Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Driver for the Macintosh 68K onboard MACE controller with PSC |
| 3 | * driven DMA. The MACE driver code is derived from mace.c. The |
| 4 | * Mac68k theory of operation is courtesy of the MacBSD wizards. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License |
| 8 | * as published by the Free Software Foundation; either version |
| 9 | * 2 of the License, or (at your option) any later version. |
| 10 | * |
| 11 | * Copyright (C) 1996 Paul Mackerras. |
| 12 | * Copyright (C) 1998 Alan Cox <alan@redhat.com> |
| 13 | * |
| 14 | * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver |
| 15 | */ |
| 16 | |
| 17 | |
| 18 | #include <linux/kernel.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/netdevice.h> |
| 21 | #include <linux/etherdevice.h> |
| 22 | #include <linux/delay.h> |
| 23 | #include <linux/string.h> |
| 24 | #include <linux/crc32.h> |
| 25 | #include <asm/io.h> |
| 26 | #include <asm/pgtable.h> |
| 27 | #include <asm/irq.h> |
| 28 | #include <asm/macintosh.h> |
| 29 | #include <asm/macints.h> |
| 30 | #include <asm/mac_psc.h> |
| 31 | #include <asm/page.h> |
| 32 | #include "mace.h" |
| 33 | |
| 34 | #define N_TX_RING 1 |
| 35 | #define N_RX_RING 8 |
| 36 | #define N_RX_PAGES ((N_RX_RING * 0x0800 + PAGE_SIZE - 1) / PAGE_SIZE) |
| 37 | #define TX_TIMEOUT HZ |
| 38 | |
| 39 | /* Bits in transmit DMA status */ |
| 40 | #define TX_DMA_ERR 0x80 |
| 41 | |
| 42 | /* The MACE is simply wired down on a Mac68K box */ |
| 43 | |
| 44 | #define MACE_BASE (void *)(0x50F1C000) |
| 45 | #define MACE_PROM (void *)(0x50F08001) |
| 46 | |
| 47 | struct mace_data { |
| 48 | volatile struct mace *mace; |
| 49 | volatile unsigned char *tx_ring; |
| 50 | volatile unsigned char *tx_ring_phys; |
| 51 | volatile unsigned char *rx_ring; |
| 52 | volatile unsigned char *rx_ring_phys; |
| 53 | int dma_intr; |
| 54 | struct net_device_stats stats; |
| 55 | int rx_slot, rx_tail; |
| 56 | int tx_slot, tx_sloti, tx_count; |
| 57 | }; |
| 58 | |
| 59 | struct mace_frame { |
| 60 | u16 len; |
| 61 | u16 status; |
| 62 | u16 rntpc; |
| 63 | u16 rcvcc; |
| 64 | u32 pad1; |
| 65 | u32 pad2; |
| 66 | u8 data[1]; |
| 67 | /* And frame continues.. */ |
| 68 | }; |
| 69 | |
| 70 | #define PRIV_BYTES sizeof(struct mace_data) |
| 71 | |
| 72 | extern void psc_debug_dump(void); |
| 73 | |
| 74 | static int mace_open(struct net_device *dev); |
| 75 | static int mace_close(struct net_device *dev); |
| 76 | static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev); |
| 77 | static struct net_device_stats *mace_stats(struct net_device *dev); |
| 78 | static void mace_set_multicast(struct net_device *dev); |
| 79 | static int mace_set_address(struct net_device *dev, void *addr); |
| 80 | static irqreturn_t mace_interrupt(int irq, void *dev_id, struct pt_regs *regs); |
| 81 | static irqreturn_t mace_dma_intr(int irq, void *dev_id, struct pt_regs *regs); |
| 82 | static void mace_tx_timeout(struct net_device *dev); |
| 83 | |
| 84 | /* Bit-reverse one byte of an ethernet hardware address. */ |
| 85 | |
| 86 | static int bitrev(int b) |
| 87 | { |
| 88 | int d = 0, i; |
| 89 | |
| 90 | for (i = 0; i < 8; ++i, b >>= 1) { |
| 91 | d = (d << 1) | (b & 1); |
| 92 | } |
| 93 | |
| 94 | return d; |
| 95 | } |
| 96 | |
| 97 | /* |
| 98 | * Load a receive DMA channel with a base address and ring length |
| 99 | */ |
| 100 | |
| 101 | static void mace_load_rxdma_base(struct net_device *dev, int set) |
| 102 | { |
| 103 | struct mace_data *mp = (struct mace_data *) dev->priv; |
| 104 | |
| 105 | psc_write_word(PSC_ENETRD_CMD + set, 0x0100); |
| 106 | psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys); |
| 107 | psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING); |
| 108 | psc_write_word(PSC_ENETRD_CMD + set, 0x9800); |
| 109 | mp->rx_tail = 0; |
| 110 | } |
| 111 | |
| 112 | /* |
| 113 | * Reset the receive DMA subsystem |
| 114 | */ |
| 115 | |
| 116 | static void mace_rxdma_reset(struct net_device *dev) |
| 117 | { |
| 118 | struct mace_data *mp = (struct mace_data *) dev->priv; |
| 119 | volatile struct mace *mace = mp->mace; |
| 120 | u8 maccc = mace->maccc; |
| 121 | |
| 122 | mace->maccc = maccc & ~ENRCV; |
| 123 | |
| 124 | psc_write_word(PSC_ENETRD_CTL, 0x8800); |
| 125 | mace_load_rxdma_base(dev, 0x00); |
| 126 | psc_write_word(PSC_ENETRD_CTL, 0x0400); |
| 127 | |
| 128 | psc_write_word(PSC_ENETRD_CTL, 0x8800); |
| 129 | mace_load_rxdma_base(dev, 0x10); |
| 130 | psc_write_word(PSC_ENETRD_CTL, 0x0400); |
| 131 | |
| 132 | mace->maccc = maccc; |
| 133 | mp->rx_slot = 0; |
| 134 | |
| 135 | psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800); |
| 136 | psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800); |
| 137 | } |
| 138 | |
| 139 | /* |
| 140 | * Reset the transmit DMA subsystem |
| 141 | */ |
| 142 | |
| 143 | static void mace_txdma_reset(struct net_device *dev) |
| 144 | { |
| 145 | struct mace_data *mp = (struct mace_data *) dev->priv; |
| 146 | volatile struct mace *mace = mp->mace; |
| 147 | u8 maccc; |
| 148 | |
| 149 | psc_write_word(PSC_ENETWR_CTL, 0x8800); |
| 150 | |
| 151 | maccc = mace->maccc; |
| 152 | mace->maccc = maccc & ~ENXMT; |
| 153 | |
| 154 | mp->tx_slot = mp->tx_sloti = 0; |
| 155 | mp->tx_count = N_TX_RING; |
| 156 | |
| 157 | psc_write_word(PSC_ENETWR_CTL, 0x0400); |
| 158 | mace->maccc = maccc; |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | * Disable DMA |
| 163 | */ |
| 164 | |
| 165 | static void mace_dma_off(struct net_device *dev) |
| 166 | { |
| 167 | psc_write_word(PSC_ENETRD_CTL, 0x8800); |
| 168 | psc_write_word(PSC_ENETRD_CTL, 0x1000); |
| 169 | psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100); |
| 170 | psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100); |
| 171 | |
| 172 | psc_write_word(PSC_ENETWR_CTL, 0x8800); |
| 173 | psc_write_word(PSC_ENETWR_CTL, 0x1000); |
| 174 | psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100); |
| 175 | psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100); |
| 176 | } |
| 177 | |
| 178 | /* |
| 179 | * Not really much of a probe. The hardware table tells us if this |
| 180 | * model of Macintrash has a MACE (AV macintoshes) |
| 181 | */ |
| 182 | |
| 183 | struct net_device *mace_probe(int unit) |
| 184 | { |
| 185 | int j; |
| 186 | struct mace_data *mp; |
| 187 | unsigned char *addr; |
| 188 | struct net_device *dev; |
| 189 | unsigned char checksum = 0; |
| 190 | static int found = 0; |
| 191 | int err; |
| 192 | |
| 193 | if (found || macintosh_config->ether_type != MAC_ETHER_MACE) |
| 194 | return ERR_PTR(-ENODEV); |
| 195 | |
| 196 | found = 1; /* prevent 'finding' one on every device probe */ |
| 197 | |
| 198 | dev = alloc_etherdev(PRIV_BYTES); |
| 199 | if (!dev) |
| 200 | return ERR_PTR(-ENOMEM); |
| 201 | |
| 202 | if (unit >= 0) |
| 203 | sprintf(dev->name, "eth%d", unit); |
| 204 | |
| 205 | mp = (struct mace_data *) dev->priv; |
| 206 | dev->base_addr = (u32)MACE_BASE; |
| 207 | mp->mace = (volatile struct mace *) MACE_BASE; |
| 208 | |
| 209 | dev->irq = IRQ_MAC_MACE; |
| 210 | mp->dma_intr = IRQ_MAC_MACE_DMA; |
| 211 | |
| 212 | /* |
| 213 | * The PROM contains 8 bytes which total 0xFF when XOR'd |
| 214 | * together. Due to the usual peculiar apple brain damage |
| 215 | * the bytes are spaced out in a strange boundary and the |
| 216 | * bits are reversed. |
| 217 | */ |
| 218 | |
| 219 | addr = (void *)MACE_PROM; |
| 220 | |
| 221 | for (j = 0; j < 6; ++j) { |
| 222 | u8 v=bitrev(addr[j<<4]); |
| 223 | checksum ^= v; |
| 224 | dev->dev_addr[j] = v; |
| 225 | } |
| 226 | for (; j < 8; ++j) { |
| 227 | checksum ^= bitrev(addr[j<<4]); |
| 228 | } |
| 229 | |
| 230 | if (checksum != 0xFF) { |
| 231 | free_netdev(dev); |
| 232 | return ERR_PTR(-ENODEV); |
| 233 | } |
| 234 | |
| 235 | memset(&mp->stats, 0, sizeof(mp->stats)); |
| 236 | |
| 237 | dev->open = mace_open; |
| 238 | dev->stop = mace_close; |
| 239 | dev->hard_start_xmit = mace_xmit_start; |
| 240 | dev->tx_timeout = mace_tx_timeout; |
| 241 | dev->watchdog_timeo = TX_TIMEOUT; |
| 242 | dev->get_stats = mace_stats; |
| 243 | dev->set_multicast_list = mace_set_multicast; |
| 244 | dev->set_mac_address = mace_set_address; |
| 245 | |
| 246 | printk(KERN_INFO "%s: 68K MACE, hardware address %.2X", dev->name, dev->dev_addr[0]); |
| 247 | for (j = 1 ; j < 6 ; j++) printk(":%.2X", dev->dev_addr[j]); |
| 248 | printk("\n"); |
| 249 | |
| 250 | err = register_netdev(dev); |
| 251 | if (!err) |
| 252 | return dev; |
| 253 | |
| 254 | free_netdev(dev); |
| 255 | return ERR_PTR(err); |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * Load the address on a mace controller. |
| 260 | */ |
| 261 | |
| 262 | static int mace_set_address(struct net_device *dev, void *addr) |
| 263 | { |
| 264 | unsigned char *p = addr; |
| 265 | struct mace_data *mp = (struct mace_data *) dev->priv; |
| 266 | volatile struct mace *mb = mp->mace; |
| 267 | int i; |
| 268 | unsigned long flags; |
| 269 | u8 maccc; |
| 270 | |
| 271 | local_irq_save(flags); |
| 272 | |
| 273 | maccc = mb->maccc; |
| 274 | |
| 275 | /* load up the hardware address */ |
| 276 | mb->iac = ADDRCHG | PHYADDR; |
| 277 | while ((mb->iac & ADDRCHG) != 0); |
| 278 | |
| 279 | for (i = 0; i < 6; ++i) { |
| 280 | mb->padr = dev->dev_addr[i] = p[i]; |
| 281 | } |
| 282 | |
| 283 | mb->maccc = maccc; |
| 284 | local_irq_restore(flags); |
| 285 | |
| 286 | return 0; |
| 287 | } |
| 288 | |
| 289 | /* |
| 290 | * Open the Macintosh MACE. Most of this is playing with the DMA |
| 291 | * engine. The ethernet chip is quite friendly. |
| 292 | */ |
| 293 | |
| 294 | static int mace_open(struct net_device *dev) |
| 295 | { |
| 296 | struct mace_data *mp = (struct mace_data *) dev->priv; |
| 297 | volatile struct mace *mb = mp->mace; |
| 298 | #if 0 |
| 299 | int i; |
| 300 | |
| 301 | i = 200; |
| 302 | while (--i) { |
| 303 | mb->biucc = SWRST; |
| 304 | if (mb->biucc & SWRST) { |
| 305 | udelay(10); |
| 306 | continue; |
| 307 | } |
| 308 | break; |
| 309 | } |
| 310 | if (!i) { |
| 311 | printk(KERN_ERR "%s: software reset failed!!\n", dev->name); |
| 312 | return -EAGAIN; |
| 313 | } |
| 314 | #endif |
| 315 | |
| 316 | mb->biucc = XMTSP_64; |
| 317 | mb->fifocc = XMTFW_16 | RCVFW_64 | XMTFWU | RCVFWU | XMTBRST | RCVBRST; |
| 318 | mb->xmtfc = AUTO_PAD_XMIT; |
| 319 | mb->plscc = PORTSEL_AUI; |
| 320 | /* mb->utr = RTRD; */ |
| 321 | |
| 322 | if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) { |
| 323 | printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq); |
| 324 | return -EAGAIN; |
| 325 | } |
| 326 | if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) { |
| 327 | printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr); |
| 328 | free_irq(dev->irq, dev); |
| 329 | return -EAGAIN; |
| 330 | } |
| 331 | |
| 332 | /* Allocate the DMA ring buffers */ |
| 333 | |
| 334 | mp->rx_ring = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, N_RX_PAGES); |
| 335 | mp->tx_ring = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, 0); |
| 336 | |
| 337 | if (mp->tx_ring==NULL || mp->rx_ring==NULL) { |
| 338 | if (mp->rx_ring) free_pages((u32) mp->rx_ring, N_RX_PAGES); |
| 339 | if (mp->tx_ring) free_pages((u32) mp->tx_ring, 0); |
| 340 | free_irq(dev->irq, dev); |
| 341 | free_irq(mp->dma_intr, dev); |
| 342 | printk(KERN_ERR "%s: unable to allocate DMA buffers\n", dev->name); |
| 343 | return -ENOMEM; |
| 344 | } |
| 345 | |
| 346 | mp->rx_ring_phys = (unsigned char *) virt_to_bus((void *)mp->rx_ring); |
| 347 | mp->tx_ring_phys = (unsigned char *) virt_to_bus((void *)mp->tx_ring); |
| 348 | |
| 349 | /* We want the Rx buffer to be uncached and the Tx buffer to be writethrough */ |
| 350 | |
| 351 | kernel_set_cachemode((void *)mp->rx_ring, N_RX_PAGES * PAGE_SIZE, IOMAP_NOCACHE_NONSER); |
| 352 | kernel_set_cachemode((void *)mp->tx_ring, PAGE_SIZE, IOMAP_WRITETHROUGH); |
| 353 | |
| 354 | mace_dma_off(dev); |
| 355 | |
| 356 | /* Not sure what these do */ |
| 357 | |
| 358 | psc_write_word(PSC_ENETWR_CTL, 0x9000); |
| 359 | psc_write_word(PSC_ENETRD_CTL, 0x9000); |
| 360 | psc_write_word(PSC_ENETWR_CTL, 0x0400); |
| 361 | psc_write_word(PSC_ENETRD_CTL, 0x0400); |
| 362 | |
| 363 | #if 0 |
| 364 | /* load up the hardware address */ |
| 365 | |
| 366 | mb->iac = ADDRCHG | PHYADDR; |
| 367 | |
| 368 | while ((mb->iac & ADDRCHG) != 0); |
| 369 | |
| 370 | for (i = 0; i < 6; ++i) |
| 371 | mb->padr = dev->dev_addr[i]; |
| 372 | |
| 373 | /* clear the multicast filter */ |
| 374 | mb->iac = ADDRCHG | LOGADDR; |
| 375 | |
| 376 | while ((mb->iac & ADDRCHG) != 0); |
| 377 | |
| 378 | for (i = 0; i < 8; ++i) |
| 379 | mb->ladrf = 0; |
| 380 | |
| 381 | mb->plscc = PORTSEL_GPSI + ENPLSIO; |
| 382 | |
| 383 | mb->maccc = ENXMT | ENRCV; |
| 384 | mb->imr = RCVINT; |
| 385 | #endif |
| 386 | |
| 387 | mace_rxdma_reset(dev); |
| 388 | mace_txdma_reset(dev); |
| 389 | |
| 390 | return 0; |
| 391 | } |
| 392 | |
| 393 | /* |
| 394 | * Shut down the mace and its interrupt channel |
| 395 | */ |
| 396 | |
| 397 | static int mace_close(struct net_device *dev) |
| 398 | { |
| 399 | struct mace_data *mp = (struct mace_data *) dev->priv; |
| 400 | volatile struct mace *mb = mp->mace; |
| 401 | |
| 402 | mb->maccc = 0; /* disable rx and tx */ |
| 403 | mb->imr = 0xFF; /* disable all irqs */ |
| 404 | mace_dma_off(dev); /* disable rx and tx dma */ |
| 405 | |
| 406 | free_irq(dev->irq, dev); |
| 407 | free_irq(IRQ_MAC_MACE_DMA, dev); |
| 408 | |
| 409 | free_pages((u32) mp->rx_ring, N_RX_PAGES); |
| 410 | free_pages((u32) mp->tx_ring, 0); |
| 411 | |
| 412 | return 0; |
| 413 | } |
| 414 | |
| 415 | /* |
| 416 | * Transmit a frame |
| 417 | */ |
| 418 | |
| 419 | static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev) |
| 420 | { |
| 421 | struct mace_data *mp = (struct mace_data *) dev->priv; |
| 422 | |
| 423 | /* Stop the queue if the buffer is full */ |
| 424 | |
| 425 | if (!mp->tx_count) { |
| 426 | netif_stop_queue(dev); |
| 427 | return 1; |
| 428 | } |
| 429 | mp->tx_count--; |
| 430 | |
| 431 | mp->stats.tx_packets++; |
| 432 | mp->stats.tx_bytes += skb->len; |
| 433 | |
| 434 | /* We need to copy into our xmit buffer to take care of alignment and caching issues */ |
| 435 | |
| 436 | memcpy((void *) mp->tx_ring, skb->data, skb->len); |
| 437 | |
| 438 | /* load the Tx DMA and fire it off */ |
| 439 | |
| 440 | psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys); |
| 441 | psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len); |
| 442 | psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800); |
| 443 | |
| 444 | mp->tx_slot ^= 0x10; |
| 445 | |
| 446 | dev_kfree_skb(skb); |
| 447 | |
| 448 | return 0; |
| 449 | } |
| 450 | |
| 451 | static struct net_device_stats *mace_stats(struct net_device *dev) |
| 452 | { |
| 453 | struct mace_data *p = (struct mace_data *) dev->priv; |
| 454 | return &p->stats; |
| 455 | } |
| 456 | |
| 457 | static void mace_set_multicast(struct net_device *dev) |
| 458 | { |
| 459 | struct mace_data *mp = (struct mace_data *) dev->priv; |
| 460 | volatile struct mace *mb = mp->mace; |
| 461 | int i, j; |
| 462 | u32 crc; |
| 463 | u8 maccc; |
| 464 | |
| 465 | maccc = mb->maccc; |
| 466 | mb->maccc &= ~PROM; |
| 467 | |
| 468 | if (dev->flags & IFF_PROMISC) { |
| 469 | mb->maccc |= PROM; |
| 470 | } else { |
| 471 | unsigned char multicast_filter[8]; |
| 472 | struct dev_mc_list *dmi = dev->mc_list; |
| 473 | |
| 474 | if (dev->flags & IFF_ALLMULTI) { |
| 475 | for (i = 0; i < 8; i++) { |
| 476 | multicast_filter[i] = 0xFF; |
| 477 | } |
| 478 | } else { |
| 479 | for (i = 0; i < 8; i++) |
| 480 | multicast_filter[i] = 0; |
| 481 | for (i = 0; i < dev->mc_count; i++) { |
| 482 | crc = ether_crc_le(6, dmi->dmi_addr); |
| 483 | j = crc >> 26; /* bit number in multicast_filter */ |
| 484 | multicast_filter[j >> 3] |= 1 << (j & 7); |
| 485 | dmi = dmi->next; |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | mb->iac = ADDRCHG | LOGADDR; |
| 490 | while (mb->iac & ADDRCHG); |
| 491 | |
| 492 | for (i = 0; i < 8; ++i) { |
| 493 | mb->ladrf = multicast_filter[i]; |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | mb->maccc = maccc; |
| 498 | } |
| 499 | |
| 500 | /* |
| 501 | * Miscellaneous interrupts are handled here. We may end up |
| 502 | * having to bash the chip on the head for bad errors |
| 503 | */ |
| 504 | |
| 505 | static void mace_handle_misc_intrs(struct mace_data *mp, int intr) |
| 506 | { |
| 507 | volatile struct mace *mb = mp->mace; |
| 508 | static int mace_babbles, mace_jabbers; |
| 509 | |
| 510 | if (intr & MPCO) { |
| 511 | mp->stats.rx_missed_errors += 256; |
| 512 | } |
| 513 | mp->stats.rx_missed_errors += mb->mpc; /* reading clears it */ |
| 514 | |
| 515 | if (intr & RNTPCO) { |
| 516 | mp->stats.rx_length_errors += 256; |
| 517 | } |
| 518 | mp->stats.rx_length_errors += mb->rntpc; /* reading clears it */ |
| 519 | |
| 520 | if (intr & CERR) { |
| 521 | ++mp->stats.tx_heartbeat_errors; |
| 522 | } |
| 523 | if (intr & BABBLE) { |
| 524 | if (mace_babbles++ < 4) { |
| 525 | printk(KERN_DEBUG "mace: babbling transmitter\n"); |
| 526 | } |
| 527 | } |
| 528 | if (intr & JABBER) { |
| 529 | if (mace_jabbers++ < 4) { |
| 530 | printk(KERN_DEBUG "mace: jabbering transceiver\n"); |
| 531 | } |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | /* |
| 536 | * A transmit error has occurred. (We kick the transmit side from |
| 537 | * the DMA completion) |
| 538 | */ |
| 539 | |
| 540 | static void mace_xmit_error(struct net_device *dev) |
| 541 | { |
| 542 | struct mace_data *mp = (struct mace_data *) dev->priv; |
| 543 | volatile struct mace *mb = mp->mace; |
| 544 | u8 xmtfs, xmtrc; |
| 545 | |
| 546 | xmtfs = mb->xmtfs; |
| 547 | xmtrc = mb->xmtrc; |
| 548 | |
| 549 | if (xmtfs & XMTSV) { |
| 550 | if (xmtfs & UFLO) { |
| 551 | printk("%s: DMA underrun.\n", dev->name); |
| 552 | mp->stats.tx_errors++; |
| 553 | mp->stats.tx_fifo_errors++; |
| 554 | mace_txdma_reset(dev); |
| 555 | } |
| 556 | if (xmtfs & RTRY) { |
| 557 | mp->stats.collisions++; |
| 558 | } |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | /* |
| 563 | * A receive interrupt occurred. |
| 564 | */ |
| 565 | |
| 566 | static void mace_recv_interrupt(struct net_device *dev) |
| 567 | { |
| 568 | /* struct mace_data *mp = (struct mace_data *) dev->priv; */ |
| 569 | // volatile struct mace *mb = mp->mace; |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * Process the chip interrupt |
| 574 | */ |
| 575 | |
| 576 | static irqreturn_t mace_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| 577 | { |
| 578 | struct net_device *dev = (struct net_device *) dev_id; |
| 579 | struct mace_data *mp = (struct mace_data *) dev->priv; |
| 580 | volatile struct mace *mb = mp->mace; |
| 581 | u8 ir; |
| 582 | |
| 583 | ir = mb->ir; |
| 584 | mace_handle_misc_intrs(mp, ir); |
| 585 | |
| 586 | if (ir & XMTINT) { |
| 587 | mace_xmit_error(dev); |
| 588 | } |
| 589 | if (ir & RCVINT) { |
| 590 | mace_recv_interrupt(dev); |
| 591 | } |
| 592 | return IRQ_HANDLED; |
| 593 | } |
| 594 | |
| 595 | static void mace_tx_timeout(struct net_device *dev) |
| 596 | { |
| 597 | /* struct mace_data *mp = (struct mace_data *) dev->priv; */ |
| 598 | // volatile struct mace *mb = mp->mace; |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | * Handle a newly arrived frame |
| 603 | */ |
| 604 | |
| 605 | static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf) |
| 606 | { |
| 607 | struct mace_data *mp = (struct mace_data *) dev->priv; |
| 608 | struct sk_buff *skb; |
| 609 | |
| 610 | if (mf->status & RS_OFLO) { |
| 611 | printk("%s: fifo overflow.\n", dev->name); |
| 612 | mp->stats.rx_errors++; |
| 613 | mp->stats.rx_fifo_errors++; |
| 614 | } |
| 615 | if (mf->status&(RS_CLSN|RS_FRAMERR|RS_FCSERR)) |
| 616 | mp->stats.rx_errors++; |
| 617 | |
| 618 | if (mf->status&RS_CLSN) { |
| 619 | mp->stats.collisions++; |
| 620 | } |
| 621 | if (mf->status&RS_FRAMERR) { |
| 622 | mp->stats.rx_frame_errors++; |
| 623 | } |
| 624 | if (mf->status&RS_FCSERR) { |
| 625 | mp->stats.rx_crc_errors++; |
| 626 | } |
| 627 | |
| 628 | skb = dev_alloc_skb(mf->len+2); |
| 629 | if (!skb) { |
| 630 | mp->stats.rx_dropped++; |
| 631 | return; |
| 632 | } |
| 633 | skb_reserve(skb,2); |
| 634 | memcpy(skb_put(skb, mf->len), mf->data, mf->len); |
| 635 | |
| 636 | skb->dev = dev; |
| 637 | skb->protocol = eth_type_trans(skb, dev); |
| 638 | netif_rx(skb); |
| 639 | dev->last_rx = jiffies; |
| 640 | mp->stats.rx_packets++; |
| 641 | mp->stats.rx_bytes += mf->len; |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * The PSC has passed us a DMA interrupt event. |
| 646 | */ |
| 647 | |
| 648 | static irqreturn_t mace_dma_intr(int irq, void *dev_id, struct pt_regs *regs) |
| 649 | { |
| 650 | struct net_device *dev = (struct net_device *) dev_id; |
| 651 | struct mace_data *mp = (struct mace_data *) dev->priv; |
| 652 | int left, head; |
| 653 | u16 status; |
| 654 | u32 baka; |
| 655 | |
| 656 | /* Not sure what this does */ |
| 657 | |
| 658 | while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY)); |
| 659 | if (!(baka & 0x60000000)) return IRQ_NONE; |
| 660 | |
| 661 | /* |
| 662 | * Process the read queue |
| 663 | */ |
| 664 | |
| 665 | status = psc_read_word(PSC_ENETRD_CTL); |
| 666 | |
| 667 | if (status & 0x2000) { |
| 668 | mace_rxdma_reset(dev); |
| 669 | } else if (status & 0x0100) { |
| 670 | psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100); |
| 671 | |
| 672 | left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot); |
| 673 | head = N_RX_RING - left; |
| 674 | |
| 675 | /* Loop through the ring buffer and process new packages */ |
| 676 | |
| 677 | while (mp->rx_tail < head) { |
| 678 | mace_dma_rx_frame(dev, (struct mace_frame *) (mp->rx_ring + (mp->rx_tail * 0x0800))); |
| 679 | mp->rx_tail++; |
| 680 | } |
| 681 | |
| 682 | /* If we're out of buffers in this ring then switch to */ |
| 683 | /* the other set, otherwise just reactivate this one. */ |
| 684 | |
| 685 | if (!left) { |
| 686 | mace_load_rxdma_base(dev, mp->rx_slot); |
| 687 | mp->rx_slot ^= 0x10; |
| 688 | } else { |
| 689 | psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800); |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | /* |
| 694 | * Process the write queue |
| 695 | */ |
| 696 | |
| 697 | status = psc_read_word(PSC_ENETWR_CTL); |
| 698 | |
| 699 | if (status & 0x2000) { |
| 700 | mace_txdma_reset(dev); |
| 701 | } else if (status & 0x0100) { |
| 702 | psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100); |
| 703 | mp->tx_sloti ^= 0x10; |
| 704 | mp->tx_count++; |
| 705 | netif_wake_queue(dev); |
| 706 | } |
| 707 | return IRQ_HANDLED; |
| 708 | } |
| 709 | |
| 710 | MODULE_LICENSE("GPL"); |