. |
| 535 | */ |
| 536 | if (fep->tx_full) { |
| 537 | fep->tx_full = 0; |
| 538 | if (netif_queue_stopped(dev)) |
| 539 | netif_wake_queue(dev); |
| 540 | } |
| 541 | } |
| 542 | fep->dirty_tx = (cbd_t *)bdp; |
| 543 | spin_unlock(&fep->lock); |
| 544 | } |
| 545 | |
| 546 | |
| 547 | /* During a receive, the cur_rx points to the current incoming buffer. |
| 548 | * When we update through the ring, if the next incoming buffer has |
| 549 | * not been given to the system, we just set the empty indicator, |
| 550 | * effectively tossing the packet. |
| 551 | */ |
| 552 | static void |
| 553 | fec_enet_rx(struct net_device *dev) |
| 554 | { |
| 555 | struct fec_enet_private *fep; |
| 556 | volatile fec_t *fecp; |
| 557 | volatile cbd_t *bdp; |
| 558 | struct sk_buff *skb; |
| 559 | ushort pkt_len; |
| 560 | __u8 *data; |
| 561 | |
| 562 | fep = netdev_priv(dev); |
| 563 | fecp = (volatile fec_t*)dev->base_addr; |
| 564 | |
| 565 | /* First, grab all of the stats for the incoming packet. |
| 566 | * These get messed up if we get called due to a busy condition. |
| 567 | */ |
| 568 | bdp = fep->cur_rx; |
| 569 | |
| 570 | while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) { |
| 571 | |
| 572 | #ifndef final_version |
| 573 | /* Since we have allocated space to hold a complete frame, |
| 574 | * the last indicator should be set. |
| 575 | */ |
| 576 | if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0) |
| 577 | printk("FEC ENET: rcv is not +last\n"); |
| 578 | #endif |
| 579 | |
| 580 | if (!fep->opened) |
| 581 | goto rx_processing_done; |
| 582 | |
| 583 | /* Check for errors. */ |
| 584 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | |
| 585 | BD_ENET_RX_CR | BD_ENET_RX_OV)) { |
| 586 | fep->stats.rx_errors++; |
| 587 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { |
| 588 | /* Frame too long or too short. */ |
| 589 | fep->stats.rx_length_errors++; |
| 590 | } |
| 591 | if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ |
| 592 | fep->stats.rx_frame_errors++; |
| 593 | if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ |
| 594 | fep->stats.rx_crc_errors++; |
| 595 | if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ |
| 596 | fep->stats.rx_crc_errors++; |
| 597 | } |
| 598 | |
| 599 | /* Report late collisions as a frame error. |
| 600 | * On this error, the BD is closed, but we don't know what we |
| 601 | * have in the buffer. So, just drop this frame on the floor. |
| 602 | */ |
| 603 | if (bdp->cbd_sc & BD_ENET_RX_CL) { |
| 604 | fep->stats.rx_errors++; |
| 605 | fep->stats.rx_frame_errors++; |
| 606 | goto rx_processing_done; |
| 607 | } |
| 608 | |
| 609 | /* Process the incoming frame. |
| 610 | */ |
| 611 | fep->stats.rx_packets++; |
| 612 | pkt_len = bdp->cbd_datlen; |
| 613 | fep->stats.rx_bytes += pkt_len; |
| 614 | data = (__u8*)__va(bdp->cbd_bufaddr); |
| 615 | |
| 616 | /* This does 16 byte alignment, exactly what we need. |
| 617 | * The packet length includes FCS, but we don't want to |
| 618 | * include that when passing upstream as it messes up |
| 619 | * bridging applications. |
| 620 | */ |
| 621 | skb = dev_alloc_skb(pkt_len-4); |
| 622 | |
| 623 | if (skb == NULL) { |
| 624 | printk("%s: Memory squeeze, dropping packet.\n", dev->name); |
| 625 | fep->stats.rx_dropped++; |
| 626 | } else { |
| 627 | skb->dev = dev; |
| 628 | skb_put(skb,pkt_len-4); /* Make room */ |
| 629 | eth_copy_and_sum(skb, |
| 630 | (unsigned char *)__va(bdp->cbd_bufaddr), |
| 631 | pkt_len-4, 0); |
| 632 | skb->protocol=eth_type_trans(skb,dev); |
| 633 | netif_rx(skb); |
| 634 | } |
| 635 | rx_processing_done: |
| 636 | |
| 637 | /* Clear the status flags for this buffer. |
| 638 | */ |
| 639 | bdp->cbd_sc &= ~BD_ENET_RX_STATS; |
| 640 | |
| 641 | /* Mark the buffer empty. |
| 642 | */ |
| 643 | bdp->cbd_sc |= BD_ENET_RX_EMPTY; |
| 644 | |
| 645 | /* Update BD pointer to next entry. |
| 646 | */ |
| 647 | if (bdp->cbd_sc & BD_ENET_RX_WRAP) |
| 648 | bdp = fep->rx_bd_base; |
| 649 | else |
| 650 | bdp++; |
| 651 | |
| 652 | #if 1 |
| 653 | /* Doing this here will keep the FEC running while we process |
| 654 | * incoming frames. On a heavily loaded network, we should be |
| 655 | * able to keep up at the expense of system resources. |
| 656 | */ |
| 657 | fecp->fec_r_des_active = 0x01000000; |
| 658 | #endif |
| 659 | } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */ |
| 660 | fep->cur_rx = (cbd_t *)bdp; |
| 661 | |
| 662 | #if 0 |
| 663 | /* Doing this here will allow us to process all frames in the |
| 664 | * ring before the FEC is allowed to put more there. On a heavily |
| 665 | * loaded network, some frames may be lost. Unfortunately, this |
| 666 | * increases the interrupt overhead since we can potentially work |
| 667 | * our way back to the interrupt return only to come right back |
| 668 | * here. |
| 669 | */ |
| 670 | fecp->fec_r_des_active = 0x01000000; |
| 671 | #endif |
| 672 | } |
| 673 | |
| 674 | |
| 675 | static void |
| 676 | fec_enet_mii(struct net_device *dev) |
| 677 | { |
| 678 | struct fec_enet_private *fep; |
| 679 | volatile fec_t *ep; |
| 680 | mii_list_t *mip; |
| 681 | uint mii_reg; |
| 682 | |
| 683 | fep = netdev_priv(dev); |
| 684 | ep = fep->hwp; |
| 685 | mii_reg = ep->fec_mii_data; |
| 686 | |
| 687 | if ((mip = mii_head) == NULL) { |
| 688 | printk("MII and no head!\n"); |
| 689 | return; |
| 690 | } |
| 691 | |
| 692 | if (mip->mii_func != NULL) |
| 693 | (*(mip->mii_func))(mii_reg, dev); |
| 694 | |
| 695 | mii_head = mip->mii_next; |
| 696 | mip->mii_next = mii_free; |
| 697 | mii_free = mip; |
| 698 | |
| 699 | if ((mip = mii_head) != NULL) |
| 700 | ep->fec_mii_data = mip->mii_regval; |
| 701 | } |
| 702 | |
| 703 | static int |
| 704 | mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) |
| 705 | { |
| 706 | struct fec_enet_private *fep; |
| 707 | unsigned long flags; |
| 708 | mii_list_t *mip; |
| 709 | int retval; |
| 710 | |
| 711 | /* Add PHY address to register command. |
| 712 | */ |
| 713 | fep = netdev_priv(dev); |
| 714 | regval |= fep->phy_addr << 23; |
| 715 | |
| 716 | retval = 0; |
| 717 | |
| 718 | save_flags(flags); |
| 719 | cli(); |
| 720 | |
| 721 | if ((mip = mii_free) != NULL) { |
| 722 | mii_free = mip->mii_next; |
| 723 | mip->mii_regval = regval; |
| 724 | mip->mii_func = func; |
| 725 | mip->mii_next = NULL; |
| 726 | if (mii_head) { |
| 727 | mii_tail->mii_next = mip; |
| 728 | mii_tail = mip; |
| 729 | } |
| 730 | else { |
| 731 | mii_head = mii_tail = mip; |
| 732 | fep->hwp->fec_mii_data = regval; |
| 733 | } |
| 734 | } |
| 735 | else { |
| 736 | retval = 1; |
| 737 | } |
| 738 | |
| 739 | restore_flags(flags); |
| 740 | |
| 741 | return(retval); |
| 742 | } |
| 743 | |
| 744 | static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) |
| 745 | { |
| 746 | int k; |
| 747 | |
| 748 | if(!c) |
| 749 | return; |
| 750 | |
| 751 | for(k = 0; (c+k)->mii_data != mk_mii_end; k++) { |
| 752 | mii_queue(dev, (c+k)->mii_data, (c+k)->funct); |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | static void mii_parse_sr(uint mii_reg, struct net_device *dev) |
| 757 | { |
| 758 | struct fec_enet_private *fep = netdev_priv(dev); |
| 759 | volatile uint *s = &(fep->phy_status); |
| 760 | |
| 761 | *s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); |
| 762 | |
| 763 | if (mii_reg & 0x0004) |
| 764 | *s |= PHY_STAT_LINK; |
| 765 | if (mii_reg & 0x0010) |
| 766 | *s |= PHY_STAT_FAULT; |
| 767 | if (mii_reg & 0x0020) |
| 768 | *s |= PHY_STAT_ANC; |
| 769 | } |
| 770 | |
| 771 | static void mii_parse_cr(uint mii_reg, struct net_device *dev) |
| 772 | { |
| 773 | struct fec_enet_private *fep = netdev_priv(dev); |
| 774 | volatile uint *s = &(fep->phy_status); |
| 775 | |
| 776 | *s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP); |
| 777 | |
| 778 | if (mii_reg & 0x1000) |
| 779 | *s |= PHY_CONF_ANE; |
| 780 | if (mii_reg & 0x4000) |
| 781 | *s |= PHY_CONF_LOOP; |
| 782 | } |
| 783 | |
| 784 | static void mii_parse_anar(uint mii_reg, struct net_device *dev) |
| 785 | { |
| 786 | struct fec_enet_private *fep = netdev_priv(dev); |
| 787 | volatile uint *s = &(fep->phy_status); |
| 788 | |
| 789 | *s &= ~(PHY_CONF_SPMASK); |
| 790 | |
| 791 | if (mii_reg & 0x0020) |
| 792 | *s |= PHY_CONF_10HDX; |
| 793 | if (mii_reg & 0x0040) |
| 794 | *s |= PHY_CONF_10FDX; |
| 795 | if (mii_reg & 0x0080) |
| 796 | *s |= PHY_CONF_100HDX; |
| 797 | if (mii_reg & 0x00100) |
| 798 | *s |= PHY_CONF_100FDX; |
| 799 | } |
| 800 | |
| 801 | /* ------------------------------------------------------------------------- */ |
| 802 | /* The Level one LXT970 is used by many boards */ |
| 803 | |
| 804 | #define MII_LXT970_MIRROR 16 /* Mirror register */ |
| 805 | #define MII_LXT970_IER 17 /* Interrupt Enable Register */ |
| 806 | #define MII_LXT970_ISR 18 /* Interrupt Status Register */ |
| 807 | #define MII_LXT970_CONFIG 19 /* Configuration Register */ |
| 808 | #define MII_LXT970_CSR 20 /* Chip Status Register */ |
| 809 | |
| 810 | static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) |
| 811 | { |
| 812 | struct fec_enet_private *fep = netdev_priv(dev); |
| 813 | volatile uint *s = &(fep->phy_status); |
| 814 | |
| 815 | *s &= ~(PHY_STAT_SPMASK); |
| 816 | |
| 817 | if (mii_reg & 0x0800) { |
| 818 | if (mii_reg & 0x1000) |
| 819 | *s |= PHY_STAT_100FDX; |
| 820 | else |
| 821 | *s |= PHY_STAT_100HDX; |
| 822 | } else { |
| 823 | if (mii_reg & 0x1000) |
| 824 | *s |= PHY_STAT_10FDX; |
| 825 | else |
| 826 | *s |= PHY_STAT_10HDX; |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | static phy_info_t phy_info_lxt970 = { |
| 831 | 0x07810000, |
| 832 | "LXT970", |
| 833 | |
| 834 | (const phy_cmd_t []) { /* config */ |
| 835 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| 836 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| 837 | { mk_mii_end, } |
| 838 | }, |
| 839 | (const phy_cmd_t []) { /* startup - enable interrupts */ |
| 840 | { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, |
| 841 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| 842 | { mk_mii_end, } |
| 843 | }, |
| 844 | (const phy_cmd_t []) { /* ack_int */ |
| 845 | /* read SR and ISR to acknowledge */ |
| 846 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 847 | { mk_mii_read(MII_LXT970_ISR), NULL }, |
| 848 | |
| 849 | /* find out the current status */ |
| 850 | { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, |
| 851 | { mk_mii_end, } |
| 852 | }, |
| 853 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| 854 | { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, |
| 855 | { mk_mii_end, } |
| 856 | }, |
| 857 | }; |
| 858 | |
| 859 | /* ------------------------------------------------------------------------- */ |
| 860 | /* The Level one LXT971 is used on some of my custom boards */ |
| 861 | |
| 862 | /* register definitions for the 971 */ |
| 863 | |
| 864 | #define MII_LXT971_PCR 16 /* Port Control Register */ |
| 865 | #define MII_LXT971_SR2 17 /* Status Register 2 */ |
| 866 | #define MII_LXT971_IER 18 /* Interrupt Enable Register */ |
| 867 | #define MII_LXT971_ISR 19 /* Interrupt Status Register */ |
| 868 | #define MII_LXT971_LCR 20 /* LED Control Register */ |
| 869 | #define MII_LXT971_TCR 30 /* Transmit Control Register */ |
| 870 | |
| 871 | /* |
| 872 | * I had some nice ideas of running the MDIO faster... |
| 873 | * The 971 should support 8MHz and I tried it, but things acted really |
| 874 | * weird, so 2.5 MHz ought to be enough for anyone... |
| 875 | */ |
| 876 | |
| 877 | static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) |
| 878 | { |
| 879 | struct fec_enet_private *fep = netdev_priv(dev); |
| 880 | volatile uint *s = &(fep->phy_status); |
| 881 | |
| 882 | *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); |
| 883 | |
| 884 | if (mii_reg & 0x0400) { |
| 885 | fep->link = 1; |
| 886 | *s |= PHY_STAT_LINK; |
| 887 | } else { |
| 888 | fep->link = 0; |
| 889 | } |
| 890 | if (mii_reg & 0x0080) |
| 891 | *s |= PHY_STAT_ANC; |
| 892 | if (mii_reg & 0x4000) { |
| 893 | if (mii_reg & 0x0200) |
| 894 | *s |= PHY_STAT_100FDX; |
| 895 | else |
| 896 | *s |= PHY_STAT_100HDX; |
| 897 | } else { |
| 898 | if (mii_reg & 0x0200) |
| 899 | *s |= PHY_STAT_10FDX; |
| 900 | else |
| 901 | *s |= PHY_STAT_10HDX; |
| 902 | } |
| 903 | if (mii_reg & 0x0008) |
| 904 | *s |= PHY_STAT_FAULT; |
| 905 | } |
| 906 | |
| 907 | static phy_info_t phy_info_lxt971 = { |
| 908 | 0x0001378e, |
| 909 | "LXT971", |
| 910 | |
| 911 | (const phy_cmd_t []) { /* config */ |
| 912 | /* limit to 10MBit because my protorype board |
| 913 | * doesn't work with 100. */ |
| 914 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| 915 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| 916 | { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, |
| 917 | { mk_mii_end, } |
| 918 | }, |
| 919 | (const phy_cmd_t []) { /* startup - enable interrupts */ |
| 920 | { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, |
| 921 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| 922 | { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */ |
| 923 | /* Somehow does the 971 tell me that the link is down |
| 924 | * the first read after power-up. |
| 925 | * read here to get a valid value in ack_int */ |
| 926 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 927 | { mk_mii_end, } |
| 928 | }, |
| 929 | (const phy_cmd_t []) { /* ack_int */ |
| 930 | /* find out the current status */ |
| 931 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 932 | { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, |
| 933 | /* we only need to read ISR to acknowledge */ |
| 934 | { mk_mii_read(MII_LXT971_ISR), NULL }, |
| 935 | { mk_mii_end, } |
| 936 | }, |
| 937 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| 938 | { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, |
| 939 | { mk_mii_end, } |
| 940 | }, |
| 941 | }; |
| 942 | |
| 943 | /* ------------------------------------------------------------------------- */ |
| 944 | /* The Quality Semiconductor QS6612 is used on the RPX CLLF */ |
| 945 | |
| 946 | /* register definitions */ |
| 947 | |
| 948 | #define MII_QS6612_MCR 17 /* Mode Control Register */ |
| 949 | #define MII_QS6612_FTR 27 /* Factory Test Register */ |
| 950 | #define MII_QS6612_MCO 28 /* Misc. Control Register */ |
| 951 | #define MII_QS6612_ISR 29 /* Interrupt Source Register */ |
| 952 | #define MII_QS6612_IMR 30 /* Interrupt Mask Register */ |
| 953 | #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ |
| 954 | |
| 955 | static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) |
| 956 | { |
| 957 | struct fec_enet_private *fep = netdev_priv(dev); |
| 958 | volatile uint *s = &(fep->phy_status); |
| 959 | |
| 960 | *s &= ~(PHY_STAT_SPMASK); |
| 961 | |
| 962 | switch((mii_reg >> 2) & 7) { |
| 963 | case 1: *s |= PHY_STAT_10HDX; break; |
| 964 | case 2: *s |= PHY_STAT_100HDX; break; |
| 965 | case 5: *s |= PHY_STAT_10FDX; break; |
| 966 | case 6: *s |= PHY_STAT_100FDX; break; |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | static phy_info_t phy_info_qs6612 = { |
| 971 | 0x00181440, |
| 972 | "QS6612", |
| 973 | |
| 974 | (const phy_cmd_t []) { /* config */ |
| 975 | /* The PHY powers up isolated on the RPX, |
| 976 | * so send a command to allow operation. |
| 977 | */ |
| 978 | { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, |
| 979 | |
| 980 | /* parse cr and anar to get some info */ |
| 981 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| 982 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| 983 | { mk_mii_end, } |
| 984 | }, |
| 985 | (const phy_cmd_t []) { /* startup - enable interrupts */ |
| 986 | { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, |
| 987 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| 988 | { mk_mii_end, } |
| 989 | }, |
| 990 | (const phy_cmd_t []) { /* ack_int */ |
| 991 | /* we need to read ISR, SR and ANER to acknowledge */ |
| 992 | { mk_mii_read(MII_QS6612_ISR), NULL }, |
| 993 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 994 | { mk_mii_read(MII_REG_ANER), NULL }, |
| 995 | |
| 996 | /* read pcr to get info */ |
| 997 | { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, |
| 998 | { mk_mii_end, } |
| 999 | }, |
| 1000 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| 1001 | { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, |
| 1002 | { mk_mii_end, } |
| 1003 | }, |
| 1004 | }; |
| 1005 | |
| 1006 | /* ------------------------------------------------------------------------- */ |
| 1007 | /* AMD AM79C874 phy */ |
| 1008 | |
| 1009 | /* register definitions for the 874 */ |
| 1010 | |
| 1011 | #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */ |
| 1012 | #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */ |
| 1013 | #define MII_AM79C874_DR 18 /* Diagnostic Register */ |
| 1014 | #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */ |
| 1015 | #define MII_AM79C874_MCR 21 /* ModeControl Register */ |
| 1016 | #define MII_AM79C874_DC 23 /* Disconnect Counter */ |
| 1017 | #define MII_AM79C874_REC 24 /* Recieve Error Counter */ |
| 1018 | |
| 1019 | static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev) |
| 1020 | { |
| 1021 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1022 | volatile uint *s = &(fep->phy_status); |
| 1023 | |
| 1024 | *s &= ~(PHY_STAT_SPMASK | PHY_STAT_ANC); |
| 1025 | |
| 1026 | if (mii_reg & 0x0080) |
| 1027 | *s |= PHY_STAT_ANC; |
| 1028 | if (mii_reg & 0x0400) |
| 1029 | *s |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX); |
| 1030 | else |
| 1031 | *s |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX); |
| 1032 | } |
| 1033 | |
| 1034 | static phy_info_t phy_info_am79c874 = { |
| 1035 | 0x00022561, |
| 1036 | "AM79C874", |
| 1037 | |
| 1038 | (const phy_cmd_t []) { /* config */ |
| 1039 | /* limit to 10MBit because my protorype board |
| 1040 | * doesn't work with 100. */ |
| 1041 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| 1042 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| 1043 | { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, |
| 1044 | { mk_mii_end, } |
| 1045 | }, |
| 1046 | (const phy_cmd_t []) { /* startup - enable interrupts */ |
| 1047 | { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL }, |
| 1048 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| 1049 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 1050 | { mk_mii_end, } |
| 1051 | }, |
| 1052 | (const phy_cmd_t []) { /* ack_int */ |
| 1053 | /* find out the current status */ |
| 1054 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 1055 | { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, |
| 1056 | /* we only need to read ISR to acknowledge */ |
| 1057 | { mk_mii_read(MII_AM79C874_ICSR), NULL }, |
| 1058 | { mk_mii_end, } |
| 1059 | }, |
| 1060 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| 1061 | { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL }, |
| 1062 | { mk_mii_end, } |
| 1063 | }, |
| 1064 | }; |
| 1065 | |
| 1066 | /* ------------------------------------------------------------------------- */ |
| 1067 | /* Kendin KS8721BL phy */ |
| 1068 | |
| 1069 | /* register definitions for the 8721 */ |
| 1070 | |
| 1071 | #define MII_KS8721BL_RXERCR 21 |
| 1072 | #define MII_KS8721BL_ICSR 22 |
| 1073 | #define MII_KS8721BL_PHYCR 31 |
| 1074 | |
| 1075 | static phy_info_t phy_info_ks8721bl = { |
| 1076 | 0x00022161, |
| 1077 | "KS8721BL", |
| 1078 | |
| 1079 | (const phy_cmd_t []) { /* config */ |
| 1080 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| 1081 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| 1082 | { mk_mii_end, } |
| 1083 | }, |
| 1084 | (const phy_cmd_t []) { /* startup */ |
| 1085 | { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL }, |
| 1086 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| 1087 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 1088 | { mk_mii_end, } |
| 1089 | }, |
| 1090 | (const phy_cmd_t []) { /* ack_int */ |
| 1091 | /* find out the current status */ |
| 1092 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| 1093 | /* we only need to read ISR to acknowledge */ |
| 1094 | { mk_mii_read(MII_KS8721BL_ICSR), NULL }, |
| 1095 | { mk_mii_end, } |
| 1096 | }, |
| 1097 | (const phy_cmd_t []) { /* shutdown */ |
| 1098 | { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL }, |
| 1099 | { mk_mii_end, } |
| 1100 | }, |
| 1101 | }; |
| 1102 | |
| 1103 | /* ------------------------------------------------------------------------- */ |
| 1104 | |
| 1105 | static phy_info_t *phy_info[] = { |
| 1106 | &phy_info_lxt970, |
| 1107 | &phy_info_lxt971, |
| 1108 | &phy_info_qs6612, |
| 1109 | &phy_info_am79c874, |
| 1110 | &phy_info_ks8721bl, |
| 1111 | NULL |
| 1112 | }; |
| 1113 | |
| 1114 | /* ------------------------------------------------------------------------- */ |
| 1115 | |
| 1116 | #ifdef CONFIG_RPXCLASSIC |
| 1117 | static void |
| 1118 | mii_link_interrupt(void *dev_id); |
| 1119 | #else |
| 1120 | static irqreturn_t |
| 1121 | mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs); |
| 1122 | #endif |
| 1123 | |
| 1124 | #if defined(CONFIG_M5272) |
| 1125 | |
| 1126 | /* |
| 1127 | * Code specific to Coldfire 5272 setup. |
| 1128 | */ |
| 1129 | static void __inline__ fec_request_intrs(struct net_device *dev) |
| 1130 | { |
| 1131 | volatile unsigned long *icrp; |
| 1132 | |
| 1133 | /* Setup interrupt handlers. */ |
| 1134 | if (request_irq(86, fec_enet_interrupt, 0, "fec(RX)", dev) != 0) |
| 1135 | printk("FEC: Could not allocate FEC(RC) IRQ(86)!\n"); |
| 1136 | if (request_irq(87, fec_enet_interrupt, 0, "fec(TX)", dev) != 0) |
| 1137 | printk("FEC: Could not allocate FEC(RC) IRQ(87)!\n"); |
| 1138 | if (request_irq(88, fec_enet_interrupt, 0, "fec(OTHER)", dev) != 0) |
| 1139 | printk("FEC: Could not allocate FEC(OTHER) IRQ(88)!\n"); |
| 1140 | if (request_irq(66, mii_link_interrupt, 0, "fec(MII)", dev) != 0) |
| 1141 | printk("FEC: Could not allocate MII IRQ(66)!\n"); |
| 1142 | |
| 1143 | /* Unmask interrupt at ColdFire 5272 SIM */ |
| 1144 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3); |
| 1145 | *icrp = 0x00000ddd; |
| 1146 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); |
| 1147 | *icrp = (*icrp & 0x70777777) | 0x0d000000; |
| 1148 | } |
| 1149 | |
| 1150 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) |
| 1151 | { |
| 1152 | volatile fec_t *fecp; |
| 1153 | |
| 1154 | fecp = fep->hwp; |
| 1155 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; |
| 1156 | fecp->fec_x_cntrl = 0x00; |
| 1157 | |
| 1158 | /* |
| 1159 | * Set MII speed to 2.5 MHz |
| 1160 | * See 5272 manual section 11.5.8: MSCR |
| 1161 | */ |
| 1162 | fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2; |
| 1163 | fecp->fec_mii_speed = fep->phy_speed; |
| 1164 | |
| 1165 | fec_restart(dev, 0); |
| 1166 | } |
| 1167 | |
| 1168 | static void __inline__ fec_get_mac(struct net_device *dev) |
| 1169 | { |
| 1170 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1171 | volatile fec_t *fecp; |
| 1172 | unsigned char *iap, tmpaddr[6]; |
| 1173 | int i; |
| 1174 | |
| 1175 | fecp = fep->hwp; |
| 1176 | |
| 1177 | if (fec_flashmac) { |
| 1178 | /* |
| 1179 | * Get MAC address from FLASH. |
| 1180 | * If it is all 1's or 0's, use the default. |
| 1181 | */ |
| 1182 | iap = fec_flashmac; |
| 1183 | if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && |
| 1184 | (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) |
| 1185 | iap = fec_mac_default; |
| 1186 | if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && |
| 1187 | (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) |
| 1188 | iap = fec_mac_default; |
| 1189 | } else { |
| 1190 | *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; |
| 1191 | *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); |
| 1192 | iap = &tmpaddr[0]; |
| 1193 | } |
| 1194 | |
| 1195 | for (i=0; i<ETH_ALEN; i++) |
| 1196 | dev->dev_addr[i] = fep->mac_addr[i] = *iap++; |
| 1197 | |
| 1198 | /* Adjust MAC if using default MAC address */ |
| 1199 | if (iap == fec_mac_default) { |
| 1200 | dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] = |
| 1201 | iap[ETH_ALEN-1] + fep->index; |
| 1202 | } |
| 1203 | } |
| 1204 | |
| 1205 | static void __inline__ fec_enable_phy_intr(void) |
| 1206 | { |
| 1207 | } |
| 1208 | |
| 1209 | static void __inline__ fec_disable_phy_intr(void) |
| 1210 | { |
| 1211 | volatile unsigned long *icrp; |
| 1212 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); |
| 1213 | *icrp = (*icrp & 0x70777777) | 0x08000000; |
| 1214 | } |
| 1215 | |
| 1216 | static void __inline__ fec_phy_ack_intr(void) |
| 1217 | { |
| 1218 | volatile unsigned long *icrp; |
| 1219 | /* Acknowledge the interrupt */ |
| 1220 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); |
| 1221 | *icrp = (*icrp & 0x77777777) | 0x08000000; |
| 1222 | } |
| 1223 | |
| 1224 | static void __inline__ fec_localhw_setup(void) |
| 1225 | { |
| 1226 | } |
| 1227 | |
| 1228 | /* |
| 1229 | * Do not need to make region uncached on 5272. |
| 1230 | */ |
| 1231 | static void __inline__ fec_uncache(unsigned long addr) |
| 1232 | { |
| 1233 | } |
| 1234 | |
| 1235 | /* ------------------------------------------------------------------------- */ |
| 1236 | |
| 1237 | #elif defined(CONFIG_M527x) || defined(CONFIG_M528x) |
| 1238 | |
| 1239 | /* |
| 1240 | * Code specific to Coldfire 5270/5271/5274/5275 and 5280/5282 setups. |
| 1241 | */ |
| 1242 | static void __inline__ fec_request_intrs(struct net_device *dev) |
| 1243 | { |
| 1244 | struct fec_enet_private *fep; |
| 1245 | int b; |
| 1246 | |
| 1247 | fep = netdev_priv(dev); |
| 1248 | b = (fep->index) ? 128 : 64; |
| 1249 | |
| 1250 | /* Setup interrupt handlers. */ |
| 1251 | if (request_irq(b+23, fec_enet_interrupt, 0, "fec(TXF)", dev) != 0) |
| 1252 | printk("FEC: Could not allocate FEC(TXF) IRQ(%d+23)!\n", b); |
| 1253 | if (request_irq(b+24, fec_enet_interrupt, 0, "fec(TXB)", dev) != 0) |
| 1254 | printk("FEC: Could not allocate FEC(TXB) IRQ(%d+24)!\n", b); |
| 1255 | if (request_irq(b+25, fec_enet_interrupt, 0, "fec(TXFIFO)", dev) != 0) |
| 1256 | printk("FEC: Could not allocate FEC(TXFIFO) IRQ(%d+25)!\n", b); |
| 1257 | if (request_irq(b+26, fec_enet_interrupt, 0, "fec(TXCR)", dev) != 0) |
| 1258 | printk("FEC: Could not allocate FEC(TXCR) IRQ(%d+26)!\n", b); |
| 1259 | |
| 1260 | if (request_irq(b+27, fec_enet_interrupt, 0, "fec(RXF)", dev) != 0) |
| 1261 | printk("FEC: Could not allocate FEC(RXF) IRQ(%d+27)!\n", b); |
| 1262 | if (request_irq(b+28, fec_enet_interrupt, 0, "fec(RXB)", dev) != 0) |
| 1263 | printk("FEC: Could not allocate FEC(RXB) IRQ(%d+28)!\n", b); |
| 1264 | |
| 1265 | if (request_irq(b+29, fec_enet_interrupt, 0, "fec(MII)", dev) != 0) |
| 1266 | printk("FEC: Could not allocate FEC(MII) IRQ(%d+29)!\n", b); |
| 1267 | if (request_irq(b+30, fec_enet_interrupt, 0, "fec(LC)", dev) != 0) |
| 1268 | printk("FEC: Could not allocate FEC(LC) IRQ(%d+30)!\n", b); |
| 1269 | if (request_irq(b+31, fec_enet_interrupt, 0, "fec(HBERR)", dev) != 0) |
| 1270 | printk("FEC: Could not allocate FEC(HBERR) IRQ(%d+31)!\n", b); |
| 1271 | if (request_irq(b+32, fec_enet_interrupt, 0, "fec(GRA)", dev) != 0) |
| 1272 | printk("FEC: Could not allocate FEC(GRA) IRQ(%d+32)!\n", b); |
| 1273 | if (request_irq(b+33, fec_enet_interrupt, 0, "fec(EBERR)", dev) != 0) |
| 1274 | printk("FEC: Could not allocate FEC(EBERR) IRQ(%d+33)!\n", b); |
| 1275 | if (request_irq(b+34, fec_enet_interrupt, 0, "fec(BABT)", dev) != 0) |
| 1276 | printk("FEC: Could not allocate FEC(BABT) IRQ(%d+34)!\n", b); |
| 1277 | if (request_irq(b+35, fec_enet_interrupt, 0, "fec(BABR)", dev) != 0) |
| 1278 | printk("FEC: Could not allocate FEC(BABR) IRQ(%d+35)!\n", b); |
| 1279 | |
| 1280 | /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */ |
| 1281 | { |
| 1282 | volatile unsigned char *icrp; |
| 1283 | volatile unsigned long *imrp; |
| 1284 | int i; |
| 1285 | |
| 1286 | b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0; |
| 1287 | icrp = (volatile unsigned char *) (MCF_IPSBAR + b + |
| 1288 | MCFINTC_ICR0); |
| 1289 | for (i = 23; (i < 36); i++) |
| 1290 | icrp[i] = 0x23; |
| 1291 | |
| 1292 | imrp = (volatile unsigned long *) (MCF_IPSBAR + b + |
| 1293 | MCFINTC_IMRH); |
| 1294 | *imrp &= ~0x0000000f; |
| 1295 | imrp = (volatile unsigned long *) (MCF_IPSBAR + b + |
| 1296 | MCFINTC_IMRL); |
| 1297 | *imrp &= ~0xff800001; |
| 1298 | } |
| 1299 | |
| 1300 | #if defined(CONFIG_M528x) |
| 1301 | /* Set up gpio outputs for MII lines */ |
| 1302 | { |
| 1303 | volatile unsigned short *gpio_paspar; |
| 1304 | |
| 1305 | gpio_paspar = (volatile unsigned short *) (MCF_IPSBAR + |
| 1306 | 0x100056); |
| 1307 | *gpio_paspar = 0x0f00; |
| 1308 | } |
| 1309 | #endif |
| 1310 | } |
| 1311 | |
| 1312 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) |
| 1313 | { |
| 1314 | volatile fec_t *fecp; |
| 1315 | |
| 1316 | fecp = fep->hwp; |
| 1317 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; |
| 1318 | fecp->fec_x_cntrl = 0x00; |
| 1319 | |
| 1320 | /* |
| 1321 | * Set MII speed to 2.5 MHz |
| 1322 | * See 5282 manual section 17.5.4.7: MSCR |
| 1323 | */ |
| 1324 | fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2; |
| 1325 | fecp->fec_mii_speed = fep->phy_speed; |
| 1326 | |
| 1327 | fec_restart(dev, 0); |
| 1328 | } |
| 1329 | |
| 1330 | static void __inline__ fec_get_mac(struct net_device *dev) |
| 1331 | { |
| 1332 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1333 | volatile fec_t *fecp; |
| 1334 | unsigned char *iap, tmpaddr[6]; |
| 1335 | int i; |
| 1336 | |
| 1337 | fecp = fep->hwp; |
| 1338 | |
| 1339 | if (fec_flashmac) { |
| 1340 | /* |
| 1341 | * Get MAC address from FLASH. |
| 1342 | * If it is all 1's or 0's, use the default. |
| 1343 | */ |
| 1344 | iap = fec_flashmac; |
| 1345 | if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && |
| 1346 | (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) |
| 1347 | iap = fec_mac_default; |
| 1348 | if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && |
| 1349 | (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) |
| 1350 | iap = fec_mac_default; |
| 1351 | } else { |
| 1352 | *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; |
| 1353 | *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); |
| 1354 | iap = &tmpaddr[0]; |
| 1355 | } |
| 1356 | |
| 1357 | for (i=0; i<ETH_ALEN; i++) |
| 1358 | dev->dev_addr[i] = fep->mac_addr[i] = *iap++; |
| 1359 | |
| 1360 | /* Adjust MAC if using default MAC address */ |
| 1361 | if (iap == fec_mac_default) { |
| 1362 | dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] = |
| 1363 | iap[ETH_ALEN-1] + fep->index; |
| 1364 | } |
| 1365 | } |
| 1366 | |
| 1367 | static void __inline__ fec_enable_phy_intr(void) |
| 1368 | { |
| 1369 | } |
| 1370 | |
| 1371 | static void __inline__ fec_disable_phy_intr(void) |
| 1372 | { |
| 1373 | } |
| 1374 | |
| 1375 | static void __inline__ fec_phy_ack_intr(void) |
| 1376 | { |
| 1377 | } |
| 1378 | |
| 1379 | static void __inline__ fec_localhw_setup(void) |
| 1380 | { |
| 1381 | } |
| 1382 | |
| 1383 | /* |
| 1384 | * Do not need to make region uncached on 5272. |
| 1385 | */ |
| 1386 | static void __inline__ fec_uncache(unsigned long addr) |
| 1387 | { |
| 1388 | } |
| 1389 | |
| 1390 | /* ------------------------------------------------------------------------- */ |
| 1391 | |
| 1392 | #else |
| 1393 | |
| 1394 | /* |
| 1395 | * Code sepcific to the MPC860T setup. |
| 1396 | */ |
| 1397 | static void __inline__ fec_request_intrs(struct net_device *dev) |
| 1398 | { |
| 1399 | volatile immap_t *immap; |
| 1400 | |
| 1401 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ |
| 1402 | |
| 1403 | if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0) |
| 1404 | panic("Could not allocate FEC IRQ!"); |
| 1405 | |
| 1406 | #ifdef CONFIG_RPXCLASSIC |
| 1407 | /* Make Port C, bit 15 an input that causes interrupts. |
| 1408 | */ |
| 1409 | immap->im_ioport.iop_pcpar &= ~0x0001; |
| 1410 | immap->im_ioport.iop_pcdir &= ~0x0001; |
| 1411 | immap->im_ioport.iop_pcso &= ~0x0001; |
| 1412 | immap->im_ioport.iop_pcint |= 0x0001; |
| 1413 | cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev); |
| 1414 | |
| 1415 | /* Make LEDS reflect Link status. |
| 1416 | */ |
| 1417 | *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE; |
| 1418 | #endif |
| 1419 | #ifdef CONFIG_FADS |
| 1420 | if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0) |
| 1421 | panic("Could not allocate MII IRQ!"); |
| 1422 | #endif |
| 1423 | } |
| 1424 | |
| 1425 | static void __inline__ fec_get_mac(struct net_device *dev) |
| 1426 | { |
| 1427 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1428 | unsigned char *iap, tmpaddr[6]; |
| 1429 | bd_t *bd; |
| 1430 | int i; |
| 1431 | |
| 1432 | iap = bd->bi_enetaddr; |
| 1433 | bd = (bd_t *)__res; |
| 1434 | |
| 1435 | #ifdef CONFIG_RPXCLASSIC |
| 1436 | /* The Embedded Planet boards have only one MAC address in |
| 1437 | * the EEPROM, but can have two Ethernet ports. For the |
| 1438 | * FEC port, we create another address by setting one of |
| 1439 | * the address bits above something that would have (up to |
| 1440 | * now) been allocated. |
| 1441 | */ |
| 1442 | for (i=0; i<6; i++) |
| 1443 | tmpaddr[i] = *iap++; |
| 1444 | tmpaddr[3] |= 0x80; |
| 1445 | iap = tmpaddr; |
| 1446 | #endif |
| 1447 | |
| 1448 | for (i=0; i<6; i++) |
| 1449 | dev->dev_addr[i] = fep->mac_addr[i] = *iap++; |
| 1450 | } |
| 1451 | |
| 1452 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) |
| 1453 | { |
| 1454 | extern uint _get_IMMR(void); |
| 1455 | volatile immap_t *immap; |
| 1456 | volatile fec_t *fecp; |
| 1457 | |
| 1458 | fecp = fep->hwp; |
| 1459 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ |
| 1460 | |
| 1461 | /* Configure all of port D for MII. |
| 1462 | */ |
| 1463 | immap->im_ioport.iop_pdpar = 0x1fff; |
| 1464 | |
| 1465 | /* Bits moved from Rev. D onward. |
| 1466 | */ |
| 1467 | if ((_get_IMMR() & 0xffff) < 0x0501) |
| 1468 | immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */ |
| 1469 | else |
| 1470 | immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */ |
| 1471 | |
| 1472 | /* Set MII speed to 2.5 MHz |
| 1473 | */ |
| 1474 | fecp->fec_mii_speed = fep->phy_speed = |
| 1475 | ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e; |
| 1476 | } |
| 1477 | |
| 1478 | static void __inline__ fec_enable_phy_intr(void) |
| 1479 | { |
| 1480 | volatile fec_t *fecp; |
| 1481 | |
| 1482 | fecp = fep->hwp; |
| 1483 | |
| 1484 | /* Enable MII command finished interrupt |
| 1485 | */ |
| 1486 | fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; |
| 1487 | } |
| 1488 | |
| 1489 | static void __inline__ fec_disable_phy_intr(void) |
| 1490 | { |
| 1491 | } |
| 1492 | |
| 1493 | static void __inline__ fec_phy_ack_intr(void) |
| 1494 | { |
| 1495 | } |
| 1496 | |
| 1497 | static void __inline__ fec_localhw_setup(void) |
| 1498 | { |
| 1499 | volatile fec_t *fecp; |
| 1500 | |
| 1501 | fecp = fep->hwp; |
| 1502 | fecp->fec_r_hash = PKT_MAXBUF_SIZE; |
| 1503 | /* Enable big endian and don't care about SDMA FC. |
| 1504 | */ |
| 1505 | fecp->fec_fun_code = 0x78000000; |
| 1506 | } |
| 1507 | |
| 1508 | static void __inline__ fec_uncache(unsigned long addr) |
| 1509 | { |
| 1510 | pte_t *pte; |
| 1511 | pte = va_to_pte(mem_addr); |
| 1512 | pte_val(*pte) |= _PAGE_NO_CACHE; |
| 1513 | flush_tlb_page(init_mm.mmap, mem_addr); |
| 1514 | } |
| 1515 | |
| 1516 | #endif |
| 1517 | |
| 1518 | /* ------------------------------------------------------------------------- */ |
| 1519 | |
| 1520 | static void mii_display_status(struct net_device *dev) |
| 1521 | { |
| 1522 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1523 | volatile uint *s = &(fep->phy_status); |
| 1524 | |
| 1525 | if (!fep->link && !fep->old_link) { |
| 1526 | /* Link is still down - don't print anything */ |
| 1527 | return; |
| 1528 | } |
| 1529 | |
| 1530 | printk("%s: status: ", dev->name); |
| 1531 | |
| 1532 | if (!fep->link) { |
| 1533 | printk("link down"); |
| 1534 | } else { |
| 1535 | printk("link up"); |
| 1536 | |
| 1537 | switch(*s & PHY_STAT_SPMASK) { |
| 1538 | case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break; |
| 1539 | case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break; |
| 1540 | case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break; |
| 1541 | case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break; |
| 1542 | default: |
| 1543 | printk(", Unknown speed/duplex"); |
| 1544 | } |
| 1545 | |
| 1546 | if (*s & PHY_STAT_ANC) |
| 1547 | printk(", auto-negotiation complete"); |
| 1548 | } |
| 1549 | |
| 1550 | if (*s & PHY_STAT_FAULT) |
| 1551 | printk(", remote fault"); |
| 1552 | |
| 1553 | printk(".\n"); |
| 1554 | } |
| 1555 | |
| 1556 | static void mii_display_config(struct net_device *dev) |
| 1557 | { |
| 1558 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1559 | volatile uint *s = &(fep->phy_status); |
| 1560 | |
| 1561 | /* |
| 1562 | ** When we get here, phy_task is already removed from |
| 1563 | ** the workqueue. It is thus safe to allow to reuse it. |
| 1564 | */ |
| 1565 | fep->mii_phy_task_queued = 0; |
| 1566 | printk("%s: config: auto-negotiation ", dev->name); |
| 1567 | |
| 1568 | if (*s & PHY_CONF_ANE) |
| 1569 | printk("on"); |
| 1570 | else |
| 1571 | printk("off"); |
| 1572 | |
| 1573 | if (*s & PHY_CONF_100FDX) |
| 1574 | printk(", 100FDX"); |
| 1575 | if (*s & PHY_CONF_100HDX) |
| 1576 | printk(", 100HDX"); |
| 1577 | if (*s & PHY_CONF_10FDX) |
| 1578 | printk(", 10FDX"); |
| 1579 | if (*s & PHY_CONF_10HDX) |
| 1580 | printk(", 10HDX"); |
| 1581 | if (!(*s & PHY_CONF_SPMASK)) |
| 1582 | printk(", No speed/duplex selected?"); |
| 1583 | |
| 1584 | if (*s & PHY_CONF_LOOP) |
| 1585 | printk(", loopback enabled"); |
| 1586 | |
| 1587 | printk(".\n"); |
| 1588 | |
| 1589 | fep->sequence_done = 1; |
| 1590 | } |
| 1591 | |
| 1592 | static void mii_relink(struct net_device *dev) |
| 1593 | { |
| 1594 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1595 | int duplex; |
| 1596 | |
| 1597 | /* |
| 1598 | ** When we get here, phy_task is already removed from |
| 1599 | ** the workqueue. It is thus safe to allow to reuse it. |
| 1600 | */ |
| 1601 | fep->mii_phy_task_queued = 0; |
| 1602 | fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; |
| 1603 | mii_display_status(dev); |
| 1604 | fep->old_link = fep->link; |
| 1605 | |
| 1606 | if (fep->link) { |
| 1607 | duplex = 0; |
| 1608 | if (fep->phy_status |
| 1609 | & (PHY_STAT_100FDX | PHY_STAT_10FDX)) |
| 1610 | duplex = 1; |
| 1611 | fec_restart(dev, duplex); |
| 1612 | } |
| 1613 | else |
| 1614 | fec_stop(dev); |
| 1615 | |
| 1616 | #if 0 |
| 1617 | enable_irq(fep->mii_irq); |
| 1618 | #endif |
| 1619 | |
| 1620 | } |
| 1621 | |
| 1622 | /* mii_queue_relink is called in interrupt context from mii_link_interrupt */ |
| 1623 | static void mii_queue_relink(uint mii_reg, struct net_device *dev) |
| 1624 | { |
| 1625 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1626 | |
| 1627 | /* |
| 1628 | ** We cannot queue phy_task twice in the workqueue. It |
| 1629 | ** would cause an endless loop in the workqueue. |
| 1630 | ** Fortunately, if the last mii_relink entry has not yet been |
| 1631 | ** executed now, it will do the job for the current interrupt, |
| 1632 | ** which is just what we want. |
| 1633 | */ |
| 1634 | if (fep->mii_phy_task_queued) |
| 1635 | return; |
| 1636 | |
| 1637 | fep->mii_phy_task_queued = 1; |
| 1638 | INIT_WORK(&fep->phy_task, (void*)mii_relink, dev); |
| 1639 | schedule_work(&fep->phy_task); |
| 1640 | } |
| 1641 | |
| 1642 | /* mii_queue_config is called in user context from fec_enet_open */ |
| 1643 | static void mii_queue_config(uint mii_reg, struct net_device *dev) |
| 1644 | { |
| 1645 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1646 | |
| 1647 | if (fep->mii_phy_task_queued) |
| 1648 | return; |
| 1649 | |
| 1650 | fep->mii_phy_task_queued = 1; |
| 1651 | INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev); |
| 1652 | schedule_work(&fep->phy_task); |
| 1653 | } |
| 1654 | |
| 1655 | |
| 1656 | |
| 1657 | phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink }, |
| 1658 | { mk_mii_end, } }; |
| 1659 | phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config }, |
| 1660 | { mk_mii_end, } }; |
| 1661 | |
| 1662 | |
| 1663 | |
| 1664 | /* Read remainder of PHY ID. |
| 1665 | */ |
| 1666 | static void |
| 1667 | mii_discover_phy3(uint mii_reg, struct net_device *dev) |
| 1668 | { |
| 1669 | struct fec_enet_private *fep; |
| 1670 | int i; |
| 1671 | |
| 1672 | fep = netdev_priv(dev); |
| 1673 | fep->phy_id |= (mii_reg & 0xffff); |
| 1674 | printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id); |
| 1675 | |
| 1676 | for(i = 0; phy_info[i]; i++) { |
| 1677 | if(phy_info[i]->id == (fep->phy_id >> 4)) |
| 1678 | break; |
| 1679 | } |
| 1680 | |
| 1681 | if (phy_info[i]) |
| 1682 | printk(" -- %s\n", phy_info[i]->name); |
| 1683 | else |
| 1684 | printk(" -- unknown PHY!\n"); |
| 1685 | |
| 1686 | fep->phy = phy_info[i]; |
| 1687 | fep->phy_id_done = 1; |
| 1688 | } |
| 1689 | |
| 1690 | /* Scan all of the MII PHY addresses looking for someone to respond |
| 1691 | * with a valid ID. This usually happens quickly. |
| 1692 | */ |
| 1693 | static void |
| 1694 | mii_discover_phy(uint mii_reg, struct net_device *dev) |
| 1695 | { |
| 1696 | struct fec_enet_private *fep; |
| 1697 | volatile fec_t *fecp; |
| 1698 | uint phytype; |
| 1699 | |
| 1700 | fep = netdev_priv(dev); |
| 1701 | fecp = fep->hwp; |
| 1702 | |
| 1703 | if (fep->phy_addr < 32) { |
| 1704 | if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) { |
| 1705 | |
| 1706 | /* Got first part of ID, now get remainder. |
| 1707 | */ |
| 1708 | fep->phy_id = phytype << 16; |
| 1709 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), |
| 1710 | mii_discover_phy3); |
| 1711 | } |
| 1712 | else { |
| 1713 | fep->phy_addr++; |
| 1714 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), |
| 1715 | mii_discover_phy); |
| 1716 | } |
| 1717 | } else { |
| 1718 | printk("FEC: No PHY device found.\n"); |
| 1719 | /* Disable external MII interface */ |
| 1720 | fecp->fec_mii_speed = fep->phy_speed = 0; |
| 1721 | fec_disable_phy_intr(); |
| 1722 | } |
| 1723 | } |
| 1724 | |
| 1725 | /* This interrupt occurs when the PHY detects a link change. |
| 1726 | */ |
| 1727 | #ifdef CONFIG_RPXCLASSIC |
| 1728 | static void |
| 1729 | mii_link_interrupt(void *dev_id) |
| 1730 | #else |
| 1731 | static irqreturn_t |
| 1732 | mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs) |
| 1733 | #endif |
| 1734 | { |
| 1735 | struct net_device *dev = dev_id; |
| 1736 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1737 | |
| 1738 | fec_phy_ack_intr(); |
| 1739 | |
| 1740 | #if 0 |
| 1741 | disable_irq(fep->mii_irq); /* disable now, enable later */ |
| 1742 | #endif |
| 1743 | |
| 1744 | mii_do_cmd(dev, fep->phy->ack_int); |
| 1745 | mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */ |
| 1746 | |
| 1747 | return IRQ_HANDLED; |
| 1748 | } |
| 1749 | |
| 1750 | static int |
| 1751 | fec_enet_open(struct net_device *dev) |
| 1752 | { |
| 1753 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1754 | |
| 1755 | /* I should reset the ring buffers here, but I don't yet know |
| 1756 | * a simple way to do that. |
| 1757 | */ |
| 1758 | fec_set_mac_address(dev); |
| 1759 | |
| 1760 | fep->sequence_done = 0; |
| 1761 | fep->link = 0; |
| 1762 | |
| 1763 | if (fep->phy) { |
| 1764 | mii_do_cmd(dev, fep->phy->ack_int); |
| 1765 | mii_do_cmd(dev, fep->phy->config); |
| 1766 | mii_do_cmd(dev, phy_cmd_config); /* display configuration */ |
| 1767 | |
| 1768 | /* FIXME: use netif_carrier_{on,off} ; this polls |
| 1769 | * until link is up which is wrong... could be |
| 1770 | * 30 seconds or more we are trapped in here. -jgarzik |
| 1771 | */ |
| 1772 | while(!fep->sequence_done) |
| 1773 | schedule(); |
| 1774 | |
| 1775 | mii_do_cmd(dev, fep->phy->startup); |
| 1776 | |
| 1777 | /* Set the initial link state to true. A lot of hardware |
| 1778 | * based on this device does not implement a PHY interrupt, |
| 1779 | * so we are never notified of link change. |
| 1780 | */ |
| 1781 | fep->link = 1; |
| 1782 | } else { |
| 1783 | fep->link = 1; /* lets just try it and see */ |
| 1784 | /* no phy, go full duplex, it's most likely a hub chip */ |
| 1785 | fec_restart(dev, 1); |
| 1786 | } |
| 1787 | |
| 1788 | netif_start_queue(dev); |
| 1789 | fep->opened = 1; |
| 1790 | return 0; /* Success */ |
| 1791 | } |
| 1792 | |
| 1793 | static int |
| 1794 | fec_enet_close(struct net_device *dev) |
| 1795 | { |
| 1796 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1797 | |
| 1798 | /* Don't know what to do yet. |
| 1799 | */ |
| 1800 | fep->opened = 0; |
| 1801 | netif_stop_queue(dev); |
| 1802 | fec_stop(dev); |
| 1803 | |
| 1804 | return 0; |
| 1805 | } |
| 1806 | |
| 1807 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev) |
| 1808 | { |
| 1809 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1810 | |
| 1811 | return &fep->stats; |
| 1812 | } |
| 1813 | |
| 1814 | /* Set or clear the multicast filter for this adaptor. |
| 1815 | * Skeleton taken from sunlance driver. |
| 1816 | * The CPM Ethernet implementation allows Multicast as well as individual |
| 1817 | * MAC address filtering. Some of the drivers check to make sure it is |
| 1818 | * a group multicast address, and discard those that are not. I guess I |
| 1819 | * will do the same for now, but just remove the test if you want |
| 1820 | * individual filtering as well (do the upper net layers want or support |
| 1821 | * this kind of feature?). |
| 1822 | */ |
| 1823 | |
| 1824 | #define HASH_BITS 6 /* #bits in hash */ |
| 1825 | #define CRC32_POLY 0xEDB88320 |
| 1826 | |
| 1827 | static void set_multicast_list(struct net_device *dev) |
| 1828 | { |
| 1829 | struct fec_enet_private *fep; |
| 1830 | volatile fec_t *ep; |
| 1831 | struct dev_mc_list *dmi; |
| 1832 | unsigned int i, j, bit, data, crc; |
| 1833 | unsigned char hash; |
| 1834 | |
| 1835 | fep = netdev_priv(dev); |
| 1836 | ep = fep->hwp; |
| 1837 | |
| 1838 | if (dev->flags&IFF_PROMISC) { |
| 1839 | /* Log any net taps. */ |
| 1840 | printk("%s: Promiscuous mode enabled.\n", dev->name); |
| 1841 | ep->fec_r_cntrl |= 0x0008; |
| 1842 | } else { |
| 1843 | |
| 1844 | ep->fec_r_cntrl &= ~0x0008; |
| 1845 | |
| 1846 | if (dev->flags & IFF_ALLMULTI) { |
| 1847 | /* Catch all multicast addresses, so set the |
| 1848 | * filter to all 1's. |
| 1849 | */ |
| 1850 | ep->fec_hash_table_high = 0xffffffff; |
| 1851 | ep->fec_hash_table_low = 0xffffffff; |
| 1852 | } else { |
| 1853 | /* Clear filter and add the addresses in hash register. |
| 1854 | */ |
| 1855 | ep->fec_hash_table_high = 0; |
| 1856 | ep->fec_hash_table_low = 0; |
| 1857 | |
| 1858 | dmi = dev->mc_list; |
| 1859 | |
| 1860 | for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) |
| 1861 | { |
| 1862 | /* Only support group multicast for now. |
| 1863 | */ |
| 1864 | if (!(dmi->dmi_addr[0] & 1)) |
| 1865 | continue; |
| 1866 | |
| 1867 | /* calculate crc32 value of mac address |
| 1868 | */ |
| 1869 | crc = 0xffffffff; |
| 1870 | |
| 1871 | for (i = 0; i < dmi->dmi_addrlen; i++) |
| 1872 | { |
| 1873 | data = dmi->dmi_addr[i]; |
| 1874 | for (bit = 0; bit < 8; bit++, data >>= 1) |
| 1875 | { |
| 1876 | crc = (crc >> 1) ^ |
| 1877 | (((crc ^ data) & 1) ? CRC32_POLY : 0); |
| 1878 | } |
| 1879 | } |
| 1880 | |
| 1881 | /* only upper 6 bits (HASH_BITS) are used |
| 1882 | which point to specific bit in he hash registers |
| 1883 | */ |
| 1884 | hash = (crc >> (32 - HASH_BITS)) & 0x3f; |
| 1885 | |
| 1886 | if (hash > 31) |
| 1887 | ep->fec_hash_table_high |= 1 << (hash - 32); |
| 1888 | else |
| 1889 | ep->fec_hash_table_low |= 1 << hash; |
| 1890 | } |
| 1891 | } |
| 1892 | } |
| 1893 | } |
| 1894 | |
| 1895 | /* Set a MAC change in hardware. |
| 1896 | */ |
| 1897 | static void |
| 1898 | fec_set_mac_address(struct net_device *dev) |
| 1899 | { |
| 1900 | struct fec_enet_private *fep; |
| 1901 | volatile fec_t *fecp; |
| 1902 | |
| 1903 | fep = netdev_priv(dev); |
| 1904 | fecp = fep->hwp; |
| 1905 | |
| 1906 | /* Set station address. */ |
| 1907 | fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) | |
| 1908 | (fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24); |
| 1909 | fecp->fec_addr_high = (fep->mac_addr[5] << 16) | |
| 1910 | (fep->mac_addr[4] << 24); |
| 1911 | |
| 1912 | } |
| 1913 | |
| 1914 | /* Initialize the FEC Ethernet on 860T (or ColdFire 5272). |
| 1915 | */ |
| 1916 | /* |
| 1917 | * XXX: We need to clean up on failure exits here. |
| 1918 | */ |
| 1919 | int __init fec_enet_init(struct net_device *dev) |
| 1920 | { |
| 1921 | struct fec_enet_private *fep = netdev_priv(dev); |
| 1922 | unsigned long mem_addr; |
| 1923 | volatile cbd_t *bdp; |
| 1924 | cbd_t *cbd_base; |
| 1925 | volatile fec_t *fecp; |
| 1926 | int i, j; |
| 1927 | static int index = 0; |
| 1928 | |
| 1929 | /* Only allow us to be probed once. */ |
| 1930 | if (index >= FEC_MAX_PORTS) |
| 1931 | return -ENXIO; |
| 1932 | |
| 1933 | /* Create an Ethernet device instance. |
| 1934 | */ |
| 1935 | fecp = (volatile fec_t *) fec_hw[index]; |
| 1936 | |
| 1937 | fep->index = index; |
| 1938 | fep->hwp = fecp; |
| 1939 | |
| 1940 | /* Whack a reset. We should wait for this. |
| 1941 | */ |
| 1942 | fecp->fec_ecntrl = 1; |
| 1943 | udelay(10); |
| 1944 | |
| 1945 | /* Clear and enable interrupts */ |
| 1946 | fecp->fec_ievent = 0xffc0; |
| 1947 | fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | |
| 1948 | FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); |
| 1949 | fecp->fec_hash_table_high = 0; |
| 1950 | fecp->fec_hash_table_low = 0; |
| 1951 | fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; |
| 1952 | fecp->fec_ecntrl = 2; |
| 1953 | fecp->fec_r_des_active = 0x01000000; |
| 1954 | |
| 1955 | /* Set the Ethernet address. If using multiple Enets on the 8xx, |
| 1956 | * this needs some work to get unique addresses. |
| 1957 | * |
| 1958 | * This is our default MAC address unless the user changes |
| 1959 | * it via eth_mac_addr (our dev->set_mac_addr handler). |
| 1960 | */ |
| 1961 | fec_get_mac(dev); |
| 1962 | |
| 1963 | /* Allocate memory for buffer descriptors. |
| 1964 | */ |
| 1965 | if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) { |
| 1966 | printk("FEC init error. Need more space.\n"); |
| 1967 | printk("FEC initialization failed.\n"); |
| 1968 | return 1; |
| 1969 | } |
| 1970 | mem_addr = __get_free_page(GFP_KERNEL); |
| 1971 | cbd_base = (cbd_t *)mem_addr; |
| 1972 | /* XXX: missing check for allocation failure */ |
| 1973 | |
| 1974 | fec_uncache(mem_addr); |
| 1975 | |
| 1976 | /* Set receive and transmit descriptor base. |
| 1977 | */ |
| 1978 | fep->rx_bd_base = cbd_base; |
| 1979 | fep->tx_bd_base = cbd_base + RX_RING_SIZE; |
| 1980 | |
| 1981 | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; |
| 1982 | fep->cur_rx = fep->rx_bd_base; |
| 1983 | |
| 1984 | fep->skb_cur = fep->skb_dirty = 0; |
| 1985 | |
| 1986 | /* Initialize the receive buffer descriptors. |
| 1987 | */ |
| 1988 | bdp = fep->rx_bd_base; |
| 1989 | for (i=0; i<FEC_ENET_RX_PAGES; i++) { |
| 1990 | |
| 1991 | /* Allocate a page. |
| 1992 | */ |
| 1993 | mem_addr = __get_free_page(GFP_KERNEL); |
| 1994 | /* XXX: missing check for allocation failure */ |
| 1995 | |
| 1996 | fec_uncache(mem_addr); |
| 1997 | |
| 1998 | /* Initialize the BD for every fragment in the page. |
| 1999 | */ |
| 2000 | for (j=0; j<FEC_ENET_RX_FRPPG; j++) { |
| 2001 | bdp->cbd_sc = BD_ENET_RX_EMPTY; |
| 2002 | bdp->cbd_bufaddr = __pa(mem_addr); |
| 2003 | mem_addr += FEC_ENET_RX_FRSIZE; |
| 2004 | bdp++; |
| 2005 | } |
| 2006 | } |
| 2007 | |
| 2008 | /* Set the last buffer to wrap. |
| 2009 | */ |
| 2010 | bdp--; |
| 2011 | bdp->cbd_sc |= BD_SC_WRAP; |
| 2012 | |
| 2013 | /* ...and the same for transmmit. |
| 2014 | */ |
| 2015 | bdp = fep->tx_bd_base; |
| 2016 | for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) { |
| 2017 | if (j >= FEC_ENET_TX_FRPPG) { |
| 2018 | mem_addr = __get_free_page(GFP_KERNEL); |
| 2019 | j = 1; |
| 2020 | } else { |
| 2021 | mem_addr += FEC_ENET_TX_FRSIZE; |
| 2022 | j++; |
| 2023 | } |
| 2024 | fep->tx_bounce[i] = (unsigned char *) mem_addr; |
| 2025 | |
| 2026 | /* Initialize the BD for every fragment in the page. |
| 2027 | */ |
| 2028 | bdp->cbd_sc = 0; |
| 2029 | bdp->cbd_bufaddr = 0; |
| 2030 | bdp++; |
| 2031 | } |
| 2032 | |
| 2033 | /* Set the last buffer to wrap. |
| 2034 | */ |
| 2035 | bdp--; |
| 2036 | bdp->cbd_sc |= BD_SC_WRAP; |
| 2037 | |
| 2038 | /* Set receive and transmit descriptor base. |
| 2039 | */ |
| 2040 | fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); |
| 2041 | fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); |
| 2042 | |
| 2043 | /* Install our interrupt handlers. This varies depending on |
| 2044 | * the architecture. |
| 2045 | */ |
| 2046 | fec_request_intrs(dev); |
| 2047 | |
| 2048 | dev->base_addr = (unsigned long)fecp; |
| 2049 | |
| 2050 | /* The FEC Ethernet specific entries in the device structure. */ |
| 2051 | dev->open = fec_enet_open; |
| 2052 | dev->hard_start_xmit = fec_enet_start_xmit; |
| 2053 | dev->tx_timeout = fec_timeout; |
| 2054 | dev->watchdog_timeo = TX_TIMEOUT; |
| 2055 | dev->stop = fec_enet_close; |
| 2056 | dev->get_stats = fec_enet_get_stats; |
| 2057 | dev->set_multicast_list = set_multicast_list; |
| 2058 | |
| 2059 | for (i=0; i<NMII-1; i++) |
| 2060 | mii_cmds[i].mii_next = &mii_cmds[i+1]; |
| 2061 | mii_free = mii_cmds; |
| 2062 | |
| 2063 | /* setup MII interface */ |
| 2064 | fec_set_mii(dev, fep); |
| 2065 | |
| 2066 | printk("%s: FEC ENET Version 0.2, ", dev->name); |
| 2067 | for (i=0; i<5; i++) |
| 2068 | printk("%02x:", dev->dev_addr[i]); |
| 2069 | printk("%02x\n", dev->dev_addr[5]); |
| 2070 | |
| 2071 | /* Queue up command to detect the PHY and initialize the |
| 2072 | * remainder of the interface. |
| 2073 | */ |
| 2074 | fep->phy_id_done = 0; |
| 2075 | fep->phy_addr = 0; |
| 2076 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy); |
| 2077 | |
| 2078 | index++; |
| 2079 | return 0; |
| 2080 | } |
| 2081 | |
| 2082 | /* This function is called to start or restart the FEC during a link |
| 2083 | * change. This only happens when switching between half and full |
| 2084 | * duplex. |
| 2085 | */ |
| 2086 | static void |
| 2087 | fec_restart(struct net_device *dev, int duplex) |
| 2088 | { |
| 2089 | struct fec_enet_private *fep; |
| 2090 | volatile cbd_t *bdp; |
| 2091 | volatile fec_t *fecp; |
| 2092 | int i; |
| 2093 | |
| 2094 | fep = netdev_priv(dev); |
| 2095 | fecp = fep->hwp; |
| 2096 | |
| 2097 | /* Whack a reset. We should wait for this. |
| 2098 | */ |
| 2099 | fecp->fec_ecntrl = 1; |
| 2100 | udelay(10); |
| 2101 | |
| 2102 | /* Enable interrupts we wish to service. |
| 2103 | */ |
| 2104 | fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | |
| 2105 | FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); |
| 2106 | |
| 2107 | /* Clear any outstanding interrupt. |
| 2108 | */ |
| 2109 | fecp->fec_ievent = 0xffc0; |
| 2110 | fec_enable_phy_intr(); |
| 2111 | |
| 2112 | /* Set station address. |
| 2113 | */ |
| 2114 | fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) | |
| 2115 | (fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24); |
| 2116 | fecp->fec_addr_high = (fep->mac_addr[5] << 16) | |
| 2117 | (fep->mac_addr[4] << 24); |
| 2118 | |
| 2119 | for (i=0; i<ETH_ALEN; i++) |
| 2120 | dev->dev_addr[i] = fep->mac_addr[i]; |
| 2121 | |
| 2122 | /* Reset all multicast. |
| 2123 | */ |
| 2124 | fecp->fec_hash_table_high = 0; |
| 2125 | fecp->fec_hash_table_low = 0; |
| 2126 | |
| 2127 | /* Set maximum receive buffer size. |
| 2128 | */ |
| 2129 | fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; |
| 2130 | |
| 2131 | fec_localhw_setup(); |
| 2132 | |
| 2133 | /* Set receive and transmit descriptor base. |
| 2134 | */ |
| 2135 | fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); |
| 2136 | fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); |
| 2137 | |
| 2138 | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; |
| 2139 | fep->cur_rx = fep->rx_bd_base; |
| 2140 | |
| 2141 | /* Reset SKB transmit buffers. |
| 2142 | */ |
| 2143 | fep->skb_cur = fep->skb_dirty = 0; |
| 2144 | for (i=0; i<=TX_RING_MOD_MASK; i++) { |
| 2145 | if (fep->tx_skbuff[i] != NULL) { |
| 2146 | dev_kfree_skb_any(fep->tx_skbuff[i]); |
| 2147 | fep->tx_skbuff[i] = NULL; |
| 2148 | } |
| 2149 | } |
| 2150 | |
| 2151 | /* Initialize the receive buffer descriptors. |
| 2152 | */ |
| 2153 | bdp = fep->rx_bd_base; |
| 2154 | for (i=0; i<RX_RING_SIZE; i++) { |
| 2155 | |
| 2156 | /* Initialize the BD for every fragment in the page. |
| 2157 | */ |
| 2158 | bdp->cbd_sc = BD_ENET_RX_EMPTY; |
| 2159 | bdp++; |
| 2160 | } |
| 2161 | |
| 2162 | /* Set the last buffer to wrap. |
| 2163 | */ |
| 2164 | bdp--; |
| 2165 | bdp->cbd_sc |= BD_SC_WRAP; |
| 2166 | |
| 2167 | /* ...and the same for transmmit. |
| 2168 | */ |
| 2169 | bdp = fep->tx_bd_base; |
| 2170 | for (i=0; i<TX_RING_SIZE; i++) { |
| 2171 | |
| 2172 | /* Initialize the BD for every fragment in the page. |
| 2173 | */ |
| 2174 | bdp->cbd_sc = 0; |
| 2175 | bdp->cbd_bufaddr = 0; |
| 2176 | bdp++; |
| 2177 | } |
| 2178 | |
| 2179 | /* Set the last buffer to wrap. |
| 2180 | */ |
| 2181 | bdp--; |
| 2182 | bdp->cbd_sc |= BD_SC_WRAP; |
| 2183 | |
| 2184 | /* Enable MII mode. |
| 2185 | */ |
| 2186 | if (duplex) { |
| 2187 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */ |
| 2188 | fecp->fec_x_cntrl = 0x04; /* FD enable */ |
| 2189 | } |
| 2190 | else { |
| 2191 | /* MII enable|No Rcv on Xmit */ |
| 2192 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06; |
| 2193 | fecp->fec_x_cntrl = 0x00; |
| 2194 | } |
| 2195 | fep->full_duplex = duplex; |
| 2196 | |
| 2197 | /* Set MII speed. |
| 2198 | */ |
| 2199 | fecp->fec_mii_speed = fep->phy_speed; |
| 2200 | |
| 2201 | /* And last, enable the transmit and receive processing. |
| 2202 | */ |
| 2203 | fecp->fec_ecntrl = 2; |
| 2204 | fecp->fec_r_des_active = 0x01000000; |
| 2205 | } |
| 2206 | |
| 2207 | static void |
| 2208 | fec_stop(struct net_device *dev) |
| 2209 | { |
| 2210 | volatile fec_t *fecp; |
| 2211 | struct fec_enet_private *fep; |
| 2212 | |
| 2213 | fep = netdev_priv(dev); |
| 2214 | fecp = fep->hwp; |
| 2215 | |
| 2216 | fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */ |
| 2217 | |
| 2218 | while(!(fecp->fec_ievent & 0x10000000)); |
| 2219 | |
| 2220 | /* Whack a reset. We should wait for this. |
| 2221 | */ |
| 2222 | fecp->fec_ecntrl = 1; |
| 2223 | udelay(10); |
| 2224 | |
| 2225 | /* Clear outstanding MII command interrupts. |
| 2226 | */ |
| 2227 | fecp->fec_ievent = FEC_ENET_MII; |
| 2228 | fec_enable_phy_intr(); |
| 2229 | |
| 2230 | fecp->fec_imask = FEC_ENET_MII; |
| 2231 | fecp->fec_mii_speed = fep->phy_speed; |
| 2232 | } |
| 2233 | |
| 2234 | static int __init fec_enet_module_init(void) |
| 2235 | { |
| 2236 | struct net_device *dev; |
| 2237 | int i, err; |
| 2238 | |
| 2239 | for (i = 0; (i < FEC_MAX_PORTS); i++) { |
| 2240 | dev = alloc_etherdev(sizeof(struct fec_enet_private)); |
| 2241 | if (!dev) |
| 2242 | return -ENOMEM; |
| 2243 | err = fec_enet_init(dev); |
| 2244 | if (err) { |
| 2245 | free_netdev(dev); |
| 2246 | continue; |
| 2247 | } |
| 2248 | if (register_netdev(dev) != 0) { |
| 2249 | /* XXX: missing cleanup here */ |
| 2250 | free_netdev(dev); |
| 2251 | return -EIO; |
| 2252 | } |
| 2253 | } |
| 2254 | return 0; |
| 2255 | } |
| 2256 | |
| 2257 | module_init(fec_enet_module_init); |
| 2258 | |
| 2259 | MODULE_LICENSE("GPL"); |