blob: 2551b1eeadb3d5a9f960287c7d6e5b35abb0cbc8 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700104#include <linux/string.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700105#include <linux/nodemask.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700106
107#include <asm/uaccess.h>
108#include <asm/cacheflush.h>
109#include <asm/tlbflush.h>
110#include <asm/page.h>
111
112/*
113 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
114 * SLAB_RED_ZONE & SLAB_POISON.
115 * 0 for faster, smaller code (especially in the critical paths).
116 *
117 * STATS - 1 to collect stats for /proc/slabinfo.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
121 */
122
123#ifdef CONFIG_DEBUG_SLAB
124#define DEBUG 1
125#define STATS 1
126#define FORCED_DEBUG 1
127#else
128#define DEBUG 0
129#define STATS 0
130#define FORCED_DEBUG 0
131#endif
132
133
134/* Shouldn't this be in a header file somewhere? */
135#define BYTES_PER_WORD sizeof(void *)
136
137#ifndef cache_line_size
138#define cache_line_size() L1_CACHE_BYTES
139#endif
140
141#ifndef ARCH_KMALLOC_MINALIGN
142/*
143 * Enforce a minimum alignment for the kmalloc caches.
144 * Usually, the kmalloc caches are cache_line_size() aligned, except when
145 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
146 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
147 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
148 * Note that this flag disables some debug features.
149 */
150#define ARCH_KMALLOC_MINALIGN 0
151#endif
152
153#ifndef ARCH_SLAB_MINALIGN
154/*
155 * Enforce a minimum alignment for all caches.
156 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
157 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
158 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
159 * some debug features.
160 */
161#define ARCH_SLAB_MINALIGN 0
162#endif
163
164#ifndef ARCH_KMALLOC_FLAGS
165#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
166#endif
167
168/* Legal flag mask for kmem_cache_create(). */
169#if DEBUG
170# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
171 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
172 SLAB_NO_REAP | SLAB_CACHE_DMA | \
173 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
174 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
175 SLAB_DESTROY_BY_RCU)
176#else
177# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
178 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU)
181#endif
182
183/*
184 * kmem_bufctl_t:
185 *
186 * Bufctl's are used for linking objs within a slab
187 * linked offsets.
188 *
189 * This implementation relies on "struct page" for locating the cache &
190 * slab an object belongs to.
191 * This allows the bufctl structure to be small (one int), but limits
192 * the number of objects a slab (not a cache) can contain when off-slab
193 * bufctls are used. The limit is the size of the largest general cache
194 * that does not use off-slab slabs.
195 * For 32bit archs with 4 kB pages, is this 56.
196 * This is not serious, as it is only for large objects, when it is unwise
197 * to have too many per slab.
198 * Note: This limit can be raised by introducing a general cache whose size
199 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
200 */
201
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700202typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700203#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
204#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
205#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
206
207/* Max number of objs-per-slab for caches which use off-slab slabs.
208 * Needed to avoid a possible looping condition in cache_grow().
209 */
210static unsigned long offslab_limit;
211
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
Christoph Lametere498be72005-09-09 13:03:32 -0700225 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
245 struct rcu_head head;
246 kmem_cache_t *cachep;
247 void *addr;
248};
249
250/*
251 * struct array_cache
252 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700267 spinlock_t lock;
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700274};
275
276/* bootstrap: The caches do not work without cpuarrays anymore,
277 * but the cpuarrays are allocated from the generic caches...
278 */
279#define BOOT_CPUCACHE_ENTRIES 1
280struct arraycache_init {
281 struct array_cache cache;
282 void * entries[BOOT_CPUCACHE_ENTRIES];
283};
284
285/*
Christoph Lametere498be72005-09-09 13:03:32 -0700286 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700287 */
288struct kmem_list3 {
289 struct list_head slabs_partial; /* partial list first, better asm code */
290 struct list_head slabs_full;
291 struct list_head slabs_free;
292 unsigned long free_objects;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700293 unsigned long next_reap;
Christoph Lametere498be72005-09-09 13:03:32 -0700294 int free_touched;
295 unsigned int free_limit;
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700299};
300
Christoph Lametere498be72005-09-09 13:03:32 -0700301/*
302 * Need this for bootstrapping a per node allocator.
303 */
304#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
306#define CACHE_CACHE 0
307#define SIZE_AC 1
308#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700309
Christoph Lametere498be72005-09-09 13:03:32 -0700310/*
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700311 * This function must be completely optimized away if
Christoph Lametere498be72005-09-09 13:03:32 -0700312 * a constant is passed to it. Mostly the same as
313 * what is in linux/slab.h except it returns an
314 * index.
315 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700316static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700317{
318 if (__builtin_constant_p(size)) {
319 int i = 0;
320
321#define CACHE(x) \
322 if (size <=x) \
323 return i; \
324 else \
325 i++;
326#include "linux/kmalloc_sizes.h"
327#undef CACHE
328 {
329 extern void __bad_size(void);
330 __bad_size();
331 }
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700332 } else
333 BUG();
Christoph Lametere498be72005-09-09 13:03:32 -0700334 return 0;
335}
336
337#define INDEX_AC index_of(sizeof(struct arraycache_init))
338#define INDEX_L3 index_of(sizeof(struct kmem_list3))
339
340static inline void kmem_list3_init(struct kmem_list3 *parent)
341{
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
347 spin_lock_init(&parent->list_lock);
348 parent->free_objects = 0;
349 parent->free_touched = 0;
350}
351
352#define MAKE_LIST(cachep, listp, slab, nodeid) \
353 do { \
354 INIT_LIST_HEAD(listp); \
355 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
356 } while (0)
357
358#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
359 do { \
360 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
361 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
363 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700364
365/*
366 * kmem_cache_t
367 *
368 * manages a cache.
369 */
370
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800371struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700372/* 1) per-cpu data, touched during every alloc/free */
373 struct array_cache *array[NR_CPUS];
374 unsigned int batchcount;
375 unsigned int limit;
Christoph Lametere498be72005-09-09 13:03:32 -0700376 unsigned int shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377 unsigned int objsize;
Christoph Lametere498be72005-09-09 13:03:32 -0700378/* 2) touched by every alloc & free from the backend */
379 struct kmem_list3 *nodelists[MAX_NUMNODES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700380 unsigned int flags; /* constant flags */
381 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382 spinlock_t spinlock;
383
384/* 3) cache_grow/shrink */
385 /* order of pgs per slab (2^n) */
386 unsigned int gfporder;
387
388 /* force GFP flags, e.g. GFP_DMA */
Al Viro6daa0e22005-10-21 03:18:50 -0400389 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390
391 size_t colour; /* cache colouring range */
392 unsigned int colour_off; /* colour offset */
393 unsigned int colour_next; /* cache colouring */
394 kmem_cache_t *slabp_cache;
395 unsigned int slab_size;
396 unsigned int dflags; /* dynamic flags */
397
398 /* constructor func */
399 void (*ctor)(void *, kmem_cache_t *, unsigned long);
400
401 /* de-constructor func */
402 void (*dtor)(void *, kmem_cache_t *, unsigned long);
403
404/* 4) cache creation/removal */
405 const char *name;
406 struct list_head next;
407
408/* 5) statistics */
409#if STATS
410 unsigned long num_active;
411 unsigned long num_allocations;
412 unsigned long high_mark;
413 unsigned long grown;
414 unsigned long reaped;
415 unsigned long errors;
416 unsigned long max_freeable;
417 unsigned long node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -0700418 unsigned long node_frees;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419 atomic_t allochit;
420 atomic_t allocmiss;
421 atomic_t freehit;
422 atomic_t freemiss;
423#endif
424#if DEBUG
425 int dbghead;
426 int reallen;
427#endif
428};
429
430#define CFLGS_OFF_SLAB (0x80000000UL)
431#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
432
433#define BATCHREFILL_LIMIT 16
434/* Optimization question: fewer reaps means less
435 * probability for unnessary cpucache drain/refill cycles.
436 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100437 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700438 * which could lock up otherwise freeable slabs.
439 */
440#define REAPTIMEOUT_CPUC (2*HZ)
441#define REAPTIMEOUT_LIST3 (4*HZ)
442
443#if STATS
444#define STATS_INC_ACTIVE(x) ((x)->num_active++)
445#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
446#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
447#define STATS_INC_GROWN(x) ((x)->grown++)
448#define STATS_INC_REAPED(x) ((x)->reaped++)
449#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
450 (x)->high_mark = (x)->num_active; \
451 } while (0)
452#define STATS_INC_ERR(x) ((x)->errors++)
453#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700454#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700455#define STATS_SET_FREEABLE(x, i) \
456 do { if ((x)->max_freeable < i) \
457 (x)->max_freeable = i; \
458 } while (0)
459
460#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
461#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
462#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
463#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
464#else
465#define STATS_INC_ACTIVE(x) do { } while (0)
466#define STATS_DEC_ACTIVE(x) do { } while (0)
467#define STATS_INC_ALLOCED(x) do { } while (0)
468#define STATS_INC_GROWN(x) do { } while (0)
469#define STATS_INC_REAPED(x) do { } while (0)
470#define STATS_SET_HIGH(x) do { } while (0)
471#define STATS_INC_ERR(x) do { } while (0)
472#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700473#define STATS_INC_NODEFREES(x) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700474#define STATS_SET_FREEABLE(x, i) \
475 do { } while (0)
476
477#define STATS_INC_ALLOCHIT(x) do { } while (0)
478#define STATS_INC_ALLOCMISS(x) do { } while (0)
479#define STATS_INC_FREEHIT(x) do { } while (0)
480#define STATS_INC_FREEMISS(x) do { } while (0)
481#endif
482
483#if DEBUG
484/* Magic nums for obj red zoning.
485 * Placed in the first word before and the first word after an obj.
486 */
487#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
488#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
489
490/* ...and for poisoning */
491#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
492#define POISON_FREE 0x6b /* for use-after-free poisoning */
493#define POISON_END 0xa5 /* end-byte of poisoning */
494
495/* memory layout of objects:
496 * 0 : objp
497 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
498 * the end of an object is aligned with the end of the real
499 * allocation. Catches writes behind the end of the allocation.
500 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
501 * redzone word.
502 * cachep->dbghead: The real object.
503 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
504 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
505 */
506static int obj_dbghead(kmem_cache_t *cachep)
507{
508 return cachep->dbghead;
509}
510
511static int obj_reallen(kmem_cache_t *cachep)
512{
513 return cachep->reallen;
514}
515
516static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
517{
518 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
519 return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
520}
521
522static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
523{
524 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
525 if (cachep->flags & SLAB_STORE_USER)
526 return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD);
527 return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD);
528}
529
530static void **dbg_userword(kmem_cache_t *cachep, void *objp)
531{
532 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
533 return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
534}
535
536#else
537
538#define obj_dbghead(x) 0
539#define obj_reallen(cachep) (cachep->objsize)
540#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
541#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
542#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
543
544#endif
545
546/*
547 * Maximum size of an obj (in 2^order pages)
548 * and absolute limit for the gfp order.
549 */
550#if defined(CONFIG_LARGE_ALLOCS)
551#define MAX_OBJ_ORDER 13 /* up to 32Mb */
552#define MAX_GFP_ORDER 13 /* up to 32Mb */
553#elif defined(CONFIG_MMU)
554#define MAX_OBJ_ORDER 5 /* 32 pages */
555#define MAX_GFP_ORDER 5 /* 32 pages */
556#else
557#define MAX_OBJ_ORDER 8 /* up to 1Mb */
558#define MAX_GFP_ORDER 8 /* up to 1Mb */
559#endif
560
561/*
562 * Do not go above this order unless 0 objects fit into the slab.
563 */
564#define BREAK_GFP_ORDER_HI 1
565#define BREAK_GFP_ORDER_LO 0
566static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
567
Pekka Enberg065d41c2005-11-13 16:06:46 -0800568/* Functions for storing/retrieving the cachep and or slab from the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700569 * global 'mem_map'. These are used to find the slab an obj belongs to.
570 * With kfree(), these are used to find the cache which an obj belongs to.
571 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800572static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
573{
574 page->lru.next = (struct list_head *)cache;
575}
576
577static inline struct kmem_cache *page_get_cache(struct page *page)
578{
579 return (struct kmem_cache *)page->lru.next;
580}
581
582static inline void page_set_slab(struct page *page, struct slab *slab)
583{
584 page->lru.prev = (struct list_head *)slab;
585}
586
587static inline struct slab *page_get_slab(struct page *page)
588{
589 return (struct slab *)page->lru.prev;
590}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700591
592/* These are the default caches for kmalloc. Custom caches can have other sizes. */
593struct cache_sizes malloc_sizes[] = {
594#define CACHE(x) { .cs_size = (x) },
595#include <linux/kmalloc_sizes.h>
596 CACHE(ULONG_MAX)
597#undef CACHE
598};
599EXPORT_SYMBOL(malloc_sizes);
600
601/* Must match cache_sizes above. Out of line to keep cache footprint low. */
602struct cache_names {
603 char *name;
604 char *name_dma;
605};
606
607static struct cache_names __initdata cache_names[] = {
608#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
609#include <linux/kmalloc_sizes.h>
610 { NULL, }
611#undef CACHE
612};
613
614static struct arraycache_init initarray_cache __initdata =
615 { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
616static struct arraycache_init initarray_generic =
617 { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
618
619/* internal cache of cache description objs */
620static kmem_cache_t cache_cache = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700621 .batchcount = 1,
622 .limit = BOOT_CPUCACHE_ENTRIES,
Christoph Lametere498be72005-09-09 13:03:32 -0700623 .shared = 1,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624 .objsize = sizeof(kmem_cache_t),
625 .flags = SLAB_NO_REAP,
626 .spinlock = SPIN_LOCK_UNLOCKED,
627 .name = "kmem_cache",
628#if DEBUG
629 .reallen = sizeof(kmem_cache_t),
630#endif
631};
632
633/* Guard access to the cache-chain. */
634static struct semaphore cache_chain_sem;
635static struct list_head cache_chain;
636
637/*
638 * vm_enough_memory() looks at this to determine how many
639 * slab-allocated pages are possibly freeable under pressure
640 *
641 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
642 */
643atomic_t slab_reclaim_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700644
645/*
646 * chicken and egg problem: delay the per-cpu array allocation
647 * until the general caches are up.
648 */
649static enum {
650 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700651 PARTIAL_AC,
652 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700653 FULL
654} g_cpucache_up;
655
656static DEFINE_PER_CPU(struct work_struct, reap_work);
657
Christoph Lameterff694162005-09-22 21:44:02 -0700658static void free_block(kmem_cache_t* cachep, void** objpp, int len, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700659static void enable_cpucache (kmem_cache_t *cachep);
660static void cache_reap (void *unused);
Christoph Lametere498be72005-09-09 13:03:32 -0700661static int __node_shrink(kmem_cache_t *cachep, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662
663static inline struct array_cache *ac_data(kmem_cache_t *cachep)
664{
665 return cachep->array[smp_processor_id()];
666}
667
Al Virodd0fc662005-10-07 07:46:04 +0100668static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700669{
670 struct cache_sizes *csizep = malloc_sizes;
671
672#if DEBUG
673 /* This happens if someone tries to call
674 * kmem_cache_create(), or __kmalloc(), before
675 * the generic caches are initialized.
676 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700677 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678#endif
679 while (size > csizep->cs_size)
680 csizep++;
681
682 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700683 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700684 * has cs_{dma,}cachep==NULL. Thus no special case
685 * for large kmalloc calls required.
686 */
687 if (unlikely(gfpflags & GFP_DMA))
688 return csizep->cs_dmacachep;
689 return csizep->cs_cachep;
690}
691
Al Virodd0fc662005-10-07 07:46:04 +0100692kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700693{
694 return __find_general_cachep(size, gfpflags);
695}
696EXPORT_SYMBOL(kmem_find_general_cachep);
697
Linus Torvalds1da177e2005-04-16 15:20:36 -0700698/* Cal the num objs, wastage, and bytes left over for a given slab size. */
699static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
700 int flags, size_t *left_over, unsigned int *num)
701{
702 int i;
703 size_t wastage = PAGE_SIZE<<gfporder;
704 size_t extra = 0;
705 size_t base = 0;
706
707 if (!(flags & CFLGS_OFF_SLAB)) {
708 base = sizeof(struct slab);
709 extra = sizeof(kmem_bufctl_t);
710 }
711 i = 0;
712 while (i*size + ALIGN(base+i*extra, align) <= wastage)
713 i++;
714 if (i > 0)
715 i--;
716
717 if (i > SLAB_LIMIT)
718 i = SLAB_LIMIT;
719
720 *num = i;
721 wastage -= i*size;
722 wastage -= ALIGN(base+i*extra, align);
723 *left_over = wastage;
724}
725
726#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
727
728static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
729{
730 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
731 function, cachep->name, msg);
732 dump_stack();
733}
734
735/*
736 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
737 * via the workqueue/eventd.
738 * Add the CPU number into the expiration time to minimize the possibility of
739 * the CPUs getting into lockstep and contending for the global cache chain
740 * lock.
741 */
742static void __devinit start_cpu_timer(int cpu)
743{
744 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
745
746 /*
747 * When this gets called from do_initcalls via cpucache_init(),
748 * init_workqueues() has already run, so keventd will be setup
749 * at that time.
750 */
751 if (keventd_up() && reap_work->func == NULL) {
752 INIT_WORK(reap_work, cache_reap, NULL);
753 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
754 }
755}
756
Christoph Lametere498be72005-09-09 13:03:32 -0700757static struct array_cache *alloc_arraycache(int node, int entries,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700758 int batchcount)
759{
760 int memsize = sizeof(void*)*entries+sizeof(struct array_cache);
761 struct array_cache *nc = NULL;
762
Christoph Lametere498be72005-09-09 13:03:32 -0700763 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700764 if (nc) {
765 nc->avail = 0;
766 nc->limit = entries;
767 nc->batchcount = batchcount;
768 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700769 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700770 }
771 return nc;
772}
773
Christoph Lametere498be72005-09-09 13:03:32 -0700774#ifdef CONFIG_NUMA
775static inline struct array_cache **alloc_alien_cache(int node, int limit)
776{
777 struct array_cache **ac_ptr;
778 int memsize = sizeof(void*)*MAX_NUMNODES;
779 int i;
780
781 if (limit > 1)
782 limit = 12;
783 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
784 if (ac_ptr) {
785 for_each_node(i) {
786 if (i == node || !node_online(i)) {
787 ac_ptr[i] = NULL;
788 continue;
789 }
790 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
791 if (!ac_ptr[i]) {
792 for (i--; i <=0; i--)
793 kfree(ac_ptr[i]);
794 kfree(ac_ptr);
795 return NULL;
796 }
797 }
798 }
799 return ac_ptr;
800}
801
802static inline void free_alien_cache(struct array_cache **ac_ptr)
803{
804 int i;
805
806 if (!ac_ptr)
807 return;
808
809 for_each_node(i)
810 kfree(ac_ptr[i]);
811
812 kfree(ac_ptr);
813}
814
815static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node)
816{
817 struct kmem_list3 *rl3 = cachep->nodelists[node];
818
819 if (ac->avail) {
820 spin_lock(&rl3->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -0700821 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700822 ac->avail = 0;
823 spin_unlock(&rl3->list_lock);
824 }
825}
826
827static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
828{
829 int i=0;
830 struct array_cache *ac;
831 unsigned long flags;
832
833 for_each_online_node(i) {
834 ac = l3->alien[i];
835 if (ac) {
836 spin_lock_irqsave(&ac->lock, flags);
837 __drain_alien_cache(cachep, ac, i);
838 spin_unlock_irqrestore(&ac->lock, flags);
839 }
840 }
841}
842#else
843#define alloc_alien_cache(node, limit) do { } while (0)
844#define free_alien_cache(ac_ptr) do { } while (0)
845#define drain_alien_cache(cachep, l3) do { } while (0)
846#endif
847
Linus Torvalds1da177e2005-04-16 15:20:36 -0700848static int __devinit cpuup_callback(struct notifier_block *nfb,
849 unsigned long action, void *hcpu)
850{
851 long cpu = (long)hcpu;
852 kmem_cache_t* cachep;
Christoph Lametere498be72005-09-09 13:03:32 -0700853 struct kmem_list3 *l3 = NULL;
854 int node = cpu_to_node(cpu);
855 int memsize = sizeof(struct kmem_list3);
856 struct array_cache *nc = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857
858 switch (action) {
859 case CPU_UP_PREPARE:
860 down(&cache_chain_sem);
Christoph Lametere498be72005-09-09 13:03:32 -0700861 /* we need to do this right in the beginning since
862 * alloc_arraycache's are going to use this list.
863 * kmalloc_node allows us to add the slab to the right
864 * kmem_list3 and not this cpu's kmem_list3
865 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866
Christoph Lametere498be72005-09-09 13:03:32 -0700867 list_for_each_entry(cachep, &cache_chain, next) {
868 /* setup the size64 kmemlist for cpu before we can
869 * begin anything. Make sure some other cpu on this
870 * node has not already allocated this
871 */
872 if (!cachep->nodelists[node]) {
873 if (!(l3 = kmalloc_node(memsize,
874 GFP_KERNEL, node)))
875 goto bad;
876 kmem_list3_init(l3);
877 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
878 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
879
880 cachep->nodelists[node] = l3;
881 }
882
883 spin_lock_irq(&cachep->nodelists[node]->list_lock);
884 cachep->nodelists[node]->free_limit =
885 (1 + nr_cpus_node(node)) *
886 cachep->batchcount + cachep->num;
887 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
888 }
889
890 /* Now we can go ahead with allocating the shared array's
891 & array cache's */
892 list_for_each_entry(cachep, &cache_chain, next) {
893 nc = alloc_arraycache(node, cachep->limit,
894 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700895 if (!nc)
896 goto bad;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897 cachep->array[cpu] = nc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700898
Christoph Lametere498be72005-09-09 13:03:32 -0700899 l3 = cachep->nodelists[node];
900 BUG_ON(!l3);
901 if (!l3->shared) {
902 if (!(nc = alloc_arraycache(node,
903 cachep->shared*cachep->batchcount,
904 0xbaadf00d)))
905 goto bad;
906
907 /* we are serialised from CPU_DEAD or
908 CPU_UP_CANCELLED by the cpucontrol lock */
909 l3->shared = nc;
910 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700911 }
912 up(&cache_chain_sem);
913 break;
914 case CPU_ONLINE:
915 start_cpu_timer(cpu);
916 break;
917#ifdef CONFIG_HOTPLUG_CPU
918 case CPU_DEAD:
919 /* fall thru */
920 case CPU_UP_CANCELED:
921 down(&cache_chain_sem);
922
923 list_for_each_entry(cachep, &cache_chain, next) {
924 struct array_cache *nc;
Christoph Lametere498be72005-09-09 13:03:32 -0700925 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700926
Christoph Lametere498be72005-09-09 13:03:32 -0700927 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700928 spin_lock_irq(&cachep->spinlock);
929 /* cpu is dead; no one can alloc from it. */
930 nc = cachep->array[cpu];
931 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -0700932 l3 = cachep->nodelists[node];
933
934 if (!l3)
935 goto unlock_cache;
936
937 spin_lock(&l3->list_lock);
938
939 /* Free limit for this kmem_list3 */
940 l3->free_limit -= cachep->batchcount;
941 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -0700942 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700943
944 if (!cpus_empty(mask)) {
945 spin_unlock(&l3->list_lock);
946 goto unlock_cache;
947 }
948
949 if (l3->shared) {
950 free_block(cachep, l3->shared->entry,
Christoph Lameterff694162005-09-22 21:44:02 -0700951 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700952 kfree(l3->shared);
953 l3->shared = NULL;
954 }
955 if (l3->alien) {
956 drain_alien_cache(cachep, l3);
957 free_alien_cache(l3->alien);
958 l3->alien = NULL;
959 }
960
961 /* free slabs belonging to this node */
962 if (__node_shrink(cachep, node)) {
963 cachep->nodelists[node] = NULL;
964 spin_unlock(&l3->list_lock);
965 kfree(l3);
966 } else {
967 spin_unlock(&l3->list_lock);
968 }
969unlock_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700970 spin_unlock_irq(&cachep->spinlock);
971 kfree(nc);
972 }
973 up(&cache_chain_sem);
974 break;
975#endif
976 }
977 return NOTIFY_OK;
978bad:
979 up(&cache_chain_sem);
980 return NOTIFY_BAD;
981}
982
983static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
984
Christoph Lametere498be72005-09-09 13:03:32 -0700985/*
986 * swap the static kmem_list3 with kmalloced memory
987 */
988static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list,
989 int nodeid)
990{
991 struct kmem_list3 *ptr;
992
993 BUG_ON(cachep->nodelists[nodeid] != list);
994 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
995 BUG_ON(!ptr);
996
997 local_irq_disable();
998 memcpy(ptr, list, sizeof(struct kmem_list3));
999 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1000 cachep->nodelists[nodeid] = ptr;
1001 local_irq_enable();
1002}
1003
Linus Torvalds1da177e2005-04-16 15:20:36 -07001004/* Initialisation.
1005 * Called after the gfp() functions have been enabled, and before smp_init().
1006 */
1007void __init kmem_cache_init(void)
1008{
1009 size_t left_over;
1010 struct cache_sizes *sizes;
1011 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001012 int i;
1013
1014 for (i = 0; i < NUM_INIT_LISTS; i++) {
1015 kmem_list3_init(&initkmem_list3[i]);
1016 if (i < MAX_NUMNODES)
1017 cache_cache.nodelists[i] = NULL;
1018 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019
1020 /*
1021 * Fragmentation resistance on low memory - only use bigger
1022 * page orders on machines with more than 32MB of memory.
1023 */
1024 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1025 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1026
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027 /* Bootstrap is tricky, because several objects are allocated
1028 * from caches that do not exist yet:
1029 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1030 * structures of all caches, except cache_cache itself: cache_cache
1031 * is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001032 * Initially an __init data area is used for the head array and the
1033 * kmem_list3 structures, it's replaced with a kmalloc allocated
1034 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001035 * 2) Create the first kmalloc cache.
Christoph Lametere498be72005-09-09 13:03:32 -07001036 * The kmem_cache_t for the new cache is allocated normally.
1037 * An __init data area is used for the head array.
1038 * 3) Create the remaining kmalloc caches, with minimally sized
1039 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001040 * 4) Replace the __init data head arrays for cache_cache and the first
1041 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001042 * 5) Replace the __init data for kmem_list3 for cache_cache and
1043 * the other cache's with kmalloc allocated memory.
1044 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001045 */
1046
1047 /* 1) create the cache_cache */
1048 init_MUTEX(&cache_chain_sem);
1049 INIT_LIST_HEAD(&cache_chain);
1050 list_add(&cache_cache.next, &cache_chain);
1051 cache_cache.colour_off = cache_line_size();
1052 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001053 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001054
1055 cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
1056
1057 cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
1058 &left_over, &cache_cache.num);
1059 if (!cache_cache.num)
1060 BUG();
1061
1062 cache_cache.colour = left_over/cache_cache.colour_off;
1063 cache_cache.colour_next = 0;
1064 cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) +
1065 sizeof(struct slab), cache_line_size());
1066
1067 /* 2+3) create the kmalloc caches */
1068 sizes = malloc_sizes;
1069 names = cache_names;
1070
Christoph Lametere498be72005-09-09 13:03:32 -07001071 /* Initialize the caches that provide memory for the array cache
1072 * and the kmem_list3 structures first.
1073 * Without this, further allocations will bug
1074 */
1075
1076 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1077 sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN,
1078 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1079
1080 if (INDEX_AC != INDEX_L3)
1081 sizes[INDEX_L3].cs_cachep =
1082 kmem_cache_create(names[INDEX_L3].name,
1083 sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN,
1084 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1085
Linus Torvalds1da177e2005-04-16 15:20:36 -07001086 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001087 /*
1088 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001089 * This should be particularly beneficial on SMP boxes, as it
1090 * eliminates "false sharing".
1091 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001092 * allow tighter packing of the smaller caches.
1093 */
1094 if(!sizes->cs_cachep)
1095 sizes->cs_cachep = kmem_cache_create(names->name,
1096 sizes->cs_size, ARCH_KMALLOC_MINALIGN,
1097 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001098
1099 /* Inc off-slab bufctl limit until the ceiling is hit. */
1100 if (!(OFF_SLAB(sizes->cs_cachep))) {
1101 offslab_limit = sizes->cs_size-sizeof(struct slab);
1102 offslab_limit /= sizeof(kmem_bufctl_t);
1103 }
1104
1105 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1106 sizes->cs_size, ARCH_KMALLOC_MINALIGN,
1107 (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC),
1108 NULL, NULL);
1109
1110 sizes++;
1111 names++;
1112 }
1113 /* 4) Replace the bootstrap head arrays */
1114 {
1115 void * ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001116
Linus Torvalds1da177e2005-04-16 15:20:36 -07001117 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001118
Linus Torvalds1da177e2005-04-16 15:20:36 -07001119 local_irq_disable();
1120 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
Christoph Lametere498be72005-09-09 13:03:32 -07001121 memcpy(ptr, ac_data(&cache_cache),
1122 sizeof(struct arraycache_init));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001123 cache_cache.array[smp_processor_id()] = ptr;
1124 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001125
Linus Torvalds1da177e2005-04-16 15:20:36 -07001126 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001127
Linus Torvalds1da177e2005-04-16 15:20:36 -07001128 local_irq_disable();
Christoph Lametere498be72005-09-09 13:03:32 -07001129 BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
1130 != &initarray_generic.cache);
1131 memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
Linus Torvalds1da177e2005-04-16 15:20:36 -07001132 sizeof(struct arraycache_init));
Christoph Lametere498be72005-09-09 13:03:32 -07001133 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1134 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001135 local_irq_enable();
1136 }
Christoph Lametere498be72005-09-09 13:03:32 -07001137 /* 5) Replace the bootstrap kmem_list3's */
1138 {
1139 int node;
1140 /* Replace the static kmem_list3 structures for the boot cpu */
1141 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1142 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001143
Christoph Lametere498be72005-09-09 13:03:32 -07001144 for_each_online_node(node) {
1145 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1146 &initkmem_list3[SIZE_AC+node], node);
1147
1148 if (INDEX_AC != INDEX_L3) {
1149 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1150 &initkmem_list3[SIZE_L3+node],
1151 node);
1152 }
1153 }
1154 }
1155
1156 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001157 {
1158 kmem_cache_t *cachep;
1159 down(&cache_chain_sem);
1160 list_for_each_entry(cachep, &cache_chain, next)
1161 enable_cpucache(cachep);
1162 up(&cache_chain_sem);
1163 }
1164
1165 /* Done! */
1166 g_cpucache_up = FULL;
1167
1168 /* Register a cpu startup notifier callback
1169 * that initializes ac_data for all new cpus
1170 */
1171 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001172
1173 /* The reap timers are started later, with a module init call:
1174 * That part of the kernel is not yet operational.
1175 */
1176}
1177
1178static int __init cpucache_init(void)
1179{
1180 int cpu;
1181
1182 /*
1183 * Register the timers that return unneeded
1184 * pages to gfp.
1185 */
Christoph Lametere498be72005-09-09 13:03:32 -07001186 for_each_online_cpu(cpu)
1187 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001188
1189 return 0;
1190}
1191
1192__initcall(cpucache_init);
1193
1194/*
1195 * Interface to system's page allocator. No need to hold the cache-lock.
1196 *
1197 * If we requested dmaable memory, we will get it. Even if we
1198 * did not request dmaable memory, we might get it, but that
1199 * would be relatively rare and ignorable.
1200 */
Al Virodd0fc662005-10-07 07:46:04 +01001201static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001202{
1203 struct page *page;
1204 void *addr;
1205 int i;
1206
1207 flags |= cachep->gfpflags;
Christoph Lameter50c85a12005-11-13 16:06:47 -08001208 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001209 if (!page)
1210 return NULL;
1211 addr = page_address(page);
1212
1213 i = (1 << cachep->gfporder);
1214 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1215 atomic_add(i, &slab_reclaim_pages);
1216 add_page_state(nr_slab, i);
1217 while (i--) {
1218 SetPageSlab(page);
1219 page++;
1220 }
1221 return addr;
1222}
1223
1224/*
1225 * Interface to system's page release.
1226 */
1227static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1228{
1229 unsigned long i = (1<<cachep->gfporder);
1230 struct page *page = virt_to_page(addr);
1231 const unsigned long nr_freed = i;
1232
1233 while (i--) {
1234 if (!TestClearPageSlab(page))
1235 BUG();
1236 page++;
1237 }
1238 sub_page_state(nr_slab, nr_freed);
1239 if (current->reclaim_state)
1240 current->reclaim_state->reclaimed_slab += nr_freed;
1241 free_pages((unsigned long)addr, cachep->gfporder);
1242 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1243 atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
1244}
1245
1246static void kmem_rcu_free(struct rcu_head *head)
1247{
1248 struct slab_rcu *slab_rcu = (struct slab_rcu *) head;
1249 kmem_cache_t *cachep = slab_rcu->cachep;
1250
1251 kmem_freepages(cachep, slab_rcu->addr);
1252 if (OFF_SLAB(cachep))
1253 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1254}
1255
1256#if DEBUG
1257
1258#ifdef CONFIG_DEBUG_PAGEALLOC
1259static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
1260 unsigned long caller)
1261{
1262 int size = obj_reallen(cachep);
1263
1264 addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
1265
1266 if (size < 5*sizeof(unsigned long))
1267 return;
1268
1269 *addr++=0x12345678;
1270 *addr++=caller;
1271 *addr++=smp_processor_id();
1272 size -= 3*sizeof(unsigned long);
1273 {
1274 unsigned long *sptr = &caller;
1275 unsigned long svalue;
1276
1277 while (!kstack_end(sptr)) {
1278 svalue = *sptr++;
1279 if (kernel_text_address(svalue)) {
1280 *addr++=svalue;
1281 size -= sizeof(unsigned long);
1282 if (size <= sizeof(unsigned long))
1283 break;
1284 }
1285 }
1286
1287 }
1288 *addr++=0x87654321;
1289}
1290#endif
1291
1292static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1293{
1294 int size = obj_reallen(cachep);
1295 addr = &((char*)addr)[obj_dbghead(cachep)];
1296
1297 memset(addr, val, size);
1298 *(unsigned char *)(addr+size-1) = POISON_END;
1299}
1300
1301static void dump_line(char *data, int offset, int limit)
1302{
1303 int i;
1304 printk(KERN_ERR "%03x:", offset);
1305 for (i=0;i<limit;i++) {
1306 printk(" %02x", (unsigned char)data[offset+i]);
1307 }
1308 printk("\n");
1309}
1310#endif
1311
1312#if DEBUG
1313
1314static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1315{
1316 int i, size;
1317 char *realobj;
1318
1319 if (cachep->flags & SLAB_RED_ZONE) {
1320 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1321 *dbg_redzone1(cachep, objp),
1322 *dbg_redzone2(cachep, objp));
1323 }
1324
1325 if (cachep->flags & SLAB_STORE_USER) {
1326 printk(KERN_ERR "Last user: [<%p>]",
1327 *dbg_userword(cachep, objp));
1328 print_symbol("(%s)",
1329 (unsigned long)*dbg_userword(cachep, objp));
1330 printk("\n");
1331 }
1332 realobj = (char*)objp+obj_dbghead(cachep);
1333 size = obj_reallen(cachep);
1334 for (i=0; i<size && lines;i+=16, lines--) {
1335 int limit;
1336 limit = 16;
1337 if (i+limit > size)
1338 limit = size-i;
1339 dump_line(realobj, i, limit);
1340 }
1341}
1342
1343static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1344{
1345 char *realobj;
1346 int size, i;
1347 int lines = 0;
1348
1349 realobj = (char*)objp+obj_dbghead(cachep);
1350 size = obj_reallen(cachep);
1351
1352 for (i=0;i<size;i++) {
1353 char exp = POISON_FREE;
1354 if (i == size-1)
1355 exp = POISON_END;
1356 if (realobj[i] != exp) {
1357 int limit;
1358 /* Mismatch ! */
1359 /* Print header */
1360 if (lines == 0) {
1361 printk(KERN_ERR "Slab corruption: start=%p, len=%d\n",
1362 realobj, size);
1363 print_objinfo(cachep, objp, 0);
1364 }
1365 /* Hexdump the affected line */
1366 i = (i/16)*16;
1367 limit = 16;
1368 if (i+limit > size)
1369 limit = size-i;
1370 dump_line(realobj, i, limit);
1371 i += 16;
1372 lines++;
1373 /* Limit to 5 lines */
1374 if (lines > 5)
1375 break;
1376 }
1377 }
1378 if (lines != 0) {
1379 /* Print some data about the neighboring objects, if they
1380 * exist:
1381 */
Pekka Enberg065d41c2005-11-13 16:06:46 -08001382 struct slab *slabp = page_get_slab(virt_to_page(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001383 int objnr;
1384
1385 objnr = (objp-slabp->s_mem)/cachep->objsize;
1386 if (objnr) {
1387 objp = slabp->s_mem+(objnr-1)*cachep->objsize;
1388 realobj = (char*)objp+obj_dbghead(cachep);
1389 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1390 realobj, size);
1391 print_objinfo(cachep, objp, 2);
1392 }
1393 if (objnr+1 < cachep->num) {
1394 objp = slabp->s_mem+(objnr+1)*cachep->objsize;
1395 realobj = (char*)objp+obj_dbghead(cachep);
1396 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1397 realobj, size);
1398 print_objinfo(cachep, objp, 2);
1399 }
1400 }
1401}
1402#endif
1403
1404/* Destroy all the objs in a slab, and release the mem back to the system.
1405 * Before calling the slab must have been unlinked from the cache.
1406 * The cache-lock is not held/needed.
1407 */
1408static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
1409{
1410 void *addr = slabp->s_mem - slabp->colouroff;
1411
1412#if DEBUG
1413 int i;
1414 for (i = 0; i < cachep->num; i++) {
1415 void *objp = slabp->s_mem + cachep->objsize * i;
1416
1417 if (cachep->flags & SLAB_POISON) {
1418#ifdef CONFIG_DEBUG_PAGEALLOC
1419 if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
1420 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
1421 else
1422 check_poison_obj(cachep, objp);
1423#else
1424 check_poison_obj(cachep, objp);
1425#endif
1426 }
1427 if (cachep->flags & SLAB_RED_ZONE) {
1428 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1429 slab_error(cachep, "start of a freed object "
1430 "was overwritten");
1431 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1432 slab_error(cachep, "end of a freed object "
1433 "was overwritten");
1434 }
1435 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1436 (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
1437 }
1438#else
1439 if (cachep->dtor) {
1440 int i;
1441 for (i = 0; i < cachep->num; i++) {
1442 void* objp = slabp->s_mem+cachep->objsize*i;
1443 (cachep->dtor)(objp, cachep, 0);
1444 }
1445 }
1446#endif
1447
1448 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1449 struct slab_rcu *slab_rcu;
1450
1451 slab_rcu = (struct slab_rcu *) slabp;
1452 slab_rcu->cachep = cachep;
1453 slab_rcu->addr = addr;
1454 call_rcu(&slab_rcu->head, kmem_rcu_free);
1455 } else {
1456 kmem_freepages(cachep, addr);
1457 if (OFF_SLAB(cachep))
1458 kmem_cache_free(cachep->slabp_cache, slabp);
1459 }
1460}
1461
Christoph Lametere498be72005-09-09 13:03:32 -07001462/* For setting up all the kmem_list3s for cache whose objsize is same
1463 as size of kmem_list3. */
1464static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1465{
1466 int node;
1467
1468 for_each_online_node(node) {
1469 cachep->nodelists[node] = &initkmem_list3[index+node];
1470 cachep->nodelists[node]->next_reap = jiffies +
1471 REAPTIMEOUT_LIST3 +
1472 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1473 }
1474}
1475
Linus Torvalds1da177e2005-04-16 15:20:36 -07001476/**
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001477 * calculate_slab_order - calculate size (page order) of slabs and the number
1478 * of objects per slab.
1479 *
1480 * This could be made much more intelligent. For now, try to avoid using
1481 * high order pages for slabs. When the gfp() functions are more friendly
1482 * towards high-order requests, this should be changed.
1483 */
1484static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
1485 size_t align, gfp_t flags)
1486{
1487 size_t left_over = 0;
1488
1489 for ( ; ; cachep->gfporder++) {
1490 unsigned int num;
1491 size_t remainder;
1492
1493 if (cachep->gfporder > MAX_GFP_ORDER) {
1494 cachep->num = 0;
1495 break;
1496 }
1497
1498 cache_estimate(cachep->gfporder, size, align, flags,
1499 &remainder, &num);
1500 if (!num)
1501 continue;
1502 /* More than offslab_limit objects will cause problems */
1503 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
1504 break;
1505
1506 cachep->num = num;
1507 left_over = remainder;
1508
1509 /*
1510 * Large number of objects is good, but very large slabs are
1511 * currently bad for the gfp()s.
1512 */
1513 if (cachep->gfporder >= slab_break_gfp_order)
1514 break;
1515
1516 if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
1517 /* Acceptable internal fragmentation */
1518 break;
1519 }
1520 return left_over;
1521}
1522
1523/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001524 * kmem_cache_create - Create a cache.
1525 * @name: A string which is used in /proc/slabinfo to identify this cache.
1526 * @size: The size of objects to be created in this cache.
1527 * @align: The required alignment for the objects.
1528 * @flags: SLAB flags
1529 * @ctor: A constructor for the objects.
1530 * @dtor: A destructor for the objects.
1531 *
1532 * Returns a ptr to the cache on success, NULL on failure.
1533 * Cannot be called within a int, but can be interrupted.
1534 * The @ctor is run when new pages are allocated by the cache
1535 * and the @dtor is run before the pages are handed back.
1536 *
1537 * @name must be valid until the cache is destroyed. This implies that
1538 * the module calling this has to destroy the cache before getting
1539 * unloaded.
1540 *
1541 * The flags are
1542 *
1543 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1544 * to catch references to uninitialised memory.
1545 *
1546 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1547 * for buffer overruns.
1548 *
1549 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1550 * memory pressure.
1551 *
1552 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1553 * cacheline. This can be beneficial if you're counting cycles as closely
1554 * as davem.
1555 */
1556kmem_cache_t *
1557kmem_cache_create (const char *name, size_t size, size_t align,
1558 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1559 void (*dtor)(void*, kmem_cache_t *, unsigned long))
1560{
1561 size_t left_over, slab_size, ralign;
1562 kmem_cache_t *cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08001563 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001564
1565 /*
1566 * Sanity checks... these are all serious usage bugs.
1567 */
1568 if ((!name) ||
1569 in_interrupt() ||
1570 (size < BYTES_PER_WORD) ||
1571 (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
1572 (dtor && !ctor)) {
1573 printk(KERN_ERR "%s: Early error in slab %s\n",
1574 __FUNCTION__, name);
1575 BUG();
1576 }
1577
Andrew Morton4f12bb42005-11-07 00:58:00 -08001578 down(&cache_chain_sem);
1579
1580 list_for_each(p, &cache_chain) {
1581 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1582 mm_segment_t old_fs = get_fs();
1583 char tmp;
1584 int res;
1585
1586 /*
1587 * This happens when the module gets unloaded and doesn't
1588 * destroy its slab cache and no-one else reuses the vmalloc
1589 * area of the module. Print a warning.
1590 */
1591 set_fs(KERNEL_DS);
1592 res = __get_user(tmp, pc->name);
1593 set_fs(old_fs);
1594 if (res) {
1595 printk("SLAB: cache with size %d has lost its name\n",
1596 pc->objsize);
1597 continue;
1598 }
1599
1600 if (!strcmp(pc->name,name)) {
1601 printk("kmem_cache_create: duplicate cache %s\n", name);
1602 dump_stack();
1603 goto oops;
1604 }
1605 }
1606
Linus Torvalds1da177e2005-04-16 15:20:36 -07001607#if DEBUG
1608 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1609 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1610 /* No constructor, but inital state check requested */
1611 printk(KERN_ERR "%s: No con, but init state check "
1612 "requested - %s\n", __FUNCTION__, name);
1613 flags &= ~SLAB_DEBUG_INITIAL;
1614 }
1615
1616#if FORCED_DEBUG
1617 /*
1618 * Enable redzoning and last user accounting, except for caches with
1619 * large objects, if the increased size would increase the object size
1620 * above the next power of two: caches with object sizes just above a
1621 * power of two have a significant amount of internal fragmentation.
1622 */
1623 if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD)))
1624 flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
1625 if (!(flags & SLAB_DESTROY_BY_RCU))
1626 flags |= SLAB_POISON;
1627#endif
1628 if (flags & SLAB_DESTROY_BY_RCU)
1629 BUG_ON(flags & SLAB_POISON);
1630#endif
1631 if (flags & SLAB_DESTROY_BY_RCU)
1632 BUG_ON(dtor);
1633
1634 /*
1635 * Always checks flags, a caller might be expecting debug
1636 * support which isn't available.
1637 */
1638 if (flags & ~CREATE_MASK)
1639 BUG();
1640
1641 /* Check that size is in terms of words. This is needed to avoid
1642 * unaligned accesses for some archs when redzoning is used, and makes
1643 * sure any on-slab bufctl's are also correctly aligned.
1644 */
1645 if (size & (BYTES_PER_WORD-1)) {
1646 size += (BYTES_PER_WORD-1);
1647 size &= ~(BYTES_PER_WORD-1);
1648 }
1649
1650 /* calculate out the final buffer alignment: */
1651 /* 1) arch recommendation: can be overridden for debug */
1652 if (flags & SLAB_HWCACHE_ALIGN) {
1653 /* Default alignment: as specified by the arch code.
1654 * Except if an object is really small, then squeeze multiple
1655 * objects into one cacheline.
1656 */
1657 ralign = cache_line_size();
1658 while (size <= ralign/2)
1659 ralign /= 2;
1660 } else {
1661 ralign = BYTES_PER_WORD;
1662 }
1663 /* 2) arch mandated alignment: disables debug if necessary */
1664 if (ralign < ARCH_SLAB_MINALIGN) {
1665 ralign = ARCH_SLAB_MINALIGN;
1666 if (ralign > BYTES_PER_WORD)
1667 flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
1668 }
1669 /* 3) caller mandated alignment: disables debug if necessary */
1670 if (ralign < align) {
1671 ralign = align;
1672 if (ralign > BYTES_PER_WORD)
1673 flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
1674 }
1675 /* 4) Store it. Note that the debug code below can reduce
1676 * the alignment to BYTES_PER_WORD.
1677 */
1678 align = ralign;
1679
1680 /* Get cache's description obj. */
1681 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1682 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08001683 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001684 memset(cachep, 0, sizeof(kmem_cache_t));
1685
1686#if DEBUG
1687 cachep->reallen = size;
1688
1689 if (flags & SLAB_RED_ZONE) {
1690 /* redzoning only works with word aligned caches */
1691 align = BYTES_PER_WORD;
1692
1693 /* add space for red zone words */
1694 cachep->dbghead += BYTES_PER_WORD;
1695 size += 2*BYTES_PER_WORD;
1696 }
1697 if (flags & SLAB_STORE_USER) {
1698 /* user store requires word alignment and
1699 * one word storage behind the end of the real
1700 * object.
1701 */
1702 align = BYTES_PER_WORD;
1703 size += BYTES_PER_WORD;
1704 }
1705#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Christoph Lametere498be72005-09-09 13:03:32 -07001706 if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001707 cachep->dbghead += PAGE_SIZE - size;
1708 size = PAGE_SIZE;
1709 }
1710#endif
1711#endif
1712
1713 /* Determine if the slab management is 'on' or 'off' slab. */
1714 if (size >= (PAGE_SIZE>>3))
1715 /*
1716 * Size is large, assume best to place the slab management obj
1717 * off-slab (should allow better packing of objs).
1718 */
1719 flags |= CFLGS_OFF_SLAB;
1720
1721 size = ALIGN(size, align);
1722
1723 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1724 /*
1725 * A VFS-reclaimable slab tends to have most allocations
1726 * as GFP_NOFS and we really don't want to have to be allocating
1727 * higher-order pages when we are unable to shrink dcache.
1728 */
1729 cachep->gfporder = 0;
1730 cache_estimate(cachep->gfporder, size, align, flags,
1731 &left_over, &cachep->num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001732 } else
1733 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001734
1735 if (!cachep->num) {
1736 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1737 kmem_cache_free(&cache_cache, cachep);
1738 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08001739 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001740 }
1741 slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
1742 + sizeof(struct slab), align);
1743
1744 /*
1745 * If the slab has been placed off-slab, and we have enough space then
1746 * move it on-slab. This is at the expense of any extra colouring.
1747 */
1748 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1749 flags &= ~CFLGS_OFF_SLAB;
1750 left_over -= slab_size;
1751 }
1752
1753 if (flags & CFLGS_OFF_SLAB) {
1754 /* really off slab. No need for manual alignment */
1755 slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab);
1756 }
1757
1758 cachep->colour_off = cache_line_size();
1759 /* Offset must be a multiple of the alignment. */
1760 if (cachep->colour_off < align)
1761 cachep->colour_off = align;
1762 cachep->colour = left_over/cachep->colour_off;
1763 cachep->slab_size = slab_size;
1764 cachep->flags = flags;
1765 cachep->gfpflags = 0;
1766 if (flags & SLAB_CACHE_DMA)
1767 cachep->gfpflags |= GFP_DMA;
1768 spin_lock_init(&cachep->spinlock);
1769 cachep->objsize = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770
1771 if (flags & CFLGS_OFF_SLAB)
Victor Fuscob2d55072005-09-10 00:26:36 -07001772 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001773 cachep->ctor = ctor;
1774 cachep->dtor = dtor;
1775 cachep->name = name;
1776
1777 /* Don't let CPUs to come and go */
1778 lock_cpu_hotplug();
1779
1780 if (g_cpucache_up == FULL) {
1781 enable_cpucache(cachep);
1782 } else {
1783 if (g_cpucache_up == NONE) {
1784 /* Note: the first kmem_cache_create must create
1785 * the cache that's used by kmalloc(24), otherwise
1786 * the creation of further caches will BUG().
1787 */
Christoph Lametere498be72005-09-09 13:03:32 -07001788 cachep->array[smp_processor_id()] =
1789 &initarray_generic.cache;
1790
1791 /* If the cache that's used by
1792 * kmalloc(sizeof(kmem_list3)) is the first cache,
1793 * then we need to set up all its list3s, otherwise
1794 * the creation of further caches will BUG().
1795 */
1796 set_up_list3s(cachep, SIZE_AC);
1797 if (INDEX_AC == INDEX_L3)
1798 g_cpucache_up = PARTIAL_L3;
1799 else
1800 g_cpucache_up = PARTIAL_AC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001801 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07001802 cachep->array[smp_processor_id()] =
1803 kmalloc(sizeof(struct arraycache_init),
1804 GFP_KERNEL);
1805
1806 if (g_cpucache_up == PARTIAL_AC) {
1807 set_up_list3s(cachep, SIZE_L3);
1808 g_cpucache_up = PARTIAL_L3;
1809 } else {
1810 int node;
1811 for_each_online_node(node) {
1812
1813 cachep->nodelists[node] =
1814 kmalloc_node(sizeof(struct kmem_list3),
1815 GFP_KERNEL, node);
1816 BUG_ON(!cachep->nodelists[node]);
1817 kmem_list3_init(cachep->nodelists[node]);
1818 }
1819 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001820 }
Christoph Lametere498be72005-09-09 13:03:32 -07001821 cachep->nodelists[numa_node_id()]->next_reap =
1822 jiffies + REAPTIMEOUT_LIST3 +
1823 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1824
Linus Torvalds1da177e2005-04-16 15:20:36 -07001825 BUG_ON(!ac_data(cachep));
1826 ac_data(cachep)->avail = 0;
1827 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1828 ac_data(cachep)->batchcount = 1;
1829 ac_data(cachep)->touched = 0;
1830 cachep->batchcount = 1;
1831 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001832 }
1833
Linus Torvalds1da177e2005-04-16 15:20:36 -07001834 /* cache setup completed, link it into the list */
1835 list_add(&cachep->next, &cache_chain);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001836 unlock_cpu_hotplug();
Andrew Morton4f12bb42005-11-07 00:58:00 -08001837oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001838 if (!cachep && (flags & SLAB_PANIC))
1839 panic("kmem_cache_create(): failed to create slab `%s'\n",
1840 name);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001841 up(&cache_chain_sem);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001842 return cachep;
1843}
1844EXPORT_SYMBOL(kmem_cache_create);
1845
1846#if DEBUG
1847static void check_irq_off(void)
1848{
1849 BUG_ON(!irqs_disabled());
1850}
1851
1852static void check_irq_on(void)
1853{
1854 BUG_ON(irqs_disabled());
1855}
1856
1857static void check_spinlock_acquired(kmem_cache_t *cachep)
1858{
1859#ifdef CONFIG_SMP
1860 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07001861 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001862#endif
1863}
Christoph Lametere498be72005-09-09 13:03:32 -07001864
1865static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1866{
1867#ifdef CONFIG_SMP
1868 check_irq_off();
1869 assert_spin_locked(&cachep->nodelists[node]->list_lock);
1870#endif
1871}
1872
Linus Torvalds1da177e2005-04-16 15:20:36 -07001873#else
1874#define check_irq_off() do { } while(0)
1875#define check_irq_on() do { } while(0)
1876#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07001877#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001878#endif
1879
1880/*
1881 * Waits for all CPUs to execute func().
1882 */
1883static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
1884{
1885 check_irq_on();
1886 preempt_disable();
1887
1888 local_irq_disable();
1889 func(arg);
1890 local_irq_enable();
1891
1892 if (smp_call_function(func, arg, 1, 1))
1893 BUG();
1894
1895 preempt_enable();
1896}
1897
1898static void drain_array_locked(kmem_cache_t* cachep,
Christoph Lametere498be72005-09-09 13:03:32 -07001899 struct array_cache *ac, int force, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001900
1901static void do_drain(void *arg)
1902{
1903 kmem_cache_t *cachep = (kmem_cache_t*)arg;
1904 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07001905 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001906
1907 check_irq_off();
1908 ac = ac_data(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07001909 spin_lock(&cachep->nodelists[node]->list_lock);
1910 free_block(cachep, ac->entry, ac->avail, node);
1911 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001912 ac->avail = 0;
1913}
1914
1915static void drain_cpu_caches(kmem_cache_t *cachep)
1916{
Christoph Lametere498be72005-09-09 13:03:32 -07001917 struct kmem_list3 *l3;
1918 int node;
1919
Linus Torvalds1da177e2005-04-16 15:20:36 -07001920 smp_call_function_all_cpus(do_drain, cachep);
1921 check_irq_on();
1922 spin_lock_irq(&cachep->spinlock);
Christoph Lametere498be72005-09-09 13:03:32 -07001923 for_each_online_node(node) {
1924 l3 = cachep->nodelists[node];
1925 if (l3) {
1926 spin_lock(&l3->list_lock);
1927 drain_array_locked(cachep, l3->shared, 1, node);
1928 spin_unlock(&l3->list_lock);
1929 if (l3->alien)
1930 drain_alien_cache(cachep, l3);
1931 }
1932 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001933 spin_unlock_irq(&cachep->spinlock);
1934}
1935
Christoph Lametere498be72005-09-09 13:03:32 -07001936static int __node_shrink(kmem_cache_t *cachep, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001937{
1938 struct slab *slabp;
Christoph Lametere498be72005-09-09 13:03:32 -07001939 struct kmem_list3 *l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001940 int ret;
1941
Christoph Lametere498be72005-09-09 13:03:32 -07001942 for (;;) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001943 struct list_head *p;
1944
Christoph Lametere498be72005-09-09 13:03:32 -07001945 p = l3->slabs_free.prev;
1946 if (p == &l3->slabs_free)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001947 break;
1948
Christoph Lametere498be72005-09-09 13:03:32 -07001949 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001950#if DEBUG
1951 if (slabp->inuse)
1952 BUG();
1953#endif
1954 list_del(&slabp->list);
1955
Christoph Lametere498be72005-09-09 13:03:32 -07001956 l3->free_objects -= cachep->num;
1957 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001958 slab_destroy(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07001959 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001960 }
Christoph Lametere498be72005-09-09 13:03:32 -07001961 ret = !list_empty(&l3->slabs_full) ||
1962 !list_empty(&l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001963 return ret;
1964}
1965
Christoph Lametere498be72005-09-09 13:03:32 -07001966static int __cache_shrink(kmem_cache_t *cachep)
1967{
1968 int ret = 0, i = 0;
1969 struct kmem_list3 *l3;
1970
1971 drain_cpu_caches(cachep);
1972
1973 check_irq_on();
1974 for_each_online_node(i) {
1975 l3 = cachep->nodelists[i];
1976 if (l3) {
1977 spin_lock_irq(&l3->list_lock);
1978 ret += __node_shrink(cachep, i);
1979 spin_unlock_irq(&l3->list_lock);
1980 }
1981 }
1982 return (ret ? 1 : 0);
1983}
1984
Linus Torvalds1da177e2005-04-16 15:20:36 -07001985/**
1986 * kmem_cache_shrink - Shrink a cache.
1987 * @cachep: The cache to shrink.
1988 *
1989 * Releases as many slabs as possible for a cache.
1990 * To help debugging, a zero exit status indicates all slabs were released.
1991 */
1992int kmem_cache_shrink(kmem_cache_t *cachep)
1993{
1994 if (!cachep || in_interrupt())
1995 BUG();
1996
1997 return __cache_shrink(cachep);
1998}
1999EXPORT_SYMBOL(kmem_cache_shrink);
2000
2001/**
2002 * kmem_cache_destroy - delete a cache
2003 * @cachep: the cache to destroy
2004 *
2005 * Remove a kmem_cache_t object from the slab cache.
2006 * Returns 0 on success.
2007 *
2008 * It is expected this function will be called by a module when it is
2009 * unloaded. This will remove the cache completely, and avoid a duplicate
2010 * cache being allocated each time a module is loaded and unloaded, if the
2011 * module doesn't have persistent in-kernel storage across loads and unloads.
2012 *
2013 * The cache must be empty before calling this function.
2014 *
2015 * The caller must guarantee that noone will allocate memory from the cache
2016 * during the kmem_cache_destroy().
2017 */
2018int kmem_cache_destroy(kmem_cache_t * cachep)
2019{
2020 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002021 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002022
2023 if (!cachep || in_interrupt())
2024 BUG();
2025
2026 /* Don't let CPUs to come and go */
2027 lock_cpu_hotplug();
2028
2029 /* Find the cache in the chain of caches. */
2030 down(&cache_chain_sem);
2031 /*
2032 * the chain is never empty, cache_cache is never destroyed
2033 */
2034 list_del(&cachep->next);
2035 up(&cache_chain_sem);
2036
2037 if (__cache_shrink(cachep)) {
2038 slab_error(cachep, "Can't free all objects");
2039 down(&cache_chain_sem);
2040 list_add(&cachep->next,&cache_chain);
2041 up(&cache_chain_sem);
2042 unlock_cpu_hotplug();
2043 return 1;
2044 }
2045
2046 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002047 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002048
Christoph Lametere498be72005-09-09 13:03:32 -07002049 for_each_online_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002050 kfree(cachep->array[i]);
2051
2052 /* NUMA: free the list3 structures */
Christoph Lametere498be72005-09-09 13:03:32 -07002053 for_each_online_node(i) {
2054 if ((l3 = cachep->nodelists[i])) {
2055 kfree(l3->shared);
2056 free_alien_cache(l3->alien);
2057 kfree(l3);
2058 }
2059 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002060 kmem_cache_free(&cache_cache, cachep);
2061
2062 unlock_cpu_hotplug();
2063
2064 return 0;
2065}
2066EXPORT_SYMBOL(kmem_cache_destroy);
2067
2068/* Get the memory for a slab management obj. */
Christoph Lametere498be72005-09-09 13:03:32 -07002069static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
Al Virodd0fc662005-10-07 07:46:04 +01002070 int colour_off, gfp_t local_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002071{
2072 struct slab *slabp;
2073
2074 if (OFF_SLAB(cachep)) {
2075 /* Slab management obj is off-slab. */
2076 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2077 if (!slabp)
2078 return NULL;
2079 } else {
2080 slabp = objp+colour_off;
2081 colour_off += cachep->slab_size;
2082 }
2083 slabp->inuse = 0;
2084 slabp->colouroff = colour_off;
2085 slabp->s_mem = objp+colour_off;
2086
2087 return slabp;
2088}
2089
2090static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2091{
2092 return (kmem_bufctl_t *)(slabp+1);
2093}
2094
2095static void cache_init_objs(kmem_cache_t *cachep,
2096 struct slab *slabp, unsigned long ctor_flags)
2097{
2098 int i;
2099
2100 for (i = 0; i < cachep->num; i++) {
Christoph Lametere498be72005-09-09 13:03:32 -07002101 void *objp = slabp->s_mem+cachep->objsize*i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002102#if DEBUG
2103 /* need to poison the objs? */
2104 if (cachep->flags & SLAB_POISON)
2105 poison_obj(cachep, objp, POISON_FREE);
2106 if (cachep->flags & SLAB_STORE_USER)
2107 *dbg_userword(cachep, objp) = NULL;
2108
2109 if (cachep->flags & SLAB_RED_ZONE) {
2110 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2111 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2112 }
2113 /*
2114 * Constructors are not allowed to allocate memory from
2115 * the same cache which they are a constructor for.
2116 * Otherwise, deadlock. They must also be threaded.
2117 */
2118 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2119 cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
2120
2121 if (cachep->flags & SLAB_RED_ZONE) {
2122 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2123 slab_error(cachep, "constructor overwrote the"
2124 " end of an object");
2125 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2126 slab_error(cachep, "constructor overwrote the"
2127 " start of an object");
2128 }
2129 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2130 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
2131#else
2132 if (cachep->ctor)
2133 cachep->ctor(objp, cachep, ctor_flags);
2134#endif
2135 slab_bufctl(slabp)[i] = i+1;
2136 }
2137 slab_bufctl(slabp)[i-1] = BUFCTL_END;
2138 slabp->free = 0;
2139}
2140
Al Viro6daa0e22005-10-21 03:18:50 -04002141static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002142{
2143 if (flags & SLAB_DMA) {
2144 if (!(cachep->gfpflags & GFP_DMA))
2145 BUG();
2146 } else {
2147 if (cachep->gfpflags & GFP_DMA)
2148 BUG();
2149 }
2150}
2151
2152static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2153{
2154 int i;
2155 struct page *page;
2156
2157 /* Nasty!!!!!! I hope this is OK. */
2158 i = 1 << cachep->gfporder;
2159 page = virt_to_page(objp);
2160 do {
Pekka Enberg065d41c2005-11-13 16:06:46 -08002161 page_set_cache(page, cachep);
2162 page_set_slab(page, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002163 page++;
2164 } while (--i);
2165}
2166
2167/*
2168 * Grow (by 1) the number of slabs within a cache. This is called by
2169 * kmem_cache_alloc() when there are no active objs left in a cache.
2170 */
Al Virodd0fc662005-10-07 07:46:04 +01002171static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002172{
2173 struct slab *slabp;
2174 void *objp;
2175 size_t offset;
Al Viro6daa0e22005-10-21 03:18:50 -04002176 gfp_t local_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002177 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002178 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002179
2180 /* Be lazy and only check for valid flags here,
2181 * keeping it out of the critical path in kmem_cache_alloc().
2182 */
2183 if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
2184 BUG();
2185 if (flags & SLAB_NO_GROW)
2186 return 0;
2187
2188 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2189 local_flags = (flags & SLAB_LEVEL_MASK);
2190 if (!(local_flags & __GFP_WAIT))
2191 /*
2192 * Not allowed to sleep. Need to tell a constructor about
2193 * this - it might need to know...
2194 */
2195 ctor_flags |= SLAB_CTOR_ATOMIC;
2196
2197 /* About to mess with non-constant members - lock. */
2198 check_irq_off();
2199 spin_lock(&cachep->spinlock);
2200
2201 /* Get colour for the slab, and cal the next value. */
2202 offset = cachep->colour_next;
2203 cachep->colour_next++;
2204 if (cachep->colour_next >= cachep->colour)
2205 cachep->colour_next = 0;
2206 offset *= cachep->colour_off;
2207
2208 spin_unlock(&cachep->spinlock);
2209
Christoph Lametere498be72005-09-09 13:03:32 -07002210 check_irq_off();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002211 if (local_flags & __GFP_WAIT)
2212 local_irq_enable();
2213
2214 /*
2215 * The test for missing atomic flag is performed here, rather than
2216 * the more obvious place, simply to reduce the critical path length
2217 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2218 * will eventually be caught here (where it matters).
2219 */
2220 kmem_flagcheck(cachep, flags);
2221
Christoph Lametere498be72005-09-09 13:03:32 -07002222 /* Get mem for the objs.
2223 * Attempt to allocate a physical page from 'nodeid',
2224 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002225 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2226 goto failed;
2227
2228 /* Get slab management. */
2229 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2230 goto opps1;
2231
Christoph Lametere498be72005-09-09 13:03:32 -07002232 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002233 set_slab_attr(cachep, slabp, objp);
2234
2235 cache_init_objs(cachep, slabp, ctor_flags);
2236
2237 if (local_flags & __GFP_WAIT)
2238 local_irq_disable();
2239 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002240 l3 = cachep->nodelists[nodeid];
2241 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002242
2243 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002244 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002245 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002246 l3->free_objects += cachep->num;
2247 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002248 return 1;
2249opps1:
2250 kmem_freepages(cachep, objp);
2251failed:
2252 if (local_flags & __GFP_WAIT)
2253 local_irq_disable();
2254 return 0;
2255}
2256
2257#if DEBUG
2258
2259/*
2260 * Perform extra freeing checks:
2261 * - detect bad pointers.
2262 * - POISON/RED_ZONE checking
2263 * - destructor calls, for caches with POISON+dtor
2264 */
2265static void kfree_debugcheck(const void *objp)
2266{
2267 struct page *page;
2268
2269 if (!virt_addr_valid(objp)) {
2270 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2271 (unsigned long)objp);
2272 BUG();
2273 }
2274 page = virt_to_page(objp);
2275 if (!PageSlab(page)) {
2276 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
2277 BUG();
2278 }
2279}
2280
2281static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
2282 void *caller)
2283{
2284 struct page *page;
2285 unsigned int objnr;
2286 struct slab *slabp;
2287
2288 objp -= obj_dbghead(cachep);
2289 kfree_debugcheck(objp);
2290 page = virt_to_page(objp);
2291
Pekka Enberg065d41c2005-11-13 16:06:46 -08002292 if (page_get_cache(page) != cachep) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002293 printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
Pekka Enberg065d41c2005-11-13 16:06:46 -08002294 page_get_cache(page),cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002295 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
Pekka Enberg065d41c2005-11-13 16:06:46 -08002296 printk(KERN_ERR "%p is %s.\n", page_get_cache(page), page_get_cache(page)->name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002297 WARN_ON(1);
2298 }
Pekka Enberg065d41c2005-11-13 16:06:46 -08002299 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002300
2301 if (cachep->flags & SLAB_RED_ZONE) {
2302 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2303 slab_error(cachep, "double free, or memory outside"
2304 " object was overwritten");
2305 printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2306 objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
2307 }
2308 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2309 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2310 }
2311 if (cachep->flags & SLAB_STORE_USER)
2312 *dbg_userword(cachep, objp) = caller;
2313
2314 objnr = (objp-slabp->s_mem)/cachep->objsize;
2315
2316 BUG_ON(objnr >= cachep->num);
2317 BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
2318
2319 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2320 /* Need to call the slab's constructor so the
2321 * caller can perform a verify of its state (debugging).
2322 * Called without the cache-lock held.
2323 */
2324 cachep->ctor(objp+obj_dbghead(cachep),
2325 cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
2326 }
2327 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2328 /* we want to cache poison the object,
2329 * call the destruction callback
2330 */
2331 cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
2332 }
2333 if (cachep->flags & SLAB_POISON) {
2334#ifdef CONFIG_DEBUG_PAGEALLOC
2335 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2336 store_stackinfo(cachep, objp, (unsigned long)caller);
2337 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
2338 } else {
2339 poison_obj(cachep, objp, POISON_FREE);
2340 }
2341#else
2342 poison_obj(cachep, objp, POISON_FREE);
2343#endif
2344 }
2345 return objp;
2346}
2347
2348static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2349{
2350 kmem_bufctl_t i;
2351 int entries = 0;
2352
Linus Torvalds1da177e2005-04-16 15:20:36 -07002353 /* Check slab's freelist to see if this obj is there. */
2354 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2355 entries++;
2356 if (entries > cachep->num || i >= cachep->num)
2357 goto bad;
2358 }
2359 if (entries != cachep->num - slabp->inuse) {
2360bad:
2361 printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2362 cachep->name, cachep->num, slabp, slabp->inuse);
2363 for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
2364 if ((i%16)==0)
2365 printk("\n%03x:", i);
2366 printk(" %02x", ((unsigned char*)slabp)[i]);
2367 }
2368 printk("\n");
2369 BUG();
2370 }
2371}
2372#else
2373#define kfree_debugcheck(x) do { } while(0)
2374#define cache_free_debugcheck(x,objp,z) (objp)
2375#define check_slabp(x,y) do { } while(0)
2376#endif
2377
Al Virodd0fc662005-10-07 07:46:04 +01002378static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002379{
2380 int batchcount;
2381 struct kmem_list3 *l3;
2382 struct array_cache *ac;
2383
2384 check_irq_off();
2385 ac = ac_data(cachep);
2386retry:
2387 batchcount = ac->batchcount;
2388 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2389 /* if there was little recent activity on this
2390 * cache, then perform only a partial refill.
2391 * Otherwise we could generate refill bouncing.
2392 */
2393 batchcount = BATCHREFILL_LIMIT;
2394 }
Christoph Lametere498be72005-09-09 13:03:32 -07002395 l3 = cachep->nodelists[numa_node_id()];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002396
Christoph Lametere498be72005-09-09 13:03:32 -07002397 BUG_ON(ac->avail > 0 || !l3);
2398 spin_lock(&l3->list_lock);
2399
Linus Torvalds1da177e2005-04-16 15:20:36 -07002400 if (l3->shared) {
2401 struct array_cache *shared_array = l3->shared;
2402 if (shared_array->avail) {
2403 if (batchcount > shared_array->avail)
2404 batchcount = shared_array->avail;
2405 shared_array->avail -= batchcount;
2406 ac->avail = batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002407 memcpy(ac->entry,
2408 &(shared_array->entry[shared_array->avail]),
2409 sizeof(void*)*batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002410 shared_array->touched = 1;
2411 goto alloc_done;
2412 }
2413 }
2414 while (batchcount > 0) {
2415 struct list_head *entry;
2416 struct slab *slabp;
2417 /* Get slab alloc is to come from. */
2418 entry = l3->slabs_partial.next;
2419 if (entry == &l3->slabs_partial) {
2420 l3->free_touched = 1;
2421 entry = l3->slabs_free.next;
2422 if (entry == &l3->slabs_free)
2423 goto must_grow;
2424 }
2425
2426 slabp = list_entry(entry, struct slab, list);
2427 check_slabp(cachep, slabp);
2428 check_spinlock_acquired(cachep);
2429 while (slabp->inuse < cachep->num && batchcount--) {
2430 kmem_bufctl_t next;
2431 STATS_INC_ALLOCED(cachep);
2432 STATS_INC_ACTIVE(cachep);
2433 STATS_SET_HIGH(cachep);
2434
2435 /* get obj pointer */
Christoph Lametere498be72005-09-09 13:03:32 -07002436 ac->entry[ac->avail++] = slabp->s_mem +
2437 slabp->free*cachep->objsize;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002438
2439 slabp->inuse++;
2440 next = slab_bufctl(slabp)[slabp->free];
2441#if DEBUG
2442 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
Christoph Lameter09ad4bb2005-10-29 18:15:52 -07002443 WARN_ON(numa_node_id() != slabp->nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002444#endif
2445 slabp->free = next;
2446 }
2447 check_slabp(cachep, slabp);
2448
2449 /* move slabp to correct slabp list: */
2450 list_del(&slabp->list);
2451 if (slabp->free == BUFCTL_END)
2452 list_add(&slabp->list, &l3->slabs_full);
2453 else
2454 list_add(&slabp->list, &l3->slabs_partial);
2455 }
2456
2457must_grow:
2458 l3->free_objects -= ac->avail;
2459alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07002460 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002461
2462 if (unlikely(!ac->avail)) {
2463 int x;
Christoph Lametere498be72005-09-09 13:03:32 -07002464 x = cache_grow(cachep, flags, numa_node_id());
2465
Linus Torvalds1da177e2005-04-16 15:20:36 -07002466 // cache_grow can reenable interrupts, then ac could change.
2467 ac = ac_data(cachep);
2468 if (!x && ac->avail == 0) // no objects in sight? abort
2469 return NULL;
2470
2471 if (!ac->avail) // objects refilled by interrupt?
2472 goto retry;
2473 }
2474 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002475 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002476}
2477
2478static inline void
Al Virodd0fc662005-10-07 07:46:04 +01002479cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002480{
2481 might_sleep_if(flags & __GFP_WAIT);
2482#if DEBUG
2483 kmem_flagcheck(cachep, flags);
2484#endif
2485}
2486
2487#if DEBUG
2488static void *
2489cache_alloc_debugcheck_after(kmem_cache_t *cachep,
Al Virodd0fc662005-10-07 07:46:04 +01002490 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002491{
2492 if (!objp)
2493 return objp;
2494 if (cachep->flags & SLAB_POISON) {
2495#ifdef CONFIG_DEBUG_PAGEALLOC
2496 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2497 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
2498 else
2499 check_poison_obj(cachep, objp);
2500#else
2501 check_poison_obj(cachep, objp);
2502#endif
2503 poison_obj(cachep, objp, POISON_INUSE);
2504 }
2505 if (cachep->flags & SLAB_STORE_USER)
2506 *dbg_userword(cachep, objp) = caller;
2507
2508 if (cachep->flags & SLAB_RED_ZONE) {
2509 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2510 slab_error(cachep, "double free, or memory outside"
2511 " object was overwritten");
2512 printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2513 objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
2514 }
2515 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2516 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2517 }
2518 objp += obj_dbghead(cachep);
2519 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2520 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2521
2522 if (!(flags & __GFP_WAIT))
2523 ctor_flags |= SLAB_CTOR_ATOMIC;
2524
2525 cachep->ctor(objp, cachep, ctor_flags);
2526 }
2527 return objp;
2528}
2529#else
2530#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2531#endif
2532
Al Virodd0fc662005-10-07 07:46:04 +01002533static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002534{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002535 void* objp;
2536 struct array_cache *ac;
2537
Alok N Kataria5c382302005-09-27 21:45:46 -07002538 check_irq_off();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002539 ac = ac_data(cachep);
2540 if (likely(ac->avail)) {
2541 STATS_INC_ALLOCHIT(cachep);
2542 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002543 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002544 } else {
2545 STATS_INC_ALLOCMISS(cachep);
2546 objp = cache_alloc_refill(cachep, flags);
2547 }
Alok N Kataria5c382302005-09-27 21:45:46 -07002548 return objp;
2549}
2550
Al Virodd0fc662005-10-07 07:46:04 +01002551static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
Alok N Kataria5c382302005-09-27 21:45:46 -07002552{
2553 unsigned long save_flags;
2554 void* objp;
2555
2556 cache_alloc_debugcheck_before(cachep, flags);
2557
2558 local_irq_save(save_flags);
2559 objp = ____cache_alloc(cachep, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002560 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07002561 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2562 __builtin_return_address(0));
2563 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002564 return objp;
2565}
2566
Christoph Lametere498be72005-09-09 13:03:32 -07002567#ifdef CONFIG_NUMA
2568/*
2569 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002570 */
Al Viro6daa0e22005-10-21 03:18:50 -04002571static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07002572{
2573 struct list_head *entry;
2574 struct slab *slabp;
2575 struct kmem_list3 *l3;
2576 void *obj;
2577 kmem_bufctl_t next;
2578 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002579
Christoph Lametere498be72005-09-09 13:03:32 -07002580 l3 = cachep->nodelists[nodeid];
2581 BUG_ON(!l3);
2582
2583retry:
2584 spin_lock(&l3->list_lock);
2585 entry = l3->slabs_partial.next;
2586 if (entry == &l3->slabs_partial) {
2587 l3->free_touched = 1;
2588 entry = l3->slabs_free.next;
2589 if (entry == &l3->slabs_free)
2590 goto must_grow;
2591 }
2592
2593 slabp = list_entry(entry, struct slab, list);
2594 check_spinlock_acquired_node(cachep, nodeid);
2595 check_slabp(cachep, slabp);
2596
2597 STATS_INC_NODEALLOCS(cachep);
2598 STATS_INC_ACTIVE(cachep);
2599 STATS_SET_HIGH(cachep);
2600
2601 BUG_ON(slabp->inuse == cachep->num);
2602
2603 /* get obj pointer */
2604 obj = slabp->s_mem + slabp->free*cachep->objsize;
2605 slabp->inuse++;
2606 next = slab_bufctl(slabp)[slabp->free];
2607#if DEBUG
2608 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2609#endif
2610 slabp->free = next;
2611 check_slabp(cachep, slabp);
2612 l3->free_objects--;
2613 /* move slabp to correct slabp list: */
2614 list_del(&slabp->list);
2615
2616 if (slabp->free == BUFCTL_END) {
2617 list_add(&slabp->list, &l3->slabs_full);
2618 } else {
2619 list_add(&slabp->list, &l3->slabs_partial);
2620 }
2621
2622 spin_unlock(&l3->list_lock);
2623 goto done;
2624
2625must_grow:
2626 spin_unlock(&l3->list_lock);
2627 x = cache_grow(cachep, flags, nodeid);
2628
2629 if (!x)
2630 return NULL;
2631
2632 goto retry;
2633done:
2634 return obj;
2635}
2636#endif
2637
2638/*
2639 * Caller needs to acquire correct kmem_list's list_lock
2640 */
Christoph Lameterff694162005-09-22 21:44:02 -07002641static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002642{
2643 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002644 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002645
2646 for (i = 0; i < nr_objects; i++) {
2647 void *objp = objpp[i];
2648 struct slab *slabp;
2649 unsigned int objnr;
2650
Pekka Enberg065d41c2005-11-13 16:06:46 -08002651 slabp = page_get_slab(virt_to_page(objp));
Christoph Lameterff694162005-09-22 21:44:02 -07002652 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002653 list_del(&slabp->list);
2654 objnr = (objp - slabp->s_mem) / cachep->objsize;
Christoph Lameterff694162005-09-22 21:44:02 -07002655 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002656 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002657
Linus Torvalds1da177e2005-04-16 15:20:36 -07002658#if DEBUG
Christoph Lameter09ad4bb2005-10-29 18:15:52 -07002659 /* Verify that the slab belongs to the intended node */
2660 WARN_ON(slabp->nodeid != node);
2661
Linus Torvalds1da177e2005-04-16 15:20:36 -07002662 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
Christoph Lametere498be72005-09-09 13:03:32 -07002663 printk(KERN_ERR "slab: double free detected in cache "
2664 "'%s', objp %p\n", cachep->name, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002665 BUG();
2666 }
2667#endif
2668 slab_bufctl(slabp)[objnr] = slabp->free;
2669 slabp->free = objnr;
2670 STATS_DEC_ACTIVE(cachep);
2671 slabp->inuse--;
Christoph Lametere498be72005-09-09 13:03:32 -07002672 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002673 check_slabp(cachep, slabp);
2674
2675 /* fixup slab chains */
2676 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07002677 if (l3->free_objects > l3->free_limit) {
2678 l3->free_objects -= cachep->num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002679 slab_destroy(cachep, slabp);
2680 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07002681 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002682 }
2683 } else {
2684 /* Unconditionally move a slab to the end of the
2685 * partial list on free - maximum time for the
2686 * other objects to be freed, too.
2687 */
Christoph Lametere498be72005-09-09 13:03:32 -07002688 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002689 }
2690 }
2691}
2692
2693static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2694{
2695 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002696 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07002697 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002698
2699 batchcount = ac->batchcount;
2700#if DEBUG
2701 BUG_ON(!batchcount || batchcount > ac->avail);
2702#endif
2703 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07002704 l3 = cachep->nodelists[node];
Christoph Lametere498be72005-09-09 13:03:32 -07002705 spin_lock(&l3->list_lock);
2706 if (l3->shared) {
2707 struct array_cache *shared_array = l3->shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002708 int max = shared_array->limit-shared_array->avail;
2709 if (max) {
2710 if (batchcount > max)
2711 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07002712 memcpy(&(shared_array->entry[shared_array->avail]),
2713 ac->entry,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002714 sizeof(void*)*batchcount);
2715 shared_array->avail += batchcount;
2716 goto free_done;
2717 }
2718 }
2719
Christoph Lameterff694162005-09-22 21:44:02 -07002720 free_block(cachep, ac->entry, batchcount, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002721free_done:
2722#if STATS
2723 {
2724 int i = 0;
2725 struct list_head *p;
2726
Christoph Lametere498be72005-09-09 13:03:32 -07002727 p = l3->slabs_free.next;
2728 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729 struct slab *slabp;
2730
2731 slabp = list_entry(p, struct slab, list);
2732 BUG_ON(slabp->inuse);
2733
2734 i++;
2735 p = p->next;
2736 }
2737 STATS_SET_FREEABLE(cachep, i);
2738 }
2739#endif
Christoph Lametere498be72005-09-09 13:03:32 -07002740 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002741 ac->avail -= batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002742 memmove(ac->entry, &(ac->entry[batchcount]),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002743 sizeof(void*)*ac->avail);
2744}
2745
Christoph Lametere498be72005-09-09 13:03:32 -07002746
Linus Torvalds1da177e2005-04-16 15:20:36 -07002747/*
2748 * __cache_free
2749 * Release an obj back to its cache. If the obj has a constructed
2750 * state, it must be in this state _before_ it is released.
2751 *
2752 * Called with disabled ints.
2753 */
2754static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2755{
2756 struct array_cache *ac = ac_data(cachep);
2757
2758 check_irq_off();
2759 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2760
Christoph Lametere498be72005-09-09 13:03:32 -07002761 /* Make sure we are not freeing a object from another
2762 * node to the array cache on this cpu.
2763 */
2764#ifdef CONFIG_NUMA
2765 {
2766 struct slab *slabp;
Pekka Enberg065d41c2005-11-13 16:06:46 -08002767 slabp = page_get_slab(virt_to_page(objp));
Christoph Lametere498be72005-09-09 13:03:32 -07002768 if (unlikely(slabp->nodeid != numa_node_id())) {
2769 struct array_cache *alien = NULL;
2770 int nodeid = slabp->nodeid;
2771 struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()];
2772
2773 STATS_INC_NODEFREES(cachep);
2774 if (l3->alien && l3->alien[nodeid]) {
2775 alien = l3->alien[nodeid];
2776 spin_lock(&alien->lock);
2777 if (unlikely(alien->avail == alien->limit))
2778 __drain_alien_cache(cachep,
2779 alien, nodeid);
2780 alien->entry[alien->avail++] = objp;
2781 spin_unlock(&alien->lock);
2782 } else {
2783 spin_lock(&(cachep->nodelists[nodeid])->
2784 list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07002785 free_block(cachep, &objp, 1, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002786 spin_unlock(&(cachep->nodelists[nodeid])->
2787 list_lock);
2788 }
2789 return;
2790 }
2791 }
2792#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002793 if (likely(ac->avail < ac->limit)) {
2794 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002795 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002796 return;
2797 } else {
2798 STATS_INC_FREEMISS(cachep);
2799 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07002800 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002801 }
2802}
2803
2804/**
2805 * kmem_cache_alloc - Allocate an object
2806 * @cachep: The cache to allocate from.
2807 * @flags: See kmalloc().
2808 *
2809 * Allocate an object from this cache. The flags are only relevant
2810 * if the cache has no available objects.
2811 */
Al Virodd0fc662005-10-07 07:46:04 +01002812void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002813{
2814 return __cache_alloc(cachep, flags);
2815}
2816EXPORT_SYMBOL(kmem_cache_alloc);
2817
2818/**
2819 * kmem_ptr_validate - check if an untrusted pointer might
2820 * be a slab entry.
2821 * @cachep: the cache we're checking against
2822 * @ptr: pointer to validate
2823 *
2824 * This verifies that the untrusted pointer looks sane:
2825 * it is _not_ a guarantee that the pointer is actually
2826 * part of the slab cache in question, but it at least
2827 * validates that the pointer can be dereferenced and
2828 * looks half-way sane.
2829 *
2830 * Currently only used for dentry validation.
2831 */
2832int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2833{
2834 unsigned long addr = (unsigned long) ptr;
2835 unsigned long min_addr = PAGE_OFFSET;
2836 unsigned long align_mask = BYTES_PER_WORD-1;
2837 unsigned long size = cachep->objsize;
2838 struct page *page;
2839
2840 if (unlikely(addr < min_addr))
2841 goto out;
2842 if (unlikely(addr > (unsigned long)high_memory - size))
2843 goto out;
2844 if (unlikely(addr & align_mask))
2845 goto out;
2846 if (unlikely(!kern_addr_valid(addr)))
2847 goto out;
2848 if (unlikely(!kern_addr_valid(addr + size - 1)))
2849 goto out;
2850 page = virt_to_page(ptr);
2851 if (unlikely(!PageSlab(page)))
2852 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08002853 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002854 goto out;
2855 return 1;
2856out:
2857 return 0;
2858}
2859
2860#ifdef CONFIG_NUMA
2861/**
2862 * kmem_cache_alloc_node - Allocate an object on the specified node
2863 * @cachep: The cache to allocate from.
2864 * @flags: See kmalloc().
2865 * @nodeid: node number of the target node.
2866 *
2867 * Identical to kmem_cache_alloc, except that this function is slow
2868 * and can sleep. And it will allocate memory on the given node, which
2869 * can improve the performance for cpu bound structures.
Christoph Lametere498be72005-09-09 13:03:32 -07002870 * New and improved: it will now make sure that the object gets
2871 * put on the correct node list so that there is no false sharing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002872 */
Al Virodd0fc662005-10-07 07:46:04 +01002873void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002874{
Christoph Lametere498be72005-09-09 13:03:32 -07002875 unsigned long save_flags;
2876 void *ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002877
Christoph Lameterff694162005-09-22 21:44:02 -07002878 if (nodeid == -1)
Christoph Lametere498be72005-09-09 13:03:32 -07002879 return __cache_alloc(cachep, flags);
Christoph Lameter83b78bd2005-07-06 10:47:07 -07002880
Christoph Lametere498be72005-09-09 13:03:32 -07002881 if (unlikely(!cachep->nodelists[nodeid])) {
2882 /* Fall back to __cache_alloc if we run into trouble */
2883 printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name);
2884 return __cache_alloc(cachep,flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002885 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002886
Christoph Lametere498be72005-09-09 13:03:32 -07002887 cache_alloc_debugcheck_before(cachep, flags);
2888 local_irq_save(save_flags);
Alok N Kataria5c382302005-09-27 21:45:46 -07002889 if (nodeid == numa_node_id())
2890 ptr = ____cache_alloc(cachep, flags);
2891 else
2892 ptr = __cache_alloc_node(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002893 local_irq_restore(save_flags);
2894 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002895
Christoph Lametere498be72005-09-09 13:03:32 -07002896 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002897}
2898EXPORT_SYMBOL(kmem_cache_alloc_node);
2899
Al Virodd0fc662005-10-07 07:46:04 +01002900void *kmalloc_node(size_t size, gfp_t flags, int node)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07002901{
2902 kmem_cache_t *cachep;
2903
2904 cachep = kmem_find_general_cachep(size, flags);
2905 if (unlikely(cachep == NULL))
2906 return NULL;
2907 return kmem_cache_alloc_node(cachep, flags, node);
2908}
2909EXPORT_SYMBOL(kmalloc_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002910#endif
2911
2912/**
2913 * kmalloc - allocate memory
2914 * @size: how many bytes of memory are required.
2915 * @flags: the type of memory to allocate.
2916 *
2917 * kmalloc is the normal method of allocating memory
2918 * in the kernel.
2919 *
2920 * The @flags argument may be one of:
2921 *
2922 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2923 *
2924 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2925 *
2926 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2927 *
2928 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2929 * must be suitable for DMA. This can mean different things on different
2930 * platforms. For example, on i386, it means that the memory must come
2931 * from the first 16MB.
2932 */
Al Virodd0fc662005-10-07 07:46:04 +01002933void *__kmalloc(size_t size, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002934{
2935 kmem_cache_t *cachep;
2936
Manfred Spraul97e2bde2005-05-01 08:58:38 -07002937 /* If you want to save a few bytes .text space: replace
2938 * __ with kmem_.
2939 * Then kmalloc uses the uninlined functions instead of the inline
2940 * functions.
2941 */
2942 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07002943 if (unlikely(cachep == NULL))
2944 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002945 return __cache_alloc(cachep, flags);
2946}
2947EXPORT_SYMBOL(__kmalloc);
2948
2949#ifdef CONFIG_SMP
2950/**
2951 * __alloc_percpu - allocate one copy of the object for every present
2952 * cpu in the system, zeroing them.
2953 * Objects should be dereferenced using the per_cpu_ptr macro only.
2954 *
2955 * @size: how many bytes of memory are required.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002956 */
Pekka Enbergf9f75002006-01-08 01:00:33 -08002957void *__alloc_percpu(size_t size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002958{
2959 int i;
2960 struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
2961
2962 if (!pdata)
2963 return NULL;
2964
Christoph Lametere498be72005-09-09 13:03:32 -07002965 /*
2966 * Cannot use for_each_online_cpu since a cpu may come online
2967 * and we have no way of figuring out how to fix the array
2968 * that we have allocated then....
2969 */
2970 for_each_cpu(i) {
2971 int node = cpu_to_node(i);
2972
2973 if (node_online(node))
2974 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
2975 else
2976 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002977
2978 if (!pdata->ptrs[i])
2979 goto unwind_oom;
2980 memset(pdata->ptrs[i], 0, size);
2981 }
2982
2983 /* Catch derefs w/o wrappers */
2984 return (void *) (~(unsigned long) pdata);
2985
2986unwind_oom:
2987 while (--i >= 0) {
2988 if (!cpu_possible(i))
2989 continue;
2990 kfree(pdata->ptrs[i]);
2991 }
2992 kfree(pdata);
2993 return NULL;
2994}
2995EXPORT_SYMBOL(__alloc_percpu);
2996#endif
2997
2998/**
2999 * kmem_cache_free - Deallocate an object
3000 * @cachep: The cache the allocation was from.
3001 * @objp: The previously allocated object.
3002 *
3003 * Free an object which was previously allocated from this
3004 * cache.
3005 */
3006void kmem_cache_free(kmem_cache_t *cachep, void *objp)
3007{
3008 unsigned long flags;
3009
3010 local_irq_save(flags);
3011 __cache_free(cachep, objp);
3012 local_irq_restore(flags);
3013}
3014EXPORT_SYMBOL(kmem_cache_free);
3015
3016/**
Pekka J Enbergdd392712005-09-06 15:18:31 -07003017 * kzalloc - allocate memory. The memory is set to zero.
3018 * @size: how many bytes of memory are required.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003019 * @flags: the type of memory to allocate.
3020 */
Al Virodd0fc662005-10-07 07:46:04 +01003021void *kzalloc(size_t size, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003022{
Pekka J Enbergdd392712005-09-06 15:18:31 -07003023 void *ret = kmalloc(size, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003024 if (ret)
Pekka J Enbergdd392712005-09-06 15:18:31 -07003025 memset(ret, 0, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003026 return ret;
3027}
Pekka J Enbergdd392712005-09-06 15:18:31 -07003028EXPORT_SYMBOL(kzalloc);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003029
3030/**
3031 * kfree - free previously allocated memory
3032 * @objp: pointer returned by kmalloc.
3033 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003034 * If @objp is NULL, no operation is performed.
3035 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003036 * Don't free memory not originally allocated by kmalloc()
3037 * or you will run into trouble.
3038 */
3039void kfree(const void *objp)
3040{
3041 kmem_cache_t *c;
3042 unsigned long flags;
3043
3044 if (unlikely(!objp))
3045 return;
3046 local_irq_save(flags);
3047 kfree_debugcheck(objp);
Pekka Enberg065d41c2005-11-13 16:06:46 -08003048 c = page_get_cache(virt_to_page(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003049 __cache_free(c, (void*)objp);
3050 local_irq_restore(flags);
3051}
3052EXPORT_SYMBOL(kfree);
3053
3054#ifdef CONFIG_SMP
3055/**
3056 * free_percpu - free previously allocated percpu memory
3057 * @objp: pointer returned by alloc_percpu.
3058 *
3059 * Don't free memory not originally allocated by alloc_percpu()
3060 * The complemented objp is to check for that.
3061 */
3062void
3063free_percpu(const void *objp)
3064{
3065 int i;
3066 struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
3067
Christoph Lametere498be72005-09-09 13:03:32 -07003068 /*
3069 * We allocate for all cpus so we cannot use for online cpu here.
3070 */
3071 for_each_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003072 kfree(p->ptrs[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003073 kfree(p);
3074}
3075EXPORT_SYMBOL(free_percpu);
3076#endif
3077
3078unsigned int kmem_cache_size(kmem_cache_t *cachep)
3079{
3080 return obj_reallen(cachep);
3081}
3082EXPORT_SYMBOL(kmem_cache_size);
3083
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003084const char *kmem_cache_name(kmem_cache_t *cachep)
3085{
3086 return cachep->name;
3087}
3088EXPORT_SYMBOL_GPL(kmem_cache_name);
3089
Christoph Lametere498be72005-09-09 13:03:32 -07003090/*
3091 * This initializes kmem_list3 for all nodes.
3092 */
3093static int alloc_kmemlist(kmem_cache_t *cachep)
3094{
3095 int node;
3096 struct kmem_list3 *l3;
3097 int err = 0;
3098
3099 for_each_online_node(node) {
3100 struct array_cache *nc = NULL, *new;
3101 struct array_cache **new_alien = NULL;
3102#ifdef CONFIG_NUMA
3103 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3104 goto fail;
3105#endif
3106 if (!(new = alloc_arraycache(node, (cachep->shared*
3107 cachep->batchcount), 0xbaadf00d)))
3108 goto fail;
3109 if ((l3 = cachep->nodelists[node])) {
3110
3111 spin_lock_irq(&l3->list_lock);
3112
3113 if ((nc = cachep->nodelists[node]->shared))
3114 free_block(cachep, nc->entry,
Christoph Lameterff694162005-09-22 21:44:02 -07003115 nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003116
3117 l3->shared = new;
3118 if (!cachep->nodelists[node]->alien) {
3119 l3->alien = new_alien;
3120 new_alien = NULL;
3121 }
3122 l3->free_limit = (1 + nr_cpus_node(node))*
3123 cachep->batchcount + cachep->num;
3124 spin_unlock_irq(&l3->list_lock);
3125 kfree(nc);
3126 free_alien_cache(new_alien);
3127 continue;
3128 }
3129 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3130 GFP_KERNEL, node)))
3131 goto fail;
3132
3133 kmem_list3_init(l3);
3134 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3135 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
3136 l3->shared = new;
3137 l3->alien = new_alien;
3138 l3->free_limit = (1 + nr_cpus_node(node))*
3139 cachep->batchcount + cachep->num;
3140 cachep->nodelists[node] = l3;
3141 }
3142 return err;
3143fail:
3144 err = -ENOMEM;
3145 return err;
3146}
3147
Linus Torvalds1da177e2005-04-16 15:20:36 -07003148struct ccupdate_struct {
3149 kmem_cache_t *cachep;
3150 struct array_cache *new[NR_CPUS];
3151};
3152
3153static void do_ccupdate_local(void *info)
3154{
3155 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3156 struct array_cache *old;
3157
3158 check_irq_off();
3159 old = ac_data(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003160
Linus Torvalds1da177e2005-04-16 15:20:36 -07003161 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3162 new->new[smp_processor_id()] = old;
3163}
3164
3165
3166static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
3167 int shared)
3168{
3169 struct ccupdate_struct new;
Christoph Lametere498be72005-09-09 13:03:32 -07003170 int i, err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003171
3172 memset(&new.new,0,sizeof(new.new));
Christoph Lametere498be72005-09-09 13:03:32 -07003173 for_each_online_cpu(i) {
3174 new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount);
3175 if (!new.new[i]) {
3176 for (i--; i >= 0; i--) kfree(new.new[i]);
3177 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003178 }
3179 }
3180 new.cachep = cachep;
3181
3182 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
Christoph Lametere498be72005-09-09 13:03:32 -07003183
Linus Torvalds1da177e2005-04-16 15:20:36 -07003184 check_irq_on();
3185 spin_lock_irq(&cachep->spinlock);
3186 cachep->batchcount = batchcount;
3187 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003188 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003189 spin_unlock_irq(&cachep->spinlock);
3190
Christoph Lametere498be72005-09-09 13:03:32 -07003191 for_each_online_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003192 struct array_cache *ccold = new.new[i];
3193 if (!ccold)
3194 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003195 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003196 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003197 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003198 kfree(ccold);
3199 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003200
Christoph Lametere498be72005-09-09 13:03:32 -07003201 err = alloc_kmemlist(cachep);
3202 if (err) {
3203 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3204 cachep->name, -err);
3205 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003206 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003207 return 0;
3208}
3209
3210
3211static void enable_cpucache(kmem_cache_t *cachep)
3212{
3213 int err;
3214 int limit, shared;
3215
3216 /* The head array serves three purposes:
3217 * - create a LIFO ordering, i.e. return objects that are cache-warm
3218 * - reduce the number of spinlock operations.
3219 * - reduce the number of linked list operations on the slab and
3220 * bufctl chains: array operations are cheaper.
3221 * The numbers are guessed, we should auto-tune as described by
3222 * Bonwick.
3223 */
3224 if (cachep->objsize > 131072)
3225 limit = 1;
3226 else if (cachep->objsize > PAGE_SIZE)
3227 limit = 8;
3228 else if (cachep->objsize > 1024)
3229 limit = 24;
3230 else if (cachep->objsize > 256)
3231 limit = 54;
3232 else
3233 limit = 120;
3234
3235 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3236 * allocation behaviour: Most allocs on one cpu, most free operations
3237 * on another cpu. For these cases, an efficient object passing between
3238 * cpus is necessary. This is provided by a shared array. The array
3239 * replaces Bonwick's magazine layer.
3240 * On uniprocessor, it's functionally equivalent (but less efficient)
3241 * to a larger limit. Thus disabled by default.
3242 */
3243 shared = 0;
3244#ifdef CONFIG_SMP
3245 if (cachep->objsize <= PAGE_SIZE)
3246 shared = 8;
3247#endif
3248
3249#if DEBUG
3250 /* With debugging enabled, large batchcount lead to excessively
3251 * long periods with disabled local interrupts. Limit the
3252 * batchcount
3253 */
3254 if (limit > 32)
3255 limit = 32;
3256#endif
3257 err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
3258 if (err)
3259 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3260 cachep->name, -err);
3261}
3262
3263static void drain_array_locked(kmem_cache_t *cachep,
Christoph Lametere498be72005-09-09 13:03:32 -07003264 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003265{
3266 int tofree;
3267
Christoph Lametere498be72005-09-09 13:03:32 -07003268 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003269 if (ac->touched && !force) {
3270 ac->touched = 0;
3271 } else if (ac->avail) {
3272 tofree = force ? ac->avail : (ac->limit+4)/5;
3273 if (tofree > ac->avail) {
3274 tofree = (ac->avail+1)/2;
3275 }
Christoph Lameterff694162005-09-22 21:44:02 -07003276 free_block(cachep, ac->entry, tofree, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003277 ac->avail -= tofree;
Christoph Lametere498be72005-09-09 13:03:32 -07003278 memmove(ac->entry, &(ac->entry[tofree]),
Linus Torvalds1da177e2005-04-16 15:20:36 -07003279 sizeof(void*)*ac->avail);
3280 }
3281}
3282
3283/**
3284 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003285 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003286 *
3287 * Called from workqueue/eventd every few seconds.
3288 * Purpose:
3289 * - clear the per-cpu caches for this CPU.
3290 * - return freeable pages to the main free memory pool.
3291 *
3292 * If we cannot acquire the cache chain semaphore then just give up - we'll
3293 * try again on the next iteration.
3294 */
3295static void cache_reap(void *unused)
3296{
3297 struct list_head *walk;
Christoph Lametere498be72005-09-09 13:03:32 -07003298 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003299
3300 if (down_trylock(&cache_chain_sem)) {
3301 /* Give up. Setup the next iteration. */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003302 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003303 return;
3304 }
3305
3306 list_for_each(walk, &cache_chain) {
3307 kmem_cache_t *searchp;
3308 struct list_head* p;
3309 int tofree;
3310 struct slab *slabp;
3311
3312 searchp = list_entry(walk, kmem_cache_t, next);
3313
3314 if (searchp->flags & SLAB_NO_REAP)
3315 goto next;
3316
3317 check_irq_on();
3318
Christoph Lametere498be72005-09-09 13:03:32 -07003319 l3 = searchp->nodelists[numa_node_id()];
3320 if (l3->alien)
3321 drain_alien_cache(searchp, l3);
3322 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003323
Christoph Lametere498be72005-09-09 13:03:32 -07003324 drain_array_locked(searchp, ac_data(searchp), 0,
3325 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003326
Christoph Lametere498be72005-09-09 13:03:32 -07003327 if (time_after(l3->next_reap, jiffies))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003328 goto next_unlock;
3329
Christoph Lametere498be72005-09-09 13:03:32 -07003330 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003331
Christoph Lametere498be72005-09-09 13:03:32 -07003332 if (l3->shared)
3333 drain_array_locked(searchp, l3->shared, 0,
3334 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003335
Christoph Lametere498be72005-09-09 13:03:32 -07003336 if (l3->free_touched) {
3337 l3->free_touched = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003338 goto next_unlock;
3339 }
3340
Christoph Lametere498be72005-09-09 13:03:32 -07003341 tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003342 do {
Christoph Lametere498be72005-09-09 13:03:32 -07003343 p = l3->slabs_free.next;
3344 if (p == &(l3->slabs_free))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003345 break;
3346
3347 slabp = list_entry(p, struct slab, list);
3348 BUG_ON(slabp->inuse);
3349 list_del(&slabp->list);
3350 STATS_INC_REAPED(searchp);
3351
3352 /* Safe to drop the lock. The slab is no longer
3353 * linked to the cache.
3354 * searchp cannot disappear, we hold
3355 * cache_chain_lock
3356 */
Christoph Lametere498be72005-09-09 13:03:32 -07003357 l3->free_objects -= searchp->num;
3358 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003359 slab_destroy(searchp, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003360 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003361 } while(--tofree > 0);
3362next_unlock:
Christoph Lametere498be72005-09-09 13:03:32 -07003363 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003364next:
3365 cond_resched();
3366 }
3367 check_irq_on();
3368 up(&cache_chain_sem);
Christoph Lameter4ae7c032005-06-21 17:14:57 -07003369 drain_remote_pages();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003370 /* Setup the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003371 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003372}
3373
3374#ifdef CONFIG_PROC_FS
3375
Pekka Enberg85289f92006-01-08 01:00:36 -08003376static void print_slabinfo_header(struct seq_file *m)
3377{
3378 /*
3379 * Output format version, so at least we can change it
3380 * without _too_ many complaints.
3381 */
3382#if STATS
3383 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3384#else
3385 seq_puts(m, "slabinfo - version: 2.1\n");
3386#endif
3387 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3388 "<objperslab> <pagesperslab>");
3389 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3390 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3391#if STATS
3392 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3393 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3394 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3395#endif
3396 seq_putc(m, '\n');
3397}
3398
Linus Torvalds1da177e2005-04-16 15:20:36 -07003399static void *s_start(struct seq_file *m, loff_t *pos)
3400{
3401 loff_t n = *pos;
3402 struct list_head *p;
3403
3404 down(&cache_chain_sem);
Pekka Enberg85289f92006-01-08 01:00:36 -08003405 if (!n)
3406 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003407 p = cache_chain.next;
3408 while (n--) {
3409 p = p->next;
3410 if (p == &cache_chain)
3411 return NULL;
3412 }
3413 return list_entry(p, kmem_cache_t, next);
3414}
3415
3416static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3417{
3418 kmem_cache_t *cachep = p;
3419 ++*pos;
3420 return cachep->next.next == &cache_chain ? NULL
3421 : list_entry(cachep->next.next, kmem_cache_t, next);
3422}
3423
3424static void s_stop(struct seq_file *m, void *p)
3425{
3426 up(&cache_chain_sem);
3427}
3428
3429static int s_show(struct seq_file *m, void *p)
3430{
3431 kmem_cache_t *cachep = p;
3432 struct list_head *q;
3433 struct slab *slabp;
3434 unsigned long active_objs;
3435 unsigned long num_objs;
3436 unsigned long active_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003437 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3438 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003439 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003440 int node;
3441 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003442
3443 check_irq_on();
3444 spin_lock_irq(&cachep->spinlock);
3445 active_objs = 0;
3446 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003447 for_each_online_node(node) {
3448 l3 = cachep->nodelists[node];
3449 if (!l3)
3450 continue;
3451
3452 spin_lock(&l3->list_lock);
3453
3454 list_for_each(q,&l3->slabs_full) {
3455 slabp = list_entry(q, struct slab, list);
3456 if (slabp->inuse != cachep->num && !error)
3457 error = "slabs_full accounting error";
3458 active_objs += cachep->num;
3459 active_slabs++;
3460 }
3461 list_for_each(q,&l3->slabs_partial) {
3462 slabp = list_entry(q, struct slab, list);
3463 if (slabp->inuse == cachep->num && !error)
3464 error = "slabs_partial inuse accounting error";
3465 if (!slabp->inuse && !error)
3466 error = "slabs_partial/inuse accounting error";
3467 active_objs += slabp->inuse;
3468 active_slabs++;
3469 }
3470 list_for_each(q,&l3->slabs_free) {
3471 slabp = list_entry(q, struct slab, list);
3472 if (slabp->inuse && !error)
3473 error = "slabs_free/inuse accounting error";
3474 num_slabs++;
3475 }
3476 free_objects += l3->free_objects;
3477 shared_avail += l3->shared->avail;
3478
3479 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003480 }
3481 num_slabs+=active_slabs;
3482 num_objs = num_slabs*cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003483 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003484 error = "free_objects accounting error";
3485
3486 name = cachep->name;
3487 if (error)
3488 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3489
3490 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3491 name, active_objs, num_objs, cachep->objsize,
3492 cachep->num, (1<<cachep->gfporder));
3493 seq_printf(m, " : tunables %4u %4u %4u",
3494 cachep->limit, cachep->batchcount,
Christoph Lametere498be72005-09-09 13:03:32 -07003495 cachep->shared);
3496 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3497 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003498#if STATS
3499 { /* list3 stats */
3500 unsigned long high = cachep->high_mark;
3501 unsigned long allocs = cachep->num_allocations;
3502 unsigned long grown = cachep->grown;
3503 unsigned long reaped = cachep->reaped;
3504 unsigned long errors = cachep->errors;
3505 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003506 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07003507 unsigned long node_frees = cachep->node_frees;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003508
Christoph Lametere498be72005-09-09 13:03:32 -07003509 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3510 %4lu %4lu %4lu %4lu",
3511 allocs, high, grown, reaped, errors,
3512 max_freeable, node_allocs, node_frees);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003513 }
3514 /* cpu stats */
3515 {
3516 unsigned long allochit = atomic_read(&cachep->allochit);
3517 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3518 unsigned long freehit = atomic_read(&cachep->freehit);
3519 unsigned long freemiss = atomic_read(&cachep->freemiss);
3520
3521 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3522 allochit, allocmiss, freehit, freemiss);
3523 }
3524#endif
3525 seq_putc(m, '\n');
3526 spin_unlock_irq(&cachep->spinlock);
3527 return 0;
3528}
3529
3530/*
3531 * slabinfo_op - iterator that generates /proc/slabinfo
3532 *
3533 * Output layout:
3534 * cache-name
3535 * num-active-objs
3536 * total-objs
3537 * object size
3538 * num-active-slabs
3539 * total-slabs
3540 * num-pages-per-slab
3541 * + further values on SMP and with statistics enabled
3542 */
3543
3544struct seq_operations slabinfo_op = {
3545 .start = s_start,
3546 .next = s_next,
3547 .stop = s_stop,
3548 .show = s_show,
3549};
3550
3551#define MAX_SLABINFO_WRITE 128
3552/**
3553 * slabinfo_write - Tuning for the slab allocator
3554 * @file: unused
3555 * @buffer: user buffer
3556 * @count: data length
3557 * @ppos: unused
3558 */
3559ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3560 size_t count, loff_t *ppos)
3561{
3562 char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
3563 int limit, batchcount, shared, res;
3564 struct list_head *p;
3565
3566 if (count > MAX_SLABINFO_WRITE)
3567 return -EINVAL;
3568 if (copy_from_user(&kbuf, buffer, count))
3569 return -EFAULT;
3570 kbuf[MAX_SLABINFO_WRITE] = '\0';
3571
3572 tmp = strchr(kbuf, ' ');
3573 if (!tmp)
3574 return -EINVAL;
3575 *tmp = '\0';
3576 tmp++;
3577 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3578 return -EINVAL;
3579
3580 /* Find the cache in the chain of caches. */
3581 down(&cache_chain_sem);
3582 res = -EINVAL;
3583 list_for_each(p,&cache_chain) {
3584 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3585
3586 if (!strcmp(cachep->name, kbuf)) {
3587 if (limit < 1 ||
3588 batchcount < 1 ||
3589 batchcount > limit ||
3590 shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003591 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003592 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003593 res = do_tune_cpucache(cachep, limit,
3594 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003595 }
3596 break;
3597 }
3598 }
3599 up(&cache_chain_sem);
3600 if (res >= 0)
3601 res = count;
3602 return res;
3603}
3604#endif
3605
Manfred Spraul00e145b2005-09-03 15:55:07 -07003606/**
3607 * ksize - get the actual amount of memory allocated for a given object
3608 * @objp: Pointer to the object
3609 *
3610 * kmalloc may internally round up allocations and return more memory
3611 * than requested. ksize() can be used to determine the actual amount of
3612 * memory allocated. The caller may use this additional memory, even though
3613 * a smaller amount of memory was initially specified with the kmalloc call.
3614 * The caller must guarantee that objp points to a valid object previously
3615 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3616 * must not be freed during the duration of the call.
3617 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003618unsigned int ksize(const void *objp)
3619{
Manfred Spraul00e145b2005-09-03 15:55:07 -07003620 if (unlikely(objp == NULL))
3621 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003622
Pekka Enberg065d41c2005-11-13 16:06:46 -08003623 return obj_reallen(page_get_cache(virt_to_page(objp)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003624}
Paulo Marques543537b2005-06-23 00:09:02 -07003625
3626
3627/*
3628 * kstrdup - allocate space for and copy an existing string
3629 *
3630 * @s: the string to duplicate
3631 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
3632 */
Al Virodd0fc662005-10-07 07:46:04 +01003633char *kstrdup(const char *s, gfp_t gfp)
Paulo Marques543537b2005-06-23 00:09:02 -07003634{
3635 size_t len;
3636 char *buf;
3637
3638 if (!s)
3639 return NULL;
3640
3641 len = strlen(s) + 1;
3642 buf = kmalloc(len, gfp);
3643 if (buf)
3644 memcpy(buf, s, len);
3645 return buf;
3646}
3647EXPORT_SYMBOL(kstrdup);