Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of version 2 of the GNU General Public License as |
| 6 | * published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it would be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| 11 | * |
| 12 | * Further, this software is distributed without any warranty that it is |
| 13 | * free of the rightful claim of any third person regarding infringement |
| 14 | * or the like. Any license provided herein, whether implied or |
| 15 | * otherwise, applies only to this software file. Patent licenses, if |
| 16 | * any, provided herein do not apply to combinations of this program with |
| 17 | * other software, or any other product whatsoever. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License along |
| 20 | * with this program; if not, write the Free Software Foundation, Inc., 59 |
| 21 | * Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| 22 | * |
| 23 | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, |
| 24 | * Mountain View, CA 94043, or: |
| 25 | * |
| 26 | * http://www.sgi.com |
| 27 | * |
| 28 | * For further information regarding this notice, see: |
| 29 | * |
| 30 | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ |
| 31 | */ |
| 32 | |
| 33 | #include "xfs.h" |
| 34 | #include "xfs_macros.h" |
| 35 | #include "xfs_types.h" |
| 36 | #include "xfs_inum.h" |
| 37 | #include "xfs_log.h" |
| 38 | #include "xfs_ag.h" |
| 39 | #include "xfs_sb.h" |
| 40 | #include "xfs_trans.h" |
| 41 | #include "xfs_dir.h" |
| 42 | #include "xfs_dir2.h" |
| 43 | #include "xfs_dmapi.h" |
| 44 | #include "xfs_mount.h" |
| 45 | #include "xfs_error.h" |
| 46 | #include "xfs_bmap_btree.h" |
| 47 | #include "xfs_alloc.h" |
| 48 | #include "xfs_attr_sf.h" |
| 49 | #include "xfs_dir_sf.h" |
| 50 | #include "xfs_dir2_sf.h" |
| 51 | #include "xfs_dinode.h" |
| 52 | #include "xfs_imap.h" |
| 53 | #include "xfs_inode_item.h" |
| 54 | #include "xfs_inode.h" |
| 55 | #include "xfs_ialloc_btree.h" |
| 56 | #include "xfs_ialloc.h" |
| 57 | #include "xfs_log_priv.h" |
| 58 | #include "xfs_buf_item.h" |
| 59 | #include "xfs_alloc_btree.h" |
| 60 | #include "xfs_log_recover.h" |
| 61 | #include "xfs_extfree_item.h" |
| 62 | #include "xfs_trans_priv.h" |
| 63 | #include "xfs_bit.h" |
| 64 | #include "xfs_quota.h" |
| 65 | #include "xfs_rw.h" |
| 66 | |
| 67 | STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); |
| 68 | STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); |
| 69 | STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, |
| 70 | xlog_recover_item_t *item); |
| 71 | #if defined(DEBUG) |
| 72 | STATIC void xlog_recover_check_summary(xlog_t *); |
| 73 | STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int); |
| 74 | #else |
| 75 | #define xlog_recover_check_summary(log) |
| 76 | #define xlog_recover_check_ail(mp, lip, gen) |
| 77 | #endif |
| 78 | |
| 79 | |
| 80 | /* |
| 81 | * Sector aligned buffer routines for buffer create/read/write/access |
| 82 | */ |
| 83 | |
| 84 | #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ |
| 85 | ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ |
| 86 | ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) |
| 87 | #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) |
| 88 | |
| 89 | xfs_buf_t * |
| 90 | xlog_get_bp( |
| 91 | xlog_t *log, |
| 92 | int num_bblks) |
| 93 | { |
| 94 | ASSERT(num_bblks > 0); |
| 95 | |
| 96 | if (log->l_sectbb_log) { |
| 97 | if (num_bblks > 1) |
| 98 | num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); |
| 99 | num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks); |
| 100 | } |
| 101 | return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp); |
| 102 | } |
| 103 | |
| 104 | void |
| 105 | xlog_put_bp( |
| 106 | xfs_buf_t *bp) |
| 107 | { |
| 108 | xfs_buf_free(bp); |
| 109 | } |
| 110 | |
| 111 | |
| 112 | /* |
| 113 | * nbblks should be uint, but oh well. Just want to catch that 32-bit length. |
| 114 | */ |
| 115 | int |
| 116 | xlog_bread( |
| 117 | xlog_t *log, |
| 118 | xfs_daddr_t blk_no, |
| 119 | int nbblks, |
| 120 | xfs_buf_t *bp) |
| 121 | { |
| 122 | int error; |
| 123 | |
| 124 | if (log->l_sectbb_log) { |
| 125 | blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); |
| 126 | nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); |
| 127 | } |
| 128 | |
| 129 | ASSERT(nbblks > 0); |
| 130 | ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); |
| 131 | ASSERT(bp); |
| 132 | |
| 133 | XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); |
| 134 | XFS_BUF_READ(bp); |
| 135 | XFS_BUF_BUSY(bp); |
| 136 | XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); |
| 137 | XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); |
| 138 | |
| 139 | xfsbdstrat(log->l_mp, bp); |
| 140 | if ((error = xfs_iowait(bp))) |
| 141 | xfs_ioerror_alert("xlog_bread", log->l_mp, |
| 142 | bp, XFS_BUF_ADDR(bp)); |
| 143 | return error; |
| 144 | } |
| 145 | |
| 146 | /* |
| 147 | * Write out the buffer at the given block for the given number of blocks. |
| 148 | * The buffer is kept locked across the write and is returned locked. |
| 149 | * This can only be used for synchronous log writes. |
| 150 | */ |
| 151 | int |
| 152 | xlog_bwrite( |
| 153 | xlog_t *log, |
| 154 | xfs_daddr_t blk_no, |
| 155 | int nbblks, |
| 156 | xfs_buf_t *bp) |
| 157 | { |
| 158 | int error; |
| 159 | |
| 160 | if (log->l_sectbb_log) { |
| 161 | blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); |
| 162 | nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); |
| 163 | } |
| 164 | |
| 165 | ASSERT(nbblks > 0); |
| 166 | ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); |
| 167 | |
| 168 | XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); |
| 169 | XFS_BUF_ZEROFLAGS(bp); |
| 170 | XFS_BUF_BUSY(bp); |
| 171 | XFS_BUF_HOLD(bp); |
| 172 | XFS_BUF_PSEMA(bp, PRIBIO); |
| 173 | XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); |
| 174 | XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); |
| 175 | |
| 176 | if ((error = xfs_bwrite(log->l_mp, bp))) |
| 177 | xfs_ioerror_alert("xlog_bwrite", log->l_mp, |
| 178 | bp, XFS_BUF_ADDR(bp)); |
| 179 | return error; |
| 180 | } |
| 181 | |
| 182 | xfs_caddr_t |
| 183 | xlog_align( |
| 184 | xlog_t *log, |
| 185 | xfs_daddr_t blk_no, |
| 186 | int nbblks, |
| 187 | xfs_buf_t *bp) |
| 188 | { |
| 189 | xfs_caddr_t ptr; |
| 190 | |
| 191 | if (!log->l_sectbb_log) |
| 192 | return XFS_BUF_PTR(bp); |
| 193 | |
| 194 | ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); |
| 195 | ASSERT(XFS_BUF_SIZE(bp) >= |
| 196 | BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); |
| 197 | return ptr; |
| 198 | } |
| 199 | |
| 200 | #ifdef DEBUG |
| 201 | /* |
| 202 | * dump debug superblock and log record information |
| 203 | */ |
| 204 | STATIC void |
| 205 | xlog_header_check_dump( |
| 206 | xfs_mount_t *mp, |
| 207 | xlog_rec_header_t *head) |
| 208 | { |
| 209 | int b; |
| 210 | |
| 211 | printk("%s: SB : uuid = ", __FUNCTION__); |
| 212 | for (b = 0; b < 16; b++) |
| 213 | printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]); |
| 214 | printk(", fmt = %d\n", XLOG_FMT); |
| 215 | printk(" log : uuid = "); |
| 216 | for (b = 0; b < 16; b++) |
| 217 | printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]); |
| 218 | printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT)); |
| 219 | } |
| 220 | #else |
| 221 | #define xlog_header_check_dump(mp, head) |
| 222 | #endif |
| 223 | |
| 224 | /* |
| 225 | * check log record header for recovery |
| 226 | */ |
| 227 | STATIC int |
| 228 | xlog_header_check_recover( |
| 229 | xfs_mount_t *mp, |
| 230 | xlog_rec_header_t *head) |
| 231 | { |
| 232 | ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); |
| 233 | |
| 234 | /* |
| 235 | * IRIX doesn't write the h_fmt field and leaves it zeroed |
| 236 | * (XLOG_FMT_UNKNOWN). This stops us from trying to recover |
| 237 | * a dirty log created in IRIX. |
| 238 | */ |
| 239 | if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) { |
| 240 | xlog_warn( |
| 241 | "XFS: dirty log written in incompatible format - can't recover"); |
| 242 | xlog_header_check_dump(mp, head); |
| 243 | XFS_ERROR_REPORT("xlog_header_check_recover(1)", |
| 244 | XFS_ERRLEVEL_HIGH, mp); |
| 245 | return XFS_ERROR(EFSCORRUPTED); |
| 246 | } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { |
| 247 | xlog_warn( |
| 248 | "XFS: dirty log entry has mismatched uuid - can't recover"); |
| 249 | xlog_header_check_dump(mp, head); |
| 250 | XFS_ERROR_REPORT("xlog_header_check_recover(2)", |
| 251 | XFS_ERRLEVEL_HIGH, mp); |
| 252 | return XFS_ERROR(EFSCORRUPTED); |
| 253 | } |
| 254 | return 0; |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * read the head block of the log and check the header |
| 259 | */ |
| 260 | STATIC int |
| 261 | xlog_header_check_mount( |
| 262 | xfs_mount_t *mp, |
| 263 | xlog_rec_header_t *head) |
| 264 | { |
| 265 | ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); |
| 266 | |
| 267 | if (uuid_is_nil(&head->h_fs_uuid)) { |
| 268 | /* |
| 269 | * IRIX doesn't write the h_fs_uuid or h_fmt fields. If |
| 270 | * h_fs_uuid is nil, we assume this log was last mounted |
| 271 | * by IRIX and continue. |
| 272 | */ |
| 273 | xlog_warn("XFS: nil uuid in log - IRIX style log"); |
| 274 | } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { |
| 275 | xlog_warn("XFS: log has mismatched uuid - can't recover"); |
| 276 | xlog_header_check_dump(mp, head); |
| 277 | XFS_ERROR_REPORT("xlog_header_check_mount", |
| 278 | XFS_ERRLEVEL_HIGH, mp); |
| 279 | return XFS_ERROR(EFSCORRUPTED); |
| 280 | } |
| 281 | return 0; |
| 282 | } |
| 283 | |
| 284 | STATIC void |
| 285 | xlog_recover_iodone( |
| 286 | struct xfs_buf *bp) |
| 287 | { |
| 288 | xfs_mount_t *mp; |
| 289 | |
| 290 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *)); |
| 291 | |
| 292 | if (XFS_BUF_GETERROR(bp)) { |
| 293 | /* |
| 294 | * We're not going to bother about retrying |
| 295 | * this during recovery. One strike! |
| 296 | */ |
| 297 | mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *); |
| 298 | xfs_ioerror_alert("xlog_recover_iodone", |
| 299 | mp, bp, XFS_BUF_ADDR(bp)); |
| 300 | xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR); |
| 301 | } |
| 302 | XFS_BUF_SET_FSPRIVATE(bp, NULL); |
| 303 | XFS_BUF_CLR_IODONE_FUNC(bp); |
| 304 | xfs_biodone(bp); |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * This routine finds (to an approximation) the first block in the physical |
| 309 | * log which contains the given cycle. It uses a binary search algorithm. |
| 310 | * Note that the algorithm can not be perfect because the disk will not |
| 311 | * necessarily be perfect. |
| 312 | */ |
| 313 | int |
| 314 | xlog_find_cycle_start( |
| 315 | xlog_t *log, |
| 316 | xfs_buf_t *bp, |
| 317 | xfs_daddr_t first_blk, |
| 318 | xfs_daddr_t *last_blk, |
| 319 | uint cycle) |
| 320 | { |
| 321 | xfs_caddr_t offset; |
| 322 | xfs_daddr_t mid_blk; |
| 323 | uint mid_cycle; |
| 324 | int error; |
| 325 | |
| 326 | mid_blk = BLK_AVG(first_blk, *last_blk); |
| 327 | while (mid_blk != first_blk && mid_blk != *last_blk) { |
| 328 | if ((error = xlog_bread(log, mid_blk, 1, bp))) |
| 329 | return error; |
| 330 | offset = xlog_align(log, mid_blk, 1, bp); |
| 331 | mid_cycle = GET_CYCLE(offset, ARCH_CONVERT); |
| 332 | if (mid_cycle == cycle) { |
| 333 | *last_blk = mid_blk; |
| 334 | /* last_half_cycle == mid_cycle */ |
| 335 | } else { |
| 336 | first_blk = mid_blk; |
| 337 | /* first_half_cycle == mid_cycle */ |
| 338 | } |
| 339 | mid_blk = BLK_AVG(first_blk, *last_blk); |
| 340 | } |
| 341 | ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || |
| 342 | (mid_blk == *last_blk && mid_blk-1 == first_blk)); |
| 343 | |
| 344 | return 0; |
| 345 | } |
| 346 | |
| 347 | /* |
| 348 | * Check that the range of blocks does not contain the cycle number |
| 349 | * given. The scan needs to occur from front to back and the ptr into the |
| 350 | * region must be updated since a later routine will need to perform another |
| 351 | * test. If the region is completely good, we end up returning the same |
| 352 | * last block number. |
| 353 | * |
| 354 | * Set blkno to -1 if we encounter no errors. This is an invalid block number |
| 355 | * since we don't ever expect logs to get this large. |
| 356 | */ |
| 357 | STATIC int |
| 358 | xlog_find_verify_cycle( |
| 359 | xlog_t *log, |
| 360 | xfs_daddr_t start_blk, |
| 361 | int nbblks, |
| 362 | uint stop_on_cycle_no, |
| 363 | xfs_daddr_t *new_blk) |
| 364 | { |
| 365 | xfs_daddr_t i, j; |
| 366 | uint cycle; |
| 367 | xfs_buf_t *bp; |
| 368 | xfs_daddr_t bufblks; |
| 369 | xfs_caddr_t buf = NULL; |
| 370 | int error = 0; |
| 371 | |
| 372 | bufblks = 1 << ffs(nbblks); |
| 373 | |
| 374 | while (!(bp = xlog_get_bp(log, bufblks))) { |
| 375 | /* can't get enough memory to do everything in one big buffer */ |
| 376 | bufblks >>= 1; |
| 377 | if (bufblks <= log->l_sectbb_log) |
| 378 | return ENOMEM; |
| 379 | } |
| 380 | |
| 381 | for (i = start_blk; i < start_blk + nbblks; i += bufblks) { |
| 382 | int bcount; |
| 383 | |
| 384 | bcount = min(bufblks, (start_blk + nbblks - i)); |
| 385 | |
| 386 | if ((error = xlog_bread(log, i, bcount, bp))) |
| 387 | goto out; |
| 388 | |
| 389 | buf = xlog_align(log, i, bcount, bp); |
| 390 | for (j = 0; j < bcount; j++) { |
| 391 | cycle = GET_CYCLE(buf, ARCH_CONVERT); |
| 392 | if (cycle == stop_on_cycle_no) { |
| 393 | *new_blk = i+j; |
| 394 | goto out; |
| 395 | } |
| 396 | |
| 397 | buf += BBSIZE; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | *new_blk = -1; |
| 402 | |
| 403 | out: |
| 404 | xlog_put_bp(bp); |
| 405 | return error; |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * Potentially backup over partial log record write. |
| 410 | * |
| 411 | * In the typical case, last_blk is the number of the block directly after |
| 412 | * a good log record. Therefore, we subtract one to get the block number |
| 413 | * of the last block in the given buffer. extra_bblks contains the number |
| 414 | * of blocks we would have read on a previous read. This happens when the |
| 415 | * last log record is split over the end of the physical log. |
| 416 | * |
| 417 | * extra_bblks is the number of blocks potentially verified on a previous |
| 418 | * call to this routine. |
| 419 | */ |
| 420 | STATIC int |
| 421 | xlog_find_verify_log_record( |
| 422 | xlog_t *log, |
| 423 | xfs_daddr_t start_blk, |
| 424 | xfs_daddr_t *last_blk, |
| 425 | int extra_bblks) |
| 426 | { |
| 427 | xfs_daddr_t i; |
| 428 | xfs_buf_t *bp; |
| 429 | xfs_caddr_t offset = NULL; |
| 430 | xlog_rec_header_t *head = NULL; |
| 431 | int error = 0; |
| 432 | int smallmem = 0; |
| 433 | int num_blks = *last_blk - start_blk; |
| 434 | int xhdrs; |
| 435 | |
| 436 | ASSERT(start_blk != 0 || *last_blk != start_blk); |
| 437 | |
| 438 | if (!(bp = xlog_get_bp(log, num_blks))) { |
| 439 | if (!(bp = xlog_get_bp(log, 1))) |
| 440 | return ENOMEM; |
| 441 | smallmem = 1; |
| 442 | } else { |
| 443 | if ((error = xlog_bread(log, start_blk, num_blks, bp))) |
| 444 | goto out; |
| 445 | offset = xlog_align(log, start_blk, num_blks, bp); |
| 446 | offset += ((num_blks - 1) << BBSHIFT); |
| 447 | } |
| 448 | |
| 449 | for (i = (*last_blk) - 1; i >= 0; i--) { |
| 450 | if (i < start_blk) { |
| 451 | /* valid log record not found */ |
| 452 | xlog_warn( |
| 453 | "XFS: Log inconsistent (didn't find previous header)"); |
| 454 | ASSERT(0); |
| 455 | error = XFS_ERROR(EIO); |
| 456 | goto out; |
| 457 | } |
| 458 | |
| 459 | if (smallmem) { |
| 460 | if ((error = xlog_bread(log, i, 1, bp))) |
| 461 | goto out; |
| 462 | offset = xlog_align(log, i, 1, bp); |
| 463 | } |
| 464 | |
| 465 | head = (xlog_rec_header_t *)offset; |
| 466 | |
| 467 | if (XLOG_HEADER_MAGIC_NUM == |
| 468 | INT_GET(head->h_magicno, ARCH_CONVERT)) |
| 469 | break; |
| 470 | |
| 471 | if (!smallmem) |
| 472 | offset -= BBSIZE; |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * We hit the beginning of the physical log & still no header. Return |
| 477 | * to caller. If caller can handle a return of -1, then this routine |
| 478 | * will be called again for the end of the physical log. |
| 479 | */ |
| 480 | if (i == -1) { |
| 481 | error = -1; |
| 482 | goto out; |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * We have the final block of the good log (the first block |
| 487 | * of the log record _before_ the head. So we check the uuid. |
| 488 | */ |
| 489 | if ((error = xlog_header_check_mount(log->l_mp, head))) |
| 490 | goto out; |
| 491 | |
| 492 | /* |
| 493 | * We may have found a log record header before we expected one. |
| 494 | * last_blk will be the 1st block # with a given cycle #. We may end |
| 495 | * up reading an entire log record. In this case, we don't want to |
| 496 | * reset last_blk. Only when last_blk points in the middle of a log |
| 497 | * record do we update last_blk. |
| 498 | */ |
| 499 | if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { |
| 500 | uint h_size = INT_GET(head->h_size, ARCH_CONVERT); |
| 501 | |
| 502 | xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; |
| 503 | if (h_size % XLOG_HEADER_CYCLE_SIZE) |
| 504 | xhdrs++; |
| 505 | } else { |
| 506 | xhdrs = 1; |
| 507 | } |
| 508 | |
| 509 | if (*last_blk - i + extra_bblks |
| 510 | != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs) |
| 511 | *last_blk = i; |
| 512 | |
| 513 | out: |
| 514 | xlog_put_bp(bp); |
| 515 | return error; |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | * Head is defined to be the point of the log where the next log write |
| 520 | * write could go. This means that incomplete LR writes at the end are |
| 521 | * eliminated when calculating the head. We aren't guaranteed that previous |
| 522 | * LR have complete transactions. We only know that a cycle number of |
| 523 | * current cycle number -1 won't be present in the log if we start writing |
| 524 | * from our current block number. |
| 525 | * |
| 526 | * last_blk contains the block number of the first block with a given |
| 527 | * cycle number. |
| 528 | * |
| 529 | * Return: zero if normal, non-zero if error. |
| 530 | */ |
| 531 | int |
| 532 | xlog_find_head( |
| 533 | xlog_t *log, |
| 534 | xfs_daddr_t *return_head_blk) |
| 535 | { |
| 536 | xfs_buf_t *bp; |
| 537 | xfs_caddr_t offset; |
| 538 | xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; |
| 539 | int num_scan_bblks; |
| 540 | uint first_half_cycle, last_half_cycle; |
| 541 | uint stop_on_cycle; |
| 542 | int error, log_bbnum = log->l_logBBsize; |
| 543 | |
| 544 | /* Is the end of the log device zeroed? */ |
| 545 | if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { |
| 546 | *return_head_blk = first_blk; |
| 547 | |
| 548 | /* Is the whole lot zeroed? */ |
| 549 | if (!first_blk) { |
| 550 | /* Linux XFS shouldn't generate totally zeroed logs - |
| 551 | * mkfs etc write a dummy unmount record to a fresh |
| 552 | * log so we can store the uuid in there |
| 553 | */ |
| 554 | xlog_warn("XFS: totally zeroed log"); |
| 555 | } |
| 556 | |
| 557 | return 0; |
| 558 | } else if (error) { |
| 559 | xlog_warn("XFS: empty log check failed"); |
| 560 | return error; |
| 561 | } |
| 562 | |
| 563 | first_blk = 0; /* get cycle # of 1st block */ |
| 564 | bp = xlog_get_bp(log, 1); |
| 565 | if (!bp) |
| 566 | return ENOMEM; |
| 567 | if ((error = xlog_bread(log, 0, 1, bp))) |
| 568 | goto bp_err; |
| 569 | offset = xlog_align(log, 0, 1, bp); |
| 570 | first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); |
| 571 | |
| 572 | last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ |
| 573 | if ((error = xlog_bread(log, last_blk, 1, bp))) |
| 574 | goto bp_err; |
| 575 | offset = xlog_align(log, last_blk, 1, bp); |
| 576 | last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); |
| 577 | ASSERT(last_half_cycle != 0); |
| 578 | |
| 579 | /* |
| 580 | * If the 1st half cycle number is equal to the last half cycle number, |
| 581 | * then the entire log is stamped with the same cycle number. In this |
| 582 | * case, head_blk can't be set to zero (which makes sense). The below |
| 583 | * math doesn't work out properly with head_blk equal to zero. Instead, |
| 584 | * we set it to log_bbnum which is an invalid block number, but this |
| 585 | * value makes the math correct. If head_blk doesn't changed through |
| 586 | * all the tests below, *head_blk is set to zero at the very end rather |
| 587 | * than log_bbnum. In a sense, log_bbnum and zero are the same block |
| 588 | * in a circular file. |
| 589 | */ |
| 590 | if (first_half_cycle == last_half_cycle) { |
| 591 | /* |
| 592 | * In this case we believe that the entire log should have |
| 593 | * cycle number last_half_cycle. We need to scan backwards |
| 594 | * from the end verifying that there are no holes still |
| 595 | * containing last_half_cycle - 1. If we find such a hole, |
| 596 | * then the start of that hole will be the new head. The |
| 597 | * simple case looks like |
| 598 | * x | x ... | x - 1 | x |
| 599 | * Another case that fits this picture would be |
| 600 | * x | x + 1 | x ... | x |
| 601 | * In this case the head really is somwhere at the end of the |
| 602 | * log, as one of the latest writes at the beginning was |
| 603 | * incomplete. |
| 604 | * One more case is |
| 605 | * x | x + 1 | x ... | x - 1 | x |
| 606 | * This is really the combination of the above two cases, and |
| 607 | * the head has to end up at the start of the x-1 hole at the |
| 608 | * end of the log. |
| 609 | * |
| 610 | * In the 256k log case, we will read from the beginning to the |
| 611 | * end of the log and search for cycle numbers equal to x-1. |
| 612 | * We don't worry about the x+1 blocks that we encounter, |
| 613 | * because we know that they cannot be the head since the log |
| 614 | * started with x. |
| 615 | */ |
| 616 | head_blk = log_bbnum; |
| 617 | stop_on_cycle = last_half_cycle - 1; |
| 618 | } else { |
| 619 | /* |
| 620 | * In this case we want to find the first block with cycle |
| 621 | * number matching last_half_cycle. We expect the log to be |
| 622 | * some variation on |
| 623 | * x + 1 ... | x ... |
| 624 | * The first block with cycle number x (last_half_cycle) will |
| 625 | * be where the new head belongs. First we do a binary search |
| 626 | * for the first occurrence of last_half_cycle. The binary |
| 627 | * search may not be totally accurate, so then we scan back |
| 628 | * from there looking for occurrences of last_half_cycle before |
| 629 | * us. If that backwards scan wraps around the beginning of |
| 630 | * the log, then we look for occurrences of last_half_cycle - 1 |
| 631 | * at the end of the log. The cases we're looking for look |
| 632 | * like |
| 633 | * x + 1 ... | x | x + 1 | x ... |
| 634 | * ^ binary search stopped here |
| 635 | * or |
| 636 | * x + 1 ... | x ... | x - 1 | x |
| 637 | * <---------> less than scan distance |
| 638 | */ |
| 639 | stop_on_cycle = last_half_cycle; |
| 640 | if ((error = xlog_find_cycle_start(log, bp, first_blk, |
| 641 | &head_blk, last_half_cycle))) |
| 642 | goto bp_err; |
| 643 | } |
| 644 | |
| 645 | /* |
| 646 | * Now validate the answer. Scan back some number of maximum possible |
| 647 | * blocks and make sure each one has the expected cycle number. The |
| 648 | * maximum is determined by the total possible amount of buffering |
| 649 | * in the in-core log. The following number can be made tighter if |
| 650 | * we actually look at the block size of the filesystem. |
| 651 | */ |
| 652 | num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); |
| 653 | if (head_blk >= num_scan_bblks) { |
| 654 | /* |
| 655 | * We are guaranteed that the entire check can be performed |
| 656 | * in one buffer. |
| 657 | */ |
| 658 | start_blk = head_blk - num_scan_bblks; |
| 659 | if ((error = xlog_find_verify_cycle(log, |
| 660 | start_blk, num_scan_bblks, |
| 661 | stop_on_cycle, &new_blk))) |
| 662 | goto bp_err; |
| 663 | if (new_blk != -1) |
| 664 | head_blk = new_blk; |
| 665 | } else { /* need to read 2 parts of log */ |
| 666 | /* |
| 667 | * We are going to scan backwards in the log in two parts. |
| 668 | * First we scan the physical end of the log. In this part |
| 669 | * of the log, we are looking for blocks with cycle number |
| 670 | * last_half_cycle - 1. |
| 671 | * If we find one, then we know that the log starts there, as |
| 672 | * we've found a hole that didn't get written in going around |
| 673 | * the end of the physical log. The simple case for this is |
| 674 | * x + 1 ... | x ... | x - 1 | x |
| 675 | * <---------> less than scan distance |
| 676 | * If all of the blocks at the end of the log have cycle number |
| 677 | * last_half_cycle, then we check the blocks at the start of |
| 678 | * the log looking for occurrences of last_half_cycle. If we |
| 679 | * find one, then our current estimate for the location of the |
| 680 | * first occurrence of last_half_cycle is wrong and we move |
| 681 | * back to the hole we've found. This case looks like |
| 682 | * x + 1 ... | x | x + 1 | x ... |
| 683 | * ^ binary search stopped here |
| 684 | * Another case we need to handle that only occurs in 256k |
| 685 | * logs is |
| 686 | * x + 1 ... | x ... | x+1 | x ... |
| 687 | * ^ binary search stops here |
| 688 | * In a 256k log, the scan at the end of the log will see the |
| 689 | * x + 1 blocks. We need to skip past those since that is |
| 690 | * certainly not the head of the log. By searching for |
| 691 | * last_half_cycle-1 we accomplish that. |
| 692 | */ |
| 693 | start_blk = log_bbnum - num_scan_bblks + head_blk; |
| 694 | ASSERT(head_blk <= INT_MAX && |
| 695 | (xfs_daddr_t) num_scan_bblks - head_blk >= 0); |
| 696 | if ((error = xlog_find_verify_cycle(log, start_blk, |
| 697 | num_scan_bblks - (int)head_blk, |
| 698 | (stop_on_cycle - 1), &new_blk))) |
| 699 | goto bp_err; |
| 700 | if (new_blk != -1) { |
| 701 | head_blk = new_blk; |
| 702 | goto bad_blk; |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * Scan beginning of log now. The last part of the physical |
| 707 | * log is good. This scan needs to verify that it doesn't find |
| 708 | * the last_half_cycle. |
| 709 | */ |
| 710 | start_blk = 0; |
| 711 | ASSERT(head_blk <= INT_MAX); |
| 712 | if ((error = xlog_find_verify_cycle(log, |
| 713 | start_blk, (int)head_blk, |
| 714 | stop_on_cycle, &new_blk))) |
| 715 | goto bp_err; |
| 716 | if (new_blk != -1) |
| 717 | head_blk = new_blk; |
| 718 | } |
| 719 | |
| 720 | bad_blk: |
| 721 | /* |
| 722 | * Now we need to make sure head_blk is not pointing to a block in |
| 723 | * the middle of a log record. |
| 724 | */ |
| 725 | num_scan_bblks = XLOG_REC_SHIFT(log); |
| 726 | if (head_blk >= num_scan_bblks) { |
| 727 | start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ |
| 728 | |
| 729 | /* start ptr at last block ptr before head_blk */ |
| 730 | if ((error = xlog_find_verify_log_record(log, start_blk, |
| 731 | &head_blk, 0)) == -1) { |
| 732 | error = XFS_ERROR(EIO); |
| 733 | goto bp_err; |
| 734 | } else if (error) |
| 735 | goto bp_err; |
| 736 | } else { |
| 737 | start_blk = 0; |
| 738 | ASSERT(head_blk <= INT_MAX); |
| 739 | if ((error = xlog_find_verify_log_record(log, start_blk, |
| 740 | &head_blk, 0)) == -1) { |
| 741 | /* We hit the beginning of the log during our search */ |
| 742 | start_blk = log_bbnum - num_scan_bblks + head_blk; |
| 743 | new_blk = log_bbnum; |
| 744 | ASSERT(start_blk <= INT_MAX && |
| 745 | (xfs_daddr_t) log_bbnum-start_blk >= 0); |
| 746 | ASSERT(head_blk <= INT_MAX); |
| 747 | if ((error = xlog_find_verify_log_record(log, |
| 748 | start_blk, &new_blk, |
| 749 | (int)head_blk)) == -1) { |
| 750 | error = XFS_ERROR(EIO); |
| 751 | goto bp_err; |
| 752 | } else if (error) |
| 753 | goto bp_err; |
| 754 | if (new_blk != log_bbnum) |
| 755 | head_blk = new_blk; |
| 756 | } else if (error) |
| 757 | goto bp_err; |
| 758 | } |
| 759 | |
| 760 | xlog_put_bp(bp); |
| 761 | if (head_blk == log_bbnum) |
| 762 | *return_head_blk = 0; |
| 763 | else |
| 764 | *return_head_blk = head_blk; |
| 765 | /* |
| 766 | * When returning here, we have a good block number. Bad block |
| 767 | * means that during a previous crash, we didn't have a clean break |
| 768 | * from cycle number N to cycle number N-1. In this case, we need |
| 769 | * to find the first block with cycle number N-1. |
| 770 | */ |
| 771 | return 0; |
| 772 | |
| 773 | bp_err: |
| 774 | xlog_put_bp(bp); |
| 775 | |
| 776 | if (error) |
| 777 | xlog_warn("XFS: failed to find log head"); |
| 778 | return error; |
| 779 | } |
| 780 | |
| 781 | /* |
| 782 | * Find the sync block number or the tail of the log. |
| 783 | * |
| 784 | * This will be the block number of the last record to have its |
| 785 | * associated buffers synced to disk. Every log record header has |
| 786 | * a sync lsn embedded in it. LSNs hold block numbers, so it is easy |
| 787 | * to get a sync block number. The only concern is to figure out which |
| 788 | * log record header to believe. |
| 789 | * |
| 790 | * The following algorithm uses the log record header with the largest |
| 791 | * lsn. The entire log record does not need to be valid. We only care |
| 792 | * that the header is valid. |
| 793 | * |
| 794 | * We could speed up search by using current head_blk buffer, but it is not |
| 795 | * available. |
| 796 | */ |
| 797 | int |
| 798 | xlog_find_tail( |
| 799 | xlog_t *log, |
| 800 | xfs_daddr_t *head_blk, |
| 801 | xfs_daddr_t *tail_blk, |
| 802 | int readonly) |
| 803 | { |
| 804 | xlog_rec_header_t *rhead; |
| 805 | xlog_op_header_t *op_head; |
| 806 | xfs_caddr_t offset = NULL; |
| 807 | xfs_buf_t *bp; |
| 808 | int error, i, found; |
| 809 | xfs_daddr_t umount_data_blk; |
| 810 | xfs_daddr_t after_umount_blk; |
| 811 | xfs_lsn_t tail_lsn; |
| 812 | int hblks; |
| 813 | |
| 814 | found = 0; |
| 815 | |
| 816 | /* |
| 817 | * Find previous log record |
| 818 | */ |
| 819 | if ((error = xlog_find_head(log, head_blk))) |
| 820 | return error; |
| 821 | |
| 822 | bp = xlog_get_bp(log, 1); |
| 823 | if (!bp) |
| 824 | return ENOMEM; |
| 825 | if (*head_blk == 0) { /* special case */ |
| 826 | if ((error = xlog_bread(log, 0, 1, bp))) |
| 827 | goto bread_err; |
| 828 | offset = xlog_align(log, 0, 1, bp); |
| 829 | if (GET_CYCLE(offset, ARCH_CONVERT) == 0) { |
| 830 | *tail_blk = 0; |
| 831 | /* leave all other log inited values alone */ |
| 832 | goto exit; |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | /* |
| 837 | * Search backwards looking for log record header block |
| 838 | */ |
| 839 | ASSERT(*head_blk < INT_MAX); |
| 840 | for (i = (int)(*head_blk) - 1; i >= 0; i--) { |
| 841 | if ((error = xlog_bread(log, i, 1, bp))) |
| 842 | goto bread_err; |
| 843 | offset = xlog_align(log, i, 1, bp); |
| 844 | if (XLOG_HEADER_MAGIC_NUM == |
| 845 | INT_GET(*(uint *)offset, ARCH_CONVERT)) { |
| 846 | found = 1; |
| 847 | break; |
| 848 | } |
| 849 | } |
| 850 | /* |
| 851 | * If we haven't found the log record header block, start looking |
| 852 | * again from the end of the physical log. XXXmiken: There should be |
| 853 | * a check here to make sure we didn't search more than N blocks in |
| 854 | * the previous code. |
| 855 | */ |
| 856 | if (!found) { |
| 857 | for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { |
| 858 | if ((error = xlog_bread(log, i, 1, bp))) |
| 859 | goto bread_err; |
| 860 | offset = xlog_align(log, i, 1, bp); |
| 861 | if (XLOG_HEADER_MAGIC_NUM == |
| 862 | INT_GET(*(uint*)offset, ARCH_CONVERT)) { |
| 863 | found = 2; |
| 864 | break; |
| 865 | } |
| 866 | } |
| 867 | } |
| 868 | if (!found) { |
| 869 | xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); |
| 870 | ASSERT(0); |
| 871 | return XFS_ERROR(EIO); |
| 872 | } |
| 873 | |
| 874 | /* find blk_no of tail of log */ |
| 875 | rhead = (xlog_rec_header_t *)offset; |
| 876 | *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT)); |
| 877 | |
| 878 | /* |
| 879 | * Reset log values according to the state of the log when we |
| 880 | * crashed. In the case where head_blk == 0, we bump curr_cycle |
| 881 | * one because the next write starts a new cycle rather than |
| 882 | * continuing the cycle of the last good log record. At this |
| 883 | * point we have guaranteed that all partial log records have been |
| 884 | * accounted for. Therefore, we know that the last good log record |
| 885 | * written was complete and ended exactly on the end boundary |
| 886 | * of the physical log. |
| 887 | */ |
| 888 | log->l_prev_block = i; |
| 889 | log->l_curr_block = (int)*head_blk; |
| 890 | log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT); |
| 891 | if (found == 2) |
| 892 | log->l_curr_cycle++; |
| 893 | log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT); |
| 894 | log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT); |
| 895 | log->l_grant_reserve_cycle = log->l_curr_cycle; |
| 896 | log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); |
| 897 | log->l_grant_write_cycle = log->l_curr_cycle; |
| 898 | log->l_grant_write_bytes = BBTOB(log->l_curr_block); |
| 899 | |
| 900 | /* |
| 901 | * Look for unmount record. If we find it, then we know there |
| 902 | * was a clean unmount. Since 'i' could be the last block in |
| 903 | * the physical log, we convert to a log block before comparing |
| 904 | * to the head_blk. |
| 905 | * |
| 906 | * Save the current tail lsn to use to pass to |
| 907 | * xlog_clear_stale_blocks() below. We won't want to clear the |
| 908 | * unmount record if there is one, so we pass the lsn of the |
| 909 | * unmount record rather than the block after it. |
| 910 | */ |
| 911 | if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { |
| 912 | int h_size = INT_GET(rhead->h_size, ARCH_CONVERT); |
| 913 | int h_version = INT_GET(rhead->h_version, ARCH_CONVERT); |
| 914 | |
| 915 | if ((h_version & XLOG_VERSION_2) && |
| 916 | (h_size > XLOG_HEADER_CYCLE_SIZE)) { |
| 917 | hblks = h_size / XLOG_HEADER_CYCLE_SIZE; |
| 918 | if (h_size % XLOG_HEADER_CYCLE_SIZE) |
| 919 | hblks++; |
| 920 | } else { |
| 921 | hblks = 1; |
| 922 | } |
| 923 | } else { |
| 924 | hblks = 1; |
| 925 | } |
| 926 | after_umount_blk = (i + hblks + (int) |
| 927 | BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize; |
| 928 | tail_lsn = log->l_tail_lsn; |
| 929 | if (*head_blk == after_umount_blk && |
| 930 | INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) { |
| 931 | umount_data_blk = (i + hblks) % log->l_logBBsize; |
| 932 | if ((error = xlog_bread(log, umount_data_blk, 1, bp))) { |
| 933 | goto bread_err; |
| 934 | } |
| 935 | offset = xlog_align(log, umount_data_blk, 1, bp); |
| 936 | op_head = (xlog_op_header_t *)offset; |
| 937 | if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { |
| 938 | /* |
| 939 | * Set tail and last sync so that newly written |
| 940 | * log records will point recovery to after the |
| 941 | * current unmount record. |
| 942 | */ |
| 943 | ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle, |
| 944 | after_umount_blk); |
| 945 | ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle, |
| 946 | after_umount_blk); |
| 947 | *tail_blk = after_umount_blk; |
| 948 | } |
| 949 | } |
| 950 | |
| 951 | /* |
| 952 | * Make sure that there are no blocks in front of the head |
| 953 | * with the same cycle number as the head. This can happen |
| 954 | * because we allow multiple outstanding log writes concurrently, |
| 955 | * and the later writes might make it out before earlier ones. |
| 956 | * |
| 957 | * We use the lsn from before modifying it so that we'll never |
| 958 | * overwrite the unmount record after a clean unmount. |
| 959 | * |
| 960 | * Do this only if we are going to recover the filesystem |
| 961 | * |
| 962 | * NOTE: This used to say "if (!readonly)" |
| 963 | * However on Linux, we can & do recover a read-only filesystem. |
| 964 | * We only skip recovery if NORECOVERY is specified on mount, |
| 965 | * in which case we would not be here. |
| 966 | * |
| 967 | * But... if the -device- itself is readonly, just skip this. |
| 968 | * We can't recover this device anyway, so it won't matter. |
| 969 | */ |
| 970 | if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { |
| 971 | error = xlog_clear_stale_blocks(log, tail_lsn); |
| 972 | } |
| 973 | |
| 974 | bread_err: |
| 975 | exit: |
| 976 | xlog_put_bp(bp); |
| 977 | |
| 978 | if (error) |
| 979 | xlog_warn("XFS: failed to locate log tail"); |
| 980 | return error; |
| 981 | } |
| 982 | |
| 983 | /* |
| 984 | * Is the log zeroed at all? |
| 985 | * |
| 986 | * The last binary search should be changed to perform an X block read |
| 987 | * once X becomes small enough. You can then search linearly through |
| 988 | * the X blocks. This will cut down on the number of reads we need to do. |
| 989 | * |
| 990 | * If the log is partially zeroed, this routine will pass back the blkno |
| 991 | * of the first block with cycle number 0. It won't have a complete LR |
| 992 | * preceding it. |
| 993 | * |
| 994 | * Return: |
| 995 | * 0 => the log is completely written to |
| 996 | * -1 => use *blk_no as the first block of the log |
| 997 | * >0 => error has occurred |
| 998 | */ |
| 999 | int |
| 1000 | xlog_find_zeroed( |
| 1001 | xlog_t *log, |
| 1002 | xfs_daddr_t *blk_no) |
| 1003 | { |
| 1004 | xfs_buf_t *bp; |
| 1005 | xfs_caddr_t offset; |
| 1006 | uint first_cycle, last_cycle; |
| 1007 | xfs_daddr_t new_blk, last_blk, start_blk; |
| 1008 | xfs_daddr_t num_scan_bblks; |
| 1009 | int error, log_bbnum = log->l_logBBsize; |
| 1010 | |
| 1011 | /* check totally zeroed log */ |
| 1012 | bp = xlog_get_bp(log, 1); |
| 1013 | if (!bp) |
| 1014 | return ENOMEM; |
| 1015 | if ((error = xlog_bread(log, 0, 1, bp))) |
| 1016 | goto bp_err; |
| 1017 | offset = xlog_align(log, 0, 1, bp); |
| 1018 | first_cycle = GET_CYCLE(offset, ARCH_CONVERT); |
| 1019 | if (first_cycle == 0) { /* completely zeroed log */ |
| 1020 | *blk_no = 0; |
| 1021 | xlog_put_bp(bp); |
| 1022 | return -1; |
| 1023 | } |
| 1024 | |
| 1025 | /* check partially zeroed log */ |
| 1026 | if ((error = xlog_bread(log, log_bbnum-1, 1, bp))) |
| 1027 | goto bp_err; |
| 1028 | offset = xlog_align(log, log_bbnum-1, 1, bp); |
| 1029 | last_cycle = GET_CYCLE(offset, ARCH_CONVERT); |
| 1030 | if (last_cycle != 0) { /* log completely written to */ |
| 1031 | xlog_put_bp(bp); |
| 1032 | return 0; |
| 1033 | } else if (first_cycle != 1) { |
| 1034 | /* |
| 1035 | * If the cycle of the last block is zero, the cycle of |
| 1036 | * the first block must be 1. If it's not, maybe we're |
| 1037 | * not looking at a log... Bail out. |
| 1038 | */ |
| 1039 | xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); |
| 1040 | return XFS_ERROR(EINVAL); |
| 1041 | } |
| 1042 | |
| 1043 | /* we have a partially zeroed log */ |
| 1044 | last_blk = log_bbnum-1; |
| 1045 | if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) |
| 1046 | goto bp_err; |
| 1047 | |
| 1048 | /* |
| 1049 | * Validate the answer. Because there is no way to guarantee that |
| 1050 | * the entire log is made up of log records which are the same size, |
| 1051 | * we scan over the defined maximum blocks. At this point, the maximum |
| 1052 | * is not chosen to mean anything special. XXXmiken |
| 1053 | */ |
| 1054 | num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); |
| 1055 | ASSERT(num_scan_bblks <= INT_MAX); |
| 1056 | |
| 1057 | if (last_blk < num_scan_bblks) |
| 1058 | num_scan_bblks = last_blk; |
| 1059 | start_blk = last_blk - num_scan_bblks; |
| 1060 | |
| 1061 | /* |
| 1062 | * We search for any instances of cycle number 0 that occur before |
| 1063 | * our current estimate of the head. What we're trying to detect is |
| 1064 | * 1 ... | 0 | 1 | 0... |
| 1065 | * ^ binary search ends here |
| 1066 | */ |
| 1067 | if ((error = xlog_find_verify_cycle(log, start_blk, |
| 1068 | (int)num_scan_bblks, 0, &new_blk))) |
| 1069 | goto bp_err; |
| 1070 | if (new_blk != -1) |
| 1071 | last_blk = new_blk; |
| 1072 | |
| 1073 | /* |
| 1074 | * Potentially backup over partial log record write. We don't need |
| 1075 | * to search the end of the log because we know it is zero. |
| 1076 | */ |
| 1077 | if ((error = xlog_find_verify_log_record(log, start_blk, |
| 1078 | &last_blk, 0)) == -1) { |
| 1079 | error = XFS_ERROR(EIO); |
| 1080 | goto bp_err; |
| 1081 | } else if (error) |
| 1082 | goto bp_err; |
| 1083 | |
| 1084 | *blk_no = last_blk; |
| 1085 | bp_err: |
| 1086 | xlog_put_bp(bp); |
| 1087 | if (error) |
| 1088 | return error; |
| 1089 | return -1; |
| 1090 | } |
| 1091 | |
| 1092 | /* |
| 1093 | * These are simple subroutines used by xlog_clear_stale_blocks() below |
| 1094 | * to initialize a buffer full of empty log record headers and write |
| 1095 | * them into the log. |
| 1096 | */ |
| 1097 | STATIC void |
| 1098 | xlog_add_record( |
| 1099 | xlog_t *log, |
| 1100 | xfs_caddr_t buf, |
| 1101 | int cycle, |
| 1102 | int block, |
| 1103 | int tail_cycle, |
| 1104 | int tail_block) |
| 1105 | { |
| 1106 | xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; |
| 1107 | |
| 1108 | memset(buf, 0, BBSIZE); |
| 1109 | INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM); |
| 1110 | INT_SET(recp->h_cycle, ARCH_CONVERT, cycle); |
| 1111 | INT_SET(recp->h_version, ARCH_CONVERT, |
| 1112 | XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1); |
| 1113 | ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block); |
| 1114 | ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block); |
| 1115 | INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT); |
| 1116 | memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); |
| 1117 | } |
| 1118 | |
| 1119 | STATIC int |
| 1120 | xlog_write_log_records( |
| 1121 | xlog_t *log, |
| 1122 | int cycle, |
| 1123 | int start_block, |
| 1124 | int blocks, |
| 1125 | int tail_cycle, |
| 1126 | int tail_block) |
| 1127 | { |
| 1128 | xfs_caddr_t offset; |
| 1129 | xfs_buf_t *bp; |
| 1130 | int balign, ealign; |
| 1131 | int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); |
| 1132 | int end_block = start_block + blocks; |
| 1133 | int bufblks; |
| 1134 | int error = 0; |
| 1135 | int i, j = 0; |
| 1136 | |
| 1137 | bufblks = 1 << ffs(blocks); |
| 1138 | while (!(bp = xlog_get_bp(log, bufblks))) { |
| 1139 | bufblks >>= 1; |
| 1140 | if (bufblks <= log->l_sectbb_log) |
| 1141 | return ENOMEM; |
| 1142 | } |
| 1143 | |
| 1144 | /* We may need to do a read at the start to fill in part of |
| 1145 | * the buffer in the starting sector not covered by the first |
| 1146 | * write below. |
| 1147 | */ |
| 1148 | balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); |
| 1149 | if (balign != start_block) { |
| 1150 | if ((error = xlog_bread(log, start_block, 1, bp))) { |
| 1151 | xlog_put_bp(bp); |
| 1152 | return error; |
| 1153 | } |
| 1154 | j = start_block - balign; |
| 1155 | } |
| 1156 | |
| 1157 | for (i = start_block; i < end_block; i += bufblks) { |
| 1158 | int bcount, endcount; |
| 1159 | |
| 1160 | bcount = min(bufblks, end_block - start_block); |
| 1161 | endcount = bcount - j; |
| 1162 | |
| 1163 | /* We may need to do a read at the end to fill in part of |
| 1164 | * the buffer in the final sector not covered by the write. |
| 1165 | * If this is the same sector as the above read, skip it. |
| 1166 | */ |
| 1167 | ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); |
| 1168 | if (j == 0 && (start_block + endcount > ealign)) { |
| 1169 | offset = XFS_BUF_PTR(bp); |
| 1170 | balign = BBTOB(ealign - start_block); |
| 1171 | XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb)); |
| 1172 | if ((error = xlog_bread(log, ealign, sectbb, bp))) |
| 1173 | break; |
| 1174 | XFS_BUF_SET_PTR(bp, offset, bufblks); |
| 1175 | } |
| 1176 | |
| 1177 | offset = xlog_align(log, start_block, endcount, bp); |
| 1178 | for (; j < endcount; j++) { |
| 1179 | xlog_add_record(log, offset, cycle, i+j, |
| 1180 | tail_cycle, tail_block); |
| 1181 | offset += BBSIZE; |
| 1182 | } |
| 1183 | error = xlog_bwrite(log, start_block, endcount, bp); |
| 1184 | if (error) |
| 1185 | break; |
| 1186 | start_block += endcount; |
| 1187 | j = 0; |
| 1188 | } |
| 1189 | xlog_put_bp(bp); |
| 1190 | return error; |
| 1191 | } |
| 1192 | |
| 1193 | /* |
| 1194 | * This routine is called to blow away any incomplete log writes out |
| 1195 | * in front of the log head. We do this so that we won't become confused |
| 1196 | * if we come up, write only a little bit more, and then crash again. |
| 1197 | * If we leave the partial log records out there, this situation could |
| 1198 | * cause us to think those partial writes are valid blocks since they |
| 1199 | * have the current cycle number. We get rid of them by overwriting them |
| 1200 | * with empty log records with the old cycle number rather than the |
| 1201 | * current one. |
| 1202 | * |
| 1203 | * The tail lsn is passed in rather than taken from |
| 1204 | * the log so that we will not write over the unmount record after a |
| 1205 | * clean unmount in a 512 block log. Doing so would leave the log without |
| 1206 | * any valid log records in it until a new one was written. If we crashed |
| 1207 | * during that time we would not be able to recover. |
| 1208 | */ |
| 1209 | STATIC int |
| 1210 | xlog_clear_stale_blocks( |
| 1211 | xlog_t *log, |
| 1212 | xfs_lsn_t tail_lsn) |
| 1213 | { |
| 1214 | int tail_cycle, head_cycle; |
| 1215 | int tail_block, head_block; |
| 1216 | int tail_distance, max_distance; |
| 1217 | int distance; |
| 1218 | int error; |
| 1219 | |
| 1220 | tail_cycle = CYCLE_LSN(tail_lsn); |
| 1221 | tail_block = BLOCK_LSN(tail_lsn); |
| 1222 | head_cycle = log->l_curr_cycle; |
| 1223 | head_block = log->l_curr_block; |
| 1224 | |
| 1225 | /* |
| 1226 | * Figure out the distance between the new head of the log |
| 1227 | * and the tail. We want to write over any blocks beyond the |
| 1228 | * head that we may have written just before the crash, but |
| 1229 | * we don't want to overwrite the tail of the log. |
| 1230 | */ |
| 1231 | if (head_cycle == tail_cycle) { |
| 1232 | /* |
| 1233 | * The tail is behind the head in the physical log, |
| 1234 | * so the distance from the head to the tail is the |
| 1235 | * distance from the head to the end of the log plus |
| 1236 | * the distance from the beginning of the log to the |
| 1237 | * tail. |
| 1238 | */ |
| 1239 | if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { |
| 1240 | XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", |
| 1241 | XFS_ERRLEVEL_LOW, log->l_mp); |
| 1242 | return XFS_ERROR(EFSCORRUPTED); |
| 1243 | } |
| 1244 | tail_distance = tail_block + (log->l_logBBsize - head_block); |
| 1245 | } else { |
| 1246 | /* |
| 1247 | * The head is behind the tail in the physical log, |
| 1248 | * so the distance from the head to the tail is just |
| 1249 | * the tail block minus the head block. |
| 1250 | */ |
| 1251 | if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ |
| 1252 | XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", |
| 1253 | XFS_ERRLEVEL_LOW, log->l_mp); |
| 1254 | return XFS_ERROR(EFSCORRUPTED); |
| 1255 | } |
| 1256 | tail_distance = tail_block - head_block; |
| 1257 | } |
| 1258 | |
| 1259 | /* |
| 1260 | * If the head is right up against the tail, we can't clear |
| 1261 | * anything. |
| 1262 | */ |
| 1263 | if (tail_distance <= 0) { |
| 1264 | ASSERT(tail_distance == 0); |
| 1265 | return 0; |
| 1266 | } |
| 1267 | |
| 1268 | max_distance = XLOG_TOTAL_REC_SHIFT(log); |
| 1269 | /* |
| 1270 | * Take the smaller of the maximum amount of outstanding I/O |
| 1271 | * we could have and the distance to the tail to clear out. |
| 1272 | * We take the smaller so that we don't overwrite the tail and |
| 1273 | * we don't waste all day writing from the head to the tail |
| 1274 | * for no reason. |
| 1275 | */ |
| 1276 | max_distance = MIN(max_distance, tail_distance); |
| 1277 | |
| 1278 | if ((head_block + max_distance) <= log->l_logBBsize) { |
| 1279 | /* |
| 1280 | * We can stomp all the blocks we need to without |
| 1281 | * wrapping around the end of the log. Just do it |
| 1282 | * in a single write. Use the cycle number of the |
| 1283 | * current cycle minus one so that the log will look like: |
| 1284 | * n ... | n - 1 ... |
| 1285 | */ |
| 1286 | error = xlog_write_log_records(log, (head_cycle - 1), |
| 1287 | head_block, max_distance, tail_cycle, |
| 1288 | tail_block); |
| 1289 | if (error) |
| 1290 | return error; |
| 1291 | } else { |
| 1292 | /* |
| 1293 | * We need to wrap around the end of the physical log in |
| 1294 | * order to clear all the blocks. Do it in two separate |
| 1295 | * I/Os. The first write should be from the head to the |
| 1296 | * end of the physical log, and it should use the current |
| 1297 | * cycle number minus one just like above. |
| 1298 | */ |
| 1299 | distance = log->l_logBBsize - head_block; |
| 1300 | error = xlog_write_log_records(log, (head_cycle - 1), |
| 1301 | head_block, distance, tail_cycle, |
| 1302 | tail_block); |
| 1303 | |
| 1304 | if (error) |
| 1305 | return error; |
| 1306 | |
| 1307 | /* |
| 1308 | * Now write the blocks at the start of the physical log. |
| 1309 | * This writes the remainder of the blocks we want to clear. |
| 1310 | * It uses the current cycle number since we're now on the |
| 1311 | * same cycle as the head so that we get: |
| 1312 | * n ... n ... | n - 1 ... |
| 1313 | * ^^^^^ blocks we're writing |
| 1314 | */ |
| 1315 | distance = max_distance - (log->l_logBBsize - head_block); |
| 1316 | error = xlog_write_log_records(log, head_cycle, 0, distance, |
| 1317 | tail_cycle, tail_block); |
| 1318 | if (error) |
| 1319 | return error; |
| 1320 | } |
| 1321 | |
| 1322 | return 0; |
| 1323 | } |
| 1324 | |
| 1325 | /****************************************************************************** |
| 1326 | * |
| 1327 | * Log recover routines |
| 1328 | * |
| 1329 | ****************************************************************************** |
| 1330 | */ |
| 1331 | |
| 1332 | STATIC xlog_recover_t * |
| 1333 | xlog_recover_find_tid( |
| 1334 | xlog_recover_t *q, |
| 1335 | xlog_tid_t tid) |
| 1336 | { |
| 1337 | xlog_recover_t *p = q; |
| 1338 | |
| 1339 | while (p != NULL) { |
| 1340 | if (p->r_log_tid == tid) |
| 1341 | break; |
| 1342 | p = p->r_next; |
| 1343 | } |
| 1344 | return p; |
| 1345 | } |
| 1346 | |
| 1347 | STATIC void |
| 1348 | xlog_recover_put_hashq( |
| 1349 | xlog_recover_t **q, |
| 1350 | xlog_recover_t *trans) |
| 1351 | { |
| 1352 | trans->r_next = *q; |
| 1353 | *q = trans; |
| 1354 | } |
| 1355 | |
| 1356 | STATIC void |
| 1357 | xlog_recover_add_item( |
| 1358 | xlog_recover_item_t **itemq) |
| 1359 | { |
| 1360 | xlog_recover_item_t *item; |
| 1361 | |
| 1362 | item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); |
| 1363 | xlog_recover_insert_item_backq(itemq, item); |
| 1364 | } |
| 1365 | |
| 1366 | STATIC int |
| 1367 | xlog_recover_add_to_cont_trans( |
| 1368 | xlog_recover_t *trans, |
| 1369 | xfs_caddr_t dp, |
| 1370 | int len) |
| 1371 | { |
| 1372 | xlog_recover_item_t *item; |
| 1373 | xfs_caddr_t ptr, old_ptr; |
| 1374 | int old_len; |
| 1375 | |
| 1376 | item = trans->r_itemq; |
| 1377 | if (item == 0) { |
| 1378 | /* finish copying rest of trans header */ |
| 1379 | xlog_recover_add_item(&trans->r_itemq); |
| 1380 | ptr = (xfs_caddr_t) &trans->r_theader + |
| 1381 | sizeof(xfs_trans_header_t) - len; |
| 1382 | memcpy(ptr, dp, len); /* d, s, l */ |
| 1383 | return 0; |
| 1384 | } |
| 1385 | item = item->ri_prev; |
| 1386 | |
| 1387 | old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; |
| 1388 | old_len = item->ri_buf[item->ri_cnt-1].i_len; |
| 1389 | |
| 1390 | ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0); |
| 1391 | memcpy(&ptr[old_len], dp, len); /* d, s, l */ |
| 1392 | item->ri_buf[item->ri_cnt-1].i_len += len; |
| 1393 | item->ri_buf[item->ri_cnt-1].i_addr = ptr; |
| 1394 | return 0; |
| 1395 | } |
| 1396 | |
| 1397 | /* |
| 1398 | * The next region to add is the start of a new region. It could be |
| 1399 | * a whole region or it could be the first part of a new region. Because |
| 1400 | * of this, the assumption here is that the type and size fields of all |
| 1401 | * format structures fit into the first 32 bits of the structure. |
| 1402 | * |
| 1403 | * This works because all regions must be 32 bit aligned. Therefore, we |
| 1404 | * either have both fields or we have neither field. In the case we have |
| 1405 | * neither field, the data part of the region is zero length. We only have |
| 1406 | * a log_op_header and can throw away the header since a new one will appear |
| 1407 | * later. If we have at least 4 bytes, then we can determine how many regions |
| 1408 | * will appear in the current log item. |
| 1409 | */ |
| 1410 | STATIC int |
| 1411 | xlog_recover_add_to_trans( |
| 1412 | xlog_recover_t *trans, |
| 1413 | xfs_caddr_t dp, |
| 1414 | int len) |
| 1415 | { |
| 1416 | xfs_inode_log_format_t *in_f; /* any will do */ |
| 1417 | xlog_recover_item_t *item; |
| 1418 | xfs_caddr_t ptr; |
| 1419 | |
| 1420 | if (!len) |
| 1421 | return 0; |
| 1422 | item = trans->r_itemq; |
| 1423 | if (item == 0) { |
| 1424 | ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC); |
| 1425 | if (len == sizeof(xfs_trans_header_t)) |
| 1426 | xlog_recover_add_item(&trans->r_itemq); |
| 1427 | memcpy(&trans->r_theader, dp, len); /* d, s, l */ |
| 1428 | return 0; |
| 1429 | } |
| 1430 | |
| 1431 | ptr = kmem_alloc(len, KM_SLEEP); |
| 1432 | memcpy(ptr, dp, len); |
| 1433 | in_f = (xfs_inode_log_format_t *)ptr; |
| 1434 | |
| 1435 | if (item->ri_prev->ri_total != 0 && |
| 1436 | item->ri_prev->ri_total == item->ri_prev->ri_cnt) { |
| 1437 | xlog_recover_add_item(&trans->r_itemq); |
| 1438 | } |
| 1439 | item = trans->r_itemq; |
| 1440 | item = item->ri_prev; |
| 1441 | |
| 1442 | if (item->ri_total == 0) { /* first region to be added */ |
| 1443 | item->ri_total = in_f->ilf_size; |
| 1444 | ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM); |
| 1445 | item->ri_buf = kmem_zalloc((item->ri_total * |
| 1446 | sizeof(xfs_log_iovec_t)), KM_SLEEP); |
| 1447 | } |
| 1448 | ASSERT(item->ri_total > item->ri_cnt); |
| 1449 | /* Description region is ri_buf[0] */ |
| 1450 | item->ri_buf[item->ri_cnt].i_addr = ptr; |
| 1451 | item->ri_buf[item->ri_cnt].i_len = len; |
| 1452 | item->ri_cnt++; |
| 1453 | return 0; |
| 1454 | } |
| 1455 | |
| 1456 | STATIC void |
| 1457 | xlog_recover_new_tid( |
| 1458 | xlog_recover_t **q, |
| 1459 | xlog_tid_t tid, |
| 1460 | xfs_lsn_t lsn) |
| 1461 | { |
| 1462 | xlog_recover_t *trans; |
| 1463 | |
| 1464 | trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); |
| 1465 | trans->r_log_tid = tid; |
| 1466 | trans->r_lsn = lsn; |
| 1467 | xlog_recover_put_hashq(q, trans); |
| 1468 | } |
| 1469 | |
| 1470 | STATIC int |
| 1471 | xlog_recover_unlink_tid( |
| 1472 | xlog_recover_t **q, |
| 1473 | xlog_recover_t *trans) |
| 1474 | { |
| 1475 | xlog_recover_t *tp; |
| 1476 | int found = 0; |
| 1477 | |
| 1478 | ASSERT(trans != 0); |
| 1479 | if (trans == *q) { |
| 1480 | *q = (*q)->r_next; |
| 1481 | } else { |
| 1482 | tp = *q; |
| 1483 | while (tp != 0) { |
| 1484 | if (tp->r_next == trans) { |
| 1485 | found = 1; |
| 1486 | break; |
| 1487 | } |
| 1488 | tp = tp->r_next; |
| 1489 | } |
| 1490 | if (!found) { |
| 1491 | xlog_warn( |
| 1492 | "XFS: xlog_recover_unlink_tid: trans not found"); |
| 1493 | ASSERT(0); |
| 1494 | return XFS_ERROR(EIO); |
| 1495 | } |
| 1496 | tp->r_next = tp->r_next->r_next; |
| 1497 | } |
| 1498 | return 0; |
| 1499 | } |
| 1500 | |
| 1501 | STATIC void |
| 1502 | xlog_recover_insert_item_backq( |
| 1503 | xlog_recover_item_t **q, |
| 1504 | xlog_recover_item_t *item) |
| 1505 | { |
| 1506 | if (*q == 0) { |
| 1507 | item->ri_prev = item->ri_next = item; |
| 1508 | *q = item; |
| 1509 | } else { |
| 1510 | item->ri_next = *q; |
| 1511 | item->ri_prev = (*q)->ri_prev; |
| 1512 | (*q)->ri_prev = item; |
| 1513 | item->ri_prev->ri_next = item; |
| 1514 | } |
| 1515 | } |
| 1516 | |
| 1517 | STATIC void |
| 1518 | xlog_recover_insert_item_frontq( |
| 1519 | xlog_recover_item_t **q, |
| 1520 | xlog_recover_item_t *item) |
| 1521 | { |
| 1522 | xlog_recover_insert_item_backq(q, item); |
| 1523 | *q = item; |
| 1524 | } |
| 1525 | |
| 1526 | STATIC int |
| 1527 | xlog_recover_reorder_trans( |
| 1528 | xlog_t *log, |
| 1529 | xlog_recover_t *trans) |
| 1530 | { |
| 1531 | xlog_recover_item_t *first_item, *itemq, *itemq_next; |
| 1532 | xfs_buf_log_format_t *buf_f; |
| 1533 | xfs_buf_log_format_v1_t *obuf_f; |
| 1534 | ushort flags = 0; |
| 1535 | |
| 1536 | first_item = itemq = trans->r_itemq; |
| 1537 | trans->r_itemq = NULL; |
| 1538 | do { |
| 1539 | itemq_next = itemq->ri_next; |
| 1540 | buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; |
| 1541 | switch (ITEM_TYPE(itemq)) { |
| 1542 | case XFS_LI_BUF: |
| 1543 | flags = buf_f->blf_flags; |
| 1544 | break; |
| 1545 | case XFS_LI_6_1_BUF: |
| 1546 | case XFS_LI_5_3_BUF: |
| 1547 | obuf_f = (xfs_buf_log_format_v1_t*)buf_f; |
| 1548 | flags = obuf_f->blf_flags; |
| 1549 | break; |
| 1550 | } |
| 1551 | |
| 1552 | switch (ITEM_TYPE(itemq)) { |
| 1553 | case XFS_LI_BUF: |
| 1554 | case XFS_LI_6_1_BUF: |
| 1555 | case XFS_LI_5_3_BUF: |
| 1556 | if (!(flags & XFS_BLI_CANCEL)) { |
| 1557 | xlog_recover_insert_item_frontq(&trans->r_itemq, |
| 1558 | itemq); |
| 1559 | break; |
| 1560 | } |
| 1561 | case XFS_LI_INODE: |
| 1562 | case XFS_LI_6_1_INODE: |
| 1563 | case XFS_LI_5_3_INODE: |
| 1564 | case XFS_LI_DQUOT: |
| 1565 | case XFS_LI_QUOTAOFF: |
| 1566 | case XFS_LI_EFD: |
| 1567 | case XFS_LI_EFI: |
| 1568 | xlog_recover_insert_item_backq(&trans->r_itemq, itemq); |
| 1569 | break; |
| 1570 | default: |
| 1571 | xlog_warn( |
| 1572 | "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); |
| 1573 | ASSERT(0); |
| 1574 | return XFS_ERROR(EIO); |
| 1575 | } |
| 1576 | itemq = itemq_next; |
| 1577 | } while (first_item != itemq); |
| 1578 | return 0; |
| 1579 | } |
| 1580 | |
| 1581 | /* |
| 1582 | * Build up the table of buf cancel records so that we don't replay |
| 1583 | * cancelled data in the second pass. For buffer records that are |
| 1584 | * not cancel records, there is nothing to do here so we just return. |
| 1585 | * |
| 1586 | * If we get a cancel record which is already in the table, this indicates |
| 1587 | * that the buffer was cancelled multiple times. In order to ensure |
| 1588 | * that during pass 2 we keep the record in the table until we reach its |
| 1589 | * last occurrence in the log, we keep a reference count in the cancel |
| 1590 | * record in the table to tell us how many times we expect to see this |
| 1591 | * record during the second pass. |
| 1592 | */ |
| 1593 | STATIC void |
| 1594 | xlog_recover_do_buffer_pass1( |
| 1595 | xlog_t *log, |
| 1596 | xfs_buf_log_format_t *buf_f) |
| 1597 | { |
| 1598 | xfs_buf_cancel_t *bcp; |
| 1599 | xfs_buf_cancel_t *nextp; |
| 1600 | xfs_buf_cancel_t *prevp; |
| 1601 | xfs_buf_cancel_t **bucket; |
| 1602 | xfs_buf_log_format_v1_t *obuf_f; |
| 1603 | xfs_daddr_t blkno = 0; |
| 1604 | uint len = 0; |
| 1605 | ushort flags = 0; |
| 1606 | |
| 1607 | switch (buf_f->blf_type) { |
| 1608 | case XFS_LI_BUF: |
| 1609 | blkno = buf_f->blf_blkno; |
| 1610 | len = buf_f->blf_len; |
| 1611 | flags = buf_f->blf_flags; |
| 1612 | break; |
| 1613 | case XFS_LI_6_1_BUF: |
| 1614 | case XFS_LI_5_3_BUF: |
| 1615 | obuf_f = (xfs_buf_log_format_v1_t*)buf_f; |
| 1616 | blkno = (xfs_daddr_t) obuf_f->blf_blkno; |
| 1617 | len = obuf_f->blf_len; |
| 1618 | flags = obuf_f->blf_flags; |
| 1619 | break; |
| 1620 | } |
| 1621 | |
| 1622 | /* |
| 1623 | * If this isn't a cancel buffer item, then just return. |
| 1624 | */ |
| 1625 | if (!(flags & XFS_BLI_CANCEL)) |
| 1626 | return; |
| 1627 | |
| 1628 | /* |
| 1629 | * Insert an xfs_buf_cancel record into the hash table of |
| 1630 | * them. If there is already an identical record, bump |
| 1631 | * its reference count. |
| 1632 | */ |
| 1633 | bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % |
| 1634 | XLOG_BC_TABLE_SIZE]; |
| 1635 | /* |
| 1636 | * If the hash bucket is empty then just insert a new record into |
| 1637 | * the bucket. |
| 1638 | */ |
| 1639 | if (*bucket == NULL) { |
| 1640 | bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), |
| 1641 | KM_SLEEP); |
| 1642 | bcp->bc_blkno = blkno; |
| 1643 | bcp->bc_len = len; |
| 1644 | bcp->bc_refcount = 1; |
| 1645 | bcp->bc_next = NULL; |
| 1646 | *bucket = bcp; |
| 1647 | return; |
| 1648 | } |
| 1649 | |
| 1650 | /* |
| 1651 | * The hash bucket is not empty, so search for duplicates of our |
| 1652 | * record. If we find one them just bump its refcount. If not |
| 1653 | * then add us at the end of the list. |
| 1654 | */ |
| 1655 | prevp = NULL; |
| 1656 | nextp = *bucket; |
| 1657 | while (nextp != NULL) { |
| 1658 | if (nextp->bc_blkno == blkno && nextp->bc_len == len) { |
| 1659 | nextp->bc_refcount++; |
| 1660 | return; |
| 1661 | } |
| 1662 | prevp = nextp; |
| 1663 | nextp = nextp->bc_next; |
| 1664 | } |
| 1665 | ASSERT(prevp != NULL); |
| 1666 | bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), |
| 1667 | KM_SLEEP); |
| 1668 | bcp->bc_blkno = blkno; |
| 1669 | bcp->bc_len = len; |
| 1670 | bcp->bc_refcount = 1; |
| 1671 | bcp->bc_next = NULL; |
| 1672 | prevp->bc_next = bcp; |
| 1673 | } |
| 1674 | |
| 1675 | /* |
| 1676 | * Check to see whether the buffer being recovered has a corresponding |
| 1677 | * entry in the buffer cancel record table. If it does then return 1 |
| 1678 | * so that it will be cancelled, otherwise return 0. If the buffer is |
| 1679 | * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement |
| 1680 | * the refcount on the entry in the table and remove it from the table |
| 1681 | * if this is the last reference. |
| 1682 | * |
| 1683 | * We remove the cancel record from the table when we encounter its |
| 1684 | * last occurrence in the log so that if the same buffer is re-used |
| 1685 | * again after its last cancellation we actually replay the changes |
| 1686 | * made at that point. |
| 1687 | */ |
| 1688 | STATIC int |
| 1689 | xlog_check_buffer_cancelled( |
| 1690 | xlog_t *log, |
| 1691 | xfs_daddr_t blkno, |
| 1692 | uint len, |
| 1693 | ushort flags) |
| 1694 | { |
| 1695 | xfs_buf_cancel_t *bcp; |
| 1696 | xfs_buf_cancel_t *prevp; |
| 1697 | xfs_buf_cancel_t **bucket; |
| 1698 | |
| 1699 | if (log->l_buf_cancel_table == NULL) { |
| 1700 | /* |
| 1701 | * There is nothing in the table built in pass one, |
| 1702 | * so this buffer must not be cancelled. |
| 1703 | */ |
| 1704 | ASSERT(!(flags & XFS_BLI_CANCEL)); |
| 1705 | return 0; |
| 1706 | } |
| 1707 | |
| 1708 | bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % |
| 1709 | XLOG_BC_TABLE_SIZE]; |
| 1710 | bcp = *bucket; |
| 1711 | if (bcp == NULL) { |
| 1712 | /* |
| 1713 | * There is no corresponding entry in the table built |
| 1714 | * in pass one, so this buffer has not been cancelled. |
| 1715 | */ |
| 1716 | ASSERT(!(flags & XFS_BLI_CANCEL)); |
| 1717 | return 0; |
| 1718 | } |
| 1719 | |
| 1720 | /* |
| 1721 | * Search for an entry in the buffer cancel table that |
| 1722 | * matches our buffer. |
| 1723 | */ |
| 1724 | prevp = NULL; |
| 1725 | while (bcp != NULL) { |
| 1726 | if (bcp->bc_blkno == blkno && bcp->bc_len == len) { |
| 1727 | /* |
| 1728 | * We've go a match, so return 1 so that the |
| 1729 | * recovery of this buffer is cancelled. |
| 1730 | * If this buffer is actually a buffer cancel |
| 1731 | * log item, then decrement the refcount on the |
| 1732 | * one in the table and remove it if this is the |
| 1733 | * last reference. |
| 1734 | */ |
| 1735 | if (flags & XFS_BLI_CANCEL) { |
| 1736 | bcp->bc_refcount--; |
| 1737 | if (bcp->bc_refcount == 0) { |
| 1738 | if (prevp == NULL) { |
| 1739 | *bucket = bcp->bc_next; |
| 1740 | } else { |
| 1741 | prevp->bc_next = bcp->bc_next; |
| 1742 | } |
| 1743 | kmem_free(bcp, |
| 1744 | sizeof(xfs_buf_cancel_t)); |
| 1745 | } |
| 1746 | } |
| 1747 | return 1; |
| 1748 | } |
| 1749 | prevp = bcp; |
| 1750 | bcp = bcp->bc_next; |
| 1751 | } |
| 1752 | /* |
| 1753 | * We didn't find a corresponding entry in the table, so |
| 1754 | * return 0 so that the buffer is NOT cancelled. |
| 1755 | */ |
| 1756 | ASSERT(!(flags & XFS_BLI_CANCEL)); |
| 1757 | return 0; |
| 1758 | } |
| 1759 | |
| 1760 | STATIC int |
| 1761 | xlog_recover_do_buffer_pass2( |
| 1762 | xlog_t *log, |
| 1763 | xfs_buf_log_format_t *buf_f) |
| 1764 | { |
| 1765 | xfs_buf_log_format_v1_t *obuf_f; |
| 1766 | xfs_daddr_t blkno = 0; |
| 1767 | ushort flags = 0; |
| 1768 | uint len = 0; |
| 1769 | |
| 1770 | switch (buf_f->blf_type) { |
| 1771 | case XFS_LI_BUF: |
| 1772 | blkno = buf_f->blf_blkno; |
| 1773 | flags = buf_f->blf_flags; |
| 1774 | len = buf_f->blf_len; |
| 1775 | break; |
| 1776 | case XFS_LI_6_1_BUF: |
| 1777 | case XFS_LI_5_3_BUF: |
| 1778 | obuf_f = (xfs_buf_log_format_v1_t*)buf_f; |
| 1779 | blkno = (xfs_daddr_t) obuf_f->blf_blkno; |
| 1780 | flags = obuf_f->blf_flags; |
| 1781 | len = (xfs_daddr_t) obuf_f->blf_len; |
| 1782 | break; |
| 1783 | } |
| 1784 | |
| 1785 | return xlog_check_buffer_cancelled(log, blkno, len, flags); |
| 1786 | } |
| 1787 | |
| 1788 | /* |
| 1789 | * Perform recovery for a buffer full of inodes. In these buffers, |
| 1790 | * the only data which should be recovered is that which corresponds |
| 1791 | * to the di_next_unlinked pointers in the on disk inode structures. |
| 1792 | * The rest of the data for the inodes is always logged through the |
| 1793 | * inodes themselves rather than the inode buffer and is recovered |
| 1794 | * in xlog_recover_do_inode_trans(). |
| 1795 | * |
| 1796 | * The only time when buffers full of inodes are fully recovered is |
| 1797 | * when the buffer is full of newly allocated inodes. In this case |
| 1798 | * the buffer will not be marked as an inode buffer and so will be |
| 1799 | * sent to xlog_recover_do_reg_buffer() below during recovery. |
| 1800 | */ |
| 1801 | STATIC int |
| 1802 | xlog_recover_do_inode_buffer( |
| 1803 | xfs_mount_t *mp, |
| 1804 | xlog_recover_item_t *item, |
| 1805 | xfs_buf_t *bp, |
| 1806 | xfs_buf_log_format_t *buf_f) |
| 1807 | { |
| 1808 | int i; |
| 1809 | int item_index; |
| 1810 | int bit; |
| 1811 | int nbits; |
| 1812 | int reg_buf_offset; |
| 1813 | int reg_buf_bytes; |
| 1814 | int next_unlinked_offset; |
| 1815 | int inodes_per_buf; |
| 1816 | xfs_agino_t *logged_nextp; |
| 1817 | xfs_agino_t *buffer_nextp; |
| 1818 | xfs_buf_log_format_v1_t *obuf_f; |
| 1819 | unsigned int *data_map = NULL; |
| 1820 | unsigned int map_size = 0; |
| 1821 | |
| 1822 | switch (buf_f->blf_type) { |
| 1823 | case XFS_LI_BUF: |
| 1824 | data_map = buf_f->blf_data_map; |
| 1825 | map_size = buf_f->blf_map_size; |
| 1826 | break; |
| 1827 | case XFS_LI_6_1_BUF: |
| 1828 | case XFS_LI_5_3_BUF: |
| 1829 | obuf_f = (xfs_buf_log_format_v1_t*)buf_f; |
| 1830 | data_map = obuf_f->blf_data_map; |
| 1831 | map_size = obuf_f->blf_map_size; |
| 1832 | break; |
| 1833 | } |
| 1834 | /* |
| 1835 | * Set the variables corresponding to the current region to |
| 1836 | * 0 so that we'll initialize them on the first pass through |
| 1837 | * the loop. |
| 1838 | */ |
| 1839 | reg_buf_offset = 0; |
| 1840 | reg_buf_bytes = 0; |
| 1841 | bit = 0; |
| 1842 | nbits = 0; |
| 1843 | item_index = 0; |
| 1844 | inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; |
| 1845 | for (i = 0; i < inodes_per_buf; i++) { |
| 1846 | next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + |
| 1847 | offsetof(xfs_dinode_t, di_next_unlinked); |
| 1848 | |
| 1849 | while (next_unlinked_offset >= |
| 1850 | (reg_buf_offset + reg_buf_bytes)) { |
| 1851 | /* |
| 1852 | * The next di_next_unlinked field is beyond |
| 1853 | * the current logged region. Find the next |
| 1854 | * logged region that contains or is beyond |
| 1855 | * the current di_next_unlinked field. |
| 1856 | */ |
| 1857 | bit += nbits; |
| 1858 | bit = xfs_next_bit(data_map, map_size, bit); |
| 1859 | |
| 1860 | /* |
| 1861 | * If there are no more logged regions in the |
| 1862 | * buffer, then we're done. |
| 1863 | */ |
| 1864 | if (bit == -1) { |
| 1865 | return 0; |
| 1866 | } |
| 1867 | |
| 1868 | nbits = xfs_contig_bits(data_map, map_size, |
| 1869 | bit); |
| 1870 | ASSERT(nbits > 0); |
| 1871 | reg_buf_offset = bit << XFS_BLI_SHIFT; |
| 1872 | reg_buf_bytes = nbits << XFS_BLI_SHIFT; |
| 1873 | item_index++; |
| 1874 | } |
| 1875 | |
| 1876 | /* |
| 1877 | * If the current logged region starts after the current |
| 1878 | * di_next_unlinked field, then move on to the next |
| 1879 | * di_next_unlinked field. |
| 1880 | */ |
| 1881 | if (next_unlinked_offset < reg_buf_offset) { |
| 1882 | continue; |
| 1883 | } |
| 1884 | |
| 1885 | ASSERT(item->ri_buf[item_index].i_addr != NULL); |
| 1886 | ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); |
| 1887 | ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); |
| 1888 | |
| 1889 | /* |
| 1890 | * The current logged region contains a copy of the |
| 1891 | * current di_next_unlinked field. Extract its value |
| 1892 | * and copy it to the buffer copy. |
| 1893 | */ |
| 1894 | logged_nextp = (xfs_agino_t *) |
| 1895 | ((char *)(item->ri_buf[item_index].i_addr) + |
| 1896 | (next_unlinked_offset - reg_buf_offset)); |
| 1897 | if (unlikely(*logged_nextp == 0)) { |
| 1898 | xfs_fs_cmn_err(CE_ALERT, mp, |
| 1899 | "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", |
| 1900 | item, bp); |
| 1901 | XFS_ERROR_REPORT("xlog_recover_do_inode_buf", |
| 1902 | XFS_ERRLEVEL_LOW, mp); |
| 1903 | return XFS_ERROR(EFSCORRUPTED); |
| 1904 | } |
| 1905 | |
| 1906 | buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, |
| 1907 | next_unlinked_offset); |
| 1908 | INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp); |
| 1909 | } |
| 1910 | |
| 1911 | return 0; |
| 1912 | } |
| 1913 | |
| 1914 | /* |
| 1915 | * Perform a 'normal' buffer recovery. Each logged region of the |
| 1916 | * buffer should be copied over the corresponding region in the |
| 1917 | * given buffer. The bitmap in the buf log format structure indicates |
| 1918 | * where to place the logged data. |
| 1919 | */ |
| 1920 | /*ARGSUSED*/ |
| 1921 | STATIC void |
| 1922 | xlog_recover_do_reg_buffer( |
| 1923 | xfs_mount_t *mp, |
| 1924 | xlog_recover_item_t *item, |
| 1925 | xfs_buf_t *bp, |
| 1926 | xfs_buf_log_format_t *buf_f) |
| 1927 | { |
| 1928 | int i; |
| 1929 | int bit; |
| 1930 | int nbits; |
| 1931 | xfs_buf_log_format_v1_t *obuf_f; |
| 1932 | unsigned int *data_map = NULL; |
| 1933 | unsigned int map_size = 0; |
| 1934 | int error; |
| 1935 | |
| 1936 | switch (buf_f->blf_type) { |
| 1937 | case XFS_LI_BUF: |
| 1938 | data_map = buf_f->blf_data_map; |
| 1939 | map_size = buf_f->blf_map_size; |
| 1940 | break; |
| 1941 | case XFS_LI_6_1_BUF: |
| 1942 | case XFS_LI_5_3_BUF: |
| 1943 | obuf_f = (xfs_buf_log_format_v1_t*)buf_f; |
| 1944 | data_map = obuf_f->blf_data_map; |
| 1945 | map_size = obuf_f->blf_map_size; |
| 1946 | break; |
| 1947 | } |
| 1948 | bit = 0; |
| 1949 | i = 1; /* 0 is the buf format structure */ |
| 1950 | while (1) { |
| 1951 | bit = xfs_next_bit(data_map, map_size, bit); |
| 1952 | if (bit == -1) |
| 1953 | break; |
| 1954 | nbits = xfs_contig_bits(data_map, map_size, bit); |
| 1955 | ASSERT(nbits > 0); |
| 1956 | ASSERT(item->ri_buf[i].i_addr != 0); |
| 1957 | ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); |
| 1958 | ASSERT(XFS_BUF_COUNT(bp) >= |
| 1959 | ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); |
| 1960 | |
| 1961 | /* |
| 1962 | * Do a sanity check if this is a dquot buffer. Just checking |
| 1963 | * the first dquot in the buffer should do. XXXThis is |
| 1964 | * probably a good thing to do for other buf types also. |
| 1965 | */ |
| 1966 | error = 0; |
| 1967 | if (buf_f->blf_flags & (XFS_BLI_UDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { |
| 1968 | error = xfs_qm_dqcheck((xfs_disk_dquot_t *) |
| 1969 | item->ri_buf[i].i_addr, |
| 1970 | -1, 0, XFS_QMOPT_DOWARN, |
| 1971 | "dquot_buf_recover"); |
| 1972 | } |
| 1973 | if (!error) |
| 1974 | memcpy(xfs_buf_offset(bp, |
| 1975 | (uint)bit << XFS_BLI_SHIFT), /* dest */ |
| 1976 | item->ri_buf[i].i_addr, /* source */ |
| 1977 | nbits<<XFS_BLI_SHIFT); /* length */ |
| 1978 | i++; |
| 1979 | bit += nbits; |
| 1980 | } |
| 1981 | |
| 1982 | /* Shouldn't be any more regions */ |
| 1983 | ASSERT(i == item->ri_total); |
| 1984 | } |
| 1985 | |
| 1986 | /* |
| 1987 | * Do some primitive error checking on ondisk dquot data structures. |
| 1988 | */ |
| 1989 | int |
| 1990 | xfs_qm_dqcheck( |
| 1991 | xfs_disk_dquot_t *ddq, |
| 1992 | xfs_dqid_t id, |
| 1993 | uint type, /* used only when IO_dorepair is true */ |
| 1994 | uint flags, |
| 1995 | char *str) |
| 1996 | { |
| 1997 | xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; |
| 1998 | int errs = 0; |
| 1999 | |
| 2000 | /* |
| 2001 | * We can encounter an uninitialized dquot buffer for 2 reasons: |
| 2002 | * 1. If we crash while deleting the quotainode(s), and those blks got |
| 2003 | * used for user data. This is because we take the path of regular |
| 2004 | * file deletion; however, the size field of quotainodes is never |
| 2005 | * updated, so all the tricks that we play in itruncate_finish |
| 2006 | * don't quite matter. |
| 2007 | * |
| 2008 | * 2. We don't play the quota buffers when there's a quotaoff logitem. |
| 2009 | * But the allocation will be replayed so we'll end up with an |
| 2010 | * uninitialized quota block. |
| 2011 | * |
| 2012 | * This is all fine; things are still consistent, and we haven't lost |
| 2013 | * any quota information. Just don't complain about bad dquot blks. |
| 2014 | */ |
| 2015 | if (INT_GET(ddq->d_magic, ARCH_CONVERT) != XFS_DQUOT_MAGIC) { |
| 2016 | if (flags & XFS_QMOPT_DOWARN) |
| 2017 | cmn_err(CE_ALERT, |
| 2018 | "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", |
| 2019 | str, id, |
| 2020 | INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_MAGIC); |
| 2021 | errs++; |
| 2022 | } |
| 2023 | if (INT_GET(ddq->d_version, ARCH_CONVERT) != XFS_DQUOT_VERSION) { |
| 2024 | if (flags & XFS_QMOPT_DOWARN) |
| 2025 | cmn_err(CE_ALERT, |
| 2026 | "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", |
| 2027 | str, id, |
| 2028 | INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_VERSION); |
| 2029 | errs++; |
| 2030 | } |
| 2031 | |
| 2032 | if (INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_USER && |
| 2033 | INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_GROUP) { |
| 2034 | if (flags & XFS_QMOPT_DOWARN) |
| 2035 | cmn_err(CE_ALERT, |
| 2036 | "%s : XFS dquot ID 0x%x, unknown flags 0x%x", |
| 2037 | str, id, INT_GET(ddq->d_flags, ARCH_CONVERT)); |
| 2038 | errs++; |
| 2039 | } |
| 2040 | |
| 2041 | if (id != -1 && id != INT_GET(ddq->d_id, ARCH_CONVERT)) { |
| 2042 | if (flags & XFS_QMOPT_DOWARN) |
| 2043 | cmn_err(CE_ALERT, |
| 2044 | "%s : ondisk-dquot 0x%p, ID mismatch: " |
| 2045 | "0x%x expected, found id 0x%x", |
| 2046 | str, ddq, id, INT_GET(ddq->d_id, ARCH_CONVERT)); |
| 2047 | errs++; |
| 2048 | } |
| 2049 | |
| 2050 | if (!errs && ddq->d_id) { |
| 2051 | if (INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT) && |
| 2052 | INT_GET(ddq->d_bcount, ARCH_CONVERT) >= |
| 2053 | INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT)) { |
| 2054 | if (!ddq->d_btimer) { |
| 2055 | if (flags & XFS_QMOPT_DOWARN) |
| 2056 | cmn_err(CE_ALERT, |
| 2057 | "%s : Dquot ID 0x%x (0x%p) " |
| 2058 | "BLK TIMER NOT STARTED", |
| 2059 | str, (int) |
| 2060 | INT_GET(ddq->d_id, ARCH_CONVERT), ddq); |
| 2061 | errs++; |
| 2062 | } |
| 2063 | } |
| 2064 | if (INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT) && |
| 2065 | INT_GET(ddq->d_icount, ARCH_CONVERT) >= |
| 2066 | INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT)) { |
| 2067 | if (!ddq->d_itimer) { |
| 2068 | if (flags & XFS_QMOPT_DOWARN) |
| 2069 | cmn_err(CE_ALERT, |
| 2070 | "%s : Dquot ID 0x%x (0x%p) " |
| 2071 | "INODE TIMER NOT STARTED", |
| 2072 | str, (int) |
| 2073 | INT_GET(ddq->d_id, ARCH_CONVERT), ddq); |
| 2074 | errs++; |
| 2075 | } |
| 2076 | } |
| 2077 | if (INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT) && |
| 2078 | INT_GET(ddq->d_rtbcount, ARCH_CONVERT) >= |
| 2079 | INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT)) { |
| 2080 | if (!ddq->d_rtbtimer) { |
| 2081 | if (flags & XFS_QMOPT_DOWARN) |
| 2082 | cmn_err(CE_ALERT, |
| 2083 | "%s : Dquot ID 0x%x (0x%p) " |
| 2084 | "RTBLK TIMER NOT STARTED", |
| 2085 | str, (int) |
| 2086 | INT_GET(ddq->d_id, ARCH_CONVERT), ddq); |
| 2087 | errs++; |
| 2088 | } |
| 2089 | } |
| 2090 | } |
| 2091 | |
| 2092 | if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) |
| 2093 | return errs; |
| 2094 | |
| 2095 | if (flags & XFS_QMOPT_DOWARN) |
| 2096 | cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); |
| 2097 | |
| 2098 | /* |
| 2099 | * Typically, a repair is only requested by quotacheck. |
| 2100 | */ |
| 2101 | ASSERT(id != -1); |
| 2102 | ASSERT(flags & XFS_QMOPT_DQREPAIR); |
| 2103 | memset(d, 0, sizeof(xfs_dqblk_t)); |
| 2104 | INT_SET(d->dd_diskdq.d_magic, ARCH_CONVERT, XFS_DQUOT_MAGIC); |
| 2105 | INT_SET(d->dd_diskdq.d_version, ARCH_CONVERT, XFS_DQUOT_VERSION); |
| 2106 | INT_SET(d->dd_diskdq.d_id, ARCH_CONVERT, id); |
| 2107 | INT_SET(d->dd_diskdq.d_flags, ARCH_CONVERT, type); |
| 2108 | |
| 2109 | return errs; |
| 2110 | } |
| 2111 | |
| 2112 | /* |
| 2113 | * Perform a dquot buffer recovery. |
| 2114 | * Simple algorithm: if we have found a QUOTAOFF logitem of the same type |
| 2115 | * (ie. USR or GRP), then just toss this buffer away; don't recover it. |
| 2116 | * Else, treat it as a regular buffer and do recovery. |
| 2117 | */ |
| 2118 | STATIC void |
| 2119 | xlog_recover_do_dquot_buffer( |
| 2120 | xfs_mount_t *mp, |
| 2121 | xlog_t *log, |
| 2122 | xlog_recover_item_t *item, |
| 2123 | xfs_buf_t *bp, |
| 2124 | xfs_buf_log_format_t *buf_f) |
| 2125 | { |
| 2126 | uint type; |
| 2127 | |
| 2128 | /* |
| 2129 | * Filesystems are required to send in quota flags at mount time. |
| 2130 | */ |
| 2131 | if (mp->m_qflags == 0) { |
| 2132 | return; |
| 2133 | } |
| 2134 | |
| 2135 | type = 0; |
| 2136 | if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) |
| 2137 | type |= XFS_DQ_USER; |
| 2138 | if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) |
| 2139 | type |= XFS_DQ_GROUP; |
| 2140 | /* |
| 2141 | * This type of quotas was turned off, so ignore this buffer |
| 2142 | */ |
| 2143 | if (log->l_quotaoffs_flag & type) |
| 2144 | return; |
| 2145 | |
| 2146 | xlog_recover_do_reg_buffer(mp, item, bp, buf_f); |
| 2147 | } |
| 2148 | |
| 2149 | /* |
| 2150 | * This routine replays a modification made to a buffer at runtime. |
| 2151 | * There are actually two types of buffer, regular and inode, which |
| 2152 | * are handled differently. Inode buffers are handled differently |
| 2153 | * in that we only recover a specific set of data from them, namely |
| 2154 | * the inode di_next_unlinked fields. This is because all other inode |
| 2155 | * data is actually logged via inode records and any data we replay |
| 2156 | * here which overlaps that may be stale. |
| 2157 | * |
| 2158 | * When meta-data buffers are freed at run time we log a buffer item |
| 2159 | * with the XFS_BLI_CANCEL bit set to indicate that previous copies |
| 2160 | * of the buffer in the log should not be replayed at recovery time. |
| 2161 | * This is so that if the blocks covered by the buffer are reused for |
| 2162 | * file data before we crash we don't end up replaying old, freed |
| 2163 | * meta-data into a user's file. |
| 2164 | * |
| 2165 | * To handle the cancellation of buffer log items, we make two passes |
| 2166 | * over the log during recovery. During the first we build a table of |
| 2167 | * those buffers which have been cancelled, and during the second we |
| 2168 | * only replay those buffers which do not have corresponding cancel |
| 2169 | * records in the table. See xlog_recover_do_buffer_pass[1,2] above |
| 2170 | * for more details on the implementation of the table of cancel records. |
| 2171 | */ |
| 2172 | STATIC int |
| 2173 | xlog_recover_do_buffer_trans( |
| 2174 | xlog_t *log, |
| 2175 | xlog_recover_item_t *item, |
| 2176 | int pass) |
| 2177 | { |
| 2178 | xfs_buf_log_format_t *buf_f; |
| 2179 | xfs_buf_log_format_v1_t *obuf_f; |
| 2180 | xfs_mount_t *mp; |
| 2181 | xfs_buf_t *bp; |
| 2182 | int error; |
| 2183 | int cancel; |
| 2184 | xfs_daddr_t blkno; |
| 2185 | int len; |
| 2186 | ushort flags; |
| 2187 | |
| 2188 | buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; |
| 2189 | |
| 2190 | if (pass == XLOG_RECOVER_PASS1) { |
| 2191 | /* |
| 2192 | * In this pass we're only looking for buf items |
| 2193 | * with the XFS_BLI_CANCEL bit set. |
| 2194 | */ |
| 2195 | xlog_recover_do_buffer_pass1(log, buf_f); |
| 2196 | return 0; |
| 2197 | } else { |
| 2198 | /* |
| 2199 | * In this pass we want to recover all the buffers |
| 2200 | * which have not been cancelled and are not |
| 2201 | * cancellation buffers themselves. The routine |
| 2202 | * we call here will tell us whether or not to |
| 2203 | * continue with the replay of this buffer. |
| 2204 | */ |
| 2205 | cancel = xlog_recover_do_buffer_pass2(log, buf_f); |
| 2206 | if (cancel) { |
| 2207 | return 0; |
| 2208 | } |
| 2209 | } |
| 2210 | switch (buf_f->blf_type) { |
| 2211 | case XFS_LI_BUF: |
| 2212 | blkno = buf_f->blf_blkno; |
| 2213 | len = buf_f->blf_len; |
| 2214 | flags = buf_f->blf_flags; |
| 2215 | break; |
| 2216 | case XFS_LI_6_1_BUF: |
| 2217 | case XFS_LI_5_3_BUF: |
| 2218 | obuf_f = (xfs_buf_log_format_v1_t*)buf_f; |
| 2219 | blkno = obuf_f->blf_blkno; |
| 2220 | len = obuf_f->blf_len; |
| 2221 | flags = obuf_f->blf_flags; |
| 2222 | break; |
| 2223 | default: |
| 2224 | xfs_fs_cmn_err(CE_ALERT, log->l_mp, |
| 2225 | "xfs_log_recover: unknown buffer type 0x%x, dev %s", |
| 2226 | buf_f->blf_type, XFS_BUFTARG_NAME(log->l_targ)); |
| 2227 | XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", |
| 2228 | XFS_ERRLEVEL_LOW, log->l_mp); |
| 2229 | return XFS_ERROR(EFSCORRUPTED); |
| 2230 | } |
| 2231 | |
| 2232 | mp = log->l_mp; |
| 2233 | if (flags & XFS_BLI_INODE_BUF) { |
| 2234 | bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, |
| 2235 | XFS_BUF_LOCK); |
| 2236 | } else { |
| 2237 | bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); |
| 2238 | } |
| 2239 | if (XFS_BUF_ISERROR(bp)) { |
| 2240 | xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, |
| 2241 | bp, blkno); |
| 2242 | error = XFS_BUF_GETERROR(bp); |
| 2243 | xfs_buf_relse(bp); |
| 2244 | return error; |
| 2245 | } |
| 2246 | |
| 2247 | error = 0; |
| 2248 | if (flags & XFS_BLI_INODE_BUF) { |
| 2249 | error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); |
| 2250 | } else if (flags & (XFS_BLI_UDQUOT_BUF | XFS_BLI_GDQUOT_BUF)) { |
| 2251 | xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); |
| 2252 | } else { |
| 2253 | xlog_recover_do_reg_buffer(mp, item, bp, buf_f); |
| 2254 | } |
| 2255 | if (error) |
| 2256 | return XFS_ERROR(error); |
| 2257 | |
| 2258 | /* |
| 2259 | * Perform delayed write on the buffer. Asynchronous writes will be |
| 2260 | * slower when taking into account all the buffers to be flushed. |
| 2261 | * |
| 2262 | * Also make sure that only inode buffers with good sizes stay in |
| 2263 | * the buffer cache. The kernel moves inodes in buffers of 1 block |
| 2264 | * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode |
| 2265 | * buffers in the log can be a different size if the log was generated |
| 2266 | * by an older kernel using unclustered inode buffers or a newer kernel |
| 2267 | * running with a different inode cluster size. Regardless, if the |
| 2268 | * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) |
| 2269 | * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep |
| 2270 | * the buffer out of the buffer cache so that the buffer won't |
| 2271 | * overlap with future reads of those inodes. |
| 2272 | */ |
| 2273 | if (XFS_DINODE_MAGIC == |
| 2274 | INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) && |
| 2275 | (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, |
| 2276 | (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { |
| 2277 | XFS_BUF_STALE(bp); |
| 2278 | error = xfs_bwrite(mp, bp); |
| 2279 | } else { |
| 2280 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || |
| 2281 | XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); |
| 2282 | XFS_BUF_SET_FSPRIVATE(bp, mp); |
| 2283 | XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); |
| 2284 | xfs_bdwrite(mp, bp); |
| 2285 | } |
| 2286 | |
| 2287 | return (error); |
| 2288 | } |
| 2289 | |
| 2290 | STATIC int |
| 2291 | xlog_recover_do_inode_trans( |
| 2292 | xlog_t *log, |
| 2293 | xlog_recover_item_t *item, |
| 2294 | int pass) |
| 2295 | { |
| 2296 | xfs_inode_log_format_t *in_f; |
| 2297 | xfs_mount_t *mp; |
| 2298 | xfs_buf_t *bp; |
| 2299 | xfs_imap_t imap; |
| 2300 | xfs_dinode_t *dip; |
| 2301 | xfs_ino_t ino; |
| 2302 | int len; |
| 2303 | xfs_caddr_t src; |
| 2304 | xfs_caddr_t dest; |
| 2305 | int error; |
| 2306 | int attr_index; |
| 2307 | uint fields; |
| 2308 | xfs_dinode_core_t *dicp; |
| 2309 | |
| 2310 | if (pass == XLOG_RECOVER_PASS1) { |
| 2311 | return 0; |
| 2312 | } |
| 2313 | |
| 2314 | in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; |
| 2315 | ino = in_f->ilf_ino; |
| 2316 | mp = log->l_mp; |
| 2317 | if (ITEM_TYPE(item) == XFS_LI_INODE) { |
| 2318 | imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno; |
| 2319 | imap.im_len = in_f->ilf_len; |
| 2320 | imap.im_boffset = in_f->ilf_boffset; |
| 2321 | } else { |
| 2322 | /* |
| 2323 | * It's an old inode format record. We don't know where |
| 2324 | * its cluster is located on disk, and we can't allow |
| 2325 | * xfs_imap() to figure it out because the inode btrees |
| 2326 | * are not ready to be used. Therefore do not pass the |
| 2327 | * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give |
| 2328 | * us only the single block in which the inode lives |
| 2329 | * rather than its cluster, so we must make sure to |
| 2330 | * invalidate the buffer when we write it out below. |
| 2331 | */ |
| 2332 | imap.im_blkno = 0; |
| 2333 | xfs_imap(log->l_mp, NULL, ino, &imap, 0); |
| 2334 | } |
| 2335 | |
| 2336 | /* |
| 2337 | * Inode buffers can be freed, look out for it, |
| 2338 | * and do not replay the inode. |
| 2339 | */ |
| 2340 | if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) |
| 2341 | return 0; |
| 2342 | |
| 2343 | bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len, |
| 2344 | XFS_BUF_LOCK); |
| 2345 | if (XFS_BUF_ISERROR(bp)) { |
| 2346 | xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, |
| 2347 | bp, imap.im_blkno); |
| 2348 | error = XFS_BUF_GETERROR(bp); |
| 2349 | xfs_buf_relse(bp); |
| 2350 | return error; |
| 2351 | } |
| 2352 | error = 0; |
| 2353 | ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); |
| 2354 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); |
| 2355 | |
| 2356 | /* |
| 2357 | * Make sure the place we're flushing out to really looks |
| 2358 | * like an inode! |
| 2359 | */ |
| 2360 | if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) { |
| 2361 | xfs_buf_relse(bp); |
| 2362 | xfs_fs_cmn_err(CE_ALERT, mp, |
| 2363 | "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", |
| 2364 | dip, bp, ino); |
| 2365 | XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", |
| 2366 | XFS_ERRLEVEL_LOW, mp); |
| 2367 | return XFS_ERROR(EFSCORRUPTED); |
| 2368 | } |
| 2369 | dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr); |
| 2370 | if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { |
| 2371 | xfs_buf_relse(bp); |
| 2372 | xfs_fs_cmn_err(CE_ALERT, mp, |
| 2373 | "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", |
| 2374 | item, ino); |
| 2375 | XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", |
| 2376 | XFS_ERRLEVEL_LOW, mp); |
| 2377 | return XFS_ERROR(EFSCORRUPTED); |
| 2378 | } |
| 2379 | |
| 2380 | /* Skip replay when the on disk inode is newer than the log one */ |
| 2381 | if (dicp->di_flushiter < |
| 2382 | INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) { |
| 2383 | /* |
| 2384 | * Deal with the wrap case, DI_MAX_FLUSH is less |
| 2385 | * than smaller numbers |
| 2386 | */ |
| 2387 | if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT) |
| 2388 | == DI_MAX_FLUSH) && |
| 2389 | (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) { |
| 2390 | /* do nothing */ |
| 2391 | } else { |
| 2392 | xfs_buf_relse(bp); |
| 2393 | return 0; |
| 2394 | } |
| 2395 | } |
| 2396 | /* Take the opportunity to reset the flush iteration count */ |
| 2397 | dicp->di_flushiter = 0; |
| 2398 | |
| 2399 | if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { |
| 2400 | if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && |
| 2401 | (dicp->di_format != XFS_DINODE_FMT_BTREE)) { |
| 2402 | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", |
| 2403 | XFS_ERRLEVEL_LOW, mp, dicp); |
| 2404 | xfs_buf_relse(bp); |
| 2405 | xfs_fs_cmn_err(CE_ALERT, mp, |
| 2406 | "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", |
| 2407 | item, dip, bp, ino); |
| 2408 | return XFS_ERROR(EFSCORRUPTED); |
| 2409 | } |
| 2410 | } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { |
| 2411 | if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && |
| 2412 | (dicp->di_format != XFS_DINODE_FMT_BTREE) && |
| 2413 | (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { |
| 2414 | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", |
| 2415 | XFS_ERRLEVEL_LOW, mp, dicp); |
| 2416 | xfs_buf_relse(bp); |
| 2417 | xfs_fs_cmn_err(CE_ALERT, mp, |
| 2418 | "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", |
| 2419 | item, dip, bp, ino); |
| 2420 | return XFS_ERROR(EFSCORRUPTED); |
| 2421 | } |
| 2422 | } |
| 2423 | if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ |
| 2424 | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", |
| 2425 | XFS_ERRLEVEL_LOW, mp, dicp); |
| 2426 | xfs_buf_relse(bp); |
| 2427 | xfs_fs_cmn_err(CE_ALERT, mp, |
| 2428 | "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", |
| 2429 | item, dip, bp, ino, |
| 2430 | dicp->di_nextents + dicp->di_anextents, |
| 2431 | dicp->di_nblocks); |
| 2432 | return XFS_ERROR(EFSCORRUPTED); |
| 2433 | } |
| 2434 | if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { |
| 2435 | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", |
| 2436 | XFS_ERRLEVEL_LOW, mp, dicp); |
| 2437 | xfs_buf_relse(bp); |
| 2438 | xfs_fs_cmn_err(CE_ALERT, mp, |
| 2439 | "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", |
| 2440 | item, dip, bp, ino, dicp->di_forkoff); |
| 2441 | return XFS_ERROR(EFSCORRUPTED); |
| 2442 | } |
| 2443 | if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) { |
| 2444 | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", |
| 2445 | XFS_ERRLEVEL_LOW, mp, dicp); |
| 2446 | xfs_buf_relse(bp); |
| 2447 | xfs_fs_cmn_err(CE_ALERT, mp, |
| 2448 | "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", |
| 2449 | item->ri_buf[1].i_len, item); |
| 2450 | return XFS_ERROR(EFSCORRUPTED); |
| 2451 | } |
| 2452 | |
| 2453 | /* The core is in in-core format */ |
| 2454 | xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, |
| 2455 | (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1); |
| 2456 | |
| 2457 | /* the rest is in on-disk format */ |
| 2458 | if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) { |
| 2459 | memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t), |
| 2460 | item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t), |
| 2461 | item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t)); |
| 2462 | } |
| 2463 | |
| 2464 | fields = in_f->ilf_fields; |
| 2465 | switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { |
| 2466 | case XFS_ILOG_DEV: |
| 2467 | INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev); |
| 2468 | |
| 2469 | break; |
| 2470 | case XFS_ILOG_UUID: |
| 2471 | dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid; |
| 2472 | break; |
| 2473 | } |
| 2474 | |
| 2475 | if (in_f->ilf_size == 2) |
| 2476 | goto write_inode_buffer; |
| 2477 | len = item->ri_buf[2].i_len; |
| 2478 | src = item->ri_buf[2].i_addr; |
| 2479 | ASSERT(in_f->ilf_size <= 4); |
| 2480 | ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); |
| 2481 | ASSERT(!(fields & XFS_ILOG_DFORK) || |
| 2482 | (len == in_f->ilf_dsize)); |
| 2483 | |
| 2484 | switch (fields & XFS_ILOG_DFORK) { |
| 2485 | case XFS_ILOG_DDATA: |
| 2486 | case XFS_ILOG_DEXT: |
| 2487 | memcpy(&dip->di_u, src, len); |
| 2488 | break; |
| 2489 | |
| 2490 | case XFS_ILOG_DBROOT: |
| 2491 | xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, |
| 2492 | &(dip->di_u.di_bmbt), |
| 2493 | XFS_DFORK_DSIZE(dip, mp)); |
| 2494 | break; |
| 2495 | |
| 2496 | default: |
| 2497 | /* |
| 2498 | * There are no data fork flags set. |
| 2499 | */ |
| 2500 | ASSERT((fields & XFS_ILOG_DFORK) == 0); |
| 2501 | break; |
| 2502 | } |
| 2503 | |
| 2504 | /* |
| 2505 | * If we logged any attribute data, recover it. There may or |
| 2506 | * may not have been any other non-core data logged in this |
| 2507 | * transaction. |
| 2508 | */ |
| 2509 | if (in_f->ilf_fields & XFS_ILOG_AFORK) { |
| 2510 | if (in_f->ilf_fields & XFS_ILOG_DFORK) { |
| 2511 | attr_index = 3; |
| 2512 | } else { |
| 2513 | attr_index = 2; |
| 2514 | } |
| 2515 | len = item->ri_buf[attr_index].i_len; |
| 2516 | src = item->ri_buf[attr_index].i_addr; |
| 2517 | ASSERT(len == in_f->ilf_asize); |
| 2518 | |
| 2519 | switch (in_f->ilf_fields & XFS_ILOG_AFORK) { |
| 2520 | case XFS_ILOG_ADATA: |
| 2521 | case XFS_ILOG_AEXT: |
| 2522 | dest = XFS_DFORK_APTR(dip); |
| 2523 | ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); |
| 2524 | memcpy(dest, src, len); |
| 2525 | break; |
| 2526 | |
| 2527 | case XFS_ILOG_ABROOT: |
| 2528 | dest = XFS_DFORK_APTR(dip); |
| 2529 | xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, |
| 2530 | (xfs_bmdr_block_t*)dest, |
| 2531 | XFS_DFORK_ASIZE(dip, mp)); |
| 2532 | break; |
| 2533 | |
| 2534 | default: |
| 2535 | xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); |
| 2536 | ASSERT(0); |
| 2537 | xfs_buf_relse(bp); |
| 2538 | return XFS_ERROR(EIO); |
| 2539 | } |
| 2540 | } |
| 2541 | |
| 2542 | write_inode_buffer: |
| 2543 | if (ITEM_TYPE(item) == XFS_LI_INODE) { |
| 2544 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || |
| 2545 | XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); |
| 2546 | XFS_BUF_SET_FSPRIVATE(bp, mp); |
| 2547 | XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); |
| 2548 | xfs_bdwrite(mp, bp); |
| 2549 | } else { |
| 2550 | XFS_BUF_STALE(bp); |
| 2551 | error = xfs_bwrite(mp, bp); |
| 2552 | } |
| 2553 | |
| 2554 | return (error); |
| 2555 | } |
| 2556 | |
| 2557 | /* |
| 2558 | * Recover QUOTAOFF records. We simply make a note of it in the xlog_t |
| 2559 | * structure, so that we know not to do any dquot item or dquot buffer recovery, |
| 2560 | * of that type. |
| 2561 | */ |
| 2562 | STATIC int |
| 2563 | xlog_recover_do_quotaoff_trans( |
| 2564 | xlog_t *log, |
| 2565 | xlog_recover_item_t *item, |
| 2566 | int pass) |
| 2567 | { |
| 2568 | xfs_qoff_logformat_t *qoff_f; |
| 2569 | |
| 2570 | if (pass == XLOG_RECOVER_PASS2) { |
| 2571 | return (0); |
| 2572 | } |
| 2573 | |
| 2574 | qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; |
| 2575 | ASSERT(qoff_f); |
| 2576 | |
| 2577 | /* |
| 2578 | * The logitem format's flag tells us if this was user quotaoff, |
| 2579 | * group quotaoff or both. |
| 2580 | */ |
| 2581 | if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) |
| 2582 | log->l_quotaoffs_flag |= XFS_DQ_USER; |
| 2583 | if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) |
| 2584 | log->l_quotaoffs_flag |= XFS_DQ_GROUP; |
| 2585 | |
| 2586 | return (0); |
| 2587 | } |
| 2588 | |
| 2589 | /* |
| 2590 | * Recover a dquot record |
| 2591 | */ |
| 2592 | STATIC int |
| 2593 | xlog_recover_do_dquot_trans( |
| 2594 | xlog_t *log, |
| 2595 | xlog_recover_item_t *item, |
| 2596 | int pass) |
| 2597 | { |
| 2598 | xfs_mount_t *mp; |
| 2599 | xfs_buf_t *bp; |
| 2600 | struct xfs_disk_dquot *ddq, *recddq; |
| 2601 | int error; |
| 2602 | xfs_dq_logformat_t *dq_f; |
| 2603 | uint type; |
| 2604 | |
| 2605 | if (pass == XLOG_RECOVER_PASS1) { |
| 2606 | return 0; |
| 2607 | } |
| 2608 | mp = log->l_mp; |
| 2609 | |
| 2610 | /* |
| 2611 | * Filesystems are required to send in quota flags at mount time. |
| 2612 | */ |
| 2613 | if (mp->m_qflags == 0) |
| 2614 | return (0); |
| 2615 | |
| 2616 | recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; |
| 2617 | ASSERT(recddq); |
| 2618 | /* |
| 2619 | * This type of quotas was turned off, so ignore this record. |
| 2620 | */ |
| 2621 | type = INT_GET(recddq->d_flags, ARCH_CONVERT) & |
| 2622 | (XFS_DQ_USER | XFS_DQ_GROUP); |
| 2623 | ASSERT(type); |
| 2624 | if (log->l_quotaoffs_flag & type) |
| 2625 | return (0); |
| 2626 | |
| 2627 | /* |
| 2628 | * At this point we know that quota was _not_ turned off. |
| 2629 | * Since the mount flags are not indicating to us otherwise, this |
| 2630 | * must mean that quota is on, and the dquot needs to be replayed. |
| 2631 | * Remember that we may not have fully recovered the superblock yet, |
| 2632 | * so we can't do the usual trick of looking at the SB quota bits. |
| 2633 | * |
| 2634 | * The other possibility, of course, is that the quota subsystem was |
| 2635 | * removed since the last mount - ENOSYS. |
| 2636 | */ |
| 2637 | dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; |
| 2638 | ASSERT(dq_f); |
| 2639 | if ((error = xfs_qm_dqcheck(recddq, |
| 2640 | dq_f->qlf_id, |
| 2641 | 0, XFS_QMOPT_DOWARN, |
| 2642 | "xlog_recover_do_dquot_trans (log copy)"))) { |
| 2643 | return XFS_ERROR(EIO); |
| 2644 | } |
| 2645 | ASSERT(dq_f->qlf_len == 1); |
| 2646 | |
| 2647 | error = xfs_read_buf(mp, mp->m_ddev_targp, |
| 2648 | dq_f->qlf_blkno, |
| 2649 | XFS_FSB_TO_BB(mp, dq_f->qlf_len), |
| 2650 | 0, &bp); |
| 2651 | if (error) { |
| 2652 | xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, |
| 2653 | bp, dq_f->qlf_blkno); |
| 2654 | return error; |
| 2655 | } |
| 2656 | ASSERT(bp); |
| 2657 | ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); |
| 2658 | |
| 2659 | /* |
| 2660 | * At least the magic num portion should be on disk because this |
| 2661 | * was among a chunk of dquots created earlier, and we did some |
| 2662 | * minimal initialization then. |
| 2663 | */ |
| 2664 | if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, |
| 2665 | "xlog_recover_do_dquot_trans")) { |
| 2666 | xfs_buf_relse(bp); |
| 2667 | return XFS_ERROR(EIO); |
| 2668 | } |
| 2669 | |
| 2670 | memcpy(ddq, recddq, item->ri_buf[1].i_len); |
| 2671 | |
| 2672 | ASSERT(dq_f->qlf_size == 2); |
| 2673 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || |
| 2674 | XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); |
| 2675 | XFS_BUF_SET_FSPRIVATE(bp, mp); |
| 2676 | XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); |
| 2677 | xfs_bdwrite(mp, bp); |
| 2678 | |
| 2679 | return (0); |
| 2680 | } |
| 2681 | |
| 2682 | /* |
| 2683 | * This routine is called to create an in-core extent free intent |
| 2684 | * item from the efi format structure which was logged on disk. |
| 2685 | * It allocates an in-core efi, copies the extents from the format |
| 2686 | * structure into it, and adds the efi to the AIL with the given |
| 2687 | * LSN. |
| 2688 | */ |
| 2689 | STATIC void |
| 2690 | xlog_recover_do_efi_trans( |
| 2691 | xlog_t *log, |
| 2692 | xlog_recover_item_t *item, |
| 2693 | xfs_lsn_t lsn, |
| 2694 | int pass) |
| 2695 | { |
| 2696 | xfs_mount_t *mp; |
| 2697 | xfs_efi_log_item_t *efip; |
| 2698 | xfs_efi_log_format_t *efi_formatp; |
| 2699 | SPLDECL(s); |
| 2700 | |
| 2701 | if (pass == XLOG_RECOVER_PASS1) { |
| 2702 | return; |
| 2703 | } |
| 2704 | |
| 2705 | efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; |
| 2706 | ASSERT(item->ri_buf[0].i_len == |
| 2707 | (sizeof(xfs_efi_log_format_t) + |
| 2708 | ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)))); |
| 2709 | |
| 2710 | mp = log->l_mp; |
| 2711 | efip = xfs_efi_init(mp, efi_formatp->efi_nextents); |
| 2712 | memcpy((char *)&(efip->efi_format), (char *)efi_formatp, |
| 2713 | sizeof(xfs_efi_log_format_t) + |
| 2714 | ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))); |
| 2715 | efip->efi_next_extent = efi_formatp->efi_nextents; |
| 2716 | efip->efi_flags |= XFS_EFI_COMMITTED; |
| 2717 | |
| 2718 | AIL_LOCK(mp,s); |
| 2719 | /* |
| 2720 | * xfs_trans_update_ail() drops the AIL lock. |
| 2721 | */ |
| 2722 | xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s); |
| 2723 | } |
| 2724 | |
| 2725 | |
| 2726 | /* |
| 2727 | * This routine is called when an efd format structure is found in |
| 2728 | * a committed transaction in the log. It's purpose is to cancel |
| 2729 | * the corresponding efi if it was still in the log. To do this |
| 2730 | * it searches the AIL for the efi with an id equal to that in the |
| 2731 | * efd format structure. If we find it, we remove the efi from the |
| 2732 | * AIL and free it. |
| 2733 | */ |
| 2734 | STATIC void |
| 2735 | xlog_recover_do_efd_trans( |
| 2736 | xlog_t *log, |
| 2737 | xlog_recover_item_t *item, |
| 2738 | int pass) |
| 2739 | { |
| 2740 | xfs_mount_t *mp; |
| 2741 | xfs_efd_log_format_t *efd_formatp; |
| 2742 | xfs_efi_log_item_t *efip = NULL; |
| 2743 | xfs_log_item_t *lip; |
| 2744 | int gen; |
| 2745 | int nexts; |
| 2746 | __uint64_t efi_id; |
| 2747 | SPLDECL(s); |
| 2748 | |
| 2749 | if (pass == XLOG_RECOVER_PASS1) { |
| 2750 | return; |
| 2751 | } |
| 2752 | |
| 2753 | efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; |
| 2754 | ASSERT(item->ri_buf[0].i_len == |
| 2755 | (sizeof(xfs_efd_log_format_t) + |
| 2756 | ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t)))); |
| 2757 | efi_id = efd_formatp->efd_efi_id; |
| 2758 | |
| 2759 | /* |
| 2760 | * Search for the efi with the id in the efd format structure |
| 2761 | * in the AIL. |
| 2762 | */ |
| 2763 | mp = log->l_mp; |
| 2764 | AIL_LOCK(mp,s); |
| 2765 | lip = xfs_trans_first_ail(mp, &gen); |
| 2766 | while (lip != NULL) { |
| 2767 | if (lip->li_type == XFS_LI_EFI) { |
| 2768 | efip = (xfs_efi_log_item_t *)lip; |
| 2769 | if (efip->efi_format.efi_id == efi_id) { |
| 2770 | /* |
| 2771 | * xfs_trans_delete_ail() drops the |
| 2772 | * AIL lock. |
| 2773 | */ |
| 2774 | xfs_trans_delete_ail(mp, lip, s); |
| 2775 | break; |
| 2776 | } |
| 2777 | } |
| 2778 | lip = xfs_trans_next_ail(mp, lip, &gen, NULL); |
| 2779 | } |
| 2780 | if (lip == NULL) { |
| 2781 | AIL_UNLOCK(mp, s); |
| 2782 | } |
| 2783 | |
| 2784 | /* |
| 2785 | * If we found it, then free it up. If it wasn't there, it |
| 2786 | * must have been overwritten in the log. Oh well. |
| 2787 | */ |
| 2788 | if (lip != NULL) { |
| 2789 | nexts = efip->efi_format.efi_nextents; |
| 2790 | if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { |
| 2791 | kmem_free(lip, sizeof(xfs_efi_log_item_t) + |
| 2792 | ((nexts - 1) * sizeof(xfs_extent_t))); |
| 2793 | } else { |
| 2794 | kmem_zone_free(xfs_efi_zone, efip); |
| 2795 | } |
| 2796 | } |
| 2797 | } |
| 2798 | |
| 2799 | /* |
| 2800 | * Perform the transaction |
| 2801 | * |
| 2802 | * If the transaction modifies a buffer or inode, do it now. Otherwise, |
| 2803 | * EFIs and EFDs get queued up by adding entries into the AIL for them. |
| 2804 | */ |
| 2805 | STATIC int |
| 2806 | xlog_recover_do_trans( |
| 2807 | xlog_t *log, |
| 2808 | xlog_recover_t *trans, |
| 2809 | int pass) |
| 2810 | { |
| 2811 | int error = 0; |
| 2812 | xlog_recover_item_t *item, *first_item; |
| 2813 | |
| 2814 | if ((error = xlog_recover_reorder_trans(log, trans))) |
| 2815 | return error; |
| 2816 | first_item = item = trans->r_itemq; |
| 2817 | do { |
| 2818 | /* |
| 2819 | * we don't need to worry about the block number being |
| 2820 | * truncated in > 1 TB buffers because in user-land, |
| 2821 | * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so |
| 2822 | * the blkno's will get through the user-mode buffer |
| 2823 | * cache properly. The only bad case is o32 kernels |
| 2824 | * where xfs_daddr_t is 32-bits but mount will warn us |
| 2825 | * off a > 1 TB filesystem before we get here. |
| 2826 | */ |
| 2827 | if ((ITEM_TYPE(item) == XFS_LI_BUF) || |
| 2828 | (ITEM_TYPE(item) == XFS_LI_6_1_BUF) || |
| 2829 | (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) { |
| 2830 | if ((error = xlog_recover_do_buffer_trans(log, item, |
| 2831 | pass))) |
| 2832 | break; |
| 2833 | } else if ((ITEM_TYPE(item) == XFS_LI_INODE) || |
| 2834 | (ITEM_TYPE(item) == XFS_LI_6_1_INODE) || |
| 2835 | (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) { |
| 2836 | if ((error = xlog_recover_do_inode_trans(log, item, |
| 2837 | pass))) |
| 2838 | break; |
| 2839 | } else if (ITEM_TYPE(item) == XFS_LI_EFI) { |
| 2840 | xlog_recover_do_efi_trans(log, item, trans->r_lsn, |
| 2841 | pass); |
| 2842 | } else if (ITEM_TYPE(item) == XFS_LI_EFD) { |
| 2843 | xlog_recover_do_efd_trans(log, item, pass); |
| 2844 | } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) { |
| 2845 | if ((error = xlog_recover_do_dquot_trans(log, item, |
| 2846 | pass))) |
| 2847 | break; |
| 2848 | } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) { |
| 2849 | if ((error = xlog_recover_do_quotaoff_trans(log, item, |
| 2850 | pass))) |
| 2851 | break; |
| 2852 | } else { |
| 2853 | xlog_warn("XFS: xlog_recover_do_trans"); |
| 2854 | ASSERT(0); |
| 2855 | error = XFS_ERROR(EIO); |
| 2856 | break; |
| 2857 | } |
| 2858 | item = item->ri_next; |
| 2859 | } while (first_item != item); |
| 2860 | |
| 2861 | return error; |
| 2862 | } |
| 2863 | |
| 2864 | /* |
| 2865 | * Free up any resources allocated by the transaction |
| 2866 | * |
| 2867 | * Remember that EFIs, EFDs, and IUNLINKs are handled later. |
| 2868 | */ |
| 2869 | STATIC void |
| 2870 | xlog_recover_free_trans( |
| 2871 | xlog_recover_t *trans) |
| 2872 | { |
| 2873 | xlog_recover_item_t *first_item, *item, *free_item; |
| 2874 | int i; |
| 2875 | |
| 2876 | item = first_item = trans->r_itemq; |
| 2877 | do { |
| 2878 | free_item = item; |
| 2879 | item = item->ri_next; |
| 2880 | /* Free the regions in the item. */ |
| 2881 | for (i = 0; i < free_item->ri_cnt; i++) { |
| 2882 | kmem_free(free_item->ri_buf[i].i_addr, |
| 2883 | free_item->ri_buf[i].i_len); |
| 2884 | } |
| 2885 | /* Free the item itself */ |
| 2886 | kmem_free(free_item->ri_buf, |
| 2887 | (free_item->ri_total * sizeof(xfs_log_iovec_t))); |
| 2888 | kmem_free(free_item, sizeof(xlog_recover_item_t)); |
| 2889 | } while (first_item != item); |
| 2890 | /* Free the transaction recover structure */ |
| 2891 | kmem_free(trans, sizeof(xlog_recover_t)); |
| 2892 | } |
| 2893 | |
| 2894 | STATIC int |
| 2895 | xlog_recover_commit_trans( |
| 2896 | xlog_t *log, |
| 2897 | xlog_recover_t **q, |
| 2898 | xlog_recover_t *trans, |
| 2899 | int pass) |
| 2900 | { |
| 2901 | int error; |
| 2902 | |
| 2903 | if ((error = xlog_recover_unlink_tid(q, trans))) |
| 2904 | return error; |
| 2905 | if ((error = xlog_recover_do_trans(log, trans, pass))) |
| 2906 | return error; |
| 2907 | xlog_recover_free_trans(trans); /* no error */ |
| 2908 | return 0; |
| 2909 | } |
| 2910 | |
| 2911 | STATIC int |
| 2912 | xlog_recover_unmount_trans( |
| 2913 | xlog_recover_t *trans) |
| 2914 | { |
| 2915 | /* Do nothing now */ |
| 2916 | xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); |
| 2917 | return 0; |
| 2918 | } |
| 2919 | |
| 2920 | /* |
| 2921 | * There are two valid states of the r_state field. 0 indicates that the |
| 2922 | * transaction structure is in a normal state. We have either seen the |
| 2923 | * start of the transaction or the last operation we added was not a partial |
| 2924 | * operation. If the last operation we added to the transaction was a |
| 2925 | * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. |
| 2926 | * |
| 2927 | * NOTE: skip LRs with 0 data length. |
| 2928 | */ |
| 2929 | STATIC int |
| 2930 | xlog_recover_process_data( |
| 2931 | xlog_t *log, |
| 2932 | xlog_recover_t *rhash[], |
| 2933 | xlog_rec_header_t *rhead, |
| 2934 | xfs_caddr_t dp, |
| 2935 | int pass) |
| 2936 | { |
| 2937 | xfs_caddr_t lp; |
| 2938 | int num_logops; |
| 2939 | xlog_op_header_t *ohead; |
| 2940 | xlog_recover_t *trans; |
| 2941 | xlog_tid_t tid; |
| 2942 | int error; |
| 2943 | unsigned long hash; |
| 2944 | uint flags; |
| 2945 | |
| 2946 | lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT); |
| 2947 | num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT); |
| 2948 | |
| 2949 | /* check the log format matches our own - else we can't recover */ |
| 2950 | if (xlog_header_check_recover(log->l_mp, rhead)) |
| 2951 | return (XFS_ERROR(EIO)); |
| 2952 | |
| 2953 | while ((dp < lp) && num_logops) { |
| 2954 | ASSERT(dp + sizeof(xlog_op_header_t) <= lp); |
| 2955 | ohead = (xlog_op_header_t *)dp; |
| 2956 | dp += sizeof(xlog_op_header_t); |
| 2957 | if (ohead->oh_clientid != XFS_TRANSACTION && |
| 2958 | ohead->oh_clientid != XFS_LOG) { |
| 2959 | xlog_warn( |
| 2960 | "XFS: xlog_recover_process_data: bad clientid"); |
| 2961 | ASSERT(0); |
| 2962 | return (XFS_ERROR(EIO)); |
| 2963 | } |
| 2964 | tid = INT_GET(ohead->oh_tid, ARCH_CONVERT); |
| 2965 | hash = XLOG_RHASH(tid); |
| 2966 | trans = xlog_recover_find_tid(rhash[hash], tid); |
| 2967 | if (trans == NULL) { /* not found; add new tid */ |
| 2968 | if (ohead->oh_flags & XLOG_START_TRANS) |
| 2969 | xlog_recover_new_tid(&rhash[hash], tid, |
| 2970 | INT_GET(rhead->h_lsn, ARCH_CONVERT)); |
| 2971 | } else { |
| 2972 | ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp); |
| 2973 | flags = ohead->oh_flags & ~XLOG_END_TRANS; |
| 2974 | if (flags & XLOG_WAS_CONT_TRANS) |
| 2975 | flags &= ~XLOG_CONTINUE_TRANS; |
| 2976 | switch (flags) { |
| 2977 | case XLOG_COMMIT_TRANS: |
| 2978 | error = xlog_recover_commit_trans(log, |
| 2979 | &rhash[hash], trans, pass); |
| 2980 | break; |
| 2981 | case XLOG_UNMOUNT_TRANS: |
| 2982 | error = xlog_recover_unmount_trans(trans); |
| 2983 | break; |
| 2984 | case XLOG_WAS_CONT_TRANS: |
| 2985 | error = xlog_recover_add_to_cont_trans(trans, |
| 2986 | dp, INT_GET(ohead->oh_len, |
| 2987 | ARCH_CONVERT)); |
| 2988 | break; |
| 2989 | case XLOG_START_TRANS: |
| 2990 | xlog_warn( |
| 2991 | "XFS: xlog_recover_process_data: bad transaction"); |
| 2992 | ASSERT(0); |
| 2993 | error = XFS_ERROR(EIO); |
| 2994 | break; |
| 2995 | case 0: |
| 2996 | case XLOG_CONTINUE_TRANS: |
| 2997 | error = xlog_recover_add_to_trans(trans, |
| 2998 | dp, INT_GET(ohead->oh_len, |
| 2999 | ARCH_CONVERT)); |
| 3000 | break; |
| 3001 | default: |
| 3002 | xlog_warn( |
| 3003 | "XFS: xlog_recover_process_data: bad flag"); |
| 3004 | ASSERT(0); |
| 3005 | error = XFS_ERROR(EIO); |
| 3006 | break; |
| 3007 | } |
| 3008 | if (error) |
| 3009 | return error; |
| 3010 | } |
| 3011 | dp += INT_GET(ohead->oh_len, ARCH_CONVERT); |
| 3012 | num_logops--; |
| 3013 | } |
| 3014 | return 0; |
| 3015 | } |
| 3016 | |
| 3017 | /* |
| 3018 | * Process an extent free intent item that was recovered from |
| 3019 | * the log. We need to free the extents that it describes. |
| 3020 | */ |
| 3021 | STATIC void |
| 3022 | xlog_recover_process_efi( |
| 3023 | xfs_mount_t *mp, |
| 3024 | xfs_efi_log_item_t *efip) |
| 3025 | { |
| 3026 | xfs_efd_log_item_t *efdp; |
| 3027 | xfs_trans_t *tp; |
| 3028 | int i; |
| 3029 | xfs_extent_t *extp; |
| 3030 | xfs_fsblock_t startblock_fsb; |
| 3031 | |
| 3032 | ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); |
| 3033 | |
| 3034 | /* |
| 3035 | * First check the validity of the extents described by the |
| 3036 | * EFI. If any are bad, then assume that all are bad and |
| 3037 | * just toss the EFI. |
| 3038 | */ |
| 3039 | for (i = 0; i < efip->efi_format.efi_nextents; i++) { |
| 3040 | extp = &(efip->efi_format.efi_extents[i]); |
| 3041 | startblock_fsb = XFS_BB_TO_FSB(mp, |
| 3042 | XFS_FSB_TO_DADDR(mp, extp->ext_start)); |
| 3043 | if ((startblock_fsb == 0) || |
| 3044 | (extp->ext_len == 0) || |
| 3045 | (startblock_fsb >= mp->m_sb.sb_dblocks) || |
| 3046 | (extp->ext_len >= mp->m_sb.sb_agblocks)) { |
| 3047 | /* |
| 3048 | * This will pull the EFI from the AIL and |
| 3049 | * free the memory associated with it. |
| 3050 | */ |
| 3051 | xfs_efi_release(efip, efip->efi_format.efi_nextents); |
| 3052 | return; |
| 3053 | } |
| 3054 | } |
| 3055 | |
| 3056 | tp = xfs_trans_alloc(mp, 0); |
| 3057 | xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); |
| 3058 | efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); |
| 3059 | |
| 3060 | for (i = 0; i < efip->efi_format.efi_nextents; i++) { |
| 3061 | extp = &(efip->efi_format.efi_extents[i]); |
| 3062 | xfs_free_extent(tp, extp->ext_start, extp->ext_len); |
| 3063 | xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, |
| 3064 | extp->ext_len); |
| 3065 | } |
| 3066 | |
| 3067 | efip->efi_flags |= XFS_EFI_RECOVERED; |
| 3068 | xfs_trans_commit(tp, 0, NULL); |
| 3069 | } |
| 3070 | |
| 3071 | /* |
| 3072 | * Verify that once we've encountered something other than an EFI |
| 3073 | * in the AIL that there are no more EFIs in the AIL. |
| 3074 | */ |
| 3075 | #if defined(DEBUG) |
| 3076 | STATIC void |
| 3077 | xlog_recover_check_ail( |
| 3078 | xfs_mount_t *mp, |
| 3079 | xfs_log_item_t *lip, |
| 3080 | int gen) |
| 3081 | { |
| 3082 | int orig_gen = gen; |
| 3083 | |
| 3084 | do { |
| 3085 | ASSERT(lip->li_type != XFS_LI_EFI); |
| 3086 | lip = xfs_trans_next_ail(mp, lip, &gen, NULL); |
| 3087 | /* |
| 3088 | * The check will be bogus if we restart from the |
| 3089 | * beginning of the AIL, so ASSERT that we don't. |
| 3090 | * We never should since we're holding the AIL lock |
| 3091 | * the entire time. |
| 3092 | */ |
| 3093 | ASSERT(gen == orig_gen); |
| 3094 | } while (lip != NULL); |
| 3095 | } |
| 3096 | #endif /* DEBUG */ |
| 3097 | |
| 3098 | /* |
| 3099 | * When this is called, all of the EFIs which did not have |
| 3100 | * corresponding EFDs should be in the AIL. What we do now |
| 3101 | * is free the extents associated with each one. |
| 3102 | * |
| 3103 | * Since we process the EFIs in normal transactions, they |
| 3104 | * will be removed at some point after the commit. This prevents |
| 3105 | * us from just walking down the list processing each one. |
| 3106 | * We'll use a flag in the EFI to skip those that we've already |
| 3107 | * processed and use the AIL iteration mechanism's generation |
| 3108 | * count to try to speed this up at least a bit. |
| 3109 | * |
| 3110 | * When we start, we know that the EFIs are the only things in |
| 3111 | * the AIL. As we process them, however, other items are added |
| 3112 | * to the AIL. Since everything added to the AIL must come after |
| 3113 | * everything already in the AIL, we stop processing as soon as |
| 3114 | * we see something other than an EFI in the AIL. |
| 3115 | */ |
| 3116 | STATIC void |
| 3117 | xlog_recover_process_efis( |
| 3118 | xlog_t *log) |
| 3119 | { |
| 3120 | xfs_log_item_t *lip; |
| 3121 | xfs_efi_log_item_t *efip; |
| 3122 | int gen; |
| 3123 | xfs_mount_t *mp; |
| 3124 | SPLDECL(s); |
| 3125 | |
| 3126 | mp = log->l_mp; |
| 3127 | AIL_LOCK(mp,s); |
| 3128 | |
| 3129 | lip = xfs_trans_first_ail(mp, &gen); |
| 3130 | while (lip != NULL) { |
| 3131 | /* |
| 3132 | * We're done when we see something other than an EFI. |
| 3133 | */ |
| 3134 | if (lip->li_type != XFS_LI_EFI) { |
| 3135 | xlog_recover_check_ail(mp, lip, gen); |
| 3136 | break; |
| 3137 | } |
| 3138 | |
| 3139 | /* |
| 3140 | * Skip EFIs that we've already processed. |
| 3141 | */ |
| 3142 | efip = (xfs_efi_log_item_t *)lip; |
| 3143 | if (efip->efi_flags & XFS_EFI_RECOVERED) { |
| 3144 | lip = xfs_trans_next_ail(mp, lip, &gen, NULL); |
| 3145 | continue; |
| 3146 | } |
| 3147 | |
| 3148 | AIL_UNLOCK(mp, s); |
| 3149 | xlog_recover_process_efi(mp, efip); |
| 3150 | AIL_LOCK(mp,s); |
| 3151 | lip = xfs_trans_next_ail(mp, lip, &gen, NULL); |
| 3152 | } |
| 3153 | AIL_UNLOCK(mp, s); |
| 3154 | } |
| 3155 | |
| 3156 | /* |
| 3157 | * This routine performs a transaction to null out a bad inode pointer |
| 3158 | * in an agi unlinked inode hash bucket. |
| 3159 | */ |
| 3160 | STATIC void |
| 3161 | xlog_recover_clear_agi_bucket( |
| 3162 | xfs_mount_t *mp, |
| 3163 | xfs_agnumber_t agno, |
| 3164 | int bucket) |
| 3165 | { |
| 3166 | xfs_trans_t *tp; |
| 3167 | xfs_agi_t *agi; |
| 3168 | xfs_buf_t *agibp; |
| 3169 | int offset; |
| 3170 | int error; |
| 3171 | |
| 3172 | tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); |
| 3173 | xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0); |
| 3174 | |
| 3175 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, |
| 3176 | XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), |
| 3177 | XFS_FSS_TO_BB(mp, 1), 0, &agibp); |
| 3178 | if (error) { |
| 3179 | xfs_trans_cancel(tp, XFS_TRANS_ABORT); |
| 3180 | return; |
| 3181 | } |
| 3182 | |
| 3183 | agi = XFS_BUF_TO_AGI(agibp); |
| 3184 | if (INT_GET(agi->agi_magicnum, ARCH_CONVERT) != XFS_AGI_MAGIC) { |
| 3185 | xfs_trans_cancel(tp, XFS_TRANS_ABORT); |
| 3186 | return; |
| 3187 | } |
| 3188 | ASSERT(INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC); |
| 3189 | |
| 3190 | INT_SET(agi->agi_unlinked[bucket], ARCH_CONVERT, NULLAGINO); |
| 3191 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
| 3192 | (sizeof(xfs_agino_t) * bucket); |
| 3193 | xfs_trans_log_buf(tp, agibp, offset, |
| 3194 | (offset + sizeof(xfs_agino_t) - 1)); |
| 3195 | |
| 3196 | (void) xfs_trans_commit(tp, 0, NULL); |
| 3197 | } |
| 3198 | |
| 3199 | /* |
| 3200 | * xlog_iunlink_recover |
| 3201 | * |
| 3202 | * This is called during recovery to process any inodes which |
| 3203 | * we unlinked but not freed when the system crashed. These |
| 3204 | * inodes will be on the lists in the AGI blocks. What we do |
| 3205 | * here is scan all the AGIs and fully truncate and free any |
| 3206 | * inodes found on the lists. Each inode is removed from the |
| 3207 | * lists when it has been fully truncated and is freed. The |
| 3208 | * freeing of the inode and its removal from the list must be |
| 3209 | * atomic. |
| 3210 | */ |
| 3211 | void |
| 3212 | xlog_recover_process_iunlinks( |
| 3213 | xlog_t *log) |
| 3214 | { |
| 3215 | xfs_mount_t *mp; |
| 3216 | xfs_agnumber_t agno; |
| 3217 | xfs_agi_t *agi; |
| 3218 | xfs_buf_t *agibp; |
| 3219 | xfs_buf_t *ibp; |
| 3220 | xfs_dinode_t *dip; |
| 3221 | xfs_inode_t *ip; |
| 3222 | xfs_agino_t agino; |
| 3223 | xfs_ino_t ino; |
| 3224 | int bucket; |
| 3225 | int error; |
| 3226 | uint mp_dmevmask; |
| 3227 | |
| 3228 | mp = log->l_mp; |
| 3229 | |
| 3230 | /* |
| 3231 | * Prevent any DMAPI event from being sent while in this function. |
| 3232 | */ |
| 3233 | mp_dmevmask = mp->m_dmevmask; |
| 3234 | mp->m_dmevmask = 0; |
| 3235 | |
| 3236 | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { |
| 3237 | /* |
| 3238 | * Find the agi for this ag. |
| 3239 | */ |
| 3240 | agibp = xfs_buf_read(mp->m_ddev_targp, |
| 3241 | XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), |
| 3242 | XFS_FSS_TO_BB(mp, 1), 0); |
| 3243 | if (XFS_BUF_ISERROR(agibp)) { |
| 3244 | xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)", |
| 3245 | log->l_mp, agibp, |
| 3246 | XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp))); |
| 3247 | } |
| 3248 | agi = XFS_BUF_TO_AGI(agibp); |
| 3249 | ASSERT(XFS_AGI_MAGIC == |
| 3250 | INT_GET(agi->agi_magicnum, ARCH_CONVERT)); |
| 3251 | |
| 3252 | for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { |
| 3253 | |
| 3254 | agino = INT_GET(agi->agi_unlinked[bucket], ARCH_CONVERT); |
| 3255 | while (agino != NULLAGINO) { |
| 3256 | |
| 3257 | /* |
| 3258 | * Release the agi buffer so that it can |
| 3259 | * be acquired in the normal course of the |
| 3260 | * transaction to truncate and free the inode. |
| 3261 | */ |
| 3262 | xfs_buf_relse(agibp); |
| 3263 | |
| 3264 | ino = XFS_AGINO_TO_INO(mp, agno, agino); |
| 3265 | error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); |
| 3266 | ASSERT(error || (ip != NULL)); |
| 3267 | |
| 3268 | if (!error) { |
| 3269 | /* |
| 3270 | * Get the on disk inode to find the |
| 3271 | * next inode in the bucket. |
| 3272 | */ |
| 3273 | error = xfs_itobp(mp, NULL, ip, &dip, |
| 3274 | &ibp, 0); |
| 3275 | ASSERT(error || (dip != NULL)); |
| 3276 | } |
| 3277 | |
| 3278 | if (!error) { |
| 3279 | ASSERT(ip->i_d.di_nlink == 0); |
| 3280 | |
| 3281 | /* setup for the next pass */ |
| 3282 | agino = INT_GET(dip->di_next_unlinked, |
| 3283 | ARCH_CONVERT); |
| 3284 | xfs_buf_relse(ibp); |
| 3285 | /* |
| 3286 | * Prevent any DMAPI event from |
| 3287 | * being sent when the |
| 3288 | * reference on the inode is |
| 3289 | * dropped. |
| 3290 | */ |
| 3291 | ip->i_d.di_dmevmask = 0; |
| 3292 | |
| 3293 | /* |
| 3294 | * If this is a new inode, handle |
| 3295 | * it specially. Otherwise, |
| 3296 | * just drop our reference to the |
| 3297 | * inode. If there are no |
| 3298 | * other references, this will |
| 3299 | * send the inode to |
| 3300 | * xfs_inactive() which will |
| 3301 | * truncate the file and free |
| 3302 | * the inode. |
| 3303 | */ |
| 3304 | if (ip->i_d.di_mode == 0) |
| 3305 | xfs_iput_new(ip, 0); |
| 3306 | else |
| 3307 | VN_RELE(XFS_ITOV(ip)); |
| 3308 | } else { |
| 3309 | /* |
| 3310 | * We can't read in the inode |
| 3311 | * this bucket points to, or |
| 3312 | * this inode is messed up. Just |
| 3313 | * ditch this bucket of inodes. We |
| 3314 | * will lose some inodes and space, |
| 3315 | * but at least we won't hang. Call |
| 3316 | * xlog_recover_clear_agi_bucket() |
| 3317 | * to perform a transaction to clear |
| 3318 | * the inode pointer in the bucket. |
| 3319 | */ |
| 3320 | xlog_recover_clear_agi_bucket(mp, agno, |
| 3321 | bucket); |
| 3322 | |
| 3323 | agino = NULLAGINO; |
| 3324 | } |
| 3325 | |
| 3326 | /* |
| 3327 | * Reacquire the agibuffer and continue around |
| 3328 | * the loop. |
| 3329 | */ |
| 3330 | agibp = xfs_buf_read(mp->m_ddev_targp, |
| 3331 | XFS_AG_DADDR(mp, agno, |
| 3332 | XFS_AGI_DADDR(mp)), |
| 3333 | XFS_FSS_TO_BB(mp, 1), 0); |
| 3334 | if (XFS_BUF_ISERROR(agibp)) { |
| 3335 | xfs_ioerror_alert( |
| 3336 | "xlog_recover_process_iunlinks(#2)", |
| 3337 | log->l_mp, agibp, |
| 3338 | XFS_AG_DADDR(mp, agno, |
| 3339 | XFS_AGI_DADDR(mp))); |
| 3340 | } |
| 3341 | agi = XFS_BUF_TO_AGI(agibp); |
| 3342 | ASSERT(XFS_AGI_MAGIC == INT_GET( |
| 3343 | agi->agi_magicnum, ARCH_CONVERT)); |
| 3344 | } |
| 3345 | } |
| 3346 | |
| 3347 | /* |
| 3348 | * Release the buffer for the current agi so we can |
| 3349 | * go on to the next one. |
| 3350 | */ |
| 3351 | xfs_buf_relse(agibp); |
| 3352 | } |
| 3353 | |
| 3354 | mp->m_dmevmask = mp_dmevmask; |
| 3355 | } |
| 3356 | |
| 3357 | |
| 3358 | #ifdef DEBUG |
| 3359 | STATIC void |
| 3360 | xlog_pack_data_checksum( |
| 3361 | xlog_t *log, |
| 3362 | xlog_in_core_t *iclog, |
| 3363 | int size) |
| 3364 | { |
| 3365 | int i; |
| 3366 | uint *up; |
| 3367 | uint chksum = 0; |
| 3368 | |
| 3369 | up = (uint *)iclog->ic_datap; |
| 3370 | /* divide length by 4 to get # words */ |
| 3371 | for (i = 0; i < (size >> 2); i++) { |
| 3372 | chksum ^= INT_GET(*up, ARCH_CONVERT); |
| 3373 | up++; |
| 3374 | } |
| 3375 | INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum); |
| 3376 | } |
| 3377 | #else |
| 3378 | #define xlog_pack_data_checksum(log, iclog, size) |
| 3379 | #endif |
| 3380 | |
| 3381 | /* |
| 3382 | * Stamp cycle number in every block |
| 3383 | */ |
| 3384 | void |
| 3385 | xlog_pack_data( |
| 3386 | xlog_t *log, |
| 3387 | xlog_in_core_t *iclog, |
| 3388 | int roundoff) |
| 3389 | { |
| 3390 | int i, j, k; |
| 3391 | int size = iclog->ic_offset + roundoff; |
| 3392 | uint cycle_lsn; |
| 3393 | xfs_caddr_t dp; |
| 3394 | xlog_in_core_2_t *xhdr; |
| 3395 | |
| 3396 | xlog_pack_data_checksum(log, iclog, size); |
| 3397 | |
| 3398 | cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); |
| 3399 | |
| 3400 | dp = iclog->ic_datap; |
| 3401 | for (i = 0; i < BTOBB(size) && |
| 3402 | i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { |
| 3403 | iclog->ic_header.h_cycle_data[i] = *(uint *)dp; |
| 3404 | *(uint *)dp = cycle_lsn; |
| 3405 | dp += BBSIZE; |
| 3406 | } |
| 3407 | |
| 3408 | if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { |
| 3409 | xhdr = (xlog_in_core_2_t *)&iclog->ic_header; |
| 3410 | for ( ; i < BTOBB(size); i++) { |
| 3411 | j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); |
| 3412 | k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); |
| 3413 | xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp; |
| 3414 | *(uint *)dp = cycle_lsn; |
| 3415 | dp += BBSIZE; |
| 3416 | } |
| 3417 | |
| 3418 | for (i = 1; i < log->l_iclog_heads; i++) { |
| 3419 | xhdr[i].hic_xheader.xh_cycle = cycle_lsn; |
| 3420 | } |
| 3421 | } |
| 3422 | } |
| 3423 | |
| 3424 | #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) |
| 3425 | STATIC void |
| 3426 | xlog_unpack_data_checksum( |
| 3427 | xlog_rec_header_t *rhead, |
| 3428 | xfs_caddr_t dp, |
| 3429 | xlog_t *log) |
| 3430 | { |
| 3431 | uint *up = (uint *)dp; |
| 3432 | uint chksum = 0; |
| 3433 | int i; |
| 3434 | |
| 3435 | /* divide length by 4 to get # words */ |
| 3436 | for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) { |
| 3437 | chksum ^= INT_GET(*up, ARCH_CONVERT); |
| 3438 | up++; |
| 3439 | } |
| 3440 | if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) { |
| 3441 | if (rhead->h_chksum || |
| 3442 | ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { |
| 3443 | cmn_err(CE_DEBUG, |
| 3444 | "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)", |
| 3445 | INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum); |
| 3446 | cmn_err(CE_DEBUG, |
| 3447 | "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); |
| 3448 | if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { |
| 3449 | cmn_err(CE_DEBUG, |
| 3450 | "XFS: LogR this is a LogV2 filesystem"); |
| 3451 | } |
| 3452 | log->l_flags |= XLOG_CHKSUM_MISMATCH; |
| 3453 | } |
| 3454 | } |
| 3455 | } |
| 3456 | #else |
| 3457 | #define xlog_unpack_data_checksum(rhead, dp, log) |
| 3458 | #endif |
| 3459 | |
| 3460 | STATIC void |
| 3461 | xlog_unpack_data( |
| 3462 | xlog_rec_header_t *rhead, |
| 3463 | xfs_caddr_t dp, |
| 3464 | xlog_t *log) |
| 3465 | { |
| 3466 | int i, j, k; |
| 3467 | xlog_in_core_2_t *xhdr; |
| 3468 | |
| 3469 | for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) && |
| 3470 | i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { |
| 3471 | *(uint *)dp = *(uint *)&rhead->h_cycle_data[i]; |
| 3472 | dp += BBSIZE; |
| 3473 | } |
| 3474 | |
| 3475 | if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { |
| 3476 | xhdr = (xlog_in_core_2_t *)rhead; |
| 3477 | for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) { |
| 3478 | j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); |
| 3479 | k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); |
| 3480 | *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; |
| 3481 | dp += BBSIZE; |
| 3482 | } |
| 3483 | } |
| 3484 | |
| 3485 | xlog_unpack_data_checksum(rhead, dp, log); |
| 3486 | } |
| 3487 | |
| 3488 | STATIC int |
| 3489 | xlog_valid_rec_header( |
| 3490 | xlog_t *log, |
| 3491 | xlog_rec_header_t *rhead, |
| 3492 | xfs_daddr_t blkno) |
| 3493 | { |
| 3494 | int hlen; |
| 3495 | |
| 3496 | if (unlikely( |
| 3497 | (INT_GET(rhead->h_magicno, ARCH_CONVERT) != |
| 3498 | XLOG_HEADER_MAGIC_NUM))) { |
| 3499 | XFS_ERROR_REPORT("xlog_valid_rec_header(1)", |
| 3500 | XFS_ERRLEVEL_LOW, log->l_mp); |
| 3501 | return XFS_ERROR(EFSCORRUPTED); |
| 3502 | } |
| 3503 | if (unlikely( |
| 3504 | (!rhead->h_version || |
| 3505 | (INT_GET(rhead->h_version, ARCH_CONVERT) & |
| 3506 | (~XLOG_VERSION_OKBITS)) != 0))) { |
| 3507 | xlog_warn("XFS: %s: unrecognised log version (%d).", |
| 3508 | __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT)); |
| 3509 | return XFS_ERROR(EIO); |
| 3510 | } |
| 3511 | |
| 3512 | /* LR body must have data or it wouldn't have been written */ |
| 3513 | hlen = INT_GET(rhead->h_len, ARCH_CONVERT); |
| 3514 | if (unlikely( hlen <= 0 || hlen > INT_MAX )) { |
| 3515 | XFS_ERROR_REPORT("xlog_valid_rec_header(2)", |
| 3516 | XFS_ERRLEVEL_LOW, log->l_mp); |
| 3517 | return XFS_ERROR(EFSCORRUPTED); |
| 3518 | } |
| 3519 | if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { |
| 3520 | XFS_ERROR_REPORT("xlog_valid_rec_header(3)", |
| 3521 | XFS_ERRLEVEL_LOW, log->l_mp); |
| 3522 | return XFS_ERROR(EFSCORRUPTED); |
| 3523 | } |
| 3524 | return 0; |
| 3525 | } |
| 3526 | |
| 3527 | /* |
| 3528 | * Read the log from tail to head and process the log records found. |
| 3529 | * Handle the two cases where the tail and head are in the same cycle |
| 3530 | * and where the active portion of the log wraps around the end of |
| 3531 | * the physical log separately. The pass parameter is passed through |
| 3532 | * to the routines called to process the data and is not looked at |
| 3533 | * here. |
| 3534 | */ |
| 3535 | STATIC int |
| 3536 | xlog_do_recovery_pass( |
| 3537 | xlog_t *log, |
| 3538 | xfs_daddr_t head_blk, |
| 3539 | xfs_daddr_t tail_blk, |
| 3540 | int pass) |
| 3541 | { |
| 3542 | xlog_rec_header_t *rhead; |
| 3543 | xfs_daddr_t blk_no; |
| 3544 | xfs_caddr_t bufaddr, offset; |
| 3545 | xfs_buf_t *hbp, *dbp; |
| 3546 | int error = 0, h_size; |
| 3547 | int bblks, split_bblks; |
| 3548 | int hblks, split_hblks, wrapped_hblks; |
| 3549 | xlog_recover_t *rhash[XLOG_RHASH_SIZE]; |
| 3550 | |
| 3551 | ASSERT(head_blk != tail_blk); |
| 3552 | |
| 3553 | /* |
| 3554 | * Read the header of the tail block and get the iclog buffer size from |
| 3555 | * h_size. Use this to tell how many sectors make up the log header. |
| 3556 | */ |
| 3557 | if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { |
| 3558 | /* |
| 3559 | * When using variable length iclogs, read first sector of |
| 3560 | * iclog header and extract the header size from it. Get a |
| 3561 | * new hbp that is the correct size. |
| 3562 | */ |
| 3563 | hbp = xlog_get_bp(log, 1); |
| 3564 | if (!hbp) |
| 3565 | return ENOMEM; |
| 3566 | if ((error = xlog_bread(log, tail_blk, 1, hbp))) |
| 3567 | goto bread_err1; |
| 3568 | offset = xlog_align(log, tail_blk, 1, hbp); |
| 3569 | rhead = (xlog_rec_header_t *)offset; |
| 3570 | error = xlog_valid_rec_header(log, rhead, tail_blk); |
| 3571 | if (error) |
| 3572 | goto bread_err1; |
| 3573 | h_size = INT_GET(rhead->h_size, ARCH_CONVERT); |
| 3574 | if ((INT_GET(rhead->h_version, ARCH_CONVERT) |
| 3575 | & XLOG_VERSION_2) && |
| 3576 | (h_size > XLOG_HEADER_CYCLE_SIZE)) { |
| 3577 | hblks = h_size / XLOG_HEADER_CYCLE_SIZE; |
| 3578 | if (h_size % XLOG_HEADER_CYCLE_SIZE) |
| 3579 | hblks++; |
| 3580 | xlog_put_bp(hbp); |
| 3581 | hbp = xlog_get_bp(log, hblks); |
| 3582 | } else { |
| 3583 | hblks = 1; |
| 3584 | } |
| 3585 | } else { |
| 3586 | ASSERT(log->l_sectbb_log == 0); |
| 3587 | hblks = 1; |
| 3588 | hbp = xlog_get_bp(log, 1); |
| 3589 | h_size = XLOG_BIG_RECORD_BSIZE; |
| 3590 | } |
| 3591 | |
| 3592 | if (!hbp) |
| 3593 | return ENOMEM; |
| 3594 | dbp = xlog_get_bp(log, BTOBB(h_size)); |
| 3595 | if (!dbp) { |
| 3596 | xlog_put_bp(hbp); |
| 3597 | return ENOMEM; |
| 3598 | } |
| 3599 | |
| 3600 | memset(rhash, 0, sizeof(rhash)); |
| 3601 | if (tail_blk <= head_blk) { |
| 3602 | for (blk_no = tail_blk; blk_no < head_blk; ) { |
| 3603 | if ((error = xlog_bread(log, blk_no, hblks, hbp))) |
| 3604 | goto bread_err2; |
| 3605 | offset = xlog_align(log, blk_no, hblks, hbp); |
| 3606 | rhead = (xlog_rec_header_t *)offset; |
| 3607 | error = xlog_valid_rec_header(log, rhead, blk_no); |
| 3608 | if (error) |
| 3609 | goto bread_err2; |
| 3610 | |
| 3611 | /* blocks in data section */ |
| 3612 | bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); |
| 3613 | error = xlog_bread(log, blk_no + hblks, bblks, dbp); |
| 3614 | if (error) |
| 3615 | goto bread_err2; |
| 3616 | offset = xlog_align(log, blk_no + hblks, bblks, dbp); |
| 3617 | xlog_unpack_data(rhead, offset, log); |
| 3618 | if ((error = xlog_recover_process_data(log, |
| 3619 | rhash, rhead, offset, pass))) |
| 3620 | goto bread_err2; |
| 3621 | blk_no += bblks + hblks; |
| 3622 | } |
| 3623 | } else { |
| 3624 | /* |
| 3625 | * Perform recovery around the end of the physical log. |
| 3626 | * When the head is not on the same cycle number as the tail, |
| 3627 | * we can't do a sequential recovery as above. |
| 3628 | */ |
| 3629 | blk_no = tail_blk; |
| 3630 | while (blk_no < log->l_logBBsize) { |
| 3631 | /* |
| 3632 | * Check for header wrapping around physical end-of-log |
| 3633 | */ |
| 3634 | offset = NULL; |
| 3635 | split_hblks = 0; |
| 3636 | wrapped_hblks = 0; |
| 3637 | if (blk_no + hblks <= log->l_logBBsize) { |
| 3638 | /* Read header in one read */ |
| 3639 | error = xlog_bread(log, blk_no, hblks, hbp); |
| 3640 | if (error) |
| 3641 | goto bread_err2; |
| 3642 | offset = xlog_align(log, blk_no, hblks, hbp); |
| 3643 | } else { |
| 3644 | /* This LR is split across physical log end */ |
| 3645 | if (blk_no != log->l_logBBsize) { |
| 3646 | /* some data before physical log end */ |
| 3647 | ASSERT(blk_no <= INT_MAX); |
| 3648 | split_hblks = log->l_logBBsize - (int)blk_no; |
| 3649 | ASSERT(split_hblks > 0); |
| 3650 | if ((error = xlog_bread(log, blk_no, |
| 3651 | split_hblks, hbp))) |
| 3652 | goto bread_err2; |
| 3653 | offset = xlog_align(log, blk_no, |
| 3654 | split_hblks, hbp); |
| 3655 | } |
| 3656 | /* |
| 3657 | * Note: this black magic still works with |
| 3658 | * large sector sizes (non-512) only because: |
| 3659 | * - we increased the buffer size originally |
| 3660 | * by 1 sector giving us enough extra space |
| 3661 | * for the second read; |
| 3662 | * - the log start is guaranteed to be sector |
| 3663 | * aligned; |
| 3664 | * - we read the log end (LR header start) |
| 3665 | * _first_, then the log start (LR header end) |
| 3666 | * - order is important. |
| 3667 | */ |
| 3668 | bufaddr = XFS_BUF_PTR(hbp); |
| 3669 | XFS_BUF_SET_PTR(hbp, |
| 3670 | bufaddr + BBTOB(split_hblks), |
| 3671 | BBTOB(hblks - split_hblks)); |
| 3672 | wrapped_hblks = hblks - split_hblks; |
| 3673 | error = xlog_bread(log, 0, wrapped_hblks, hbp); |
| 3674 | if (error) |
| 3675 | goto bread_err2; |
| 3676 | XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks)); |
| 3677 | if (!offset) |
| 3678 | offset = xlog_align(log, 0, |
| 3679 | wrapped_hblks, hbp); |
| 3680 | } |
| 3681 | rhead = (xlog_rec_header_t *)offset; |
| 3682 | error = xlog_valid_rec_header(log, rhead, |
| 3683 | split_hblks ? blk_no : 0); |
| 3684 | if (error) |
| 3685 | goto bread_err2; |
| 3686 | |
| 3687 | bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); |
| 3688 | blk_no += hblks; |
| 3689 | |
| 3690 | /* Read in data for log record */ |
| 3691 | if (blk_no + bblks <= log->l_logBBsize) { |
| 3692 | error = xlog_bread(log, blk_no, bblks, dbp); |
| 3693 | if (error) |
| 3694 | goto bread_err2; |
| 3695 | offset = xlog_align(log, blk_no, bblks, dbp); |
| 3696 | } else { |
| 3697 | /* This log record is split across the |
| 3698 | * physical end of log */ |
| 3699 | offset = NULL; |
| 3700 | split_bblks = 0; |
| 3701 | if (blk_no != log->l_logBBsize) { |
| 3702 | /* some data is before the physical |
| 3703 | * end of log */ |
| 3704 | ASSERT(!wrapped_hblks); |
| 3705 | ASSERT(blk_no <= INT_MAX); |
| 3706 | split_bblks = |
| 3707 | log->l_logBBsize - (int)blk_no; |
| 3708 | ASSERT(split_bblks > 0); |
| 3709 | if ((error = xlog_bread(log, blk_no, |
| 3710 | split_bblks, dbp))) |
| 3711 | goto bread_err2; |
| 3712 | offset = xlog_align(log, blk_no, |
| 3713 | split_bblks, dbp); |
| 3714 | } |
| 3715 | /* |
| 3716 | * Note: this black magic still works with |
| 3717 | * large sector sizes (non-512) only because: |
| 3718 | * - we increased the buffer size originally |
| 3719 | * by 1 sector giving us enough extra space |
| 3720 | * for the second read; |
| 3721 | * - the log start is guaranteed to be sector |
| 3722 | * aligned; |
| 3723 | * - we read the log end (LR header start) |
| 3724 | * _first_, then the log start (LR header end) |
| 3725 | * - order is important. |
| 3726 | */ |
| 3727 | bufaddr = XFS_BUF_PTR(dbp); |
| 3728 | XFS_BUF_SET_PTR(dbp, |
| 3729 | bufaddr + BBTOB(split_bblks), |
| 3730 | BBTOB(bblks - split_bblks)); |
| 3731 | if ((error = xlog_bread(log, wrapped_hblks, |
| 3732 | bblks - split_bblks, dbp))) |
| 3733 | goto bread_err2; |
| 3734 | XFS_BUF_SET_PTR(dbp, bufaddr, h_size); |
| 3735 | if (!offset) |
| 3736 | offset = xlog_align(log, wrapped_hblks, |
| 3737 | bblks - split_bblks, dbp); |
| 3738 | } |
| 3739 | xlog_unpack_data(rhead, offset, log); |
| 3740 | if ((error = xlog_recover_process_data(log, rhash, |
| 3741 | rhead, offset, pass))) |
| 3742 | goto bread_err2; |
| 3743 | blk_no += bblks; |
| 3744 | } |
| 3745 | |
| 3746 | ASSERT(blk_no >= log->l_logBBsize); |
| 3747 | blk_no -= log->l_logBBsize; |
| 3748 | |
| 3749 | /* read first part of physical log */ |
| 3750 | while (blk_no < head_blk) { |
| 3751 | if ((error = xlog_bread(log, blk_no, hblks, hbp))) |
| 3752 | goto bread_err2; |
| 3753 | offset = xlog_align(log, blk_no, hblks, hbp); |
| 3754 | rhead = (xlog_rec_header_t *)offset; |
| 3755 | error = xlog_valid_rec_header(log, rhead, blk_no); |
| 3756 | if (error) |
| 3757 | goto bread_err2; |
| 3758 | bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); |
| 3759 | if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp))) |
| 3760 | goto bread_err2; |
| 3761 | offset = xlog_align(log, blk_no+hblks, bblks, dbp); |
| 3762 | xlog_unpack_data(rhead, offset, log); |
| 3763 | if ((error = xlog_recover_process_data(log, rhash, |
| 3764 | rhead, offset, pass))) |
| 3765 | goto bread_err2; |
| 3766 | blk_no += bblks + hblks; |
| 3767 | } |
| 3768 | } |
| 3769 | |
| 3770 | bread_err2: |
| 3771 | xlog_put_bp(dbp); |
| 3772 | bread_err1: |
| 3773 | xlog_put_bp(hbp); |
| 3774 | return error; |
| 3775 | } |
| 3776 | |
| 3777 | /* |
| 3778 | * Do the recovery of the log. We actually do this in two phases. |
| 3779 | * The two passes are necessary in order to implement the function |
| 3780 | * of cancelling a record written into the log. The first pass |
| 3781 | * determines those things which have been cancelled, and the |
| 3782 | * second pass replays log items normally except for those which |
| 3783 | * have been cancelled. The handling of the replay and cancellations |
| 3784 | * takes place in the log item type specific routines. |
| 3785 | * |
| 3786 | * The table of items which have cancel records in the log is allocated |
| 3787 | * and freed at this level, since only here do we know when all of |
| 3788 | * the log recovery has been completed. |
| 3789 | */ |
| 3790 | STATIC int |
| 3791 | xlog_do_log_recovery( |
| 3792 | xlog_t *log, |
| 3793 | xfs_daddr_t head_blk, |
| 3794 | xfs_daddr_t tail_blk) |
| 3795 | { |
| 3796 | int error; |
| 3797 | |
| 3798 | ASSERT(head_blk != tail_blk); |
| 3799 | |
| 3800 | /* |
| 3801 | * First do a pass to find all of the cancelled buf log items. |
| 3802 | * Store them in the buf_cancel_table for use in the second pass. |
| 3803 | */ |
| 3804 | log->l_buf_cancel_table = |
| 3805 | (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * |
| 3806 | sizeof(xfs_buf_cancel_t*), |
| 3807 | KM_SLEEP); |
| 3808 | error = xlog_do_recovery_pass(log, head_blk, tail_blk, |
| 3809 | XLOG_RECOVER_PASS1); |
| 3810 | if (error != 0) { |
| 3811 | kmem_free(log->l_buf_cancel_table, |
| 3812 | XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); |
| 3813 | log->l_buf_cancel_table = NULL; |
| 3814 | return error; |
| 3815 | } |
| 3816 | /* |
| 3817 | * Then do a second pass to actually recover the items in the log. |
| 3818 | * When it is complete free the table of buf cancel items. |
| 3819 | */ |
| 3820 | error = xlog_do_recovery_pass(log, head_blk, tail_blk, |
| 3821 | XLOG_RECOVER_PASS2); |
| 3822 | #ifdef DEBUG |
| 3823 | { |
| 3824 | int i; |
| 3825 | |
| 3826 | for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) |
| 3827 | ASSERT(log->l_buf_cancel_table[i] == NULL); |
| 3828 | } |
| 3829 | #endif /* DEBUG */ |
| 3830 | |
| 3831 | kmem_free(log->l_buf_cancel_table, |
| 3832 | XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); |
| 3833 | log->l_buf_cancel_table = NULL; |
| 3834 | |
| 3835 | return error; |
| 3836 | } |
| 3837 | |
| 3838 | /* |
| 3839 | * Do the actual recovery |
| 3840 | */ |
| 3841 | STATIC int |
| 3842 | xlog_do_recover( |
| 3843 | xlog_t *log, |
| 3844 | xfs_daddr_t head_blk, |
| 3845 | xfs_daddr_t tail_blk) |
| 3846 | { |
| 3847 | int error; |
| 3848 | xfs_buf_t *bp; |
| 3849 | xfs_sb_t *sbp; |
| 3850 | |
| 3851 | /* |
| 3852 | * First replay the images in the log. |
| 3853 | */ |
| 3854 | error = xlog_do_log_recovery(log, head_blk, tail_blk); |
| 3855 | if (error) { |
| 3856 | return error; |
| 3857 | } |
| 3858 | |
| 3859 | XFS_bflush(log->l_mp->m_ddev_targp); |
| 3860 | |
| 3861 | /* |
| 3862 | * If IO errors happened during recovery, bail out. |
| 3863 | */ |
| 3864 | if (XFS_FORCED_SHUTDOWN(log->l_mp)) { |
| 3865 | return (EIO); |
| 3866 | } |
| 3867 | |
| 3868 | /* |
| 3869 | * We now update the tail_lsn since much of the recovery has completed |
| 3870 | * and there may be space available to use. If there were no extent |
| 3871 | * or iunlinks, we can free up the entire log and set the tail_lsn to |
| 3872 | * be the last_sync_lsn. This was set in xlog_find_tail to be the |
| 3873 | * lsn of the last known good LR on disk. If there are extent frees |
| 3874 | * or iunlinks they will have some entries in the AIL; so we look at |
| 3875 | * the AIL to determine how to set the tail_lsn. |
| 3876 | */ |
| 3877 | xlog_assign_tail_lsn(log->l_mp); |
| 3878 | |
| 3879 | /* |
| 3880 | * Now that we've finished replaying all buffer and inode |
| 3881 | * updates, re-read in the superblock. |
| 3882 | */ |
| 3883 | bp = xfs_getsb(log->l_mp, 0); |
| 3884 | XFS_BUF_UNDONE(bp); |
| 3885 | XFS_BUF_READ(bp); |
| 3886 | xfsbdstrat(log->l_mp, bp); |
| 3887 | if ((error = xfs_iowait(bp))) { |
| 3888 | xfs_ioerror_alert("xlog_do_recover", |
| 3889 | log->l_mp, bp, XFS_BUF_ADDR(bp)); |
| 3890 | ASSERT(0); |
| 3891 | xfs_buf_relse(bp); |
| 3892 | return error; |
| 3893 | } |
| 3894 | |
| 3895 | /* Convert superblock from on-disk format */ |
| 3896 | sbp = &log->l_mp->m_sb; |
| 3897 | xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS); |
| 3898 | ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); |
| 3899 | ASSERT(XFS_SB_GOOD_VERSION(sbp)); |
| 3900 | xfs_buf_relse(bp); |
| 3901 | |
| 3902 | xlog_recover_check_summary(log); |
| 3903 | |
| 3904 | /* Normal transactions can now occur */ |
| 3905 | log->l_flags &= ~XLOG_ACTIVE_RECOVERY; |
| 3906 | return 0; |
| 3907 | } |
| 3908 | |
| 3909 | /* |
| 3910 | * Perform recovery and re-initialize some log variables in xlog_find_tail. |
| 3911 | * |
| 3912 | * Return error or zero. |
| 3913 | */ |
| 3914 | int |
| 3915 | xlog_recover( |
| 3916 | xlog_t *log, |
| 3917 | int readonly) |
| 3918 | { |
| 3919 | xfs_daddr_t head_blk, tail_blk; |
| 3920 | int error; |
| 3921 | |
| 3922 | /* find the tail of the log */ |
| 3923 | if ((error = xlog_find_tail(log, &head_blk, &tail_blk, readonly))) |
| 3924 | return error; |
| 3925 | |
| 3926 | if (tail_blk != head_blk) { |
| 3927 | /* There used to be a comment here: |
| 3928 | * |
| 3929 | * disallow recovery on read-only mounts. note -- mount |
| 3930 | * checks for ENOSPC and turns it into an intelligent |
| 3931 | * error message. |
| 3932 | * ...but this is no longer true. Now, unless you specify |
| 3933 | * NORECOVERY (in which case this function would never be |
| 3934 | * called), we just go ahead and recover. We do this all |
| 3935 | * under the vfs layer, so we can get away with it unless |
| 3936 | * the device itself is read-only, in which case we fail. |
| 3937 | */ |
| 3938 | if ((error = xfs_dev_is_read_only(log->l_mp, |
| 3939 | "recovery required"))) { |
| 3940 | return error; |
| 3941 | } |
| 3942 | |
| 3943 | cmn_err(CE_NOTE, |
| 3944 | "Starting XFS recovery on filesystem: %s (dev: %s)", |
| 3945 | log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ)); |
| 3946 | |
| 3947 | error = xlog_do_recover(log, head_blk, tail_blk); |
| 3948 | log->l_flags |= XLOG_RECOVERY_NEEDED; |
| 3949 | } |
| 3950 | return error; |
| 3951 | } |
| 3952 | |
| 3953 | /* |
| 3954 | * In the first part of recovery we replay inodes and buffers and build |
| 3955 | * up the list of extent free items which need to be processed. Here |
| 3956 | * we process the extent free items and clean up the on disk unlinked |
| 3957 | * inode lists. This is separated from the first part of recovery so |
| 3958 | * that the root and real-time bitmap inodes can be read in from disk in |
| 3959 | * between the two stages. This is necessary so that we can free space |
| 3960 | * in the real-time portion of the file system. |
| 3961 | */ |
| 3962 | int |
| 3963 | xlog_recover_finish( |
| 3964 | xlog_t *log, |
| 3965 | int mfsi_flags) |
| 3966 | { |
| 3967 | /* |
| 3968 | * Now we're ready to do the transactions needed for the |
| 3969 | * rest of recovery. Start with completing all the extent |
| 3970 | * free intent records and then process the unlinked inode |
| 3971 | * lists. At this point, we essentially run in normal mode |
| 3972 | * except that we're still performing recovery actions |
| 3973 | * rather than accepting new requests. |
| 3974 | */ |
| 3975 | if (log->l_flags & XLOG_RECOVERY_NEEDED) { |
| 3976 | xlog_recover_process_efis(log); |
| 3977 | /* |
| 3978 | * Sync the log to get all the EFIs out of the AIL. |
| 3979 | * This isn't absolutely necessary, but it helps in |
| 3980 | * case the unlink transactions would have problems |
| 3981 | * pushing the EFIs out of the way. |
| 3982 | */ |
| 3983 | xfs_log_force(log->l_mp, (xfs_lsn_t)0, |
| 3984 | (XFS_LOG_FORCE | XFS_LOG_SYNC)); |
| 3985 | |
| 3986 | if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) { |
| 3987 | xlog_recover_process_iunlinks(log); |
| 3988 | } |
| 3989 | |
| 3990 | xlog_recover_check_summary(log); |
| 3991 | |
| 3992 | cmn_err(CE_NOTE, |
| 3993 | "Ending XFS recovery on filesystem: %s (dev: %s)", |
| 3994 | log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ)); |
| 3995 | log->l_flags &= ~XLOG_RECOVERY_NEEDED; |
| 3996 | } else { |
| 3997 | cmn_err(CE_DEBUG, |
| 3998 | "!Ending clean XFS mount for filesystem: %s", |
| 3999 | log->l_mp->m_fsname); |
| 4000 | } |
| 4001 | return 0; |
| 4002 | } |
| 4003 | |
| 4004 | |
| 4005 | #if defined(DEBUG) |
| 4006 | /* |
| 4007 | * Read all of the agf and agi counters and check that they |
| 4008 | * are consistent with the superblock counters. |
| 4009 | */ |
| 4010 | void |
| 4011 | xlog_recover_check_summary( |
| 4012 | xlog_t *log) |
| 4013 | { |
| 4014 | xfs_mount_t *mp; |
| 4015 | xfs_agf_t *agfp; |
| 4016 | xfs_agi_t *agip; |
| 4017 | xfs_buf_t *agfbp; |
| 4018 | xfs_buf_t *agibp; |
| 4019 | xfs_daddr_t agfdaddr; |
| 4020 | xfs_daddr_t agidaddr; |
| 4021 | xfs_buf_t *sbbp; |
| 4022 | #ifdef XFS_LOUD_RECOVERY |
| 4023 | xfs_sb_t *sbp; |
| 4024 | #endif |
| 4025 | xfs_agnumber_t agno; |
| 4026 | __uint64_t freeblks; |
| 4027 | __uint64_t itotal; |
| 4028 | __uint64_t ifree; |
| 4029 | |
| 4030 | mp = log->l_mp; |
| 4031 | |
| 4032 | freeblks = 0LL; |
| 4033 | itotal = 0LL; |
| 4034 | ifree = 0LL; |
| 4035 | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { |
| 4036 | agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)); |
| 4037 | agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr, |
| 4038 | XFS_FSS_TO_BB(mp, 1), 0); |
| 4039 | if (XFS_BUF_ISERROR(agfbp)) { |
| 4040 | xfs_ioerror_alert("xlog_recover_check_summary(agf)", |
| 4041 | mp, agfbp, agfdaddr); |
| 4042 | } |
| 4043 | agfp = XFS_BUF_TO_AGF(agfbp); |
| 4044 | ASSERT(XFS_AGF_MAGIC == |
| 4045 | INT_GET(agfp->agf_magicnum, ARCH_CONVERT)); |
| 4046 | ASSERT(XFS_AGF_GOOD_VERSION( |
| 4047 | INT_GET(agfp->agf_versionnum, ARCH_CONVERT))); |
| 4048 | ASSERT(INT_GET(agfp->agf_seqno, ARCH_CONVERT) == agno); |
| 4049 | |
| 4050 | freeblks += INT_GET(agfp->agf_freeblks, ARCH_CONVERT) + |
| 4051 | INT_GET(agfp->agf_flcount, ARCH_CONVERT); |
| 4052 | xfs_buf_relse(agfbp); |
| 4053 | |
| 4054 | agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); |
| 4055 | agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr, |
| 4056 | XFS_FSS_TO_BB(mp, 1), 0); |
| 4057 | if (XFS_BUF_ISERROR(agibp)) { |
| 4058 | xfs_ioerror_alert("xlog_recover_check_summary(agi)", |
| 4059 | mp, agibp, agidaddr); |
| 4060 | } |
| 4061 | agip = XFS_BUF_TO_AGI(agibp); |
| 4062 | ASSERT(XFS_AGI_MAGIC == |
| 4063 | INT_GET(agip->agi_magicnum, ARCH_CONVERT)); |
| 4064 | ASSERT(XFS_AGI_GOOD_VERSION( |
| 4065 | INT_GET(agip->agi_versionnum, ARCH_CONVERT))); |
| 4066 | ASSERT(INT_GET(agip->agi_seqno, ARCH_CONVERT) == agno); |
| 4067 | |
| 4068 | itotal += INT_GET(agip->agi_count, ARCH_CONVERT); |
| 4069 | ifree += INT_GET(agip->agi_freecount, ARCH_CONVERT); |
| 4070 | xfs_buf_relse(agibp); |
| 4071 | } |
| 4072 | |
| 4073 | sbbp = xfs_getsb(mp, 0); |
| 4074 | #ifdef XFS_LOUD_RECOVERY |
| 4075 | sbp = &mp->m_sb; |
| 4076 | xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS); |
| 4077 | cmn_err(CE_NOTE, |
| 4078 | "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", |
| 4079 | sbp->sb_icount, itotal); |
| 4080 | cmn_err(CE_NOTE, |
| 4081 | "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", |
| 4082 | sbp->sb_ifree, ifree); |
| 4083 | cmn_err(CE_NOTE, |
| 4084 | "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", |
| 4085 | sbp->sb_fdblocks, freeblks); |
| 4086 | #if 0 |
| 4087 | /* |
| 4088 | * This is turned off until I account for the allocation |
| 4089 | * btree blocks which live in free space. |
| 4090 | */ |
| 4091 | ASSERT(sbp->sb_icount == itotal); |
| 4092 | ASSERT(sbp->sb_ifree == ifree); |
| 4093 | ASSERT(sbp->sb_fdblocks == freeblks); |
| 4094 | #endif |
| 4095 | #endif |
| 4096 | xfs_buf_relse(sbbp); |
| 4097 | } |
| 4098 | #endif /* DEBUG */ |