Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | $Id: fore200e.c,v 1.5 2000/04/14 10:10:34 davem Exp $ |
| 3 | |
| 4 | A FORE Systems 200E-series driver for ATM on Linux. |
| 5 | Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003. |
| 6 | |
| 7 | Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de). |
| 8 | |
| 9 | This driver simultaneously supports PCA-200E and SBA-200E adapters |
| 10 | on i386, alpha (untested), powerpc, sparc and sparc64 architectures. |
| 11 | |
| 12 | This program is free software; you can redistribute it and/or modify |
| 13 | it under the terms of the GNU General Public License as published by |
| 14 | the Free Software Foundation; either version 2 of the License, or |
| 15 | (at your option) any later version. |
| 16 | |
| 17 | This program is distributed in the hope that it will be useful, |
| 18 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 20 | GNU General Public License for more details. |
| 21 | |
| 22 | You should have received a copy of the GNU General Public License |
| 23 | along with this program; if not, write to the Free Software |
| 24 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 25 | */ |
| 26 | |
| 27 | |
| 28 | #include <linux/config.h> |
| 29 | #include <linux/kernel.h> |
| 30 | #include <linux/slab.h> |
| 31 | #include <linux/init.h> |
| 32 | #include <linux/capability.h> |
| 33 | #include <linux/sched.h> |
| 34 | #include <linux/interrupt.h> |
| 35 | #include <linux/bitops.h> |
| 36 | #include <linux/pci.h> |
| 37 | #include <linux/module.h> |
| 38 | #include <linux/atmdev.h> |
| 39 | #include <linux/sonet.h> |
| 40 | #include <linux/atm_suni.h> |
| 41 | #include <linux/dma-mapping.h> |
| 42 | #include <linux/delay.h> |
| 43 | #include <asm/io.h> |
| 44 | #include <asm/string.h> |
| 45 | #include <asm/page.h> |
| 46 | #include <asm/irq.h> |
| 47 | #include <asm/dma.h> |
| 48 | #include <asm/byteorder.h> |
| 49 | #include <asm/uaccess.h> |
| 50 | #include <asm/atomic.h> |
| 51 | |
| 52 | #ifdef CONFIG_ATM_FORE200E_SBA |
| 53 | #include <asm/idprom.h> |
| 54 | #include <asm/sbus.h> |
| 55 | #include <asm/openprom.h> |
| 56 | #include <asm/oplib.h> |
| 57 | #include <asm/pgtable.h> |
| 58 | #endif |
| 59 | |
| 60 | #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */ |
| 61 | #define FORE200E_USE_TASKLET |
| 62 | #endif |
| 63 | |
| 64 | #if 0 /* enable the debugging code of the buffer supply queues */ |
| 65 | #define FORE200E_BSQ_DEBUG |
| 66 | #endif |
| 67 | |
| 68 | #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */ |
| 69 | #define FORE200E_52BYTE_AAL0_SDU |
| 70 | #endif |
| 71 | |
| 72 | #include "fore200e.h" |
| 73 | #include "suni.h" |
| 74 | |
| 75 | #define FORE200E_VERSION "0.3e" |
| 76 | |
| 77 | #define FORE200E "fore200e: " |
| 78 | |
| 79 | #if 0 /* override .config */ |
| 80 | #define CONFIG_ATM_FORE200E_DEBUG 1 |
| 81 | #endif |
| 82 | #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) |
| 83 | #define DPRINTK(level, format, args...) do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \ |
| 84 | printk(FORE200E format, ##args); } while (0) |
| 85 | #else |
| 86 | #define DPRINTK(level, format, args...) do {} while (0) |
| 87 | #endif |
| 88 | |
| 89 | |
| 90 | #define FORE200E_ALIGN(addr, alignment) \ |
| 91 | ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr)) |
| 92 | |
| 93 | #define FORE200E_DMA_INDEX(dma_addr, type, index) ((dma_addr) + (index) * sizeof(type)) |
| 94 | |
| 95 | #define FORE200E_INDEX(virt_addr, type, index) (&((type *)(virt_addr))[ index ]) |
| 96 | |
| 97 | #define FORE200E_NEXT_ENTRY(index, modulo) (index = ++(index) % (modulo)) |
| 98 | |
| 99 | #if 1 |
| 100 | #define ASSERT(expr) if (!(expr)) { \ |
| 101 | printk(FORE200E "assertion failed! %s[%d]: %s\n", \ |
| 102 | __FUNCTION__, __LINE__, #expr); \ |
| 103 | panic(FORE200E "%s", __FUNCTION__); \ |
| 104 | } |
| 105 | #else |
| 106 | #define ASSERT(expr) do {} while (0) |
| 107 | #endif |
| 108 | |
| 109 | |
| 110 | static const struct atmdev_ops fore200e_ops; |
| 111 | static const struct fore200e_bus fore200e_bus[]; |
| 112 | |
| 113 | static LIST_HEAD(fore200e_boards); |
| 114 | |
| 115 | |
| 116 | MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen"); |
| 117 | MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION); |
| 118 | MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E"); |
| 119 | |
| 120 | |
| 121 | static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { |
| 122 | { BUFFER_S1_NBR, BUFFER_L1_NBR }, |
| 123 | { BUFFER_S2_NBR, BUFFER_L2_NBR } |
| 124 | }; |
| 125 | |
| 126 | static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = { |
| 127 | { BUFFER_S1_SIZE, BUFFER_L1_SIZE }, |
| 128 | { BUFFER_S2_SIZE, BUFFER_L2_SIZE } |
| 129 | }; |
| 130 | |
| 131 | |
| 132 | #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0) |
| 133 | static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" }; |
| 134 | #endif |
| 135 | |
| 136 | |
| 137 | #if 0 /* currently unused */ |
| 138 | static int |
| 139 | fore200e_fore2atm_aal(enum fore200e_aal aal) |
| 140 | { |
| 141 | switch(aal) { |
| 142 | case FORE200E_AAL0: return ATM_AAL0; |
| 143 | case FORE200E_AAL34: return ATM_AAL34; |
| 144 | case FORE200E_AAL5: return ATM_AAL5; |
| 145 | } |
| 146 | |
| 147 | return -EINVAL; |
| 148 | } |
| 149 | #endif |
| 150 | |
| 151 | |
| 152 | static enum fore200e_aal |
| 153 | fore200e_atm2fore_aal(int aal) |
| 154 | { |
| 155 | switch(aal) { |
| 156 | case ATM_AAL0: return FORE200E_AAL0; |
| 157 | case ATM_AAL34: return FORE200E_AAL34; |
| 158 | case ATM_AAL1: |
| 159 | case ATM_AAL2: |
| 160 | case ATM_AAL5: return FORE200E_AAL5; |
| 161 | } |
| 162 | |
| 163 | return -EINVAL; |
| 164 | } |
| 165 | |
| 166 | |
| 167 | static char* |
| 168 | fore200e_irq_itoa(int irq) |
| 169 | { |
| 170 | #if defined(__sparc_v9__) |
| 171 | return __irq_itoa(irq); |
| 172 | #else |
| 173 | static char str[8]; |
| 174 | sprintf(str, "%d", irq); |
| 175 | return str; |
| 176 | #endif |
| 177 | } |
| 178 | |
| 179 | |
| 180 | static void* |
| 181 | fore200e_kmalloc(int size, int flags) |
| 182 | { |
| 183 | void* chunk = kmalloc(size, flags); |
| 184 | |
| 185 | if (chunk) |
| 186 | memset(chunk, 0x00, size); |
| 187 | else |
| 188 | printk(FORE200E "kmalloc() failed, requested size = %d, flags = 0x%x\n", size, flags); |
| 189 | |
| 190 | return chunk; |
| 191 | } |
| 192 | |
| 193 | |
| 194 | static void |
| 195 | fore200e_kfree(void* chunk) |
| 196 | { |
| 197 | kfree(chunk); |
| 198 | } |
| 199 | |
| 200 | |
| 201 | /* allocate and align a chunk of memory intended to hold the data behing exchanged |
| 202 | between the driver and the adapter (using streaming DVMA) */ |
| 203 | |
| 204 | static int |
| 205 | fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction) |
| 206 | { |
| 207 | unsigned long offset = 0; |
| 208 | |
| 209 | if (alignment <= sizeof(int)) |
| 210 | alignment = 0; |
| 211 | |
| 212 | chunk->alloc_size = size + alignment; |
| 213 | chunk->align_size = size; |
| 214 | chunk->direction = direction; |
| 215 | |
| 216 | chunk->alloc_addr = fore200e_kmalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA); |
| 217 | if (chunk->alloc_addr == NULL) |
| 218 | return -ENOMEM; |
| 219 | |
| 220 | if (alignment > 0) |
| 221 | offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); |
| 222 | |
| 223 | chunk->align_addr = chunk->alloc_addr + offset; |
| 224 | |
| 225 | chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction); |
| 226 | |
| 227 | return 0; |
| 228 | } |
| 229 | |
| 230 | |
| 231 | /* free a chunk of memory */ |
| 232 | |
| 233 | static void |
| 234 | fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk) |
| 235 | { |
| 236 | fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction); |
| 237 | |
| 238 | fore200e_kfree(chunk->alloc_addr); |
| 239 | } |
| 240 | |
| 241 | |
| 242 | static void |
| 243 | fore200e_spin(int msecs) |
| 244 | { |
| 245 | unsigned long timeout = jiffies + msecs_to_jiffies(msecs); |
| 246 | while (time_before(jiffies, timeout)); |
| 247 | } |
| 248 | |
| 249 | |
| 250 | static int |
| 251 | fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs) |
| 252 | { |
| 253 | unsigned long timeout = jiffies + msecs_to_jiffies(msecs); |
| 254 | int ok; |
| 255 | |
| 256 | mb(); |
| 257 | do { |
| 258 | if ((ok = (*addr == val)) || (*addr & STATUS_ERROR)) |
| 259 | break; |
| 260 | |
| 261 | } while (time_before(jiffies, timeout)); |
| 262 | |
| 263 | #if 1 |
| 264 | if (!ok) { |
| 265 | printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n", |
| 266 | *addr, val); |
| 267 | } |
| 268 | #endif |
| 269 | |
| 270 | return ok; |
| 271 | } |
| 272 | |
| 273 | |
| 274 | static int |
| 275 | fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs) |
| 276 | { |
| 277 | unsigned long timeout = jiffies + msecs_to_jiffies(msecs); |
| 278 | int ok; |
| 279 | |
| 280 | do { |
| 281 | if ((ok = (fore200e->bus->read(addr) == val))) |
| 282 | break; |
| 283 | |
| 284 | } while (time_before(jiffies, timeout)); |
| 285 | |
| 286 | #if 1 |
| 287 | if (!ok) { |
| 288 | printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n", |
| 289 | fore200e->bus->read(addr), val); |
| 290 | } |
| 291 | #endif |
| 292 | |
| 293 | return ok; |
| 294 | } |
| 295 | |
| 296 | |
| 297 | static void |
| 298 | fore200e_free_rx_buf(struct fore200e* fore200e) |
| 299 | { |
| 300 | int scheme, magn, nbr; |
| 301 | struct buffer* buffer; |
| 302 | |
| 303 | for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
| 304 | for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
| 305 | |
| 306 | if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) { |
| 307 | |
| 308 | for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) { |
| 309 | |
| 310 | struct chunk* data = &buffer[ nbr ].data; |
| 311 | |
| 312 | if (data->alloc_addr != NULL) |
| 313 | fore200e_chunk_free(fore200e, data); |
| 314 | } |
| 315 | } |
| 316 | } |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | |
| 321 | static void |
| 322 | fore200e_uninit_bs_queue(struct fore200e* fore200e) |
| 323 | { |
| 324 | int scheme, magn; |
| 325 | |
| 326 | for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
| 327 | for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
| 328 | |
| 329 | struct chunk* status = &fore200e->host_bsq[ scheme ][ magn ].status; |
| 330 | struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block; |
| 331 | |
| 332 | if (status->alloc_addr) |
| 333 | fore200e->bus->dma_chunk_free(fore200e, status); |
| 334 | |
| 335 | if (rbd_block->alloc_addr) |
| 336 | fore200e->bus->dma_chunk_free(fore200e, rbd_block); |
| 337 | } |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | |
| 342 | static int |
| 343 | fore200e_reset(struct fore200e* fore200e, int diag) |
| 344 | { |
| 345 | int ok; |
| 346 | |
| 347 | fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET; |
| 348 | |
| 349 | fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat); |
| 350 | |
| 351 | fore200e->bus->reset(fore200e); |
| 352 | |
| 353 | if (diag) { |
| 354 | ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000); |
| 355 | if (ok == 0) { |
| 356 | |
| 357 | printk(FORE200E "device %s self-test failed\n", fore200e->name); |
| 358 | return -ENODEV; |
| 359 | } |
| 360 | |
| 361 | printk(FORE200E "device %s self-test passed\n", fore200e->name); |
| 362 | |
| 363 | fore200e->state = FORE200E_STATE_RESET; |
| 364 | } |
| 365 | |
| 366 | return 0; |
| 367 | } |
| 368 | |
| 369 | |
| 370 | static void |
| 371 | fore200e_shutdown(struct fore200e* fore200e) |
| 372 | { |
| 373 | printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n", |
| 374 | fore200e->name, fore200e->phys_base, |
| 375 | fore200e_irq_itoa(fore200e->irq)); |
| 376 | |
| 377 | if (fore200e->state > FORE200E_STATE_RESET) { |
| 378 | /* first, reset the board to prevent further interrupts or data transfers */ |
| 379 | fore200e_reset(fore200e, 0); |
| 380 | } |
| 381 | |
| 382 | /* then, release all allocated resources */ |
| 383 | switch(fore200e->state) { |
| 384 | |
| 385 | case FORE200E_STATE_COMPLETE: |
Jesper Juhl | a2c1aa5 | 2005-06-02 13:04:07 -0700 | [diff] [blame] | 386 | kfree(fore200e->stats); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 387 | |
| 388 | case FORE200E_STATE_IRQ: |
| 389 | free_irq(fore200e->irq, fore200e->atm_dev); |
| 390 | |
| 391 | case FORE200E_STATE_ALLOC_BUF: |
| 392 | fore200e_free_rx_buf(fore200e); |
| 393 | |
| 394 | case FORE200E_STATE_INIT_BSQ: |
| 395 | fore200e_uninit_bs_queue(fore200e); |
| 396 | |
| 397 | case FORE200E_STATE_INIT_RXQ: |
| 398 | fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status); |
| 399 | fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd); |
| 400 | |
| 401 | case FORE200E_STATE_INIT_TXQ: |
| 402 | fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status); |
| 403 | fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd); |
| 404 | |
| 405 | case FORE200E_STATE_INIT_CMDQ: |
| 406 | fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status); |
| 407 | |
| 408 | case FORE200E_STATE_INITIALIZE: |
| 409 | /* nothing to do for that state */ |
| 410 | |
| 411 | case FORE200E_STATE_START_FW: |
| 412 | /* nothing to do for that state */ |
| 413 | |
| 414 | case FORE200E_STATE_LOAD_FW: |
| 415 | /* nothing to do for that state */ |
| 416 | |
| 417 | case FORE200E_STATE_RESET: |
| 418 | /* nothing to do for that state */ |
| 419 | |
| 420 | case FORE200E_STATE_MAP: |
| 421 | fore200e->bus->unmap(fore200e); |
| 422 | |
| 423 | case FORE200E_STATE_CONFIGURE: |
| 424 | /* nothing to do for that state */ |
| 425 | |
| 426 | case FORE200E_STATE_REGISTER: |
| 427 | /* XXX shouldn't we *start* by deregistering the device? */ |
| 428 | atm_dev_deregister(fore200e->atm_dev); |
| 429 | |
| 430 | case FORE200E_STATE_BLANK: |
| 431 | /* nothing to do for that state */ |
| 432 | break; |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | |
| 437 | #ifdef CONFIG_ATM_FORE200E_PCA |
| 438 | |
| 439 | static u32 fore200e_pca_read(volatile u32 __iomem *addr) |
| 440 | { |
| 441 | /* on big-endian hosts, the board is configured to convert |
| 442 | the endianess of slave RAM accesses */ |
| 443 | return le32_to_cpu(readl(addr)); |
| 444 | } |
| 445 | |
| 446 | |
| 447 | static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr) |
| 448 | { |
| 449 | /* on big-endian hosts, the board is configured to convert |
| 450 | the endianess of slave RAM accesses */ |
| 451 | writel(cpu_to_le32(val), addr); |
| 452 | } |
| 453 | |
| 454 | |
| 455 | static u32 |
| 456 | fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction) |
| 457 | { |
| 458 | u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction); |
| 459 | |
| 460 | DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d, --> dma_addr = 0x%08x\n", |
| 461 | virt_addr, size, direction, dma_addr); |
| 462 | |
| 463 | return dma_addr; |
| 464 | } |
| 465 | |
| 466 | |
| 467 | static void |
| 468 | fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
| 469 | { |
| 470 | DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n", |
| 471 | dma_addr, size, direction); |
| 472 | |
| 473 | pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); |
| 474 | } |
| 475 | |
| 476 | |
| 477 | static void |
| 478 | fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
| 479 | { |
| 480 | DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); |
| 481 | |
| 482 | pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); |
| 483 | } |
| 484 | |
| 485 | static void |
| 486 | fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
| 487 | { |
| 488 | DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); |
| 489 | |
| 490 | pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction); |
| 491 | } |
| 492 | |
| 493 | |
| 494 | /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism |
| 495 | (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */ |
| 496 | |
| 497 | static int |
| 498 | fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, |
| 499 | int size, int nbr, int alignment) |
| 500 | { |
| 501 | /* returned chunks are page-aligned */ |
| 502 | chunk->alloc_size = size * nbr; |
| 503 | chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev, |
| 504 | chunk->alloc_size, |
| 505 | &chunk->dma_addr); |
| 506 | |
| 507 | if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0)) |
| 508 | return -ENOMEM; |
| 509 | |
| 510 | chunk->align_addr = chunk->alloc_addr; |
| 511 | |
| 512 | return 0; |
| 513 | } |
| 514 | |
| 515 | |
| 516 | /* free a DMA consistent chunk of memory */ |
| 517 | |
| 518 | static void |
| 519 | fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk) |
| 520 | { |
| 521 | pci_free_consistent((struct pci_dev*)fore200e->bus_dev, |
| 522 | chunk->alloc_size, |
| 523 | chunk->alloc_addr, |
| 524 | chunk->dma_addr); |
| 525 | } |
| 526 | |
| 527 | |
| 528 | static int |
| 529 | fore200e_pca_irq_check(struct fore200e* fore200e) |
| 530 | { |
| 531 | /* this is a 1 bit register */ |
| 532 | int irq_posted = readl(fore200e->regs.pca.psr); |
| 533 | |
| 534 | #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2) |
| 535 | if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) { |
| 536 | DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number); |
| 537 | } |
| 538 | #endif |
| 539 | |
| 540 | return irq_posted; |
| 541 | } |
| 542 | |
| 543 | |
| 544 | static void |
| 545 | fore200e_pca_irq_ack(struct fore200e* fore200e) |
| 546 | { |
| 547 | writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr); |
| 548 | } |
| 549 | |
| 550 | |
| 551 | static void |
| 552 | fore200e_pca_reset(struct fore200e* fore200e) |
| 553 | { |
| 554 | writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr); |
| 555 | fore200e_spin(10); |
| 556 | writel(0, fore200e->regs.pca.hcr); |
| 557 | } |
| 558 | |
| 559 | |
| 560 | static int __init |
| 561 | fore200e_pca_map(struct fore200e* fore200e) |
| 562 | { |
| 563 | DPRINTK(2, "device %s being mapped in memory\n", fore200e->name); |
| 564 | |
| 565 | fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH); |
| 566 | |
| 567 | if (fore200e->virt_base == NULL) { |
| 568 | printk(FORE200E "can't map device %s\n", fore200e->name); |
| 569 | return -EFAULT; |
| 570 | } |
| 571 | |
| 572 | DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); |
| 573 | |
| 574 | /* gain access to the PCA specific registers */ |
| 575 | fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET; |
| 576 | fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET; |
| 577 | fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET; |
| 578 | |
| 579 | fore200e->state = FORE200E_STATE_MAP; |
| 580 | return 0; |
| 581 | } |
| 582 | |
| 583 | |
| 584 | static void |
| 585 | fore200e_pca_unmap(struct fore200e* fore200e) |
| 586 | { |
| 587 | DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name); |
| 588 | |
| 589 | if (fore200e->virt_base != NULL) |
| 590 | iounmap(fore200e->virt_base); |
| 591 | } |
| 592 | |
| 593 | |
| 594 | static int __init |
| 595 | fore200e_pca_configure(struct fore200e* fore200e) |
| 596 | { |
| 597 | struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev; |
| 598 | u8 master_ctrl, latency; |
| 599 | |
| 600 | DPRINTK(2, "device %s being configured\n", fore200e->name); |
| 601 | |
| 602 | if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) { |
| 603 | printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n"); |
| 604 | return -EIO; |
| 605 | } |
| 606 | |
| 607 | pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl); |
| 608 | |
| 609 | master_ctrl = master_ctrl |
| 610 | #if defined(__BIG_ENDIAN) |
| 611 | /* request the PCA board to convert the endianess of slave RAM accesses */ |
| 612 | | PCA200E_CTRL_CONVERT_ENDIAN |
| 613 | #endif |
| 614 | #if 0 |
| 615 | | PCA200E_CTRL_DIS_CACHE_RD |
| 616 | | PCA200E_CTRL_DIS_WRT_INVAL |
| 617 | | PCA200E_CTRL_ENA_CONT_REQ_MODE |
| 618 | | PCA200E_CTRL_2_CACHE_WRT_INVAL |
| 619 | #endif |
| 620 | | PCA200E_CTRL_LARGE_PCI_BURSTS; |
| 621 | |
| 622 | pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl); |
| 623 | |
| 624 | /* raise latency from 32 (default) to 192, as this seems to prevent NIC |
| 625 | lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition. |
| 626 | this may impact the performances of other PCI devices on the same bus, though */ |
| 627 | latency = 192; |
| 628 | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency); |
| 629 | |
| 630 | fore200e->state = FORE200E_STATE_CONFIGURE; |
| 631 | return 0; |
| 632 | } |
| 633 | |
| 634 | |
| 635 | static int __init |
| 636 | fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom) |
| 637 | { |
| 638 | struct host_cmdq* cmdq = &fore200e->host_cmdq; |
| 639 | struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
| 640 | struct prom_opcode opcode; |
| 641 | int ok; |
| 642 | u32 prom_dma; |
| 643 | |
| 644 | FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
| 645 | |
| 646 | opcode.opcode = OPCODE_GET_PROM; |
| 647 | opcode.pad = 0; |
| 648 | |
| 649 | prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE); |
| 650 | |
| 651 | fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr); |
| 652 | |
| 653 | *entry->status = STATUS_PENDING; |
| 654 | |
| 655 | fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode); |
| 656 | |
| 657 | ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
| 658 | |
| 659 | *entry->status = STATUS_FREE; |
| 660 | |
| 661 | fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE); |
| 662 | |
| 663 | if (ok == 0) { |
| 664 | printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name); |
| 665 | return -EIO; |
| 666 | } |
| 667 | |
| 668 | #if defined(__BIG_ENDIAN) |
| 669 | |
| 670 | #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) )) |
| 671 | |
| 672 | /* MAC address is stored as little-endian */ |
| 673 | swap_here(&prom->mac_addr[0]); |
| 674 | swap_here(&prom->mac_addr[4]); |
| 675 | #endif |
| 676 | |
| 677 | return 0; |
| 678 | } |
| 679 | |
| 680 | |
| 681 | static int |
| 682 | fore200e_pca_proc_read(struct fore200e* fore200e, char *page) |
| 683 | { |
| 684 | struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev; |
| 685 | |
| 686 | return sprintf(page, " PCI bus/slot/function:\t%d/%d/%d\n", |
| 687 | pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn)); |
| 688 | } |
| 689 | |
| 690 | #endif /* CONFIG_ATM_FORE200E_PCA */ |
| 691 | |
| 692 | |
| 693 | #ifdef CONFIG_ATM_FORE200E_SBA |
| 694 | |
| 695 | static u32 |
| 696 | fore200e_sba_read(volatile u32 __iomem *addr) |
| 697 | { |
| 698 | return sbus_readl(addr); |
| 699 | } |
| 700 | |
| 701 | |
| 702 | static void |
| 703 | fore200e_sba_write(u32 val, volatile u32 __iomem *addr) |
| 704 | { |
| 705 | sbus_writel(val, addr); |
| 706 | } |
| 707 | |
| 708 | |
| 709 | static u32 |
| 710 | fore200e_sba_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction) |
| 711 | { |
| 712 | u32 dma_addr = sbus_map_single((struct sbus_dev*)fore200e->bus_dev, virt_addr, size, direction); |
| 713 | |
| 714 | DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n", |
| 715 | virt_addr, size, direction, dma_addr); |
| 716 | |
| 717 | return dma_addr; |
| 718 | } |
| 719 | |
| 720 | |
| 721 | static void |
| 722 | fore200e_sba_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
| 723 | { |
| 724 | DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n", |
| 725 | dma_addr, size, direction); |
| 726 | |
| 727 | sbus_unmap_single((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction); |
| 728 | } |
| 729 | |
| 730 | |
| 731 | static void |
| 732 | fore200e_sba_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
| 733 | { |
| 734 | DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); |
| 735 | |
| 736 | sbus_dma_sync_single_for_cpu((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction); |
| 737 | } |
| 738 | |
| 739 | static void |
| 740 | fore200e_sba_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction) |
| 741 | { |
| 742 | DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction); |
| 743 | |
| 744 | sbus_dma_sync_single_for_device((struct sbus_dev*)fore200e->bus_dev, dma_addr, size, direction); |
| 745 | } |
| 746 | |
| 747 | |
| 748 | /* allocate a DVMA consistent chunk of memory intended to act as a communication mechanism |
| 749 | (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */ |
| 750 | |
| 751 | static int |
| 752 | fore200e_sba_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, |
| 753 | int size, int nbr, int alignment) |
| 754 | { |
| 755 | chunk->alloc_size = chunk->align_size = size * nbr; |
| 756 | |
| 757 | /* returned chunks are page-aligned */ |
| 758 | chunk->alloc_addr = sbus_alloc_consistent((struct sbus_dev*)fore200e->bus_dev, |
| 759 | chunk->alloc_size, |
| 760 | &chunk->dma_addr); |
| 761 | |
| 762 | if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0)) |
| 763 | return -ENOMEM; |
| 764 | |
| 765 | chunk->align_addr = chunk->alloc_addr; |
| 766 | |
| 767 | return 0; |
| 768 | } |
| 769 | |
| 770 | |
| 771 | /* free a DVMA consistent chunk of memory */ |
| 772 | |
| 773 | static void |
| 774 | fore200e_sba_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk) |
| 775 | { |
| 776 | sbus_free_consistent((struct sbus_dev*)fore200e->bus_dev, |
| 777 | chunk->alloc_size, |
| 778 | chunk->alloc_addr, |
| 779 | chunk->dma_addr); |
| 780 | } |
| 781 | |
| 782 | |
| 783 | static void |
| 784 | fore200e_sba_irq_enable(struct fore200e* fore200e) |
| 785 | { |
| 786 | u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; |
| 787 | fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr); |
| 788 | } |
| 789 | |
| 790 | |
| 791 | static int |
| 792 | fore200e_sba_irq_check(struct fore200e* fore200e) |
| 793 | { |
| 794 | return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ; |
| 795 | } |
| 796 | |
| 797 | |
| 798 | static void |
| 799 | fore200e_sba_irq_ack(struct fore200e* fore200e) |
| 800 | { |
| 801 | u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY; |
| 802 | fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr); |
| 803 | } |
| 804 | |
| 805 | |
| 806 | static void |
| 807 | fore200e_sba_reset(struct fore200e* fore200e) |
| 808 | { |
| 809 | fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr); |
| 810 | fore200e_spin(10); |
| 811 | fore200e->bus->write(0, fore200e->regs.sba.hcr); |
| 812 | } |
| 813 | |
| 814 | |
| 815 | static int __init |
| 816 | fore200e_sba_map(struct fore200e* fore200e) |
| 817 | { |
| 818 | struct sbus_dev* sbus_dev = (struct sbus_dev*)fore200e->bus_dev; |
| 819 | unsigned int bursts; |
| 820 | |
| 821 | /* gain access to the SBA specific registers */ |
| 822 | fore200e->regs.sba.hcr = sbus_ioremap(&sbus_dev->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR"); |
| 823 | fore200e->regs.sba.bsr = sbus_ioremap(&sbus_dev->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR"); |
| 824 | fore200e->regs.sba.isr = sbus_ioremap(&sbus_dev->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR"); |
| 825 | fore200e->virt_base = sbus_ioremap(&sbus_dev->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM"); |
| 826 | |
| 827 | if (fore200e->virt_base == NULL) { |
| 828 | printk(FORE200E "unable to map RAM of device %s\n", fore200e->name); |
| 829 | return -EFAULT; |
| 830 | } |
| 831 | |
| 832 | DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base); |
| 833 | |
| 834 | fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */ |
| 835 | |
| 836 | /* get the supported DVMA burst sizes */ |
| 837 | bursts = prom_getintdefault(sbus_dev->bus->prom_node, "burst-sizes", 0x00); |
| 838 | |
| 839 | if (sbus_can_dma_64bit(sbus_dev)) |
| 840 | sbus_set_sbus64(sbus_dev, bursts); |
| 841 | |
| 842 | fore200e->state = FORE200E_STATE_MAP; |
| 843 | return 0; |
| 844 | } |
| 845 | |
| 846 | |
| 847 | static void |
| 848 | fore200e_sba_unmap(struct fore200e* fore200e) |
| 849 | { |
| 850 | sbus_iounmap(fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH); |
| 851 | sbus_iounmap(fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH); |
| 852 | sbus_iounmap(fore200e->regs.sba.isr, SBA200E_ISR_LENGTH); |
| 853 | sbus_iounmap(fore200e->virt_base, SBA200E_RAM_LENGTH); |
| 854 | } |
| 855 | |
| 856 | |
| 857 | static int __init |
| 858 | fore200e_sba_configure(struct fore200e* fore200e) |
| 859 | { |
| 860 | fore200e->state = FORE200E_STATE_CONFIGURE; |
| 861 | return 0; |
| 862 | } |
| 863 | |
| 864 | |
| 865 | static struct fore200e* __init |
| 866 | fore200e_sba_detect(const struct fore200e_bus* bus, int index) |
| 867 | { |
| 868 | struct fore200e* fore200e; |
| 869 | struct sbus_bus* sbus_bus; |
| 870 | struct sbus_dev* sbus_dev = NULL; |
| 871 | |
| 872 | unsigned int count = 0; |
| 873 | |
| 874 | for_each_sbus (sbus_bus) { |
| 875 | for_each_sbusdev (sbus_dev, sbus_bus) { |
| 876 | if (strcmp(sbus_dev->prom_name, SBA200E_PROM_NAME) == 0) { |
| 877 | if (count >= index) |
| 878 | goto found; |
| 879 | count++; |
| 880 | } |
| 881 | } |
| 882 | } |
| 883 | return NULL; |
| 884 | |
| 885 | found: |
| 886 | if (sbus_dev->num_registers != 4) { |
| 887 | printk(FORE200E "this %s device has %d instead of 4 registers\n", |
| 888 | bus->model_name, sbus_dev->num_registers); |
| 889 | return NULL; |
| 890 | } |
| 891 | |
| 892 | fore200e = fore200e_kmalloc(sizeof(struct fore200e), GFP_KERNEL); |
| 893 | if (fore200e == NULL) |
| 894 | return NULL; |
| 895 | |
| 896 | fore200e->bus = bus; |
| 897 | fore200e->bus_dev = sbus_dev; |
| 898 | fore200e->irq = sbus_dev->irqs[ 0 ]; |
| 899 | |
| 900 | fore200e->phys_base = (unsigned long)sbus_dev; |
| 901 | |
| 902 | sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1); |
| 903 | |
| 904 | return fore200e; |
| 905 | } |
| 906 | |
| 907 | |
| 908 | static int __init |
| 909 | fore200e_sba_prom_read(struct fore200e* fore200e, struct prom_data* prom) |
| 910 | { |
| 911 | struct sbus_dev* sbus_dev = (struct sbus_dev*) fore200e->bus_dev; |
| 912 | int len; |
| 913 | |
| 914 | len = prom_getproperty(sbus_dev->prom_node, "macaddrlo2", &prom->mac_addr[ 4 ], 4); |
| 915 | if (len < 0) |
| 916 | return -EBUSY; |
| 917 | |
| 918 | len = prom_getproperty(sbus_dev->prom_node, "macaddrhi4", &prom->mac_addr[ 2 ], 4); |
| 919 | if (len < 0) |
| 920 | return -EBUSY; |
| 921 | |
| 922 | prom_getproperty(sbus_dev->prom_node, "serialnumber", |
| 923 | (char*)&prom->serial_number, sizeof(prom->serial_number)); |
| 924 | |
| 925 | prom_getproperty(sbus_dev->prom_node, "promversion", |
| 926 | (char*)&prom->hw_revision, sizeof(prom->hw_revision)); |
| 927 | |
| 928 | return 0; |
| 929 | } |
| 930 | |
| 931 | |
| 932 | static int |
| 933 | fore200e_sba_proc_read(struct fore200e* fore200e, char *page) |
| 934 | { |
| 935 | struct sbus_dev* sbus_dev = (struct sbus_dev*)fore200e->bus_dev; |
| 936 | |
| 937 | return sprintf(page, " SBUS slot/device:\t\t%d/'%s'\n", sbus_dev->slot, sbus_dev->prom_name); |
| 938 | } |
| 939 | #endif /* CONFIG_ATM_FORE200E_SBA */ |
| 940 | |
| 941 | |
| 942 | static void |
| 943 | fore200e_tx_irq(struct fore200e* fore200e) |
| 944 | { |
| 945 | struct host_txq* txq = &fore200e->host_txq; |
| 946 | struct host_txq_entry* entry; |
| 947 | struct atm_vcc* vcc; |
| 948 | struct fore200e_vc_map* vc_map; |
| 949 | |
| 950 | if (fore200e->host_txq.txing == 0) |
| 951 | return; |
| 952 | |
| 953 | for (;;) { |
| 954 | |
| 955 | entry = &txq->host_entry[ txq->tail ]; |
| 956 | |
| 957 | if ((*entry->status & STATUS_COMPLETE) == 0) { |
| 958 | break; |
| 959 | } |
| 960 | |
| 961 | DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", |
| 962 | entry, txq->tail, entry->vc_map, entry->skb); |
| 963 | |
| 964 | /* free copy of misaligned data */ |
Jesper Juhl | a2c1aa5 | 2005-06-02 13:04:07 -0700 | [diff] [blame] | 965 | kfree(entry->data); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 966 | |
| 967 | /* remove DMA mapping */ |
| 968 | fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length, |
| 969 | DMA_TO_DEVICE); |
| 970 | |
| 971 | vc_map = entry->vc_map; |
| 972 | |
| 973 | /* vcc closed since the time the entry was submitted for tx? */ |
| 974 | if ((vc_map->vcc == NULL) || |
| 975 | (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { |
| 976 | |
| 977 | DPRINTK(1, "no ready vcc found for PDU sent on device %d\n", |
| 978 | fore200e->atm_dev->number); |
| 979 | |
| 980 | dev_kfree_skb_any(entry->skb); |
| 981 | } |
| 982 | else { |
| 983 | ASSERT(vc_map->vcc); |
| 984 | |
| 985 | /* vcc closed then immediately re-opened? */ |
| 986 | if (vc_map->incarn != entry->incarn) { |
| 987 | |
| 988 | /* when a vcc is closed, some PDUs may be still pending in the tx queue. |
| 989 | if the same vcc is immediately re-opened, those pending PDUs must |
| 990 | not be popped after the completion of their emission, as they refer |
| 991 | to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc |
| 992 | would be decremented by the size of the (unrelated) skb, possibly |
| 993 | leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc. |
| 994 | we thus bind the tx entry to the current incarnation of the vcc |
| 995 | when the entry is submitted for tx. When the tx later completes, |
| 996 | if the incarnation number of the tx entry does not match the one |
| 997 | of the vcc, then this implies that the vcc has been closed then re-opened. |
| 998 | we thus just drop the skb here. */ |
| 999 | |
| 1000 | DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n", |
| 1001 | fore200e->atm_dev->number); |
| 1002 | |
| 1003 | dev_kfree_skb_any(entry->skb); |
| 1004 | } |
| 1005 | else { |
| 1006 | vcc = vc_map->vcc; |
| 1007 | ASSERT(vcc); |
| 1008 | |
| 1009 | /* notify tx completion */ |
| 1010 | if (vcc->pop) { |
| 1011 | vcc->pop(vcc, entry->skb); |
| 1012 | } |
| 1013 | else { |
| 1014 | dev_kfree_skb_any(entry->skb); |
| 1015 | } |
| 1016 | #if 1 |
| 1017 | /* race fixed by the above incarnation mechanism, but... */ |
| 1018 | if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) { |
| 1019 | atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0); |
| 1020 | } |
| 1021 | #endif |
| 1022 | /* check error condition */ |
| 1023 | if (*entry->status & STATUS_ERROR) |
| 1024 | atomic_inc(&vcc->stats->tx_err); |
| 1025 | else |
| 1026 | atomic_inc(&vcc->stats->tx); |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | *entry->status = STATUS_FREE; |
| 1031 | |
| 1032 | fore200e->host_txq.txing--; |
| 1033 | |
| 1034 | FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX); |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | |
| 1039 | #ifdef FORE200E_BSQ_DEBUG |
| 1040 | int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn) |
| 1041 | { |
| 1042 | struct buffer* buffer; |
| 1043 | int count = 0; |
| 1044 | |
| 1045 | buffer = bsq->freebuf; |
| 1046 | while (buffer) { |
| 1047 | |
| 1048 | if (buffer->supplied) { |
| 1049 | printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n", |
| 1050 | where, scheme, magn, buffer->index); |
| 1051 | } |
| 1052 | |
| 1053 | if (buffer->magn != magn) { |
| 1054 | printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n", |
| 1055 | where, scheme, magn, buffer->index, buffer->magn); |
| 1056 | } |
| 1057 | |
| 1058 | if (buffer->scheme != scheme) { |
| 1059 | printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n", |
| 1060 | where, scheme, magn, buffer->index, buffer->scheme); |
| 1061 | } |
| 1062 | |
| 1063 | if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) { |
| 1064 | printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n", |
| 1065 | where, scheme, magn, buffer->index); |
| 1066 | } |
| 1067 | |
| 1068 | count++; |
| 1069 | buffer = buffer->next; |
| 1070 | } |
| 1071 | |
| 1072 | if (count != bsq->freebuf_count) { |
| 1073 | printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n", |
| 1074 | where, scheme, magn, count, bsq->freebuf_count); |
| 1075 | } |
| 1076 | return 0; |
| 1077 | } |
| 1078 | #endif |
| 1079 | |
| 1080 | |
| 1081 | static void |
| 1082 | fore200e_supply(struct fore200e* fore200e) |
| 1083 | { |
| 1084 | int scheme, magn, i; |
| 1085 | |
| 1086 | struct host_bsq* bsq; |
| 1087 | struct host_bsq_entry* entry; |
| 1088 | struct buffer* buffer; |
| 1089 | |
| 1090 | for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
| 1091 | for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
| 1092 | |
| 1093 | bsq = &fore200e->host_bsq[ scheme ][ magn ]; |
| 1094 | |
| 1095 | #ifdef FORE200E_BSQ_DEBUG |
| 1096 | bsq_audit(1, bsq, scheme, magn); |
| 1097 | #endif |
| 1098 | while (bsq->freebuf_count >= RBD_BLK_SIZE) { |
| 1099 | |
| 1100 | DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n", |
| 1101 | RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count); |
| 1102 | |
| 1103 | entry = &bsq->host_entry[ bsq->head ]; |
| 1104 | |
| 1105 | for (i = 0; i < RBD_BLK_SIZE; i++) { |
| 1106 | |
| 1107 | /* take the first buffer in the free buffer list */ |
| 1108 | buffer = bsq->freebuf; |
| 1109 | if (!buffer) { |
| 1110 | printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n", |
| 1111 | scheme, magn, bsq->freebuf_count); |
| 1112 | return; |
| 1113 | } |
| 1114 | bsq->freebuf = buffer->next; |
| 1115 | |
| 1116 | #ifdef FORE200E_BSQ_DEBUG |
| 1117 | if (buffer->supplied) |
| 1118 | printk(FORE200E "queue %d.%d, buffer %lu already supplied\n", |
| 1119 | scheme, magn, buffer->index); |
| 1120 | buffer->supplied = 1; |
| 1121 | #endif |
| 1122 | entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr; |
| 1123 | entry->rbd_block->rbd[ i ].handle = FORE200E_BUF2HDL(buffer); |
| 1124 | } |
| 1125 | |
| 1126 | FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS); |
| 1127 | |
| 1128 | /* decrease accordingly the number of free rx buffers */ |
| 1129 | bsq->freebuf_count -= RBD_BLK_SIZE; |
| 1130 | |
| 1131 | *entry->status = STATUS_PENDING; |
| 1132 | fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr); |
| 1133 | } |
| 1134 | } |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | |
| 1139 | static int |
| 1140 | fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd) |
| 1141 | { |
| 1142 | struct sk_buff* skb; |
| 1143 | struct buffer* buffer; |
| 1144 | struct fore200e_vcc* fore200e_vcc; |
| 1145 | int i, pdu_len = 0; |
| 1146 | #ifdef FORE200E_52BYTE_AAL0_SDU |
| 1147 | u32 cell_header = 0; |
| 1148 | #endif |
| 1149 | |
| 1150 | ASSERT(vcc); |
| 1151 | |
| 1152 | fore200e_vcc = FORE200E_VCC(vcc); |
| 1153 | ASSERT(fore200e_vcc); |
| 1154 | |
| 1155 | #ifdef FORE200E_52BYTE_AAL0_SDU |
| 1156 | if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) { |
| 1157 | |
| 1158 | cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) | |
| 1159 | (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) | |
| 1160 | (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) | |
| 1161 | (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | |
| 1162 | rpd->atm_header.clp; |
| 1163 | pdu_len = 4; |
| 1164 | } |
| 1165 | #endif |
| 1166 | |
| 1167 | /* compute total PDU length */ |
| 1168 | for (i = 0; i < rpd->nseg; i++) |
| 1169 | pdu_len += rpd->rsd[ i ].length; |
| 1170 | |
| 1171 | skb = alloc_skb(pdu_len, GFP_ATOMIC); |
| 1172 | if (skb == NULL) { |
| 1173 | DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len); |
| 1174 | |
| 1175 | atomic_inc(&vcc->stats->rx_drop); |
| 1176 | return -ENOMEM; |
| 1177 | } |
| 1178 | |
Patrick McHardy | a61bbcf | 2005-08-14 17:24:31 -0700 | [diff] [blame] | 1179 | __net_timestamp(skb); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1180 | |
| 1181 | #ifdef FORE200E_52BYTE_AAL0_SDU |
| 1182 | if (cell_header) { |
| 1183 | *((u32*)skb_put(skb, 4)) = cell_header; |
| 1184 | } |
| 1185 | #endif |
| 1186 | |
| 1187 | /* reassemble segments */ |
| 1188 | for (i = 0; i < rpd->nseg; i++) { |
| 1189 | |
| 1190 | /* rebuild rx buffer address from rsd handle */ |
| 1191 | buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); |
| 1192 | |
| 1193 | /* Make device DMA transfer visible to CPU. */ |
| 1194 | fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE); |
| 1195 | |
| 1196 | memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length); |
| 1197 | |
| 1198 | /* Now let the device get at it again. */ |
| 1199 | fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE); |
| 1200 | } |
| 1201 | |
| 1202 | DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize); |
| 1203 | |
| 1204 | if (pdu_len < fore200e_vcc->rx_min_pdu) |
| 1205 | fore200e_vcc->rx_min_pdu = pdu_len; |
| 1206 | if (pdu_len > fore200e_vcc->rx_max_pdu) |
| 1207 | fore200e_vcc->rx_max_pdu = pdu_len; |
| 1208 | fore200e_vcc->rx_pdu++; |
| 1209 | |
| 1210 | /* push PDU */ |
| 1211 | if (atm_charge(vcc, skb->truesize) == 0) { |
| 1212 | |
| 1213 | DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n", |
| 1214 | vcc->itf, vcc->vpi, vcc->vci); |
| 1215 | |
| 1216 | dev_kfree_skb_any(skb); |
| 1217 | |
| 1218 | atomic_inc(&vcc->stats->rx_drop); |
| 1219 | return -ENOMEM; |
| 1220 | } |
| 1221 | |
| 1222 | ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); |
| 1223 | |
| 1224 | vcc->push(vcc, skb); |
| 1225 | atomic_inc(&vcc->stats->rx); |
| 1226 | |
| 1227 | ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); |
| 1228 | |
| 1229 | return 0; |
| 1230 | } |
| 1231 | |
| 1232 | |
| 1233 | static void |
| 1234 | fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd) |
| 1235 | { |
| 1236 | struct host_bsq* bsq; |
| 1237 | struct buffer* buffer; |
| 1238 | int i; |
| 1239 | |
| 1240 | for (i = 0; i < rpd->nseg; i++) { |
| 1241 | |
| 1242 | /* rebuild rx buffer address from rsd handle */ |
| 1243 | buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle); |
| 1244 | |
| 1245 | bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ]; |
| 1246 | |
| 1247 | #ifdef FORE200E_BSQ_DEBUG |
| 1248 | bsq_audit(2, bsq, buffer->scheme, buffer->magn); |
| 1249 | |
| 1250 | if (buffer->supplied == 0) |
| 1251 | printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n", |
| 1252 | buffer->scheme, buffer->magn, buffer->index); |
| 1253 | buffer->supplied = 0; |
| 1254 | #endif |
| 1255 | |
| 1256 | /* re-insert the buffer into the free buffer list */ |
| 1257 | buffer->next = bsq->freebuf; |
| 1258 | bsq->freebuf = buffer; |
| 1259 | |
| 1260 | /* then increment the number of free rx buffers */ |
| 1261 | bsq->freebuf_count++; |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | |
| 1266 | static void |
| 1267 | fore200e_rx_irq(struct fore200e* fore200e) |
| 1268 | { |
| 1269 | struct host_rxq* rxq = &fore200e->host_rxq; |
| 1270 | struct host_rxq_entry* entry; |
| 1271 | struct atm_vcc* vcc; |
| 1272 | struct fore200e_vc_map* vc_map; |
| 1273 | |
| 1274 | for (;;) { |
| 1275 | |
| 1276 | entry = &rxq->host_entry[ rxq->head ]; |
| 1277 | |
| 1278 | /* no more received PDUs */ |
| 1279 | if ((*entry->status & STATUS_COMPLETE) == 0) |
| 1280 | break; |
| 1281 | |
| 1282 | vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); |
| 1283 | |
| 1284 | if ((vc_map->vcc == NULL) || |
| 1285 | (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) { |
| 1286 | |
| 1287 | DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n", |
| 1288 | fore200e->atm_dev->number, |
| 1289 | entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); |
| 1290 | } |
| 1291 | else { |
| 1292 | vcc = vc_map->vcc; |
| 1293 | ASSERT(vcc); |
| 1294 | |
| 1295 | if ((*entry->status & STATUS_ERROR) == 0) { |
| 1296 | |
| 1297 | fore200e_push_rpd(fore200e, vcc, entry->rpd); |
| 1298 | } |
| 1299 | else { |
| 1300 | DPRINTK(2, "damaged PDU on %d.%d.%d\n", |
| 1301 | fore200e->atm_dev->number, |
| 1302 | entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci); |
| 1303 | atomic_inc(&vcc->stats->rx_err); |
| 1304 | } |
| 1305 | } |
| 1306 | |
| 1307 | FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX); |
| 1308 | |
| 1309 | fore200e_collect_rpd(fore200e, entry->rpd); |
| 1310 | |
| 1311 | /* rewrite the rpd address to ack the received PDU */ |
| 1312 | fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr); |
| 1313 | *entry->status = STATUS_FREE; |
| 1314 | |
| 1315 | fore200e_supply(fore200e); |
| 1316 | } |
| 1317 | } |
| 1318 | |
| 1319 | |
| 1320 | #ifndef FORE200E_USE_TASKLET |
| 1321 | static void |
| 1322 | fore200e_irq(struct fore200e* fore200e) |
| 1323 | { |
| 1324 | unsigned long flags; |
| 1325 | |
| 1326 | spin_lock_irqsave(&fore200e->q_lock, flags); |
| 1327 | fore200e_rx_irq(fore200e); |
| 1328 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| 1329 | |
| 1330 | spin_lock_irqsave(&fore200e->q_lock, flags); |
| 1331 | fore200e_tx_irq(fore200e); |
| 1332 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| 1333 | } |
| 1334 | #endif |
| 1335 | |
| 1336 | |
| 1337 | static irqreturn_t |
| 1338 | fore200e_interrupt(int irq, void* dev, struct pt_regs* regs) |
| 1339 | { |
| 1340 | struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev); |
| 1341 | |
| 1342 | if (fore200e->bus->irq_check(fore200e) == 0) { |
| 1343 | |
| 1344 | DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number); |
| 1345 | return IRQ_NONE; |
| 1346 | } |
| 1347 | DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number); |
| 1348 | |
| 1349 | #ifdef FORE200E_USE_TASKLET |
| 1350 | tasklet_schedule(&fore200e->tx_tasklet); |
| 1351 | tasklet_schedule(&fore200e->rx_tasklet); |
| 1352 | #else |
| 1353 | fore200e_irq(fore200e); |
| 1354 | #endif |
| 1355 | |
| 1356 | fore200e->bus->irq_ack(fore200e); |
| 1357 | return IRQ_HANDLED; |
| 1358 | } |
| 1359 | |
| 1360 | |
| 1361 | #ifdef FORE200E_USE_TASKLET |
| 1362 | static void |
| 1363 | fore200e_tx_tasklet(unsigned long data) |
| 1364 | { |
| 1365 | struct fore200e* fore200e = (struct fore200e*) data; |
| 1366 | unsigned long flags; |
| 1367 | |
| 1368 | DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number); |
| 1369 | |
| 1370 | spin_lock_irqsave(&fore200e->q_lock, flags); |
| 1371 | fore200e_tx_irq(fore200e); |
| 1372 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| 1373 | } |
| 1374 | |
| 1375 | |
| 1376 | static void |
| 1377 | fore200e_rx_tasklet(unsigned long data) |
| 1378 | { |
| 1379 | struct fore200e* fore200e = (struct fore200e*) data; |
| 1380 | unsigned long flags; |
| 1381 | |
| 1382 | DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number); |
| 1383 | |
| 1384 | spin_lock_irqsave(&fore200e->q_lock, flags); |
| 1385 | fore200e_rx_irq((struct fore200e*) data); |
| 1386 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| 1387 | } |
| 1388 | #endif |
| 1389 | |
| 1390 | |
| 1391 | static int |
| 1392 | fore200e_select_scheme(struct atm_vcc* vcc) |
| 1393 | { |
| 1394 | /* fairly balance the VCs over (identical) buffer schemes */ |
| 1395 | int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO; |
| 1396 | |
| 1397 | DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n", |
| 1398 | vcc->itf, vcc->vpi, vcc->vci, scheme); |
| 1399 | |
| 1400 | return scheme; |
| 1401 | } |
| 1402 | |
| 1403 | |
| 1404 | static int |
| 1405 | fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu) |
| 1406 | { |
| 1407 | struct host_cmdq* cmdq = &fore200e->host_cmdq; |
| 1408 | struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
| 1409 | struct activate_opcode activ_opcode; |
| 1410 | struct deactivate_opcode deactiv_opcode; |
| 1411 | struct vpvc vpvc; |
| 1412 | int ok; |
| 1413 | enum fore200e_aal aal = fore200e_atm2fore_aal(vcc->qos.aal); |
| 1414 | |
| 1415 | FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
| 1416 | |
| 1417 | if (activate) { |
| 1418 | FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc); |
| 1419 | |
| 1420 | activ_opcode.opcode = OPCODE_ACTIVATE_VCIN; |
| 1421 | activ_opcode.aal = aal; |
| 1422 | activ_opcode.scheme = FORE200E_VCC(vcc)->scheme; |
| 1423 | activ_opcode.pad = 0; |
| 1424 | } |
| 1425 | else { |
| 1426 | deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN; |
| 1427 | deactiv_opcode.pad = 0; |
| 1428 | } |
| 1429 | |
| 1430 | vpvc.vci = vcc->vci; |
| 1431 | vpvc.vpi = vcc->vpi; |
| 1432 | |
| 1433 | *entry->status = STATUS_PENDING; |
| 1434 | |
| 1435 | if (activate) { |
| 1436 | |
| 1437 | #ifdef FORE200E_52BYTE_AAL0_SDU |
| 1438 | mtu = 48; |
| 1439 | #endif |
| 1440 | /* the MTU is not used by the cp, except in the case of AAL0 */ |
| 1441 | fore200e->bus->write(mtu, &entry->cp_entry->cmd.activate_block.mtu); |
| 1442 | fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc); |
| 1443 | fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode); |
| 1444 | } |
| 1445 | else { |
| 1446 | fore200e->bus->write(*(u32*)&vpvc, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc); |
| 1447 | fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode); |
| 1448 | } |
| 1449 | |
| 1450 | ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
| 1451 | |
| 1452 | *entry->status = STATUS_FREE; |
| 1453 | |
| 1454 | if (ok == 0) { |
| 1455 | printk(FORE200E "unable to %s VC %d.%d.%d\n", |
| 1456 | activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci); |
| 1457 | return -EIO; |
| 1458 | } |
| 1459 | |
| 1460 | DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, |
| 1461 | activate ? "open" : "clos"); |
| 1462 | |
| 1463 | return 0; |
| 1464 | } |
| 1465 | |
| 1466 | |
| 1467 | #define FORE200E_MAX_BACK2BACK_CELLS 255 /* XXX depends on CDVT */ |
| 1468 | |
| 1469 | static void |
| 1470 | fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate) |
| 1471 | { |
| 1472 | if (qos->txtp.max_pcr < ATM_OC3_PCR) { |
| 1473 | |
| 1474 | /* compute the data cells to idle cells ratio from the tx PCR */ |
| 1475 | rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR; |
| 1476 | rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells; |
| 1477 | } |
| 1478 | else { |
| 1479 | /* disable rate control */ |
| 1480 | rate->data_cells = rate->idle_cells = 0; |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | |
| 1485 | static int |
| 1486 | fore200e_open(struct atm_vcc *vcc) |
| 1487 | { |
| 1488 | struct fore200e* fore200e = FORE200E_DEV(vcc->dev); |
| 1489 | struct fore200e_vcc* fore200e_vcc; |
| 1490 | struct fore200e_vc_map* vc_map; |
| 1491 | unsigned long flags; |
| 1492 | int vci = vcc->vci; |
| 1493 | short vpi = vcc->vpi; |
| 1494 | |
| 1495 | ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS)); |
| 1496 | ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS)); |
| 1497 | |
| 1498 | spin_lock_irqsave(&fore200e->q_lock, flags); |
| 1499 | |
| 1500 | vc_map = FORE200E_VC_MAP(fore200e, vpi, vci); |
| 1501 | if (vc_map->vcc) { |
| 1502 | |
| 1503 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| 1504 | |
| 1505 | printk(FORE200E "VC %d.%d.%d already in use\n", |
| 1506 | fore200e->atm_dev->number, vpi, vci); |
| 1507 | |
| 1508 | return -EINVAL; |
| 1509 | } |
| 1510 | |
| 1511 | vc_map->vcc = vcc; |
| 1512 | |
| 1513 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| 1514 | |
| 1515 | fore200e_vcc = fore200e_kmalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC); |
| 1516 | if (fore200e_vcc == NULL) { |
| 1517 | vc_map->vcc = NULL; |
| 1518 | return -ENOMEM; |
| 1519 | } |
| 1520 | |
| 1521 | DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " |
| 1522 | "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n", |
| 1523 | vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), |
| 1524 | fore200e_traffic_class[ vcc->qos.txtp.traffic_class ], |
| 1525 | vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu, |
| 1526 | fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ], |
| 1527 | vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu); |
| 1528 | |
| 1529 | /* pseudo-CBR bandwidth requested? */ |
| 1530 | if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { |
| 1531 | |
| 1532 | down(&fore200e->rate_sf); |
| 1533 | if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) { |
| 1534 | up(&fore200e->rate_sf); |
| 1535 | |
| 1536 | fore200e_kfree(fore200e_vcc); |
| 1537 | vc_map->vcc = NULL; |
| 1538 | return -EAGAIN; |
| 1539 | } |
| 1540 | |
| 1541 | /* reserve bandwidth */ |
| 1542 | fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr; |
| 1543 | up(&fore200e->rate_sf); |
| 1544 | } |
| 1545 | |
| 1546 | vcc->itf = vcc->dev->number; |
| 1547 | |
| 1548 | set_bit(ATM_VF_PARTIAL,&vcc->flags); |
| 1549 | set_bit(ATM_VF_ADDR, &vcc->flags); |
| 1550 | |
| 1551 | vcc->dev_data = fore200e_vcc; |
| 1552 | |
| 1553 | if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) { |
| 1554 | |
| 1555 | vc_map->vcc = NULL; |
| 1556 | |
| 1557 | clear_bit(ATM_VF_ADDR, &vcc->flags); |
| 1558 | clear_bit(ATM_VF_PARTIAL,&vcc->flags); |
| 1559 | |
| 1560 | vcc->dev_data = NULL; |
| 1561 | |
| 1562 | fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; |
| 1563 | |
| 1564 | fore200e_kfree(fore200e_vcc); |
| 1565 | return -EINVAL; |
| 1566 | } |
| 1567 | |
| 1568 | /* compute rate control parameters */ |
| 1569 | if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { |
| 1570 | |
| 1571 | fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate); |
| 1572 | set_bit(ATM_VF_HASQOS, &vcc->flags); |
| 1573 | |
| 1574 | DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n", |
| 1575 | vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), |
| 1576 | vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, |
| 1577 | fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells); |
| 1578 | } |
| 1579 | |
| 1580 | fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1; |
| 1581 | fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0; |
| 1582 | fore200e_vcc->tx_pdu = fore200e_vcc->rx_pdu = 0; |
| 1583 | |
| 1584 | /* new incarnation of the vcc */ |
| 1585 | vc_map->incarn = ++fore200e->incarn_count; |
| 1586 | |
| 1587 | /* VC unusable before this flag is set */ |
| 1588 | set_bit(ATM_VF_READY, &vcc->flags); |
| 1589 | |
| 1590 | return 0; |
| 1591 | } |
| 1592 | |
| 1593 | |
| 1594 | static void |
| 1595 | fore200e_close(struct atm_vcc* vcc) |
| 1596 | { |
| 1597 | struct fore200e* fore200e = FORE200E_DEV(vcc->dev); |
| 1598 | struct fore200e_vcc* fore200e_vcc; |
| 1599 | struct fore200e_vc_map* vc_map; |
| 1600 | unsigned long flags; |
| 1601 | |
| 1602 | ASSERT(vcc); |
| 1603 | ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS)); |
| 1604 | ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS)); |
| 1605 | |
| 1606 | DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal)); |
| 1607 | |
| 1608 | clear_bit(ATM_VF_READY, &vcc->flags); |
| 1609 | |
| 1610 | fore200e_activate_vcin(fore200e, 0, vcc, 0); |
| 1611 | |
| 1612 | spin_lock_irqsave(&fore200e->q_lock, flags); |
| 1613 | |
| 1614 | vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); |
| 1615 | |
| 1616 | /* the vc is no longer considered as "in use" by fore200e_open() */ |
| 1617 | vc_map->vcc = NULL; |
| 1618 | |
| 1619 | vcc->itf = vcc->vci = vcc->vpi = 0; |
| 1620 | |
| 1621 | fore200e_vcc = FORE200E_VCC(vcc); |
| 1622 | vcc->dev_data = NULL; |
| 1623 | |
| 1624 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| 1625 | |
| 1626 | /* release reserved bandwidth, if any */ |
| 1627 | if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) { |
| 1628 | |
| 1629 | down(&fore200e->rate_sf); |
| 1630 | fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; |
| 1631 | up(&fore200e->rate_sf); |
| 1632 | |
| 1633 | clear_bit(ATM_VF_HASQOS, &vcc->flags); |
| 1634 | } |
| 1635 | |
| 1636 | clear_bit(ATM_VF_ADDR, &vcc->flags); |
| 1637 | clear_bit(ATM_VF_PARTIAL,&vcc->flags); |
| 1638 | |
| 1639 | ASSERT(fore200e_vcc); |
| 1640 | fore200e_kfree(fore200e_vcc); |
| 1641 | } |
| 1642 | |
| 1643 | |
| 1644 | static int |
| 1645 | fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb) |
| 1646 | { |
| 1647 | struct fore200e* fore200e = FORE200E_DEV(vcc->dev); |
| 1648 | struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); |
| 1649 | struct fore200e_vc_map* vc_map; |
| 1650 | struct host_txq* txq = &fore200e->host_txq; |
| 1651 | struct host_txq_entry* entry; |
| 1652 | struct tpd* tpd; |
| 1653 | struct tpd_haddr tpd_haddr; |
| 1654 | int retry = CONFIG_ATM_FORE200E_TX_RETRY; |
| 1655 | int tx_copy = 0; |
| 1656 | int tx_len = skb->len; |
| 1657 | u32* cell_header = NULL; |
| 1658 | unsigned char* skb_data; |
| 1659 | int skb_len; |
| 1660 | unsigned char* data; |
| 1661 | unsigned long flags; |
| 1662 | |
| 1663 | ASSERT(vcc); |
| 1664 | ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0); |
| 1665 | ASSERT(fore200e); |
| 1666 | ASSERT(fore200e_vcc); |
| 1667 | |
| 1668 | if (!test_bit(ATM_VF_READY, &vcc->flags)) { |
| 1669 | DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi); |
| 1670 | dev_kfree_skb_any(skb); |
| 1671 | return -EINVAL; |
| 1672 | } |
| 1673 | |
| 1674 | #ifdef FORE200E_52BYTE_AAL0_SDU |
| 1675 | if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) { |
| 1676 | cell_header = (u32*) skb->data; |
| 1677 | skb_data = skb->data + 4; /* skip 4-byte cell header */ |
| 1678 | skb_len = tx_len = skb->len - 4; |
| 1679 | |
| 1680 | DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header); |
| 1681 | } |
| 1682 | else |
| 1683 | #endif |
| 1684 | { |
| 1685 | skb_data = skb->data; |
| 1686 | skb_len = skb->len; |
| 1687 | } |
| 1688 | |
| 1689 | if (((unsigned long)skb_data) & 0x3) { |
| 1690 | |
| 1691 | DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name); |
| 1692 | tx_copy = 1; |
| 1693 | tx_len = skb_len; |
| 1694 | } |
| 1695 | |
| 1696 | if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) { |
| 1697 | |
| 1698 | /* this simply NUKES the PCA board */ |
| 1699 | DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name); |
| 1700 | tx_copy = 1; |
| 1701 | tx_len = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD; |
| 1702 | } |
| 1703 | |
| 1704 | if (tx_copy) { |
| 1705 | data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA); |
| 1706 | if (data == NULL) { |
| 1707 | if (vcc->pop) { |
| 1708 | vcc->pop(vcc, skb); |
| 1709 | } |
| 1710 | else { |
| 1711 | dev_kfree_skb_any(skb); |
| 1712 | } |
| 1713 | return -ENOMEM; |
| 1714 | } |
| 1715 | |
| 1716 | memcpy(data, skb_data, skb_len); |
| 1717 | if (skb_len < tx_len) |
| 1718 | memset(data + skb_len, 0x00, tx_len - skb_len); |
| 1719 | } |
| 1720 | else { |
| 1721 | data = skb_data; |
| 1722 | } |
| 1723 | |
| 1724 | vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci); |
| 1725 | ASSERT(vc_map->vcc == vcc); |
| 1726 | |
| 1727 | retry_here: |
| 1728 | |
| 1729 | spin_lock_irqsave(&fore200e->q_lock, flags); |
| 1730 | |
| 1731 | entry = &txq->host_entry[ txq->head ]; |
| 1732 | |
| 1733 | if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) { |
| 1734 | |
| 1735 | /* try to free completed tx queue entries */ |
| 1736 | fore200e_tx_irq(fore200e); |
| 1737 | |
| 1738 | if (*entry->status != STATUS_FREE) { |
| 1739 | |
| 1740 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| 1741 | |
| 1742 | /* retry once again? */ |
| 1743 | if (--retry > 0) { |
| 1744 | udelay(50); |
| 1745 | goto retry_here; |
| 1746 | } |
| 1747 | |
| 1748 | atomic_inc(&vcc->stats->tx_err); |
| 1749 | |
| 1750 | fore200e->tx_sat++; |
| 1751 | DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n", |
| 1752 | fore200e->name, fore200e->cp_queues->heartbeat); |
| 1753 | if (vcc->pop) { |
| 1754 | vcc->pop(vcc, skb); |
| 1755 | } |
| 1756 | else { |
| 1757 | dev_kfree_skb_any(skb); |
| 1758 | } |
| 1759 | |
| 1760 | if (tx_copy) |
| 1761 | kfree(data); |
| 1762 | |
| 1763 | return -ENOBUFS; |
| 1764 | } |
| 1765 | } |
| 1766 | |
| 1767 | entry->incarn = vc_map->incarn; |
| 1768 | entry->vc_map = vc_map; |
| 1769 | entry->skb = skb; |
| 1770 | entry->data = tx_copy ? data : NULL; |
| 1771 | |
| 1772 | tpd = entry->tpd; |
| 1773 | tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE); |
| 1774 | tpd->tsd[ 0 ].length = tx_len; |
| 1775 | |
| 1776 | FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX); |
| 1777 | txq->txing++; |
| 1778 | |
| 1779 | /* The dma_map call above implies a dma_sync so the device can use it, |
| 1780 | * thus no explicit dma_sync call is necessary here. |
| 1781 | */ |
| 1782 | |
| 1783 | DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", |
| 1784 | vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), |
| 1785 | tpd->tsd[0].length, skb_len); |
| 1786 | |
| 1787 | if (skb_len < fore200e_vcc->tx_min_pdu) |
| 1788 | fore200e_vcc->tx_min_pdu = skb_len; |
| 1789 | if (skb_len > fore200e_vcc->tx_max_pdu) |
| 1790 | fore200e_vcc->tx_max_pdu = skb_len; |
| 1791 | fore200e_vcc->tx_pdu++; |
| 1792 | |
| 1793 | /* set tx rate control information */ |
| 1794 | tpd->rate.data_cells = fore200e_vcc->rate.data_cells; |
| 1795 | tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells; |
| 1796 | |
| 1797 | if (cell_header) { |
| 1798 | tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP); |
| 1799 | tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT; |
| 1800 | tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT; |
| 1801 | tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT; |
| 1802 | tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT; |
| 1803 | } |
| 1804 | else { |
| 1805 | /* set the ATM header, common to all cells conveying the PDU */ |
| 1806 | tpd->atm_header.clp = 0; |
| 1807 | tpd->atm_header.plt = 0; |
| 1808 | tpd->atm_header.vci = vcc->vci; |
| 1809 | tpd->atm_header.vpi = vcc->vpi; |
| 1810 | tpd->atm_header.gfc = 0; |
| 1811 | } |
| 1812 | |
| 1813 | tpd->spec.length = tx_len; |
| 1814 | tpd->spec.nseg = 1; |
| 1815 | tpd->spec.aal = fore200e_atm2fore_aal(vcc->qos.aal); |
| 1816 | tpd->spec.intr = 1; |
| 1817 | |
| 1818 | tpd_haddr.size = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT); /* size is expressed in 32 byte blocks */ |
| 1819 | tpd_haddr.pad = 0; |
| 1820 | tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT; /* shift the address, as we are in a bitfield */ |
| 1821 | |
| 1822 | *entry->status = STATUS_PENDING; |
| 1823 | fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr); |
| 1824 | |
| 1825 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| 1826 | |
| 1827 | return 0; |
| 1828 | } |
| 1829 | |
| 1830 | |
| 1831 | static int |
| 1832 | fore200e_getstats(struct fore200e* fore200e) |
| 1833 | { |
| 1834 | struct host_cmdq* cmdq = &fore200e->host_cmdq; |
| 1835 | struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
| 1836 | struct stats_opcode opcode; |
| 1837 | int ok; |
| 1838 | u32 stats_dma_addr; |
| 1839 | |
| 1840 | if (fore200e->stats == NULL) { |
| 1841 | fore200e->stats = fore200e_kmalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA); |
| 1842 | if (fore200e->stats == NULL) |
| 1843 | return -ENOMEM; |
| 1844 | } |
| 1845 | |
| 1846 | stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats, |
| 1847 | sizeof(struct stats), DMA_FROM_DEVICE); |
| 1848 | |
| 1849 | FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
| 1850 | |
| 1851 | opcode.opcode = OPCODE_GET_STATS; |
| 1852 | opcode.pad = 0; |
| 1853 | |
| 1854 | fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr); |
| 1855 | |
| 1856 | *entry->status = STATUS_PENDING; |
| 1857 | |
| 1858 | fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode); |
| 1859 | |
| 1860 | ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
| 1861 | |
| 1862 | *entry->status = STATUS_FREE; |
| 1863 | |
| 1864 | fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE); |
| 1865 | |
| 1866 | if (ok == 0) { |
| 1867 | printk(FORE200E "unable to get statistics from device %s\n", fore200e->name); |
| 1868 | return -EIO; |
| 1869 | } |
| 1870 | |
| 1871 | return 0; |
| 1872 | } |
| 1873 | |
| 1874 | |
| 1875 | static int |
| 1876 | fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen) |
| 1877 | { |
| 1878 | /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */ |
| 1879 | |
| 1880 | DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n", |
| 1881 | vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen); |
| 1882 | |
| 1883 | return -EINVAL; |
| 1884 | } |
| 1885 | |
| 1886 | |
| 1887 | static int |
| 1888 | fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen) |
| 1889 | { |
| 1890 | /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */ |
| 1891 | |
| 1892 | DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n", |
| 1893 | vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen); |
| 1894 | |
| 1895 | return -EINVAL; |
| 1896 | } |
| 1897 | |
| 1898 | |
| 1899 | #if 0 /* currently unused */ |
| 1900 | static int |
| 1901 | fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs) |
| 1902 | { |
| 1903 | struct host_cmdq* cmdq = &fore200e->host_cmdq; |
| 1904 | struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
| 1905 | struct oc3_opcode opcode; |
| 1906 | int ok; |
| 1907 | u32 oc3_regs_dma_addr; |
| 1908 | |
| 1909 | oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE); |
| 1910 | |
| 1911 | FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
| 1912 | |
| 1913 | opcode.opcode = OPCODE_GET_OC3; |
| 1914 | opcode.reg = 0; |
| 1915 | opcode.value = 0; |
| 1916 | opcode.mask = 0; |
| 1917 | |
| 1918 | fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr); |
| 1919 | |
| 1920 | *entry->status = STATUS_PENDING; |
| 1921 | |
| 1922 | fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode); |
| 1923 | |
| 1924 | ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
| 1925 | |
| 1926 | *entry->status = STATUS_FREE; |
| 1927 | |
| 1928 | fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE); |
| 1929 | |
| 1930 | if (ok == 0) { |
| 1931 | printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name); |
| 1932 | return -EIO; |
| 1933 | } |
| 1934 | |
| 1935 | return 0; |
| 1936 | } |
| 1937 | #endif |
| 1938 | |
| 1939 | |
| 1940 | static int |
| 1941 | fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask) |
| 1942 | { |
| 1943 | struct host_cmdq* cmdq = &fore200e->host_cmdq; |
| 1944 | struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ]; |
| 1945 | struct oc3_opcode opcode; |
| 1946 | int ok; |
| 1947 | |
| 1948 | DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask); |
| 1949 | |
| 1950 | FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD); |
| 1951 | |
| 1952 | opcode.opcode = OPCODE_SET_OC3; |
| 1953 | opcode.reg = reg; |
| 1954 | opcode.value = value; |
| 1955 | opcode.mask = mask; |
| 1956 | |
| 1957 | fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr); |
| 1958 | |
| 1959 | *entry->status = STATUS_PENDING; |
| 1960 | |
| 1961 | fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode); |
| 1962 | |
| 1963 | ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400); |
| 1964 | |
| 1965 | *entry->status = STATUS_FREE; |
| 1966 | |
| 1967 | if (ok == 0) { |
| 1968 | printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name); |
| 1969 | return -EIO; |
| 1970 | } |
| 1971 | |
| 1972 | return 0; |
| 1973 | } |
| 1974 | |
| 1975 | |
| 1976 | static int |
| 1977 | fore200e_setloop(struct fore200e* fore200e, int loop_mode) |
| 1978 | { |
| 1979 | u32 mct_value, mct_mask; |
| 1980 | int error; |
| 1981 | |
| 1982 | if (!capable(CAP_NET_ADMIN)) |
| 1983 | return -EPERM; |
| 1984 | |
| 1985 | switch (loop_mode) { |
| 1986 | |
| 1987 | case ATM_LM_NONE: |
| 1988 | mct_value = 0; |
| 1989 | mct_mask = SUNI_MCT_DLE | SUNI_MCT_LLE; |
| 1990 | break; |
| 1991 | |
| 1992 | case ATM_LM_LOC_PHY: |
| 1993 | mct_value = mct_mask = SUNI_MCT_DLE; |
| 1994 | break; |
| 1995 | |
| 1996 | case ATM_LM_RMT_PHY: |
| 1997 | mct_value = mct_mask = SUNI_MCT_LLE; |
| 1998 | break; |
| 1999 | |
| 2000 | default: |
| 2001 | return -EINVAL; |
| 2002 | } |
| 2003 | |
| 2004 | error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask); |
| 2005 | if (error == 0) |
| 2006 | fore200e->loop_mode = loop_mode; |
| 2007 | |
| 2008 | return error; |
| 2009 | } |
| 2010 | |
| 2011 | |
| 2012 | static inline unsigned int |
| 2013 | fore200e_swap(unsigned int in) |
| 2014 | { |
| 2015 | #if defined(__LITTLE_ENDIAN) |
| 2016 | return swab32(in); |
| 2017 | #else |
| 2018 | return in; |
| 2019 | #endif |
| 2020 | } |
| 2021 | |
| 2022 | |
| 2023 | static int |
| 2024 | fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg) |
| 2025 | { |
| 2026 | struct sonet_stats tmp; |
| 2027 | |
| 2028 | if (fore200e_getstats(fore200e) < 0) |
| 2029 | return -EIO; |
| 2030 | |
| 2031 | tmp.section_bip = fore200e_swap(fore200e->stats->oc3.section_bip8_errors); |
| 2032 | tmp.line_bip = fore200e_swap(fore200e->stats->oc3.line_bip24_errors); |
| 2033 | tmp.path_bip = fore200e_swap(fore200e->stats->oc3.path_bip8_errors); |
| 2034 | tmp.line_febe = fore200e_swap(fore200e->stats->oc3.line_febe_errors); |
| 2035 | tmp.path_febe = fore200e_swap(fore200e->stats->oc3.path_febe_errors); |
| 2036 | tmp.corr_hcs = fore200e_swap(fore200e->stats->oc3.corr_hcs_errors); |
| 2037 | tmp.uncorr_hcs = fore200e_swap(fore200e->stats->oc3.ucorr_hcs_errors); |
| 2038 | tmp.tx_cells = fore200e_swap(fore200e->stats->aal0.cells_transmitted) + |
| 2039 | fore200e_swap(fore200e->stats->aal34.cells_transmitted) + |
| 2040 | fore200e_swap(fore200e->stats->aal5.cells_transmitted); |
| 2041 | tmp.rx_cells = fore200e_swap(fore200e->stats->aal0.cells_received) + |
| 2042 | fore200e_swap(fore200e->stats->aal34.cells_received) + |
| 2043 | fore200e_swap(fore200e->stats->aal5.cells_received); |
| 2044 | |
| 2045 | if (arg) |
| 2046 | return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0; |
| 2047 | |
| 2048 | return 0; |
| 2049 | } |
| 2050 | |
| 2051 | |
| 2052 | static int |
| 2053 | fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg) |
| 2054 | { |
| 2055 | struct fore200e* fore200e = FORE200E_DEV(dev); |
| 2056 | |
| 2057 | DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg); |
| 2058 | |
| 2059 | switch (cmd) { |
| 2060 | |
| 2061 | case SONET_GETSTAT: |
| 2062 | return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg); |
| 2063 | |
| 2064 | case SONET_GETDIAG: |
| 2065 | return put_user(0, (int __user *)arg) ? -EFAULT : 0; |
| 2066 | |
| 2067 | case ATM_SETLOOP: |
| 2068 | return fore200e_setloop(fore200e, (int)(unsigned long)arg); |
| 2069 | |
| 2070 | case ATM_GETLOOP: |
| 2071 | return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0; |
| 2072 | |
| 2073 | case ATM_QUERYLOOP: |
| 2074 | return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0; |
| 2075 | } |
| 2076 | |
| 2077 | return -ENOSYS; /* not implemented */ |
| 2078 | } |
| 2079 | |
| 2080 | |
| 2081 | static int |
| 2082 | fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags) |
| 2083 | { |
| 2084 | struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc); |
| 2085 | struct fore200e* fore200e = FORE200E_DEV(vcc->dev); |
| 2086 | |
| 2087 | if (!test_bit(ATM_VF_READY, &vcc->flags)) { |
| 2088 | DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi); |
| 2089 | return -EINVAL; |
| 2090 | } |
| 2091 | |
| 2092 | DPRINTK(2, "change_qos %d.%d.%d, " |
| 2093 | "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; " |
| 2094 | "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n" |
| 2095 | "available_cell_rate = %u", |
| 2096 | vcc->itf, vcc->vpi, vcc->vci, |
| 2097 | fore200e_traffic_class[ qos->txtp.traffic_class ], |
| 2098 | qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu, |
| 2099 | fore200e_traffic_class[ qos->rxtp.traffic_class ], |
| 2100 | qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu, |
| 2101 | flags, fore200e->available_cell_rate); |
| 2102 | |
| 2103 | if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) { |
| 2104 | |
| 2105 | down(&fore200e->rate_sf); |
| 2106 | if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) { |
| 2107 | up(&fore200e->rate_sf); |
| 2108 | return -EAGAIN; |
| 2109 | } |
| 2110 | |
| 2111 | fore200e->available_cell_rate += vcc->qos.txtp.max_pcr; |
| 2112 | fore200e->available_cell_rate -= qos->txtp.max_pcr; |
| 2113 | |
| 2114 | up(&fore200e->rate_sf); |
| 2115 | |
| 2116 | memcpy(&vcc->qos, qos, sizeof(struct atm_qos)); |
| 2117 | |
| 2118 | /* update rate control parameters */ |
| 2119 | fore200e_rate_ctrl(qos, &fore200e_vcc->rate); |
| 2120 | |
| 2121 | set_bit(ATM_VF_HASQOS, &vcc->flags); |
| 2122 | |
| 2123 | return 0; |
| 2124 | } |
| 2125 | |
| 2126 | return -EINVAL; |
| 2127 | } |
| 2128 | |
| 2129 | |
| 2130 | static int __init |
| 2131 | fore200e_irq_request(struct fore200e* fore200e) |
| 2132 | { |
| 2133 | if (request_irq(fore200e->irq, fore200e_interrupt, SA_SHIRQ, fore200e->name, fore200e->atm_dev) < 0) { |
| 2134 | |
| 2135 | printk(FORE200E "unable to reserve IRQ %s for device %s\n", |
| 2136 | fore200e_irq_itoa(fore200e->irq), fore200e->name); |
| 2137 | return -EBUSY; |
| 2138 | } |
| 2139 | |
| 2140 | printk(FORE200E "IRQ %s reserved for device %s\n", |
| 2141 | fore200e_irq_itoa(fore200e->irq), fore200e->name); |
| 2142 | |
| 2143 | #ifdef FORE200E_USE_TASKLET |
| 2144 | tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e); |
| 2145 | tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e); |
| 2146 | #endif |
| 2147 | |
| 2148 | fore200e->state = FORE200E_STATE_IRQ; |
| 2149 | return 0; |
| 2150 | } |
| 2151 | |
| 2152 | |
| 2153 | static int __init |
| 2154 | fore200e_get_esi(struct fore200e* fore200e) |
| 2155 | { |
| 2156 | struct prom_data* prom = fore200e_kmalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA); |
| 2157 | int ok, i; |
| 2158 | |
| 2159 | if (!prom) |
| 2160 | return -ENOMEM; |
| 2161 | |
| 2162 | ok = fore200e->bus->prom_read(fore200e, prom); |
| 2163 | if (ok < 0) { |
| 2164 | fore200e_kfree(prom); |
| 2165 | return -EBUSY; |
| 2166 | } |
| 2167 | |
| 2168 | printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| 2169 | fore200e->name, |
| 2170 | (prom->hw_revision & 0xFF) + '@', /* probably meaningless with SBA boards */ |
| 2171 | prom->serial_number & 0xFFFF, |
| 2172 | prom->mac_addr[ 2 ], prom->mac_addr[ 3 ], prom->mac_addr[ 4 ], |
| 2173 | prom->mac_addr[ 5 ], prom->mac_addr[ 6 ], prom->mac_addr[ 7 ]); |
| 2174 | |
| 2175 | for (i = 0; i < ESI_LEN; i++) { |
| 2176 | fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ]; |
| 2177 | } |
| 2178 | |
| 2179 | fore200e_kfree(prom); |
| 2180 | |
| 2181 | return 0; |
| 2182 | } |
| 2183 | |
| 2184 | |
| 2185 | static int __init |
| 2186 | fore200e_alloc_rx_buf(struct fore200e* fore200e) |
| 2187 | { |
| 2188 | int scheme, magn, nbr, size, i; |
| 2189 | |
| 2190 | struct host_bsq* bsq; |
| 2191 | struct buffer* buffer; |
| 2192 | |
| 2193 | for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
| 2194 | for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
| 2195 | |
| 2196 | bsq = &fore200e->host_bsq[ scheme ][ magn ]; |
| 2197 | |
| 2198 | nbr = fore200e_rx_buf_nbr[ scheme ][ magn ]; |
| 2199 | size = fore200e_rx_buf_size[ scheme ][ magn ]; |
| 2200 | |
| 2201 | DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn); |
| 2202 | |
| 2203 | /* allocate the array of receive buffers */ |
| 2204 | buffer = bsq->buffer = fore200e_kmalloc(nbr * sizeof(struct buffer), GFP_KERNEL); |
| 2205 | |
| 2206 | if (buffer == NULL) |
| 2207 | return -ENOMEM; |
| 2208 | |
| 2209 | bsq->freebuf = NULL; |
| 2210 | |
| 2211 | for (i = 0; i < nbr; i++) { |
| 2212 | |
| 2213 | buffer[ i ].scheme = scheme; |
| 2214 | buffer[ i ].magn = magn; |
| 2215 | #ifdef FORE200E_BSQ_DEBUG |
| 2216 | buffer[ i ].index = i; |
| 2217 | buffer[ i ].supplied = 0; |
| 2218 | #endif |
| 2219 | |
| 2220 | /* allocate the receive buffer body */ |
| 2221 | if (fore200e_chunk_alloc(fore200e, |
| 2222 | &buffer[ i ].data, size, fore200e->bus->buffer_alignment, |
| 2223 | DMA_FROM_DEVICE) < 0) { |
| 2224 | |
| 2225 | while (i > 0) |
| 2226 | fore200e_chunk_free(fore200e, &buffer[ --i ].data); |
| 2227 | fore200e_kfree(buffer); |
| 2228 | |
| 2229 | return -ENOMEM; |
| 2230 | } |
| 2231 | |
| 2232 | /* insert the buffer into the free buffer list */ |
| 2233 | buffer[ i ].next = bsq->freebuf; |
| 2234 | bsq->freebuf = &buffer[ i ]; |
| 2235 | } |
| 2236 | /* all the buffers are free, initially */ |
| 2237 | bsq->freebuf_count = nbr; |
| 2238 | |
| 2239 | #ifdef FORE200E_BSQ_DEBUG |
| 2240 | bsq_audit(3, bsq, scheme, magn); |
| 2241 | #endif |
| 2242 | } |
| 2243 | } |
| 2244 | |
| 2245 | fore200e->state = FORE200E_STATE_ALLOC_BUF; |
| 2246 | return 0; |
| 2247 | } |
| 2248 | |
| 2249 | |
| 2250 | static int __init |
| 2251 | fore200e_init_bs_queue(struct fore200e* fore200e) |
| 2252 | { |
| 2253 | int scheme, magn, i; |
| 2254 | |
| 2255 | struct host_bsq* bsq; |
| 2256 | struct cp_bsq_entry __iomem * cp_entry; |
| 2257 | |
| 2258 | for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) { |
| 2259 | for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) { |
| 2260 | |
| 2261 | DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn); |
| 2262 | |
| 2263 | bsq = &fore200e->host_bsq[ scheme ][ magn ]; |
| 2264 | |
| 2265 | /* allocate and align the array of status words */ |
| 2266 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
| 2267 | &bsq->status, |
| 2268 | sizeof(enum status), |
| 2269 | QUEUE_SIZE_BS, |
| 2270 | fore200e->bus->status_alignment) < 0) { |
| 2271 | return -ENOMEM; |
| 2272 | } |
| 2273 | |
| 2274 | /* allocate and align the array of receive buffer descriptors */ |
| 2275 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
| 2276 | &bsq->rbd_block, |
| 2277 | sizeof(struct rbd_block), |
| 2278 | QUEUE_SIZE_BS, |
| 2279 | fore200e->bus->descr_alignment) < 0) { |
| 2280 | |
| 2281 | fore200e->bus->dma_chunk_free(fore200e, &bsq->status); |
| 2282 | return -ENOMEM; |
| 2283 | } |
| 2284 | |
| 2285 | /* get the base address of the cp resident buffer supply queue entries */ |
| 2286 | cp_entry = fore200e->virt_base + |
| 2287 | fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]); |
| 2288 | |
| 2289 | /* fill the host resident and cp resident buffer supply queue entries */ |
| 2290 | for (i = 0; i < QUEUE_SIZE_BS; i++) { |
| 2291 | |
| 2292 | bsq->host_entry[ i ].status = |
| 2293 | FORE200E_INDEX(bsq->status.align_addr, enum status, i); |
| 2294 | bsq->host_entry[ i ].rbd_block = |
| 2295 | FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i); |
| 2296 | bsq->host_entry[ i ].rbd_block_dma = |
| 2297 | FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i); |
| 2298 | bsq->host_entry[ i ].cp_entry = &cp_entry[ i ]; |
| 2299 | |
| 2300 | *bsq->host_entry[ i ].status = STATUS_FREE; |
| 2301 | |
| 2302 | fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), |
| 2303 | &cp_entry[ i ].status_haddr); |
| 2304 | } |
| 2305 | } |
| 2306 | } |
| 2307 | |
| 2308 | fore200e->state = FORE200E_STATE_INIT_BSQ; |
| 2309 | return 0; |
| 2310 | } |
| 2311 | |
| 2312 | |
| 2313 | static int __init |
| 2314 | fore200e_init_rx_queue(struct fore200e* fore200e) |
| 2315 | { |
| 2316 | struct host_rxq* rxq = &fore200e->host_rxq; |
| 2317 | struct cp_rxq_entry __iomem * cp_entry; |
| 2318 | int i; |
| 2319 | |
| 2320 | DPRINTK(2, "receive queue is being initialized\n"); |
| 2321 | |
| 2322 | /* allocate and align the array of status words */ |
| 2323 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
| 2324 | &rxq->status, |
| 2325 | sizeof(enum status), |
| 2326 | QUEUE_SIZE_RX, |
| 2327 | fore200e->bus->status_alignment) < 0) { |
| 2328 | return -ENOMEM; |
| 2329 | } |
| 2330 | |
| 2331 | /* allocate and align the array of receive PDU descriptors */ |
| 2332 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
| 2333 | &rxq->rpd, |
| 2334 | sizeof(struct rpd), |
| 2335 | QUEUE_SIZE_RX, |
| 2336 | fore200e->bus->descr_alignment) < 0) { |
| 2337 | |
| 2338 | fore200e->bus->dma_chunk_free(fore200e, &rxq->status); |
| 2339 | return -ENOMEM; |
| 2340 | } |
| 2341 | |
| 2342 | /* get the base address of the cp resident rx queue entries */ |
| 2343 | cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq); |
| 2344 | |
| 2345 | /* fill the host resident and cp resident rx entries */ |
| 2346 | for (i=0; i < QUEUE_SIZE_RX; i++) { |
| 2347 | |
| 2348 | rxq->host_entry[ i ].status = |
| 2349 | FORE200E_INDEX(rxq->status.align_addr, enum status, i); |
| 2350 | rxq->host_entry[ i ].rpd = |
| 2351 | FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i); |
| 2352 | rxq->host_entry[ i ].rpd_dma = |
| 2353 | FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i); |
| 2354 | rxq->host_entry[ i ].cp_entry = &cp_entry[ i ]; |
| 2355 | |
| 2356 | *rxq->host_entry[ i ].status = STATUS_FREE; |
| 2357 | |
| 2358 | fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), |
| 2359 | &cp_entry[ i ].status_haddr); |
| 2360 | |
| 2361 | fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i), |
| 2362 | &cp_entry[ i ].rpd_haddr); |
| 2363 | } |
| 2364 | |
| 2365 | /* set the head entry of the queue */ |
| 2366 | rxq->head = 0; |
| 2367 | |
| 2368 | fore200e->state = FORE200E_STATE_INIT_RXQ; |
| 2369 | return 0; |
| 2370 | } |
| 2371 | |
| 2372 | |
| 2373 | static int __init |
| 2374 | fore200e_init_tx_queue(struct fore200e* fore200e) |
| 2375 | { |
| 2376 | struct host_txq* txq = &fore200e->host_txq; |
| 2377 | struct cp_txq_entry __iomem * cp_entry; |
| 2378 | int i; |
| 2379 | |
| 2380 | DPRINTK(2, "transmit queue is being initialized\n"); |
| 2381 | |
| 2382 | /* allocate and align the array of status words */ |
| 2383 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
| 2384 | &txq->status, |
| 2385 | sizeof(enum status), |
| 2386 | QUEUE_SIZE_TX, |
| 2387 | fore200e->bus->status_alignment) < 0) { |
| 2388 | return -ENOMEM; |
| 2389 | } |
| 2390 | |
| 2391 | /* allocate and align the array of transmit PDU descriptors */ |
| 2392 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
| 2393 | &txq->tpd, |
| 2394 | sizeof(struct tpd), |
| 2395 | QUEUE_SIZE_TX, |
| 2396 | fore200e->bus->descr_alignment) < 0) { |
| 2397 | |
| 2398 | fore200e->bus->dma_chunk_free(fore200e, &txq->status); |
| 2399 | return -ENOMEM; |
| 2400 | } |
| 2401 | |
| 2402 | /* get the base address of the cp resident tx queue entries */ |
| 2403 | cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq); |
| 2404 | |
| 2405 | /* fill the host resident and cp resident tx entries */ |
| 2406 | for (i=0; i < QUEUE_SIZE_TX; i++) { |
| 2407 | |
| 2408 | txq->host_entry[ i ].status = |
| 2409 | FORE200E_INDEX(txq->status.align_addr, enum status, i); |
| 2410 | txq->host_entry[ i ].tpd = |
| 2411 | FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i); |
| 2412 | txq->host_entry[ i ].tpd_dma = |
| 2413 | FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i); |
| 2414 | txq->host_entry[ i ].cp_entry = &cp_entry[ i ]; |
| 2415 | |
| 2416 | *txq->host_entry[ i ].status = STATUS_FREE; |
| 2417 | |
| 2418 | fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), |
| 2419 | &cp_entry[ i ].status_haddr); |
| 2420 | |
| 2421 | /* although there is a one-to-one mapping of tx queue entries and tpds, |
| 2422 | we do not write here the DMA (physical) base address of each tpd into |
| 2423 | the related cp resident entry, because the cp relies on this write |
| 2424 | operation to detect that a new pdu has been submitted for tx */ |
| 2425 | } |
| 2426 | |
| 2427 | /* set the head and tail entries of the queue */ |
| 2428 | txq->head = 0; |
| 2429 | txq->tail = 0; |
| 2430 | |
| 2431 | fore200e->state = FORE200E_STATE_INIT_TXQ; |
| 2432 | return 0; |
| 2433 | } |
| 2434 | |
| 2435 | |
| 2436 | static int __init |
| 2437 | fore200e_init_cmd_queue(struct fore200e* fore200e) |
| 2438 | { |
| 2439 | struct host_cmdq* cmdq = &fore200e->host_cmdq; |
| 2440 | struct cp_cmdq_entry __iomem * cp_entry; |
| 2441 | int i; |
| 2442 | |
| 2443 | DPRINTK(2, "command queue is being initialized\n"); |
| 2444 | |
| 2445 | /* allocate and align the array of status words */ |
| 2446 | if (fore200e->bus->dma_chunk_alloc(fore200e, |
| 2447 | &cmdq->status, |
| 2448 | sizeof(enum status), |
| 2449 | QUEUE_SIZE_CMD, |
| 2450 | fore200e->bus->status_alignment) < 0) { |
| 2451 | return -ENOMEM; |
| 2452 | } |
| 2453 | |
| 2454 | /* get the base address of the cp resident cmd queue entries */ |
| 2455 | cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq); |
| 2456 | |
| 2457 | /* fill the host resident and cp resident cmd entries */ |
| 2458 | for (i=0; i < QUEUE_SIZE_CMD; i++) { |
| 2459 | |
| 2460 | cmdq->host_entry[ i ].status = |
| 2461 | FORE200E_INDEX(cmdq->status.align_addr, enum status, i); |
| 2462 | cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ]; |
| 2463 | |
| 2464 | *cmdq->host_entry[ i ].status = STATUS_FREE; |
| 2465 | |
| 2466 | fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), |
| 2467 | &cp_entry[ i ].status_haddr); |
| 2468 | } |
| 2469 | |
| 2470 | /* set the head entry of the queue */ |
| 2471 | cmdq->head = 0; |
| 2472 | |
| 2473 | fore200e->state = FORE200E_STATE_INIT_CMDQ; |
| 2474 | return 0; |
| 2475 | } |
| 2476 | |
| 2477 | |
| 2478 | static void __init |
| 2479 | fore200e_param_bs_queue(struct fore200e* fore200e, |
| 2480 | enum buffer_scheme scheme, enum buffer_magn magn, |
| 2481 | int queue_length, int pool_size, int supply_blksize) |
| 2482 | { |
| 2483 | struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ]; |
| 2484 | |
| 2485 | fore200e->bus->write(queue_length, &bs_spec->queue_length); |
| 2486 | fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size); |
| 2487 | fore200e->bus->write(pool_size, &bs_spec->pool_size); |
| 2488 | fore200e->bus->write(supply_blksize, &bs_spec->supply_blksize); |
| 2489 | } |
| 2490 | |
| 2491 | |
| 2492 | static int __init |
| 2493 | fore200e_initialize(struct fore200e* fore200e) |
| 2494 | { |
| 2495 | struct cp_queues __iomem * cpq; |
| 2496 | int ok, scheme, magn; |
| 2497 | |
| 2498 | DPRINTK(2, "device %s being initialized\n", fore200e->name); |
| 2499 | |
| 2500 | init_MUTEX(&fore200e->rate_sf); |
| 2501 | spin_lock_init(&fore200e->q_lock); |
| 2502 | |
| 2503 | cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET; |
| 2504 | |
| 2505 | /* enable cp to host interrupts */ |
| 2506 | fore200e->bus->write(1, &cpq->imask); |
| 2507 | |
| 2508 | if (fore200e->bus->irq_enable) |
| 2509 | fore200e->bus->irq_enable(fore200e); |
| 2510 | |
| 2511 | fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect); |
| 2512 | |
| 2513 | fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len); |
| 2514 | fore200e->bus->write(QUEUE_SIZE_RX, &cpq->init.rx_queue_len); |
| 2515 | fore200e->bus->write(QUEUE_SIZE_TX, &cpq->init.tx_queue_len); |
| 2516 | |
| 2517 | fore200e->bus->write(RSD_EXTENSION, &cpq->init.rsd_extension); |
| 2518 | fore200e->bus->write(TSD_EXTENSION, &cpq->init.tsd_extension); |
| 2519 | |
| 2520 | for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) |
| 2521 | for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) |
| 2522 | fore200e_param_bs_queue(fore200e, scheme, magn, |
| 2523 | QUEUE_SIZE_BS, |
| 2524 | fore200e_rx_buf_nbr[ scheme ][ magn ], |
| 2525 | RBD_BLK_SIZE); |
| 2526 | |
| 2527 | /* issue the initialize command */ |
| 2528 | fore200e->bus->write(STATUS_PENDING, &cpq->init.status); |
| 2529 | fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode); |
| 2530 | |
| 2531 | ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000); |
| 2532 | if (ok == 0) { |
| 2533 | printk(FORE200E "device %s initialization failed\n", fore200e->name); |
| 2534 | return -ENODEV; |
| 2535 | } |
| 2536 | |
| 2537 | printk(FORE200E "device %s initialized\n", fore200e->name); |
| 2538 | |
| 2539 | fore200e->state = FORE200E_STATE_INITIALIZE; |
| 2540 | return 0; |
| 2541 | } |
| 2542 | |
| 2543 | |
| 2544 | static void __init |
| 2545 | fore200e_monitor_putc(struct fore200e* fore200e, char c) |
| 2546 | { |
| 2547 | struct cp_monitor __iomem * monitor = fore200e->cp_monitor; |
| 2548 | |
| 2549 | #if 0 |
| 2550 | printk("%c", c); |
| 2551 | #endif |
| 2552 | fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send); |
| 2553 | } |
| 2554 | |
| 2555 | |
| 2556 | static int __init |
| 2557 | fore200e_monitor_getc(struct fore200e* fore200e) |
| 2558 | { |
| 2559 | struct cp_monitor __iomem * monitor = fore200e->cp_monitor; |
| 2560 | unsigned long timeout = jiffies + msecs_to_jiffies(50); |
| 2561 | int c; |
| 2562 | |
| 2563 | while (time_before(jiffies, timeout)) { |
| 2564 | |
| 2565 | c = (int) fore200e->bus->read(&monitor->soft_uart.recv); |
| 2566 | |
| 2567 | if (c & FORE200E_CP_MONITOR_UART_AVAIL) { |
| 2568 | |
| 2569 | fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv); |
| 2570 | #if 0 |
| 2571 | printk("%c", c & 0xFF); |
| 2572 | #endif |
| 2573 | return c & 0xFF; |
| 2574 | } |
| 2575 | } |
| 2576 | |
| 2577 | return -1; |
| 2578 | } |
| 2579 | |
| 2580 | |
| 2581 | static void __init |
| 2582 | fore200e_monitor_puts(struct fore200e* fore200e, char* str) |
| 2583 | { |
| 2584 | while (*str) { |
| 2585 | |
| 2586 | /* the i960 monitor doesn't accept any new character if it has something to say */ |
| 2587 | while (fore200e_monitor_getc(fore200e) >= 0); |
| 2588 | |
| 2589 | fore200e_monitor_putc(fore200e, *str++); |
| 2590 | } |
| 2591 | |
| 2592 | while (fore200e_monitor_getc(fore200e) >= 0); |
| 2593 | } |
| 2594 | |
| 2595 | |
| 2596 | static int __init |
| 2597 | fore200e_start_fw(struct fore200e* fore200e) |
| 2598 | { |
| 2599 | int ok; |
| 2600 | char cmd[ 48 ]; |
| 2601 | struct fw_header* fw_header = (struct fw_header*) fore200e->bus->fw_data; |
| 2602 | |
| 2603 | DPRINTK(2, "device %s firmware being started\n", fore200e->name); |
| 2604 | |
| 2605 | #if defined(__sparc_v9__) |
| 2606 | /* reported to be required by SBA cards on some sparc64 hosts */ |
| 2607 | fore200e_spin(100); |
| 2608 | #endif |
| 2609 | |
| 2610 | sprintf(cmd, "\rgo %x\r", le32_to_cpu(fw_header->start_offset)); |
| 2611 | |
| 2612 | fore200e_monitor_puts(fore200e, cmd); |
| 2613 | |
| 2614 | ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000); |
| 2615 | if (ok == 0) { |
| 2616 | printk(FORE200E "device %s firmware didn't start\n", fore200e->name); |
| 2617 | return -ENODEV; |
| 2618 | } |
| 2619 | |
| 2620 | printk(FORE200E "device %s firmware started\n", fore200e->name); |
| 2621 | |
| 2622 | fore200e->state = FORE200E_STATE_START_FW; |
| 2623 | return 0; |
| 2624 | } |
| 2625 | |
| 2626 | |
| 2627 | static int __init |
| 2628 | fore200e_load_fw(struct fore200e* fore200e) |
| 2629 | { |
| 2630 | u32* fw_data = (u32*) fore200e->bus->fw_data; |
| 2631 | u32 fw_size = (u32) *fore200e->bus->fw_size / sizeof(u32); |
| 2632 | |
| 2633 | struct fw_header* fw_header = (struct fw_header*) fw_data; |
| 2634 | |
| 2635 | u32 __iomem *load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset); |
| 2636 | |
| 2637 | DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n", |
| 2638 | fore200e->name, load_addr, fw_size); |
| 2639 | |
| 2640 | if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) { |
| 2641 | printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name); |
| 2642 | return -ENODEV; |
| 2643 | } |
| 2644 | |
| 2645 | for (; fw_size--; fw_data++, load_addr++) |
| 2646 | fore200e->bus->write(le32_to_cpu(*fw_data), load_addr); |
| 2647 | |
| 2648 | fore200e->state = FORE200E_STATE_LOAD_FW; |
| 2649 | return 0; |
| 2650 | } |
| 2651 | |
| 2652 | |
| 2653 | static int __init |
| 2654 | fore200e_register(struct fore200e* fore200e) |
| 2655 | { |
| 2656 | struct atm_dev* atm_dev; |
| 2657 | |
| 2658 | DPRINTK(2, "device %s being registered\n", fore200e->name); |
| 2659 | |
| 2660 | atm_dev = atm_dev_register(fore200e->bus->proc_name, &fore200e_ops, -1, |
| 2661 | NULL); |
| 2662 | if (atm_dev == NULL) { |
| 2663 | printk(FORE200E "unable to register device %s\n", fore200e->name); |
| 2664 | return -ENODEV; |
| 2665 | } |
| 2666 | |
| 2667 | atm_dev->dev_data = fore200e; |
| 2668 | fore200e->atm_dev = atm_dev; |
| 2669 | |
| 2670 | atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS; |
| 2671 | atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS; |
| 2672 | |
| 2673 | fore200e->available_cell_rate = ATM_OC3_PCR; |
| 2674 | |
| 2675 | fore200e->state = FORE200E_STATE_REGISTER; |
| 2676 | return 0; |
| 2677 | } |
| 2678 | |
| 2679 | |
| 2680 | static int __init |
| 2681 | fore200e_init(struct fore200e* fore200e) |
| 2682 | { |
| 2683 | if (fore200e_register(fore200e) < 0) |
| 2684 | return -ENODEV; |
| 2685 | |
| 2686 | if (fore200e->bus->configure(fore200e) < 0) |
| 2687 | return -ENODEV; |
| 2688 | |
| 2689 | if (fore200e->bus->map(fore200e) < 0) |
| 2690 | return -ENODEV; |
| 2691 | |
| 2692 | if (fore200e_reset(fore200e, 1) < 0) |
| 2693 | return -ENODEV; |
| 2694 | |
| 2695 | if (fore200e_load_fw(fore200e) < 0) |
| 2696 | return -ENODEV; |
| 2697 | |
| 2698 | if (fore200e_start_fw(fore200e) < 0) |
| 2699 | return -ENODEV; |
| 2700 | |
| 2701 | if (fore200e_initialize(fore200e) < 0) |
| 2702 | return -ENODEV; |
| 2703 | |
| 2704 | if (fore200e_init_cmd_queue(fore200e) < 0) |
| 2705 | return -ENOMEM; |
| 2706 | |
| 2707 | if (fore200e_init_tx_queue(fore200e) < 0) |
| 2708 | return -ENOMEM; |
| 2709 | |
| 2710 | if (fore200e_init_rx_queue(fore200e) < 0) |
| 2711 | return -ENOMEM; |
| 2712 | |
| 2713 | if (fore200e_init_bs_queue(fore200e) < 0) |
| 2714 | return -ENOMEM; |
| 2715 | |
| 2716 | if (fore200e_alloc_rx_buf(fore200e) < 0) |
| 2717 | return -ENOMEM; |
| 2718 | |
| 2719 | if (fore200e_get_esi(fore200e) < 0) |
| 2720 | return -EIO; |
| 2721 | |
| 2722 | if (fore200e_irq_request(fore200e) < 0) |
| 2723 | return -EBUSY; |
| 2724 | |
| 2725 | fore200e_supply(fore200e); |
| 2726 | |
| 2727 | /* all done, board initialization is now complete */ |
| 2728 | fore200e->state = FORE200E_STATE_COMPLETE; |
| 2729 | return 0; |
| 2730 | } |
| 2731 | |
| 2732 | |
| 2733 | static int __devinit |
| 2734 | fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) |
| 2735 | { |
| 2736 | const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data; |
| 2737 | struct fore200e* fore200e; |
| 2738 | int err = 0; |
| 2739 | static int index = 0; |
| 2740 | |
| 2741 | if (pci_enable_device(pci_dev)) { |
| 2742 | err = -EINVAL; |
| 2743 | goto out; |
| 2744 | } |
| 2745 | |
| 2746 | fore200e = fore200e_kmalloc(sizeof(struct fore200e), GFP_KERNEL); |
| 2747 | if (fore200e == NULL) { |
| 2748 | err = -ENOMEM; |
| 2749 | goto out_disable; |
| 2750 | } |
| 2751 | |
| 2752 | fore200e->bus = bus; |
| 2753 | fore200e->bus_dev = pci_dev; |
| 2754 | fore200e->irq = pci_dev->irq; |
| 2755 | fore200e->phys_base = pci_resource_start(pci_dev, 0); |
| 2756 | |
| 2757 | sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1); |
| 2758 | |
| 2759 | pci_set_master(pci_dev); |
| 2760 | |
| 2761 | printk(FORE200E "device %s found at 0x%lx, IRQ %s\n", |
| 2762 | fore200e->bus->model_name, |
| 2763 | fore200e->phys_base, fore200e_irq_itoa(fore200e->irq)); |
| 2764 | |
| 2765 | sprintf(fore200e->name, "%s-%d", bus->model_name, index); |
| 2766 | |
| 2767 | err = fore200e_init(fore200e); |
| 2768 | if (err < 0) { |
| 2769 | fore200e_shutdown(fore200e); |
| 2770 | goto out_free; |
| 2771 | } |
| 2772 | |
| 2773 | ++index; |
| 2774 | pci_set_drvdata(pci_dev, fore200e); |
| 2775 | |
| 2776 | out: |
| 2777 | return err; |
| 2778 | |
| 2779 | out_free: |
| 2780 | kfree(fore200e); |
| 2781 | out_disable: |
| 2782 | pci_disable_device(pci_dev); |
| 2783 | goto out; |
| 2784 | } |
| 2785 | |
| 2786 | |
| 2787 | static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev) |
| 2788 | { |
| 2789 | struct fore200e *fore200e; |
| 2790 | |
| 2791 | fore200e = pci_get_drvdata(pci_dev); |
| 2792 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2793 | fore200e_shutdown(fore200e); |
| 2794 | kfree(fore200e); |
| 2795 | pci_disable_device(pci_dev); |
| 2796 | } |
| 2797 | |
| 2798 | |
| 2799 | #ifdef CONFIG_ATM_FORE200E_PCA |
| 2800 | static struct pci_device_id fore200e_pca_tbl[] = { |
| 2801 | { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID, |
| 2802 | 0, 0, (unsigned long) &fore200e_bus[0] }, |
| 2803 | { 0, } |
| 2804 | }; |
| 2805 | |
| 2806 | MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl); |
| 2807 | |
| 2808 | static struct pci_driver fore200e_pca_driver = { |
| 2809 | .name = "fore_200e", |
| 2810 | .probe = fore200e_pca_detect, |
| 2811 | .remove = __devexit_p(fore200e_pca_remove_one), |
| 2812 | .id_table = fore200e_pca_tbl, |
| 2813 | }; |
| 2814 | #endif |
| 2815 | |
| 2816 | |
| 2817 | static int __init |
| 2818 | fore200e_module_init(void) |
| 2819 | { |
| 2820 | const struct fore200e_bus* bus; |
| 2821 | struct fore200e* fore200e; |
| 2822 | int index; |
| 2823 | |
| 2824 | printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n"); |
| 2825 | |
| 2826 | /* for each configured bus interface */ |
| 2827 | for (bus = fore200e_bus; bus->model_name; bus++) { |
| 2828 | |
| 2829 | /* detect all boards present on that bus */ |
| 2830 | for (index = 0; bus->detect && (fore200e = bus->detect(bus, index)); index++) { |
| 2831 | |
| 2832 | printk(FORE200E "device %s found at 0x%lx, IRQ %s\n", |
| 2833 | fore200e->bus->model_name, |
| 2834 | fore200e->phys_base, fore200e_irq_itoa(fore200e->irq)); |
| 2835 | |
| 2836 | sprintf(fore200e->name, "%s-%d", bus->model_name, index); |
| 2837 | |
| 2838 | if (fore200e_init(fore200e) < 0) { |
| 2839 | |
| 2840 | fore200e_shutdown(fore200e); |
| 2841 | break; |
| 2842 | } |
| 2843 | |
| 2844 | list_add(&fore200e->entry, &fore200e_boards); |
| 2845 | } |
| 2846 | } |
| 2847 | |
| 2848 | #ifdef CONFIG_ATM_FORE200E_PCA |
chas williams | 1890082 | 2005-04-24 18:58:15 -0700 | [diff] [blame] | 2849 | if (!pci_register_driver(&fore200e_pca_driver)) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2850 | return 0; |
| 2851 | #endif |
| 2852 | |
| 2853 | if (!list_empty(&fore200e_boards)) |
| 2854 | return 0; |
| 2855 | |
| 2856 | return -ENODEV; |
| 2857 | } |
| 2858 | |
| 2859 | |
| 2860 | static void __exit |
| 2861 | fore200e_module_cleanup(void) |
| 2862 | { |
| 2863 | struct fore200e *fore200e, *next; |
| 2864 | |
| 2865 | #ifdef CONFIG_ATM_FORE200E_PCA |
| 2866 | pci_unregister_driver(&fore200e_pca_driver); |
| 2867 | #endif |
| 2868 | |
| 2869 | list_for_each_entry_safe(fore200e, next, &fore200e_boards, entry) { |
| 2870 | fore200e_shutdown(fore200e); |
| 2871 | kfree(fore200e); |
| 2872 | } |
| 2873 | DPRINTK(1, "module being removed\n"); |
| 2874 | } |
| 2875 | |
| 2876 | |
| 2877 | static int |
| 2878 | fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page) |
| 2879 | { |
| 2880 | struct fore200e* fore200e = FORE200E_DEV(dev); |
| 2881 | struct fore200e_vcc* fore200e_vcc; |
| 2882 | struct atm_vcc* vcc; |
| 2883 | int i, len, left = *pos; |
| 2884 | unsigned long flags; |
| 2885 | |
| 2886 | if (!left--) { |
| 2887 | |
| 2888 | if (fore200e_getstats(fore200e) < 0) |
| 2889 | return -EIO; |
| 2890 | |
| 2891 | len = sprintf(page,"\n" |
| 2892 | " device:\n" |
| 2893 | " internal name:\t\t%s\n", fore200e->name); |
| 2894 | |
| 2895 | /* print bus-specific information */ |
| 2896 | if (fore200e->bus->proc_read) |
| 2897 | len += fore200e->bus->proc_read(fore200e, page + len); |
| 2898 | |
| 2899 | len += sprintf(page + len, |
| 2900 | " interrupt line:\t\t%s\n" |
| 2901 | " physical base address:\t0x%p\n" |
| 2902 | " virtual base address:\t0x%p\n" |
| 2903 | " factory address (ESI):\t%02x:%02x:%02x:%02x:%02x:%02x\n" |
| 2904 | " board serial number:\t\t%d\n\n", |
| 2905 | fore200e_irq_itoa(fore200e->irq), |
| 2906 | (void*)fore200e->phys_base, |
| 2907 | fore200e->virt_base, |
| 2908 | fore200e->esi[0], fore200e->esi[1], fore200e->esi[2], |
| 2909 | fore200e->esi[3], fore200e->esi[4], fore200e->esi[5], |
| 2910 | fore200e->esi[4] * 256 + fore200e->esi[5]); |
| 2911 | |
| 2912 | return len; |
| 2913 | } |
| 2914 | |
| 2915 | if (!left--) |
| 2916 | return sprintf(page, |
| 2917 | " free small bufs, scheme 1:\t%d\n" |
| 2918 | " free large bufs, scheme 1:\t%d\n" |
| 2919 | " free small bufs, scheme 2:\t%d\n" |
| 2920 | " free large bufs, scheme 2:\t%d\n", |
| 2921 | fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count, |
| 2922 | fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count, |
| 2923 | fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count, |
| 2924 | fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count); |
| 2925 | |
| 2926 | if (!left--) { |
| 2927 | u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat); |
| 2928 | |
| 2929 | len = sprintf(page,"\n\n" |
| 2930 | " cell processor:\n" |
| 2931 | " heartbeat state:\t\t"); |
| 2932 | |
| 2933 | if (hb >> 16 != 0xDEAD) |
| 2934 | len += sprintf(page + len, "0x%08x\n", hb); |
| 2935 | else |
| 2936 | len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF); |
| 2937 | |
| 2938 | return len; |
| 2939 | } |
| 2940 | |
| 2941 | if (!left--) { |
| 2942 | static const char* media_name[] = { |
| 2943 | "unshielded twisted pair", |
| 2944 | "multimode optical fiber ST", |
| 2945 | "multimode optical fiber SC", |
| 2946 | "single-mode optical fiber ST", |
| 2947 | "single-mode optical fiber SC", |
| 2948 | "unknown" |
| 2949 | }; |
| 2950 | |
| 2951 | static const char* oc3_mode[] = { |
| 2952 | "normal operation", |
| 2953 | "diagnostic loopback", |
| 2954 | "line loopback", |
| 2955 | "unknown" |
| 2956 | }; |
| 2957 | |
| 2958 | u32 fw_release = fore200e->bus->read(&fore200e->cp_queues->fw_release); |
| 2959 | u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release); |
| 2960 | u32 oc3_revision = fore200e->bus->read(&fore200e->cp_queues->oc3_revision); |
| 2961 | u32 media_index = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type)); |
| 2962 | u32 oc3_index; |
| 2963 | |
| 2964 | if ((media_index < 0) || (media_index > 4)) |
| 2965 | media_index = 5; |
| 2966 | |
| 2967 | switch (fore200e->loop_mode) { |
| 2968 | case ATM_LM_NONE: oc3_index = 0; |
| 2969 | break; |
| 2970 | case ATM_LM_LOC_PHY: oc3_index = 1; |
| 2971 | break; |
| 2972 | case ATM_LM_RMT_PHY: oc3_index = 2; |
| 2973 | break; |
| 2974 | default: oc3_index = 3; |
| 2975 | } |
| 2976 | |
| 2977 | return sprintf(page, |
| 2978 | " firmware release:\t\t%d.%d.%d\n" |
| 2979 | " monitor release:\t\t%d.%d\n" |
| 2980 | " media type:\t\t\t%s\n" |
| 2981 | " OC-3 revision:\t\t0x%x\n" |
| 2982 | " OC-3 mode:\t\t\t%s", |
| 2983 | fw_release >> 16, fw_release << 16 >> 24, fw_release << 24 >> 24, |
| 2984 | mon960_release >> 16, mon960_release << 16 >> 16, |
| 2985 | media_name[ media_index ], |
| 2986 | oc3_revision, |
| 2987 | oc3_mode[ oc3_index ]); |
| 2988 | } |
| 2989 | |
| 2990 | if (!left--) { |
| 2991 | struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor; |
| 2992 | |
| 2993 | return sprintf(page, |
| 2994 | "\n\n" |
| 2995 | " monitor:\n" |
| 2996 | " version number:\t\t%d\n" |
| 2997 | " boot status word:\t\t0x%08x\n", |
| 2998 | fore200e->bus->read(&cp_monitor->mon_version), |
| 2999 | fore200e->bus->read(&cp_monitor->bstat)); |
| 3000 | } |
| 3001 | |
| 3002 | if (!left--) |
| 3003 | return sprintf(page, |
| 3004 | "\n" |
| 3005 | " device statistics:\n" |
| 3006 | " 4b5b:\n" |
| 3007 | " crc_header_errors:\t\t%10u\n" |
| 3008 | " framing_errors:\t\t%10u\n", |
| 3009 | fore200e_swap(fore200e->stats->phy.crc_header_errors), |
| 3010 | fore200e_swap(fore200e->stats->phy.framing_errors)); |
| 3011 | |
| 3012 | if (!left--) |
| 3013 | return sprintf(page, "\n" |
| 3014 | " OC-3:\n" |
| 3015 | " section_bip8_errors:\t%10u\n" |
| 3016 | " path_bip8_errors:\t\t%10u\n" |
| 3017 | " line_bip24_errors:\t\t%10u\n" |
| 3018 | " line_febe_errors:\t\t%10u\n" |
| 3019 | " path_febe_errors:\t\t%10u\n" |
| 3020 | " corr_hcs_errors:\t\t%10u\n" |
| 3021 | " ucorr_hcs_errors:\t\t%10u\n", |
| 3022 | fore200e_swap(fore200e->stats->oc3.section_bip8_errors), |
| 3023 | fore200e_swap(fore200e->stats->oc3.path_bip8_errors), |
| 3024 | fore200e_swap(fore200e->stats->oc3.line_bip24_errors), |
| 3025 | fore200e_swap(fore200e->stats->oc3.line_febe_errors), |
| 3026 | fore200e_swap(fore200e->stats->oc3.path_febe_errors), |
| 3027 | fore200e_swap(fore200e->stats->oc3.corr_hcs_errors), |
| 3028 | fore200e_swap(fore200e->stats->oc3.ucorr_hcs_errors)); |
| 3029 | |
| 3030 | if (!left--) |
| 3031 | return sprintf(page,"\n" |
| 3032 | " ATM:\t\t\t\t cells\n" |
| 3033 | " TX:\t\t\t%10u\n" |
| 3034 | " RX:\t\t\t%10u\n" |
| 3035 | " vpi out of range:\t\t%10u\n" |
| 3036 | " vpi no conn:\t\t%10u\n" |
| 3037 | " vci out of range:\t\t%10u\n" |
| 3038 | " vci no conn:\t\t%10u\n", |
| 3039 | fore200e_swap(fore200e->stats->atm.cells_transmitted), |
| 3040 | fore200e_swap(fore200e->stats->atm.cells_received), |
| 3041 | fore200e_swap(fore200e->stats->atm.vpi_bad_range), |
| 3042 | fore200e_swap(fore200e->stats->atm.vpi_no_conn), |
| 3043 | fore200e_swap(fore200e->stats->atm.vci_bad_range), |
| 3044 | fore200e_swap(fore200e->stats->atm.vci_no_conn)); |
| 3045 | |
| 3046 | if (!left--) |
| 3047 | return sprintf(page,"\n" |
| 3048 | " AAL0:\t\t\t cells\n" |
| 3049 | " TX:\t\t\t%10u\n" |
| 3050 | " RX:\t\t\t%10u\n" |
| 3051 | " dropped:\t\t\t%10u\n", |
| 3052 | fore200e_swap(fore200e->stats->aal0.cells_transmitted), |
| 3053 | fore200e_swap(fore200e->stats->aal0.cells_received), |
| 3054 | fore200e_swap(fore200e->stats->aal0.cells_dropped)); |
| 3055 | |
| 3056 | if (!left--) |
| 3057 | return sprintf(page,"\n" |
| 3058 | " AAL3/4:\n" |
| 3059 | " SAR sublayer:\t\t cells\n" |
| 3060 | " TX:\t\t\t%10u\n" |
| 3061 | " RX:\t\t\t%10u\n" |
| 3062 | " dropped:\t\t\t%10u\n" |
| 3063 | " CRC errors:\t\t%10u\n" |
| 3064 | " protocol errors:\t\t%10u\n\n" |
| 3065 | " CS sublayer:\t\t PDUs\n" |
| 3066 | " TX:\t\t\t%10u\n" |
| 3067 | " RX:\t\t\t%10u\n" |
| 3068 | " dropped:\t\t\t%10u\n" |
| 3069 | " protocol errors:\t\t%10u\n", |
| 3070 | fore200e_swap(fore200e->stats->aal34.cells_transmitted), |
| 3071 | fore200e_swap(fore200e->stats->aal34.cells_received), |
| 3072 | fore200e_swap(fore200e->stats->aal34.cells_dropped), |
| 3073 | fore200e_swap(fore200e->stats->aal34.cells_crc_errors), |
| 3074 | fore200e_swap(fore200e->stats->aal34.cells_protocol_errors), |
| 3075 | fore200e_swap(fore200e->stats->aal34.cspdus_transmitted), |
| 3076 | fore200e_swap(fore200e->stats->aal34.cspdus_received), |
| 3077 | fore200e_swap(fore200e->stats->aal34.cspdus_dropped), |
| 3078 | fore200e_swap(fore200e->stats->aal34.cspdus_protocol_errors)); |
| 3079 | |
| 3080 | if (!left--) |
| 3081 | return sprintf(page,"\n" |
| 3082 | " AAL5:\n" |
| 3083 | " SAR sublayer:\t\t cells\n" |
| 3084 | " TX:\t\t\t%10u\n" |
| 3085 | " RX:\t\t\t%10u\n" |
| 3086 | " dropped:\t\t\t%10u\n" |
| 3087 | " congestions:\t\t%10u\n\n" |
| 3088 | " CS sublayer:\t\t PDUs\n" |
| 3089 | " TX:\t\t\t%10u\n" |
| 3090 | " RX:\t\t\t%10u\n" |
| 3091 | " dropped:\t\t\t%10u\n" |
| 3092 | " CRC errors:\t\t%10u\n" |
| 3093 | " protocol errors:\t\t%10u\n", |
| 3094 | fore200e_swap(fore200e->stats->aal5.cells_transmitted), |
| 3095 | fore200e_swap(fore200e->stats->aal5.cells_received), |
| 3096 | fore200e_swap(fore200e->stats->aal5.cells_dropped), |
| 3097 | fore200e_swap(fore200e->stats->aal5.congestion_experienced), |
| 3098 | fore200e_swap(fore200e->stats->aal5.cspdus_transmitted), |
| 3099 | fore200e_swap(fore200e->stats->aal5.cspdus_received), |
| 3100 | fore200e_swap(fore200e->stats->aal5.cspdus_dropped), |
| 3101 | fore200e_swap(fore200e->stats->aal5.cspdus_crc_errors), |
| 3102 | fore200e_swap(fore200e->stats->aal5.cspdus_protocol_errors)); |
| 3103 | |
| 3104 | if (!left--) |
| 3105 | return sprintf(page,"\n" |
| 3106 | " AUX:\t\t allocation failures\n" |
| 3107 | " small b1:\t\t\t%10u\n" |
| 3108 | " large b1:\t\t\t%10u\n" |
| 3109 | " small b2:\t\t\t%10u\n" |
| 3110 | " large b2:\t\t\t%10u\n" |
| 3111 | " RX PDUs:\t\t\t%10u\n" |
| 3112 | " TX PDUs:\t\t\t%10lu\n", |
| 3113 | fore200e_swap(fore200e->stats->aux.small_b1_failed), |
| 3114 | fore200e_swap(fore200e->stats->aux.large_b1_failed), |
| 3115 | fore200e_swap(fore200e->stats->aux.small_b2_failed), |
| 3116 | fore200e_swap(fore200e->stats->aux.large_b2_failed), |
| 3117 | fore200e_swap(fore200e->stats->aux.rpd_alloc_failed), |
| 3118 | fore200e->tx_sat); |
| 3119 | |
| 3120 | if (!left--) |
| 3121 | return sprintf(page,"\n" |
| 3122 | " receive carrier:\t\t\t%s\n", |
| 3123 | fore200e->stats->aux.receive_carrier ? "ON" : "OFF!"); |
| 3124 | |
| 3125 | if (!left--) { |
| 3126 | return sprintf(page,"\n" |
| 3127 | " VCCs:\n address VPI VCI AAL " |
| 3128 | "TX PDUs TX min/max size RX PDUs RX min/max size\n"); |
| 3129 | } |
| 3130 | |
| 3131 | for (i = 0; i < NBR_CONNECT; i++) { |
| 3132 | |
| 3133 | vcc = fore200e->vc_map[i].vcc; |
| 3134 | |
| 3135 | if (vcc == NULL) |
| 3136 | continue; |
| 3137 | |
| 3138 | spin_lock_irqsave(&fore200e->q_lock, flags); |
| 3139 | |
| 3140 | if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) { |
| 3141 | |
| 3142 | fore200e_vcc = FORE200E_VCC(vcc); |
| 3143 | ASSERT(fore200e_vcc); |
| 3144 | |
| 3145 | len = sprintf(page, |
| 3146 | " %08x %03d %05d %1d %09lu %05d/%05d %09lu %05d/%05d\n", |
| 3147 | (u32)(unsigned long)vcc, |
| 3148 | vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal), |
| 3149 | fore200e_vcc->tx_pdu, |
| 3150 | fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu, |
| 3151 | fore200e_vcc->tx_max_pdu, |
| 3152 | fore200e_vcc->rx_pdu, |
| 3153 | fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu, |
| 3154 | fore200e_vcc->rx_max_pdu); |
| 3155 | |
| 3156 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| 3157 | return len; |
| 3158 | } |
| 3159 | |
| 3160 | spin_unlock_irqrestore(&fore200e->q_lock, flags); |
| 3161 | } |
| 3162 | |
| 3163 | return 0; |
| 3164 | } |
| 3165 | |
| 3166 | module_init(fore200e_module_init); |
| 3167 | module_exit(fore200e_module_cleanup); |
| 3168 | |
| 3169 | |
| 3170 | static const struct atmdev_ops fore200e_ops = |
| 3171 | { |
| 3172 | .open = fore200e_open, |
| 3173 | .close = fore200e_close, |
| 3174 | .ioctl = fore200e_ioctl, |
| 3175 | .getsockopt = fore200e_getsockopt, |
| 3176 | .setsockopt = fore200e_setsockopt, |
| 3177 | .send = fore200e_send, |
| 3178 | .change_qos = fore200e_change_qos, |
| 3179 | .proc_read = fore200e_proc_read, |
| 3180 | .owner = THIS_MODULE |
| 3181 | }; |
| 3182 | |
| 3183 | |
| 3184 | #ifdef CONFIG_ATM_FORE200E_PCA |
| 3185 | extern const unsigned char _fore200e_pca_fw_data[]; |
| 3186 | extern const unsigned int _fore200e_pca_fw_size; |
| 3187 | #endif |
| 3188 | #ifdef CONFIG_ATM_FORE200E_SBA |
| 3189 | extern const unsigned char _fore200e_sba_fw_data[]; |
| 3190 | extern const unsigned int _fore200e_sba_fw_size; |
| 3191 | #endif |
| 3192 | |
| 3193 | static const struct fore200e_bus fore200e_bus[] = { |
| 3194 | #ifdef CONFIG_ATM_FORE200E_PCA |
| 3195 | { "PCA-200E", "pca200e", 32, 4, 32, |
| 3196 | _fore200e_pca_fw_data, &_fore200e_pca_fw_size, |
| 3197 | fore200e_pca_read, |
| 3198 | fore200e_pca_write, |
| 3199 | fore200e_pca_dma_map, |
| 3200 | fore200e_pca_dma_unmap, |
| 3201 | fore200e_pca_dma_sync_for_cpu, |
| 3202 | fore200e_pca_dma_sync_for_device, |
| 3203 | fore200e_pca_dma_chunk_alloc, |
| 3204 | fore200e_pca_dma_chunk_free, |
| 3205 | NULL, |
| 3206 | fore200e_pca_configure, |
| 3207 | fore200e_pca_map, |
| 3208 | fore200e_pca_reset, |
| 3209 | fore200e_pca_prom_read, |
| 3210 | fore200e_pca_unmap, |
| 3211 | NULL, |
| 3212 | fore200e_pca_irq_check, |
| 3213 | fore200e_pca_irq_ack, |
| 3214 | fore200e_pca_proc_read, |
| 3215 | }, |
| 3216 | #endif |
| 3217 | #ifdef CONFIG_ATM_FORE200E_SBA |
| 3218 | { "SBA-200E", "sba200e", 32, 64, 32, |
| 3219 | _fore200e_sba_fw_data, &_fore200e_sba_fw_size, |
| 3220 | fore200e_sba_read, |
| 3221 | fore200e_sba_write, |
| 3222 | fore200e_sba_dma_map, |
| 3223 | fore200e_sba_dma_unmap, |
| 3224 | fore200e_sba_dma_sync_for_cpu, |
| 3225 | fore200e_sba_dma_sync_for_device, |
| 3226 | fore200e_sba_dma_chunk_alloc, |
| 3227 | fore200e_sba_dma_chunk_free, |
| 3228 | fore200e_sba_detect, |
| 3229 | fore200e_sba_configure, |
| 3230 | fore200e_sba_map, |
| 3231 | fore200e_sba_reset, |
| 3232 | fore200e_sba_prom_read, |
| 3233 | fore200e_sba_unmap, |
| 3234 | fore200e_sba_irq_enable, |
| 3235 | fore200e_sba_irq_check, |
| 3236 | fore200e_sba_irq_ack, |
| 3237 | fore200e_sba_proc_read, |
| 3238 | }, |
| 3239 | #endif |
| 3240 | {} |
| 3241 | }; |
| 3242 | |
| 3243 | #ifdef MODULE_LICENSE |
| 3244 | MODULE_LICENSE("GPL"); |
| 3245 | #endif |