Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * linux/drivers/video/pxafb.c |
| 3 | * |
| 4 | * Copyright (C) 1999 Eric A. Thomas. |
| 5 | * Copyright (C) 2004 Jean-Frederic Clere. |
| 6 | * Copyright (C) 2004 Ian Campbell. |
| 7 | * Copyright (C) 2004 Jeff Lackey. |
| 8 | * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas |
| 9 | * which in turn is |
| 10 | * Based on acornfb.c Copyright (C) Russell King. |
| 11 | * |
| 12 | * This file is subject to the terms and conditions of the GNU General Public |
| 13 | * License. See the file COPYING in the main directory of this archive for |
| 14 | * more details. |
| 15 | * |
| 16 | * Intel PXA250/210 LCD Controller Frame Buffer Driver |
| 17 | * |
| 18 | * Please direct your questions and comments on this driver to the following |
| 19 | * email address: |
| 20 | * |
| 21 | * linux-arm-kernel@lists.arm.linux.org.uk |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include <linux/config.h> |
| 26 | #include <linux/module.h> |
| 27 | #include <linux/moduleparam.h> |
| 28 | #include <linux/kernel.h> |
| 29 | #include <linux/sched.h> |
| 30 | #include <linux/errno.h> |
| 31 | #include <linux/string.h> |
| 32 | #include <linux/interrupt.h> |
| 33 | #include <linux/slab.h> |
| 34 | #include <linux/fb.h> |
| 35 | #include <linux/delay.h> |
| 36 | #include <linux/init.h> |
| 37 | #include <linux/ioport.h> |
| 38 | #include <linux/cpufreq.h> |
| 39 | #include <linux/device.h> |
| 40 | #include <linux/dma-mapping.h> |
| 41 | |
| 42 | #include <asm/hardware.h> |
| 43 | #include <asm/io.h> |
| 44 | #include <asm/irq.h> |
| 45 | #include <asm/uaccess.h> |
| 46 | #include <asm/arch/pxa-regs.h> |
| 47 | #include <asm/arch/bitfield.h> |
| 48 | #include <asm/arch/pxafb.h> |
| 49 | |
| 50 | /* |
| 51 | * Complain if VAR is out of range. |
| 52 | */ |
| 53 | #define DEBUG_VAR 1 |
| 54 | |
| 55 | #include "pxafb.h" |
| 56 | |
| 57 | /* Bits which should not be set in machine configuration structures */ |
| 58 | #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM|LCCR0_BM|LCCR0_QDM|LCCR0_DIS|LCCR0_EFM|LCCR0_IUM|LCCR0_SFM|LCCR0_LDM|LCCR0_ENB) |
| 59 | #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP|LCCR3_VSP|LCCR3_PCD|LCCR3_BPP) |
| 60 | |
| 61 | static void (*pxafb_backlight_power)(int); |
| 62 | static void (*pxafb_lcd_power)(int); |
| 63 | |
| 64 | static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *); |
| 65 | static void set_ctrlr_state(struct pxafb_info *fbi, u_int state); |
| 66 | |
| 67 | #ifdef CONFIG_FB_PXA_PARAMETERS |
| 68 | #define PXAFB_OPTIONS_SIZE 256 |
| 69 | static char g_options[PXAFB_OPTIONS_SIZE] __initdata = ""; |
| 70 | #endif |
| 71 | |
| 72 | static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state) |
| 73 | { |
| 74 | unsigned long flags; |
| 75 | |
| 76 | local_irq_save(flags); |
| 77 | /* |
| 78 | * We need to handle two requests being made at the same time. |
| 79 | * There are two important cases: |
| 80 | * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE) |
| 81 | * We must perform the unblanking, which will do our REENABLE for us. |
| 82 | * 2. When we are blanking, but immediately unblank before we have |
| 83 | * blanked. We do the "REENABLE" thing here as well, just to be sure. |
| 84 | */ |
| 85 | if (fbi->task_state == C_ENABLE && state == C_REENABLE) |
| 86 | state = (u_int) -1; |
| 87 | if (fbi->task_state == C_DISABLE && state == C_ENABLE) |
| 88 | state = C_REENABLE; |
| 89 | |
| 90 | if (state != (u_int)-1) { |
| 91 | fbi->task_state = state; |
| 92 | schedule_work(&fbi->task); |
| 93 | } |
| 94 | local_irq_restore(flags); |
| 95 | } |
| 96 | |
| 97 | static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf) |
| 98 | { |
| 99 | chan &= 0xffff; |
| 100 | chan >>= 16 - bf->length; |
| 101 | return chan << bf->offset; |
| 102 | } |
| 103 | |
| 104 | static int |
| 105 | pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue, |
| 106 | u_int trans, struct fb_info *info) |
| 107 | { |
| 108 | struct pxafb_info *fbi = (struct pxafb_info *)info; |
| 109 | u_int val, ret = 1; |
| 110 | |
| 111 | if (regno < fbi->palette_size) { |
| 112 | if (fbi->fb.var.grayscale) { |
| 113 | val = ((blue >> 8) & 0x00ff); |
| 114 | } else { |
| 115 | val = ((red >> 0) & 0xf800); |
| 116 | val |= ((green >> 5) & 0x07e0); |
| 117 | val |= ((blue >> 11) & 0x001f); |
| 118 | } |
| 119 | fbi->palette_cpu[regno] = val; |
| 120 | ret = 0; |
| 121 | } |
| 122 | return ret; |
| 123 | } |
| 124 | |
| 125 | static int |
| 126 | pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, |
| 127 | u_int trans, struct fb_info *info) |
| 128 | { |
| 129 | struct pxafb_info *fbi = (struct pxafb_info *)info; |
| 130 | unsigned int val; |
| 131 | int ret = 1; |
| 132 | |
| 133 | /* |
| 134 | * If inverse mode was selected, invert all the colours |
| 135 | * rather than the register number. The register number |
| 136 | * is what you poke into the framebuffer to produce the |
| 137 | * colour you requested. |
| 138 | */ |
| 139 | if (fbi->cmap_inverse) { |
| 140 | red = 0xffff - red; |
| 141 | green = 0xffff - green; |
| 142 | blue = 0xffff - blue; |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * If greyscale is true, then we convert the RGB value |
| 147 | * to greyscale no matter what visual we are using. |
| 148 | */ |
| 149 | if (fbi->fb.var.grayscale) |
| 150 | red = green = blue = (19595 * red + 38470 * green + |
| 151 | 7471 * blue) >> 16; |
| 152 | |
| 153 | switch (fbi->fb.fix.visual) { |
| 154 | case FB_VISUAL_TRUECOLOR: |
| 155 | /* |
| 156 | * 16-bit True Colour. We encode the RGB value |
| 157 | * according to the RGB bitfield information. |
| 158 | */ |
| 159 | if (regno < 16) { |
| 160 | u32 *pal = fbi->fb.pseudo_palette; |
| 161 | |
| 162 | val = chan_to_field(red, &fbi->fb.var.red); |
| 163 | val |= chan_to_field(green, &fbi->fb.var.green); |
| 164 | val |= chan_to_field(blue, &fbi->fb.var.blue); |
| 165 | |
| 166 | pal[regno] = val; |
| 167 | ret = 0; |
| 168 | } |
| 169 | break; |
| 170 | |
| 171 | case FB_VISUAL_STATIC_PSEUDOCOLOR: |
| 172 | case FB_VISUAL_PSEUDOCOLOR: |
| 173 | ret = pxafb_setpalettereg(regno, red, green, blue, trans, info); |
| 174 | break; |
| 175 | } |
| 176 | |
| 177 | return ret; |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * pxafb_bpp_to_lccr3(): |
| 182 | * Convert a bits per pixel value to the correct bit pattern for LCCR3 |
| 183 | */ |
| 184 | static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var) |
| 185 | { |
| 186 | int ret = 0; |
| 187 | switch (var->bits_per_pixel) { |
| 188 | case 1: ret = LCCR3_1BPP; break; |
| 189 | case 2: ret = LCCR3_2BPP; break; |
| 190 | case 4: ret = LCCR3_4BPP; break; |
| 191 | case 8: ret = LCCR3_8BPP; break; |
| 192 | case 16: ret = LCCR3_16BPP; break; |
| 193 | } |
| 194 | return ret; |
| 195 | } |
| 196 | |
| 197 | #ifdef CONFIG_CPU_FREQ |
| 198 | /* |
| 199 | * pxafb_display_dma_period() |
| 200 | * Calculate the minimum period (in picoseconds) between two DMA |
| 201 | * requests for the LCD controller. If we hit this, it means we're |
| 202 | * doing nothing but LCD DMA. |
| 203 | */ |
| 204 | static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var) |
| 205 | { |
| 206 | /* |
| 207 | * Period = pixclock * bits_per_byte * bytes_per_transfer |
| 208 | * / memory_bits_per_pixel; |
| 209 | */ |
| 210 | return var->pixclock * 8 * 16 / var->bits_per_pixel; |
| 211 | } |
| 212 | |
| 213 | extern unsigned int get_clk_frequency_khz(int info); |
| 214 | #endif |
| 215 | |
| 216 | /* |
| 217 | * pxafb_check_var(): |
| 218 | * Get the video params out of 'var'. If a value doesn't fit, round it up, |
| 219 | * if it's too big, return -EINVAL. |
| 220 | * |
| 221 | * Round up in the following order: bits_per_pixel, xres, |
| 222 | * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale, |
| 223 | * bitfields, horizontal timing, vertical timing. |
| 224 | */ |
| 225 | static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) |
| 226 | { |
| 227 | struct pxafb_info *fbi = (struct pxafb_info *)info; |
| 228 | |
| 229 | if (var->xres < MIN_XRES) |
| 230 | var->xres = MIN_XRES; |
| 231 | if (var->yres < MIN_YRES) |
| 232 | var->yres = MIN_YRES; |
| 233 | if (var->xres > fbi->max_xres) |
| 234 | var->xres = fbi->max_xres; |
| 235 | if (var->yres > fbi->max_yres) |
| 236 | var->yres = fbi->max_yres; |
| 237 | var->xres_virtual = |
| 238 | max(var->xres_virtual, var->xres); |
| 239 | var->yres_virtual = |
| 240 | max(var->yres_virtual, var->yres); |
| 241 | |
| 242 | /* |
| 243 | * Setup the RGB parameters for this display. |
| 244 | * |
| 245 | * The pixel packing format is described on page 7-11 of the |
| 246 | * PXA2XX Developer's Manual. |
| 247 | */ |
| 248 | if (var->bits_per_pixel == 16) { |
| 249 | var->red.offset = 11; var->red.length = 5; |
| 250 | var->green.offset = 5; var->green.length = 6; |
| 251 | var->blue.offset = 0; var->blue.length = 5; |
| 252 | var->transp.offset = var->transp.length = 0; |
| 253 | } else { |
| 254 | var->red.offset = var->green.offset = var->blue.offset = var->transp.offset = 0; |
| 255 | var->red.length = 8; |
| 256 | var->green.length = 8; |
| 257 | var->blue.length = 8; |
| 258 | var->transp.length = 0; |
| 259 | } |
| 260 | |
| 261 | #ifdef CONFIG_CPU_FREQ |
| 262 | DPRINTK("dma period = %d ps, clock = %d kHz\n", |
| 263 | pxafb_display_dma_period(var), |
| 264 | get_clk_frequency_khz(0)); |
| 265 | #endif |
| 266 | |
| 267 | return 0; |
| 268 | } |
| 269 | |
| 270 | static inline void pxafb_set_truecolor(u_int is_true_color) |
| 271 | { |
| 272 | DPRINTK("true_color = %d\n", is_true_color); |
| 273 | // do your machine-specific setup if needed |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * pxafb_set_par(): |
| 278 | * Set the user defined part of the display for the specified console |
| 279 | */ |
| 280 | static int pxafb_set_par(struct fb_info *info) |
| 281 | { |
| 282 | struct pxafb_info *fbi = (struct pxafb_info *)info; |
| 283 | struct fb_var_screeninfo *var = &info->var; |
| 284 | unsigned long palette_mem_size; |
| 285 | |
| 286 | DPRINTK("set_par\n"); |
| 287 | |
| 288 | if (var->bits_per_pixel == 16) |
| 289 | fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR; |
| 290 | else if (!fbi->cmap_static) |
| 291 | fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR; |
| 292 | else { |
| 293 | /* |
| 294 | * Some people have weird ideas about wanting static |
| 295 | * pseudocolor maps. I suspect their user space |
| 296 | * applications are broken. |
| 297 | */ |
| 298 | fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR; |
| 299 | } |
| 300 | |
| 301 | fbi->fb.fix.line_length = var->xres_virtual * |
| 302 | var->bits_per_pixel / 8; |
| 303 | if (var->bits_per_pixel == 16) |
| 304 | fbi->palette_size = 0; |
| 305 | else |
| 306 | fbi->palette_size = var->bits_per_pixel == 1 ? 4 : 1 << var->bits_per_pixel; |
| 307 | |
| 308 | palette_mem_size = fbi->palette_size * sizeof(u16); |
| 309 | |
| 310 | DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size); |
| 311 | |
| 312 | fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); |
| 313 | fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; |
| 314 | |
| 315 | /* |
| 316 | * Set (any) board control register to handle new color depth |
| 317 | */ |
| 318 | pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR); |
| 319 | |
| 320 | if (fbi->fb.var.bits_per_pixel == 16) |
| 321 | fb_dealloc_cmap(&fbi->fb.cmap); |
| 322 | else |
| 323 | fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0); |
| 324 | |
| 325 | pxafb_activate_var(var, fbi); |
| 326 | |
| 327 | return 0; |
| 328 | } |
| 329 | |
| 330 | /* |
| 331 | * Formal definition of the VESA spec: |
| 332 | * On |
| 333 | * This refers to the state of the display when it is in full operation |
| 334 | * Stand-By |
| 335 | * This defines an optional operating state of minimal power reduction with |
| 336 | * the shortest recovery time |
| 337 | * Suspend |
| 338 | * This refers to a level of power management in which substantial power |
| 339 | * reduction is achieved by the display. The display can have a longer |
| 340 | * recovery time from this state than from the Stand-by state |
| 341 | * Off |
| 342 | * This indicates that the display is consuming the lowest level of power |
| 343 | * and is non-operational. Recovery from this state may optionally require |
| 344 | * the user to manually power on the monitor |
| 345 | * |
| 346 | * Now, the fbdev driver adds an additional state, (blank), where they |
| 347 | * turn off the video (maybe by colormap tricks), but don't mess with the |
| 348 | * video itself: think of it semantically between on and Stand-By. |
| 349 | * |
| 350 | * So here's what we should do in our fbdev blank routine: |
| 351 | * |
| 352 | * VESA_NO_BLANKING (mode 0) Video on, front/back light on |
| 353 | * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off |
| 354 | * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off |
| 355 | * VESA_POWERDOWN (mode 3) Video off, front/back light off |
| 356 | * |
| 357 | * This will match the matrox implementation. |
| 358 | */ |
| 359 | |
| 360 | /* |
| 361 | * pxafb_blank(): |
| 362 | * Blank the display by setting all palette values to zero. Note, the |
| 363 | * 16 bpp mode does not really use the palette, so this will not |
| 364 | * blank the display in all modes. |
| 365 | */ |
| 366 | static int pxafb_blank(int blank, struct fb_info *info) |
| 367 | { |
| 368 | struct pxafb_info *fbi = (struct pxafb_info *)info; |
| 369 | int i; |
| 370 | |
| 371 | DPRINTK("pxafb_blank: blank=%d\n", blank); |
| 372 | |
| 373 | switch (blank) { |
| 374 | case FB_BLANK_POWERDOWN: |
| 375 | case FB_BLANK_VSYNC_SUSPEND: |
| 376 | case FB_BLANK_HSYNC_SUSPEND: |
| 377 | case FB_BLANK_NORMAL: |
| 378 | if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || |
| 379 | fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) |
| 380 | for (i = 0; i < fbi->palette_size; i++) |
| 381 | pxafb_setpalettereg(i, 0, 0, 0, 0, info); |
| 382 | |
| 383 | pxafb_schedule_work(fbi, C_DISABLE); |
| 384 | //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); |
| 385 | break; |
| 386 | |
| 387 | case FB_BLANK_UNBLANK: |
| 388 | //TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); |
| 389 | if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR || |
| 390 | fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR) |
| 391 | fb_set_cmap(&fbi->fb.cmap, info); |
| 392 | pxafb_schedule_work(fbi, C_ENABLE); |
| 393 | } |
| 394 | return 0; |
| 395 | } |
| 396 | |
| 397 | static int pxafb_mmap(struct fb_info *info, struct file *file, |
| 398 | struct vm_area_struct *vma) |
| 399 | { |
| 400 | struct pxafb_info *fbi = (struct pxafb_info *)info; |
| 401 | unsigned long off = vma->vm_pgoff << PAGE_SHIFT; |
| 402 | |
| 403 | if (off < info->fix.smem_len) { |
| 404 | vma->vm_pgoff += 1; |
| 405 | return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu, |
| 406 | fbi->map_dma, fbi->map_size); |
| 407 | } |
| 408 | return -EINVAL; |
| 409 | } |
| 410 | |
| 411 | static struct fb_ops pxafb_ops = { |
| 412 | .owner = THIS_MODULE, |
| 413 | .fb_check_var = pxafb_check_var, |
| 414 | .fb_set_par = pxafb_set_par, |
| 415 | .fb_setcolreg = pxafb_setcolreg, |
| 416 | .fb_fillrect = cfb_fillrect, |
| 417 | .fb_copyarea = cfb_copyarea, |
| 418 | .fb_imageblit = cfb_imageblit, |
| 419 | .fb_blank = pxafb_blank, |
| 420 | .fb_cursor = soft_cursor, |
| 421 | .fb_mmap = pxafb_mmap, |
| 422 | }; |
| 423 | |
| 424 | /* |
| 425 | * Calculate the PCD value from the clock rate (in picoseconds). |
| 426 | * We take account of the PPCR clock setting. |
| 427 | * From PXA Developer's Manual: |
| 428 | * |
| 429 | * PixelClock = LCLK |
| 430 | * ------------- |
| 431 | * 2 ( PCD + 1 ) |
| 432 | * |
| 433 | * PCD = LCLK |
| 434 | * ------------- - 1 |
| 435 | * 2(PixelClock) |
| 436 | * |
| 437 | * Where: |
| 438 | * LCLK = LCD/Memory Clock |
| 439 | * PCD = LCCR3[7:0] |
| 440 | * |
| 441 | * PixelClock here is in Hz while the pixclock argument given is the |
| 442 | * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 ) |
| 443 | * |
| 444 | * The function get_lclk_frequency_10khz returns LCLK in units of |
| 445 | * 10khz. Calling the result of this function lclk gives us the |
| 446 | * following |
| 447 | * |
| 448 | * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 ) |
| 449 | * -------------------------------------- - 1 |
| 450 | * 2 |
| 451 | * |
| 452 | * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below. |
| 453 | */ |
| 454 | static inline unsigned int get_pcd(unsigned int pixclock) |
| 455 | { |
| 456 | unsigned long long pcd; |
| 457 | |
| 458 | /* FIXME: Need to take into account Double Pixel Clock mode |
| 459 | * (DPC) bit? or perhaps set it based on the various clock |
| 460 | * speeds */ |
| 461 | |
| 462 | pcd = (unsigned long long)get_lcdclk_frequency_10khz() * pixclock; |
| 463 | pcd /= 100000000 * 2; |
| 464 | /* no need for this, since we should subtract 1 anyway. they cancel */ |
| 465 | /* pcd += 1; */ /* make up for integer math truncations */ |
| 466 | return (unsigned int)pcd; |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * pxafb_activate_var(): |
| 471 | * Configures LCD Controller based on entries in var parameter. Settings are |
| 472 | * only written to the controller if changes were made. |
| 473 | */ |
| 474 | static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *fbi) |
| 475 | { |
| 476 | struct pxafb_lcd_reg new_regs; |
| 477 | u_long flags; |
| 478 | u_int lines_per_panel, pcd = get_pcd(var->pixclock); |
| 479 | |
| 480 | DPRINTK("Configuring PXA LCD\n"); |
| 481 | |
| 482 | DPRINTK("var: xres=%d hslen=%d lm=%d rm=%d\n", |
| 483 | var->xres, var->hsync_len, |
| 484 | var->left_margin, var->right_margin); |
| 485 | DPRINTK("var: yres=%d vslen=%d um=%d bm=%d\n", |
| 486 | var->yres, var->vsync_len, |
| 487 | var->upper_margin, var->lower_margin); |
| 488 | DPRINTK("var: pixclock=%d pcd=%d\n", var->pixclock, pcd); |
| 489 | |
| 490 | #if DEBUG_VAR |
| 491 | if (var->xres < 16 || var->xres > 1024) |
| 492 | printk(KERN_ERR "%s: invalid xres %d\n", |
| 493 | fbi->fb.fix.id, var->xres); |
| 494 | switch(var->bits_per_pixel) { |
| 495 | case 1: |
| 496 | case 2: |
| 497 | case 4: |
| 498 | case 8: |
| 499 | case 16: |
| 500 | break; |
| 501 | default: |
| 502 | printk(KERN_ERR "%s: invalid bit depth %d\n", |
| 503 | fbi->fb.fix.id, var->bits_per_pixel); |
| 504 | break; |
| 505 | } |
| 506 | if (var->hsync_len < 1 || var->hsync_len > 64) |
| 507 | printk(KERN_ERR "%s: invalid hsync_len %d\n", |
| 508 | fbi->fb.fix.id, var->hsync_len); |
| 509 | if (var->left_margin < 1 || var->left_margin > 255) |
| 510 | printk(KERN_ERR "%s: invalid left_margin %d\n", |
| 511 | fbi->fb.fix.id, var->left_margin); |
| 512 | if (var->right_margin < 1 || var->right_margin > 255) |
| 513 | printk(KERN_ERR "%s: invalid right_margin %d\n", |
| 514 | fbi->fb.fix.id, var->right_margin); |
| 515 | if (var->yres < 1 || var->yres > 1024) |
| 516 | printk(KERN_ERR "%s: invalid yres %d\n", |
| 517 | fbi->fb.fix.id, var->yres); |
| 518 | if (var->vsync_len < 1 || var->vsync_len > 64) |
| 519 | printk(KERN_ERR "%s: invalid vsync_len %d\n", |
| 520 | fbi->fb.fix.id, var->vsync_len); |
| 521 | if (var->upper_margin < 0 || var->upper_margin > 255) |
| 522 | printk(KERN_ERR "%s: invalid upper_margin %d\n", |
| 523 | fbi->fb.fix.id, var->upper_margin); |
| 524 | if (var->lower_margin < 0 || var->lower_margin > 255) |
| 525 | printk(KERN_ERR "%s: invalid lower_margin %d\n", |
| 526 | fbi->fb.fix.id, var->lower_margin); |
| 527 | #endif |
| 528 | |
| 529 | new_regs.lccr0 = fbi->lccr0 | |
| 530 | (LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM | |
| 531 | LCCR0_QDM | LCCR0_BM | LCCR0_OUM); |
| 532 | |
| 533 | new_regs.lccr1 = |
| 534 | LCCR1_DisWdth(var->xres) + |
| 535 | LCCR1_HorSnchWdth(var->hsync_len) + |
| 536 | LCCR1_BegLnDel(var->left_margin) + |
| 537 | LCCR1_EndLnDel(var->right_margin); |
| 538 | |
| 539 | /* |
| 540 | * If we have a dual scan LCD, we need to halve |
| 541 | * the YRES parameter. |
| 542 | */ |
| 543 | lines_per_panel = var->yres; |
| 544 | if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual) |
| 545 | lines_per_panel /= 2; |
| 546 | |
| 547 | new_regs.lccr2 = |
| 548 | LCCR2_DisHght(lines_per_panel) + |
| 549 | LCCR2_VrtSnchWdth(var->vsync_len) + |
| 550 | LCCR2_BegFrmDel(var->upper_margin) + |
| 551 | LCCR2_EndFrmDel(var->lower_margin); |
| 552 | |
| 553 | new_regs.lccr3 = fbi->lccr3 | |
| 554 | pxafb_bpp_to_lccr3(var) | |
| 555 | (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) | |
| 556 | (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL); |
| 557 | |
| 558 | if (pcd) |
| 559 | new_regs.lccr3 |= LCCR3_PixClkDiv(pcd); |
| 560 | |
| 561 | DPRINTK("nlccr0 = 0x%08x\n", new_regs.lccr0); |
| 562 | DPRINTK("nlccr1 = 0x%08x\n", new_regs.lccr1); |
| 563 | DPRINTK("nlccr2 = 0x%08x\n", new_regs.lccr2); |
| 564 | DPRINTK("nlccr3 = 0x%08x\n", new_regs.lccr3); |
| 565 | |
| 566 | /* Update shadow copy atomically */ |
| 567 | local_irq_save(flags); |
| 568 | |
| 569 | /* setup dma descriptors */ |
| 570 | fbi->dmadesc_fblow_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 3*16); |
| 571 | fbi->dmadesc_fbhigh_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 2*16); |
| 572 | fbi->dmadesc_palette_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 1*16); |
| 573 | |
| 574 | fbi->dmadesc_fblow_dma = fbi->palette_dma - 3*16; |
| 575 | fbi->dmadesc_fbhigh_dma = fbi->palette_dma - 2*16; |
| 576 | fbi->dmadesc_palette_dma = fbi->palette_dma - 1*16; |
| 577 | |
| 578 | #define BYTES_PER_PANEL (lines_per_panel * fbi->fb.fix.line_length) |
| 579 | |
| 580 | /* populate descriptors */ |
| 581 | fbi->dmadesc_fblow_cpu->fdadr = fbi->dmadesc_fblow_dma; |
| 582 | fbi->dmadesc_fblow_cpu->fsadr = fbi->screen_dma + BYTES_PER_PANEL; |
| 583 | fbi->dmadesc_fblow_cpu->fidr = 0; |
| 584 | fbi->dmadesc_fblow_cpu->ldcmd = BYTES_PER_PANEL; |
| 585 | |
| 586 | fbi->fdadr1 = fbi->dmadesc_fblow_dma; /* only used in dual-panel mode */ |
| 587 | |
| 588 | fbi->dmadesc_fbhigh_cpu->fsadr = fbi->screen_dma; |
| 589 | fbi->dmadesc_fbhigh_cpu->fidr = 0; |
| 590 | fbi->dmadesc_fbhigh_cpu->ldcmd = BYTES_PER_PANEL; |
| 591 | |
| 592 | fbi->dmadesc_palette_cpu->fsadr = fbi->palette_dma; |
| 593 | fbi->dmadesc_palette_cpu->fidr = 0; |
| 594 | fbi->dmadesc_palette_cpu->ldcmd = (fbi->palette_size * 2) | LDCMD_PAL; |
| 595 | |
| 596 | if (var->bits_per_pixel == 16) { |
| 597 | /* palette shouldn't be loaded in true-color mode */ |
| 598 | fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_fbhigh_dma; |
| 599 | fbi->fdadr0 = fbi->dmadesc_fbhigh_dma; /* no pal just fbhigh */ |
| 600 | /* init it to something, even though we won't be using it */ |
| 601 | fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_palette_dma; |
| 602 | } else { |
| 603 | fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_fbhigh_dma; |
| 604 | fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_palette_dma; |
| 605 | fbi->fdadr0 = fbi->dmadesc_palette_dma; /* flips back and forth between pal and fbhigh */ |
| 606 | } |
| 607 | |
| 608 | #if 0 |
| 609 | DPRINTK("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu); |
| 610 | DPRINTK("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu); |
| 611 | DPRINTK("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu); |
| 612 | DPRINTK("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma); |
| 613 | DPRINTK("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma); |
| 614 | DPRINTK("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma); |
| 615 | |
| 616 | DPRINTK("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr); |
| 617 | DPRINTK("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr); |
| 618 | DPRINTK("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr); |
| 619 | |
| 620 | DPRINTK("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr); |
| 621 | DPRINTK("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr); |
| 622 | DPRINTK("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr); |
| 623 | |
| 624 | DPRINTK("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd); |
| 625 | DPRINTK("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd); |
| 626 | DPRINTK("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd); |
| 627 | #endif |
| 628 | |
| 629 | fbi->reg_lccr0 = new_regs.lccr0; |
| 630 | fbi->reg_lccr1 = new_regs.lccr1; |
| 631 | fbi->reg_lccr2 = new_regs.lccr2; |
| 632 | fbi->reg_lccr3 = new_regs.lccr3; |
| 633 | local_irq_restore(flags); |
| 634 | |
| 635 | /* |
| 636 | * Only update the registers if the controller is enabled |
| 637 | * and something has changed. |
| 638 | */ |
| 639 | if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) || |
| 640 | (LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) || |
| 641 | (FDADR0 != fbi->fdadr0) || (FDADR1 != fbi->fdadr1)) |
| 642 | pxafb_schedule_work(fbi, C_REENABLE); |
| 643 | |
| 644 | return 0; |
| 645 | } |
| 646 | |
| 647 | /* |
| 648 | * NOTE! The following functions are purely helpers for set_ctrlr_state. |
| 649 | * Do not call them directly; set_ctrlr_state does the correct serialisation |
| 650 | * to ensure that things happen in the right way 100% of time time. |
| 651 | * -- rmk |
| 652 | */ |
| 653 | static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on) |
| 654 | { |
| 655 | DPRINTK("backlight o%s\n", on ? "n" : "ff"); |
| 656 | |
| 657 | if (pxafb_backlight_power) |
| 658 | pxafb_backlight_power(on); |
| 659 | } |
| 660 | |
| 661 | static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on) |
| 662 | { |
| 663 | DPRINTK("LCD power o%s\n", on ? "n" : "ff"); |
| 664 | |
| 665 | if (pxafb_lcd_power) |
| 666 | pxafb_lcd_power(on); |
| 667 | } |
| 668 | |
| 669 | static void pxafb_setup_gpio(struct pxafb_info *fbi) |
| 670 | { |
| 671 | int gpio, ldd_bits; |
| 672 | unsigned int lccr0 = fbi->lccr0; |
| 673 | |
| 674 | /* |
| 675 | * setup is based on type of panel supported |
| 676 | */ |
| 677 | |
| 678 | /* 4 bit interface */ |
| 679 | if ((lccr0 & LCCR0_CMS) == LCCR0_Mono && |
| 680 | (lccr0 & LCCR0_SDS) == LCCR0_Sngl && |
| 681 | (lccr0 & LCCR0_DPD) == LCCR0_4PixMono) |
| 682 | ldd_bits = 4; |
| 683 | |
| 684 | /* 8 bit interface */ |
| 685 | else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono && |
| 686 | ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) || |
| 687 | ((lccr0 & LCCR0_CMS) == LCCR0_Color && |
| 688 | (lccr0 & LCCR0_PAS) == LCCR0_Pas && (lccr0 & LCCR0_SDS) == LCCR0_Sngl)) |
| 689 | ldd_bits = 8; |
| 690 | |
| 691 | /* 16 bit interface */ |
| 692 | else if ((lccr0 & LCCR0_CMS) == LCCR0_Color && |
| 693 | ((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_PAS) == LCCR0_Act)) |
| 694 | ldd_bits = 16; |
| 695 | |
| 696 | else { |
| 697 | printk(KERN_ERR "pxafb_setup_gpio: unable to determine bits per pixel\n"); |
| 698 | return; |
| 699 | } |
| 700 | |
| 701 | for (gpio = 58; ldd_bits; gpio++, ldd_bits--) |
| 702 | pxa_gpio_mode(gpio | GPIO_ALT_FN_2_OUT); |
| 703 | pxa_gpio_mode(GPIO74_LCD_FCLK_MD); |
| 704 | pxa_gpio_mode(GPIO75_LCD_LCLK_MD); |
| 705 | pxa_gpio_mode(GPIO76_LCD_PCLK_MD); |
| 706 | pxa_gpio_mode(GPIO77_LCD_ACBIAS_MD); |
| 707 | } |
| 708 | |
| 709 | static void pxafb_enable_controller(struct pxafb_info *fbi) |
| 710 | { |
| 711 | DPRINTK("Enabling LCD controller\n"); |
| 712 | DPRINTK("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0); |
| 713 | DPRINTK("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1); |
| 714 | DPRINTK("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0); |
| 715 | DPRINTK("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1); |
| 716 | DPRINTK("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2); |
| 717 | DPRINTK("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3); |
| 718 | |
| 719 | /* Sequence from 11.7.10 */ |
| 720 | LCCR3 = fbi->reg_lccr3; |
| 721 | LCCR2 = fbi->reg_lccr2; |
| 722 | LCCR1 = fbi->reg_lccr1; |
| 723 | LCCR0 = fbi->reg_lccr0 & ~LCCR0_ENB; |
| 724 | |
| 725 | FDADR0 = fbi->fdadr0; |
| 726 | FDADR1 = fbi->fdadr1; |
| 727 | LCCR0 |= LCCR0_ENB; |
| 728 | |
| 729 | DPRINTK("FDADR0 0x%08x\n", (unsigned int) FDADR0); |
| 730 | DPRINTK("FDADR1 0x%08x\n", (unsigned int) FDADR1); |
| 731 | DPRINTK("LCCR0 0x%08x\n", (unsigned int) LCCR0); |
| 732 | DPRINTK("LCCR1 0x%08x\n", (unsigned int) LCCR1); |
| 733 | DPRINTK("LCCR2 0x%08x\n", (unsigned int) LCCR2); |
| 734 | DPRINTK("LCCR3 0x%08x\n", (unsigned int) LCCR3); |
| 735 | } |
| 736 | |
| 737 | static void pxafb_disable_controller(struct pxafb_info *fbi) |
| 738 | { |
| 739 | DECLARE_WAITQUEUE(wait, current); |
| 740 | |
| 741 | DPRINTK("Disabling LCD controller\n"); |
| 742 | |
| 743 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 744 | add_wait_queue(&fbi->ctrlr_wait, &wait); |
| 745 | |
| 746 | LCSR = 0xffffffff; /* Clear LCD Status Register */ |
| 747 | LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */ |
| 748 | LCCR0 |= LCCR0_DIS; /* Disable LCD Controller */ |
| 749 | |
| 750 | schedule_timeout(20 * HZ / 1000); |
| 751 | remove_wait_queue(&fbi->ctrlr_wait, &wait); |
| 752 | } |
| 753 | |
| 754 | /* |
| 755 | * pxafb_handle_irq: Handle 'LCD DONE' interrupts. |
| 756 | */ |
| 757 | static irqreturn_t pxafb_handle_irq(int irq, void *dev_id, struct pt_regs *regs) |
| 758 | { |
| 759 | struct pxafb_info *fbi = dev_id; |
| 760 | unsigned int lcsr = LCSR; |
| 761 | |
| 762 | if (lcsr & LCSR_LDD) { |
| 763 | LCCR0 |= LCCR0_LDM; |
| 764 | wake_up(&fbi->ctrlr_wait); |
| 765 | } |
| 766 | |
| 767 | LCSR = lcsr; |
| 768 | return IRQ_HANDLED; |
| 769 | } |
| 770 | |
| 771 | /* |
| 772 | * This function must be called from task context only, since it will |
| 773 | * sleep when disabling the LCD controller, or if we get two contending |
| 774 | * processes trying to alter state. |
| 775 | */ |
| 776 | static void set_ctrlr_state(struct pxafb_info *fbi, u_int state) |
| 777 | { |
| 778 | u_int old_state; |
| 779 | |
| 780 | down(&fbi->ctrlr_sem); |
| 781 | |
| 782 | old_state = fbi->state; |
| 783 | |
| 784 | /* |
| 785 | * Hack around fbcon initialisation. |
| 786 | */ |
| 787 | if (old_state == C_STARTUP && state == C_REENABLE) |
| 788 | state = C_ENABLE; |
| 789 | |
| 790 | switch (state) { |
| 791 | case C_DISABLE_CLKCHANGE: |
| 792 | /* |
| 793 | * Disable controller for clock change. If the |
| 794 | * controller is already disabled, then do nothing. |
| 795 | */ |
| 796 | if (old_state != C_DISABLE && old_state != C_DISABLE_PM) { |
| 797 | fbi->state = state; |
| 798 | //TODO __pxafb_lcd_power(fbi, 0); |
| 799 | pxafb_disable_controller(fbi); |
| 800 | } |
| 801 | break; |
| 802 | |
| 803 | case C_DISABLE_PM: |
| 804 | case C_DISABLE: |
| 805 | /* |
| 806 | * Disable controller |
| 807 | */ |
| 808 | if (old_state != C_DISABLE) { |
| 809 | fbi->state = state; |
| 810 | __pxafb_backlight_power(fbi, 0); |
| 811 | __pxafb_lcd_power(fbi, 0); |
| 812 | if (old_state != C_DISABLE_CLKCHANGE) |
| 813 | pxafb_disable_controller(fbi); |
| 814 | } |
| 815 | break; |
| 816 | |
| 817 | case C_ENABLE_CLKCHANGE: |
| 818 | /* |
| 819 | * Enable the controller after clock change. Only |
| 820 | * do this if we were disabled for the clock change. |
| 821 | */ |
| 822 | if (old_state == C_DISABLE_CLKCHANGE) { |
| 823 | fbi->state = C_ENABLE; |
| 824 | pxafb_enable_controller(fbi); |
| 825 | //TODO __pxafb_lcd_power(fbi, 1); |
| 826 | } |
| 827 | break; |
| 828 | |
| 829 | case C_REENABLE: |
| 830 | /* |
| 831 | * Re-enable the controller only if it was already |
| 832 | * enabled. This is so we reprogram the control |
| 833 | * registers. |
| 834 | */ |
| 835 | if (old_state == C_ENABLE) { |
| 836 | pxafb_disable_controller(fbi); |
| 837 | pxafb_setup_gpio(fbi); |
| 838 | pxafb_enable_controller(fbi); |
| 839 | } |
| 840 | break; |
| 841 | |
| 842 | case C_ENABLE_PM: |
| 843 | /* |
| 844 | * Re-enable the controller after PM. This is not |
| 845 | * perfect - think about the case where we were doing |
| 846 | * a clock change, and we suspended half-way through. |
| 847 | */ |
| 848 | if (old_state != C_DISABLE_PM) |
| 849 | break; |
| 850 | /* fall through */ |
| 851 | |
| 852 | case C_ENABLE: |
| 853 | /* |
| 854 | * Power up the LCD screen, enable controller, and |
| 855 | * turn on the backlight. |
| 856 | */ |
| 857 | if (old_state != C_ENABLE) { |
| 858 | fbi->state = C_ENABLE; |
| 859 | pxafb_setup_gpio(fbi); |
| 860 | pxafb_enable_controller(fbi); |
| 861 | __pxafb_lcd_power(fbi, 1); |
| 862 | __pxafb_backlight_power(fbi, 1); |
| 863 | } |
| 864 | break; |
| 865 | } |
| 866 | up(&fbi->ctrlr_sem); |
| 867 | } |
| 868 | |
| 869 | /* |
| 870 | * Our LCD controller task (which is called when we blank or unblank) |
| 871 | * via keventd. |
| 872 | */ |
| 873 | static void pxafb_task(void *dummy) |
| 874 | { |
| 875 | struct pxafb_info *fbi = dummy; |
| 876 | u_int state = xchg(&fbi->task_state, -1); |
| 877 | |
| 878 | set_ctrlr_state(fbi, state); |
| 879 | } |
| 880 | |
| 881 | #ifdef CONFIG_CPU_FREQ |
| 882 | /* |
| 883 | * CPU clock speed change handler. We need to adjust the LCD timing |
| 884 | * parameters when the CPU clock is adjusted by the power management |
| 885 | * subsystem. |
| 886 | * |
| 887 | * TODO: Determine why f->new != 10*get_lclk_frequency_10khz() |
| 888 | */ |
| 889 | static int |
| 890 | pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data) |
| 891 | { |
| 892 | struct pxafb_info *fbi = TO_INF(nb, freq_transition); |
| 893 | //TODO struct cpufreq_freqs *f = data; |
| 894 | u_int pcd; |
| 895 | |
| 896 | switch (val) { |
| 897 | case CPUFREQ_PRECHANGE: |
| 898 | set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE); |
| 899 | break; |
| 900 | |
| 901 | case CPUFREQ_POSTCHANGE: |
| 902 | pcd = get_pcd(fbi->fb.var.pixclock); |
| 903 | fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd); |
| 904 | set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE); |
| 905 | break; |
| 906 | } |
| 907 | return 0; |
| 908 | } |
| 909 | |
| 910 | static int |
| 911 | pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data) |
| 912 | { |
| 913 | struct pxafb_info *fbi = TO_INF(nb, freq_policy); |
| 914 | struct fb_var_screeninfo *var = &fbi->fb.var; |
| 915 | struct cpufreq_policy *policy = data; |
| 916 | |
| 917 | switch (val) { |
| 918 | case CPUFREQ_ADJUST: |
| 919 | case CPUFREQ_INCOMPATIBLE: |
| 920 | printk(KERN_DEBUG "min dma period: %d ps, " |
| 921 | "new clock %d kHz\n", pxafb_display_dma_period(var), |
| 922 | policy->max); |
| 923 | // TODO: fill in min/max values |
| 924 | break; |
| 925 | #if 0 |
| 926 | case CPUFREQ_NOTIFY: |
| 927 | printk(KERN_ERR "%s: got CPUFREQ_NOTIFY\n", __FUNCTION__); |
| 928 | do {} while(0); |
| 929 | /* todo: panic if min/max values aren't fulfilled |
| 930 | * [can't really happen unless there's a bug in the |
| 931 | * CPU policy verification process * |
| 932 | */ |
| 933 | break; |
| 934 | #endif |
| 935 | } |
| 936 | return 0; |
| 937 | } |
| 938 | #endif |
| 939 | |
| 940 | #ifdef CONFIG_PM |
| 941 | /* |
| 942 | * Power management hooks. Note that we won't be called from IRQ context, |
| 943 | * unlike the blank functions above, so we may sleep. |
| 944 | */ |
| 945 | static int pxafb_suspend(struct device *dev, u32 state, u32 level) |
| 946 | { |
| 947 | struct pxafb_info *fbi = dev_get_drvdata(dev); |
| 948 | |
| 949 | if (level == SUSPEND_DISABLE || level == SUSPEND_POWER_DOWN) |
| 950 | set_ctrlr_state(fbi, C_DISABLE_PM); |
| 951 | return 0; |
| 952 | } |
| 953 | |
| 954 | static int pxafb_resume(struct device *dev, u32 level) |
| 955 | { |
| 956 | struct pxafb_info *fbi = dev_get_drvdata(dev); |
| 957 | |
| 958 | if (level == RESUME_ENABLE) |
| 959 | set_ctrlr_state(fbi, C_ENABLE_PM); |
| 960 | return 0; |
| 961 | } |
| 962 | #else |
| 963 | #define pxafb_suspend NULL |
| 964 | #define pxafb_resume NULL |
| 965 | #endif |
| 966 | |
| 967 | /* |
| 968 | * pxafb_map_video_memory(): |
| 969 | * Allocates the DRAM memory for the frame buffer. This buffer is |
| 970 | * remapped into a non-cached, non-buffered, memory region to |
| 971 | * allow palette and pixel writes to occur without flushing the |
| 972 | * cache. Once this area is remapped, all virtual memory |
| 973 | * access to the video memory should occur at the new region. |
| 974 | */ |
| 975 | static int __init pxafb_map_video_memory(struct pxafb_info *fbi) |
| 976 | { |
| 977 | u_long palette_mem_size; |
| 978 | |
| 979 | /* |
| 980 | * We reserve one page for the palette, plus the size |
| 981 | * of the framebuffer. |
| 982 | */ |
| 983 | fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE); |
| 984 | fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size, |
| 985 | &fbi->map_dma, GFP_KERNEL); |
| 986 | |
| 987 | if (fbi->map_cpu) { |
| 988 | /* prevent initial garbage on screen */ |
| 989 | memset(fbi->map_cpu, 0, fbi->map_size); |
| 990 | fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE; |
| 991 | fbi->screen_dma = fbi->map_dma + PAGE_SIZE; |
| 992 | /* |
| 993 | * FIXME: this is actually the wrong thing to place in |
| 994 | * smem_start. But fbdev suffers from the problem that |
| 995 | * it needs an API which doesn't exist (in this case, |
| 996 | * dma_writecombine_mmap) |
| 997 | */ |
| 998 | fbi->fb.fix.smem_start = fbi->screen_dma; |
| 999 | |
| 1000 | fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16; |
| 1001 | |
| 1002 | palette_mem_size = fbi->palette_size * sizeof(u16); |
| 1003 | DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size); |
| 1004 | |
| 1005 | fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size); |
| 1006 | fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size; |
| 1007 | } |
| 1008 | |
| 1009 | return fbi->map_cpu ? 0 : -ENOMEM; |
| 1010 | } |
| 1011 | |
| 1012 | static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev) |
| 1013 | { |
| 1014 | struct pxafb_info *fbi; |
| 1015 | void *addr; |
| 1016 | struct pxafb_mach_info *inf = dev->platform_data; |
| 1017 | |
| 1018 | /* Alloc the pxafb_info and pseudo_palette in one step */ |
| 1019 | fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL); |
| 1020 | if (!fbi) |
| 1021 | return NULL; |
| 1022 | |
| 1023 | memset(fbi, 0, sizeof(struct pxafb_info)); |
| 1024 | fbi->dev = dev; |
| 1025 | |
| 1026 | strcpy(fbi->fb.fix.id, PXA_NAME); |
| 1027 | |
| 1028 | fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS; |
| 1029 | fbi->fb.fix.type_aux = 0; |
| 1030 | fbi->fb.fix.xpanstep = 0; |
| 1031 | fbi->fb.fix.ypanstep = 0; |
| 1032 | fbi->fb.fix.ywrapstep = 0; |
| 1033 | fbi->fb.fix.accel = FB_ACCEL_NONE; |
| 1034 | |
| 1035 | fbi->fb.var.nonstd = 0; |
| 1036 | fbi->fb.var.activate = FB_ACTIVATE_NOW; |
| 1037 | fbi->fb.var.height = -1; |
| 1038 | fbi->fb.var.width = -1; |
| 1039 | fbi->fb.var.accel_flags = 0; |
| 1040 | fbi->fb.var.vmode = FB_VMODE_NONINTERLACED; |
| 1041 | |
| 1042 | fbi->fb.fbops = &pxafb_ops; |
| 1043 | fbi->fb.flags = FBINFO_DEFAULT; |
| 1044 | fbi->fb.node = -1; |
| 1045 | |
| 1046 | addr = fbi; |
| 1047 | addr = addr + sizeof(struct pxafb_info); |
| 1048 | fbi->fb.pseudo_palette = addr; |
| 1049 | |
| 1050 | fbi->max_xres = inf->xres; |
| 1051 | fbi->fb.var.xres = inf->xres; |
| 1052 | fbi->fb.var.xres_virtual = inf->xres; |
| 1053 | fbi->max_yres = inf->yres; |
| 1054 | fbi->fb.var.yres = inf->yres; |
| 1055 | fbi->fb.var.yres_virtual = inf->yres; |
| 1056 | fbi->max_bpp = inf->bpp; |
| 1057 | fbi->fb.var.bits_per_pixel = inf->bpp; |
| 1058 | fbi->fb.var.pixclock = inf->pixclock; |
| 1059 | fbi->fb.var.hsync_len = inf->hsync_len; |
| 1060 | fbi->fb.var.left_margin = inf->left_margin; |
| 1061 | fbi->fb.var.right_margin = inf->right_margin; |
| 1062 | fbi->fb.var.vsync_len = inf->vsync_len; |
| 1063 | fbi->fb.var.upper_margin = inf->upper_margin; |
| 1064 | fbi->fb.var.lower_margin = inf->lower_margin; |
| 1065 | fbi->fb.var.sync = inf->sync; |
| 1066 | fbi->fb.var.grayscale = inf->cmap_greyscale; |
| 1067 | fbi->cmap_inverse = inf->cmap_inverse; |
| 1068 | fbi->cmap_static = inf->cmap_static; |
| 1069 | fbi->lccr0 = inf->lccr0; |
| 1070 | fbi->lccr3 = inf->lccr3; |
| 1071 | fbi->state = C_STARTUP; |
| 1072 | fbi->task_state = (u_char)-1; |
| 1073 | fbi->fb.fix.smem_len = fbi->max_xres * fbi->max_yres * |
| 1074 | fbi->max_bpp / 8; |
| 1075 | |
| 1076 | init_waitqueue_head(&fbi->ctrlr_wait); |
| 1077 | INIT_WORK(&fbi->task, pxafb_task, fbi); |
| 1078 | init_MUTEX(&fbi->ctrlr_sem); |
| 1079 | |
| 1080 | return fbi; |
| 1081 | } |
| 1082 | |
| 1083 | #ifdef CONFIG_FB_PXA_PARAMETERS |
| 1084 | static int __init pxafb_parse_options(struct device *dev, char *options) |
| 1085 | { |
| 1086 | struct pxafb_mach_info *inf = dev->platform_data; |
| 1087 | char *this_opt; |
| 1088 | |
| 1089 | if (!options || !*options) |
| 1090 | return 0; |
| 1091 | |
| 1092 | dev_dbg(dev, "options are \"%s\"\n", options ? options : "null"); |
| 1093 | |
| 1094 | /* could be made table driven or similar?... */ |
| 1095 | while ((this_opt = strsep(&options, ",")) != NULL) { |
| 1096 | if (!strncmp(this_opt, "mode:", 5)) { |
| 1097 | const char *name = this_opt+5; |
| 1098 | unsigned int namelen = strlen(name); |
| 1099 | int res_specified = 0, bpp_specified = 0; |
| 1100 | unsigned int xres = 0, yres = 0, bpp = 0; |
| 1101 | int yres_specified = 0; |
| 1102 | int i; |
| 1103 | for (i = namelen-1; i >= 0; i--) { |
| 1104 | switch (name[i]) { |
| 1105 | case '-': |
| 1106 | namelen = i; |
| 1107 | if (!bpp_specified && !yres_specified) { |
| 1108 | bpp = simple_strtoul(&name[i+1], NULL, 0); |
| 1109 | bpp_specified = 1; |
| 1110 | } else |
| 1111 | goto done; |
| 1112 | break; |
| 1113 | case 'x': |
| 1114 | if (!yres_specified) { |
| 1115 | yres = simple_strtoul(&name[i+1], NULL, 0); |
| 1116 | yres_specified = 1; |
| 1117 | } else |
| 1118 | goto done; |
| 1119 | break; |
| 1120 | case '0'...'9': |
| 1121 | break; |
| 1122 | default: |
| 1123 | goto done; |
| 1124 | } |
| 1125 | } |
| 1126 | if (i < 0 && yres_specified) { |
| 1127 | xres = simple_strtoul(name, NULL, 0); |
| 1128 | res_specified = 1; |
| 1129 | } |
| 1130 | done: |
| 1131 | if (res_specified) { |
| 1132 | dev_info(dev, "overriding resolution: %dx%d\n", xres, yres); |
| 1133 | inf->xres = xres; inf->yres = yres; |
| 1134 | } |
| 1135 | if (bpp_specified) |
| 1136 | switch (bpp) { |
| 1137 | case 1: |
| 1138 | case 2: |
| 1139 | case 4: |
| 1140 | case 8: |
| 1141 | case 16: |
| 1142 | inf->bpp = bpp; |
| 1143 | dev_info(dev, "overriding bit depth: %d\n", bpp); |
| 1144 | break; |
| 1145 | default: |
| 1146 | dev_err(dev, "Depth %d is not valid\n", bpp); |
| 1147 | } |
| 1148 | } else if (!strncmp(this_opt, "pixclock:", 9)) { |
| 1149 | inf->pixclock = simple_strtoul(this_opt+9, NULL, 0); |
| 1150 | dev_info(dev, "override pixclock: %ld\n", inf->pixclock); |
| 1151 | } else if (!strncmp(this_opt, "left:", 5)) { |
| 1152 | inf->left_margin = simple_strtoul(this_opt+5, NULL, 0); |
| 1153 | dev_info(dev, "override left: %u\n", inf->left_margin); |
| 1154 | } else if (!strncmp(this_opt, "right:", 6)) { |
| 1155 | inf->right_margin = simple_strtoul(this_opt+6, NULL, 0); |
| 1156 | dev_info(dev, "override right: %u\n", inf->right_margin); |
| 1157 | } else if (!strncmp(this_opt, "upper:", 6)) { |
| 1158 | inf->upper_margin = simple_strtoul(this_opt+6, NULL, 0); |
| 1159 | dev_info(dev, "override upper: %u\n", inf->upper_margin); |
| 1160 | } else if (!strncmp(this_opt, "lower:", 6)) { |
| 1161 | inf->lower_margin = simple_strtoul(this_opt+6, NULL, 0); |
| 1162 | dev_info(dev, "override lower: %u\n", inf->lower_margin); |
| 1163 | } else if (!strncmp(this_opt, "hsynclen:", 9)) { |
| 1164 | inf->hsync_len = simple_strtoul(this_opt+9, NULL, 0); |
| 1165 | dev_info(dev, "override hsynclen: %u\n", inf->hsync_len); |
| 1166 | } else if (!strncmp(this_opt, "vsynclen:", 9)) { |
| 1167 | inf->vsync_len = simple_strtoul(this_opt+9, NULL, 0); |
| 1168 | dev_info(dev, "override vsynclen: %u\n", inf->vsync_len); |
| 1169 | } else if (!strncmp(this_opt, "hsync:", 6)) { |
| 1170 | if (simple_strtoul(this_opt+6, NULL, 0) == 0) { |
| 1171 | dev_info(dev, "override hsync: Active Low\n"); |
| 1172 | inf->sync &= ~FB_SYNC_HOR_HIGH_ACT; |
| 1173 | } else { |
| 1174 | dev_info(dev, "override hsync: Active High\n"); |
| 1175 | inf->sync |= FB_SYNC_HOR_HIGH_ACT; |
| 1176 | } |
| 1177 | } else if (!strncmp(this_opt, "vsync:", 6)) { |
| 1178 | if (simple_strtoul(this_opt+6, NULL, 0) == 0) { |
| 1179 | dev_info(dev, "override vsync: Active Low\n"); |
| 1180 | inf->sync &= ~FB_SYNC_VERT_HIGH_ACT; |
| 1181 | } else { |
| 1182 | dev_info(dev, "override vsync: Active High\n"); |
| 1183 | inf->sync |= FB_SYNC_VERT_HIGH_ACT; |
| 1184 | } |
| 1185 | } else if (!strncmp(this_opt, "dpc:", 4)) { |
| 1186 | if (simple_strtoul(this_opt+4, NULL, 0) == 0) { |
| 1187 | dev_info(dev, "override double pixel clock: false\n"); |
| 1188 | inf->lccr3 &= ~LCCR3_DPC; |
| 1189 | } else { |
| 1190 | dev_info(dev, "override double pixel clock: true\n"); |
| 1191 | inf->lccr3 |= LCCR3_DPC; |
| 1192 | } |
| 1193 | } else if (!strncmp(this_opt, "outputen:", 9)) { |
| 1194 | if (simple_strtoul(this_opt+9, NULL, 0) == 0) { |
| 1195 | dev_info(dev, "override output enable: active low\n"); |
| 1196 | inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL; |
| 1197 | } else { |
| 1198 | dev_info(dev, "override output enable: active high\n"); |
| 1199 | inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH; |
| 1200 | } |
| 1201 | } else if (!strncmp(this_opt, "pixclockpol:", 12)) { |
| 1202 | if (simple_strtoul(this_opt+12, NULL, 0) == 0) { |
| 1203 | dev_info(dev, "override pixel clock polarity: falling edge\n"); |
| 1204 | inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg; |
| 1205 | } else { |
| 1206 | dev_info(dev, "override pixel clock polarity: rising edge\n"); |
| 1207 | inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg; |
| 1208 | } |
| 1209 | } else if (!strncmp(this_opt, "color", 5)) { |
| 1210 | inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color; |
| 1211 | } else if (!strncmp(this_opt, "mono", 4)) { |
| 1212 | inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono; |
| 1213 | } else if (!strncmp(this_opt, "active", 6)) { |
| 1214 | inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act; |
| 1215 | } else if (!strncmp(this_opt, "passive", 7)) { |
| 1216 | inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas; |
| 1217 | } else if (!strncmp(this_opt, "single", 6)) { |
| 1218 | inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl; |
| 1219 | } else if (!strncmp(this_opt, "dual", 4)) { |
| 1220 | inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual; |
| 1221 | } else if (!strncmp(this_opt, "4pix", 4)) { |
| 1222 | inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono; |
| 1223 | } else if (!strncmp(this_opt, "8pix", 4)) { |
| 1224 | inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono; |
| 1225 | } else { |
| 1226 | dev_err(dev, "unknown option: %s\n", this_opt); |
| 1227 | return -EINVAL; |
| 1228 | } |
| 1229 | } |
| 1230 | return 0; |
| 1231 | |
| 1232 | } |
| 1233 | #endif |
| 1234 | |
| 1235 | int __init pxafb_probe(struct device *dev) |
| 1236 | { |
| 1237 | struct pxafb_info *fbi; |
| 1238 | struct pxafb_mach_info *inf; |
| 1239 | int ret; |
| 1240 | |
| 1241 | dev_dbg(dev, "pxafb_probe\n"); |
| 1242 | |
| 1243 | inf = dev->platform_data; |
| 1244 | ret = -ENOMEM; |
| 1245 | fbi = NULL; |
| 1246 | if (!inf) |
| 1247 | goto failed; |
| 1248 | |
| 1249 | #ifdef CONFIG_FB_PXA_PARAMETERS |
| 1250 | ret = pxafb_parse_options(dev, g_options); |
| 1251 | if (ret < 0) |
| 1252 | goto failed; |
| 1253 | #endif |
| 1254 | |
| 1255 | #ifdef DEBUG_VAR |
| 1256 | /* Check for various illegal bit-combinations. Currently only |
| 1257 | * a warning is given. */ |
| 1258 | |
| 1259 | if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK) |
| 1260 | dev_warn(dev, "machine LCCR0 setting contains illegal bits: %08x\n", |
| 1261 | inf->lccr0 & LCCR0_INVALID_CONFIG_MASK); |
| 1262 | if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK) |
| 1263 | dev_warn(dev, "machine LCCR3 setting contains illegal bits: %08x\n", |
| 1264 | inf->lccr3 & LCCR3_INVALID_CONFIG_MASK); |
| 1265 | if (inf->lccr0 & LCCR0_DPD && |
| 1266 | ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas || |
| 1267 | (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl || |
| 1268 | (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono)) |
| 1269 | dev_warn(dev, "Double Pixel Data (DPD) mode is only valid in passive mono" |
| 1270 | " single panel mode\n"); |
| 1271 | if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act && |
| 1272 | (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual) |
| 1273 | dev_warn(dev, "Dual panel only valid in passive mode\n"); |
| 1274 | if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas && |
| 1275 | (inf->upper_margin || inf->lower_margin)) |
| 1276 | dev_warn(dev, "Upper and lower margins must be 0 in passive mode\n"); |
| 1277 | #endif |
| 1278 | |
| 1279 | dev_dbg(dev, "got a %dx%dx%d LCD\n",inf->xres, inf->yres, inf->bpp); |
| 1280 | if (inf->xres == 0 || inf->yres == 0 || inf->bpp == 0) { |
| 1281 | dev_err(dev, "Invalid resolution or bit depth\n"); |
| 1282 | ret = -EINVAL; |
| 1283 | goto failed; |
| 1284 | } |
| 1285 | pxafb_backlight_power = inf->pxafb_backlight_power; |
| 1286 | pxafb_lcd_power = inf->pxafb_lcd_power; |
| 1287 | fbi = pxafb_init_fbinfo(dev); |
| 1288 | if (!fbi) { |
| 1289 | dev_err(dev, "Failed to initialize framebuffer device\n"); |
| 1290 | ret = -ENOMEM; // only reason for pxafb_init_fbinfo to fail is kmalloc |
| 1291 | goto failed; |
| 1292 | } |
| 1293 | |
| 1294 | /* Initialize video memory */ |
| 1295 | ret = pxafb_map_video_memory(fbi); |
| 1296 | if (ret) { |
| 1297 | dev_err(dev, "Failed to allocate video RAM: %d\n", ret); |
| 1298 | ret = -ENOMEM; |
| 1299 | goto failed; |
| 1300 | } |
| 1301 | /* enable LCD controller clock */ |
| 1302 | pxa_set_cken(CKEN16_LCD, 1); |
| 1303 | |
| 1304 | ret = request_irq(IRQ_LCD, pxafb_handle_irq, SA_INTERRUPT, "LCD", fbi); |
| 1305 | if (ret) { |
| 1306 | dev_err(dev, "request_irq failed: %d\n", ret); |
| 1307 | ret = -EBUSY; |
| 1308 | goto failed; |
| 1309 | } |
| 1310 | |
| 1311 | /* |
| 1312 | * This makes sure that our colour bitfield |
| 1313 | * descriptors are correctly initialised. |
| 1314 | */ |
| 1315 | pxafb_check_var(&fbi->fb.var, &fbi->fb); |
| 1316 | pxafb_set_par(&fbi->fb); |
| 1317 | |
| 1318 | dev_set_drvdata(dev, fbi); |
| 1319 | |
| 1320 | ret = register_framebuffer(&fbi->fb); |
| 1321 | if (ret < 0) { |
| 1322 | dev_err(dev, "Failed to register framebuffer device: %d\n", ret); |
| 1323 | goto failed; |
| 1324 | } |
| 1325 | |
| 1326 | #ifdef CONFIG_PM |
| 1327 | // TODO |
| 1328 | #endif |
| 1329 | |
| 1330 | #ifdef CONFIG_CPU_FREQ |
| 1331 | fbi->freq_transition.notifier_call = pxafb_freq_transition; |
| 1332 | fbi->freq_policy.notifier_call = pxafb_freq_policy; |
| 1333 | cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); |
| 1334 | cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER); |
| 1335 | #endif |
| 1336 | |
| 1337 | /* |
| 1338 | * Ok, now enable the LCD controller |
| 1339 | */ |
| 1340 | set_ctrlr_state(fbi, C_ENABLE); |
| 1341 | |
| 1342 | return 0; |
| 1343 | |
| 1344 | failed: |
| 1345 | dev_set_drvdata(dev, NULL); |
| 1346 | kfree(fbi); |
| 1347 | return ret; |
| 1348 | } |
| 1349 | |
| 1350 | static struct device_driver pxafb_driver = { |
| 1351 | .name = "pxa2xx-fb", |
| 1352 | .bus = &platform_bus_type, |
| 1353 | .probe = pxafb_probe, |
| 1354 | #ifdef CONFIG_PM |
| 1355 | .suspend = pxafb_suspend, |
| 1356 | .resume = pxafb_resume, |
| 1357 | #endif |
| 1358 | }; |
| 1359 | |
| 1360 | #ifndef MODULE |
| 1361 | int __devinit pxafb_setup(char *options) |
| 1362 | { |
| 1363 | # ifdef CONFIG_FB_PXA_PARAMETERS |
| 1364 | strlcpy(g_options, options, sizeof(g_options)); |
| 1365 | # endif |
| 1366 | return 0; |
| 1367 | } |
| 1368 | #else |
| 1369 | # ifdef CONFIG_FB_PXA_PARAMETERS |
| 1370 | module_param_string(options, g_options, sizeof(g_options), 0); |
| 1371 | MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)"); |
| 1372 | # endif |
| 1373 | #endif |
| 1374 | |
| 1375 | int __devinit pxafb_init(void) |
| 1376 | { |
| 1377 | #ifndef MODULE |
| 1378 | char *option = NULL; |
| 1379 | |
| 1380 | if (fb_get_options("pxafb", &option)) |
| 1381 | return -ENODEV; |
| 1382 | pxafb_setup(option); |
| 1383 | #endif |
| 1384 | return driver_register(&pxafb_driver); |
| 1385 | } |
| 1386 | |
| 1387 | module_init(pxafb_init); |
| 1388 | |
| 1389 | MODULE_DESCRIPTION("loadable framebuffer driver for PXA"); |
| 1390 | MODULE_LICENSE("GPL"); |