Andy Grover | 5c11559 | 2009-02-24 15:30:27 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2006 Oracle. All rights reserved. |
| 3 | * |
| 4 | * This software is available to you under a choice of one of two |
| 5 | * licenses. You may choose to be licensed under the terms of the GNU |
| 6 | * General Public License (GPL) Version 2, available from the file |
| 7 | * COPYING in the main directory of this source tree, or the |
| 8 | * OpenIB.org BSD license below: |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or |
| 11 | * without modification, are permitted provided that the following |
| 12 | * conditions are met: |
| 13 | * |
| 14 | * - Redistributions of source code must retain the above |
| 15 | * copyright notice, this list of conditions and the following |
| 16 | * disclaimer. |
| 17 | * |
| 18 | * - Redistributions in binary form must reproduce the above |
| 19 | * copyright notice, this list of conditions and the following |
| 20 | * disclaimer in the documentation and/or other materials |
| 21 | * provided with the distribution. |
| 22 | * |
| 23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 30 | * SOFTWARE. |
| 31 | * |
| 32 | */ |
| 33 | #include <linux/kernel.h> |
| 34 | #include <net/sock.h> |
| 35 | #include <linux/in.h> |
| 36 | #include <linux/list.h> |
| 37 | |
| 38 | #include "rds.h" |
| 39 | #include "rdma.h" |
| 40 | |
| 41 | /* When transmitting messages in rds_send_xmit, we need to emerge from |
| 42 | * time to time and briefly release the CPU. Otherwise the softlock watchdog |
| 43 | * will kick our shin. |
| 44 | * Also, it seems fairer to not let one busy connection stall all the |
| 45 | * others. |
| 46 | * |
| 47 | * send_batch_count is the number of times we'll loop in send_xmit. Setting |
| 48 | * it to 0 will restore the old behavior (where we looped until we had |
| 49 | * drained the queue). |
| 50 | */ |
| 51 | static int send_batch_count = 64; |
| 52 | module_param(send_batch_count, int, 0444); |
| 53 | MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); |
| 54 | |
| 55 | /* |
| 56 | * Reset the send state. Caller must hold c_send_lock when calling here. |
| 57 | */ |
| 58 | void rds_send_reset(struct rds_connection *conn) |
| 59 | { |
| 60 | struct rds_message *rm, *tmp; |
| 61 | unsigned long flags; |
| 62 | |
| 63 | if (conn->c_xmit_rm) { |
| 64 | /* Tell the user the RDMA op is no longer mapped by the |
| 65 | * transport. This isn't entirely true (it's flushed out |
| 66 | * independently) but as the connection is down, there's |
| 67 | * no ongoing RDMA to/from that memory */ |
| 68 | rds_message_unmapped(conn->c_xmit_rm); |
| 69 | rds_message_put(conn->c_xmit_rm); |
| 70 | conn->c_xmit_rm = NULL; |
| 71 | } |
| 72 | conn->c_xmit_sg = 0; |
| 73 | conn->c_xmit_hdr_off = 0; |
| 74 | conn->c_xmit_data_off = 0; |
| 75 | conn->c_xmit_rdma_sent = 0; |
| 76 | |
| 77 | conn->c_map_queued = 0; |
| 78 | |
| 79 | conn->c_unacked_packets = rds_sysctl_max_unacked_packets; |
| 80 | conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes; |
| 81 | |
| 82 | /* Mark messages as retransmissions, and move them to the send q */ |
| 83 | spin_lock_irqsave(&conn->c_lock, flags); |
| 84 | list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { |
| 85 | set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); |
| 86 | set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); |
| 87 | } |
| 88 | list_splice_init(&conn->c_retrans, &conn->c_send_queue); |
| 89 | spin_unlock_irqrestore(&conn->c_lock, flags); |
| 90 | } |
| 91 | |
| 92 | /* |
| 93 | * We're making the concious trade-off here to only send one message |
| 94 | * down the connection at a time. |
| 95 | * Pro: |
| 96 | * - tx queueing is a simple fifo list |
| 97 | * - reassembly is optional and easily done by transports per conn |
| 98 | * - no per flow rx lookup at all, straight to the socket |
| 99 | * - less per-frag memory and wire overhead |
| 100 | * Con: |
| 101 | * - queued acks can be delayed behind large messages |
| 102 | * Depends: |
| 103 | * - small message latency is higher behind queued large messages |
| 104 | * - large message latency isn't starved by intervening small sends |
| 105 | */ |
| 106 | int rds_send_xmit(struct rds_connection *conn) |
| 107 | { |
| 108 | struct rds_message *rm; |
| 109 | unsigned long flags; |
| 110 | unsigned int tmp; |
| 111 | unsigned int send_quota = send_batch_count; |
| 112 | struct scatterlist *sg; |
| 113 | int ret = 0; |
| 114 | int was_empty = 0; |
| 115 | LIST_HEAD(to_be_dropped); |
| 116 | |
| 117 | /* |
| 118 | * sendmsg calls here after having queued its message on the send |
| 119 | * queue. We only have one task feeding the connection at a time. If |
| 120 | * another thread is already feeding the queue then we back off. This |
| 121 | * avoids blocking the caller and trading per-connection data between |
| 122 | * caches per message. |
| 123 | * |
| 124 | * The sem holder will issue a retry if they notice that someone queued |
| 125 | * a message after they stopped walking the send queue but before they |
| 126 | * dropped the sem. |
| 127 | */ |
| 128 | if (!mutex_trylock(&conn->c_send_lock)) { |
| 129 | rds_stats_inc(s_send_sem_contention); |
| 130 | ret = -ENOMEM; |
| 131 | goto out; |
| 132 | } |
| 133 | |
| 134 | if (conn->c_trans->xmit_prepare) |
| 135 | conn->c_trans->xmit_prepare(conn); |
| 136 | |
| 137 | /* |
| 138 | * spin trying to push headers and data down the connection until |
| 139 | * the connection doens't make forward progress. |
| 140 | */ |
| 141 | while (--send_quota) { |
| 142 | /* |
| 143 | * See if need to send a congestion map update if we're |
| 144 | * between sending messages. The send_sem protects our sole |
| 145 | * use of c_map_offset and _bytes. |
| 146 | * Note this is used only by transports that define a special |
| 147 | * xmit_cong_map function. For all others, we create allocate |
| 148 | * a cong_map message and treat it just like any other send. |
| 149 | */ |
| 150 | if (conn->c_map_bytes) { |
| 151 | ret = conn->c_trans->xmit_cong_map(conn, conn->c_lcong, |
| 152 | conn->c_map_offset); |
| 153 | if (ret <= 0) |
| 154 | break; |
| 155 | |
| 156 | conn->c_map_offset += ret; |
| 157 | conn->c_map_bytes -= ret; |
| 158 | if (conn->c_map_bytes) |
| 159 | continue; |
| 160 | } |
| 161 | |
| 162 | /* If we're done sending the current message, clear the |
| 163 | * offset and S/G temporaries. |
| 164 | */ |
| 165 | rm = conn->c_xmit_rm; |
| 166 | if (rm != NULL && |
| 167 | conn->c_xmit_hdr_off == sizeof(struct rds_header) && |
| 168 | conn->c_xmit_sg == rm->m_nents) { |
| 169 | conn->c_xmit_rm = NULL; |
| 170 | conn->c_xmit_sg = 0; |
| 171 | conn->c_xmit_hdr_off = 0; |
| 172 | conn->c_xmit_data_off = 0; |
| 173 | conn->c_xmit_rdma_sent = 0; |
| 174 | |
| 175 | /* Release the reference to the previous message. */ |
| 176 | rds_message_put(rm); |
| 177 | rm = NULL; |
| 178 | } |
| 179 | |
| 180 | /* If we're asked to send a cong map update, do so. |
| 181 | */ |
| 182 | if (rm == NULL && test_and_clear_bit(0, &conn->c_map_queued)) { |
| 183 | if (conn->c_trans->xmit_cong_map != NULL) { |
| 184 | conn->c_map_offset = 0; |
| 185 | conn->c_map_bytes = sizeof(struct rds_header) + |
| 186 | RDS_CONG_MAP_BYTES; |
| 187 | continue; |
| 188 | } |
| 189 | |
| 190 | rm = rds_cong_update_alloc(conn); |
| 191 | if (IS_ERR(rm)) { |
| 192 | ret = PTR_ERR(rm); |
| 193 | break; |
| 194 | } |
| 195 | |
| 196 | conn->c_xmit_rm = rm; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Grab the next message from the send queue, if there is one. |
| 201 | * |
| 202 | * c_xmit_rm holds a ref while we're sending this message down |
| 203 | * the connction. We can use this ref while holding the |
| 204 | * send_sem.. rds_send_reset() is serialized with it. |
| 205 | */ |
| 206 | if (rm == NULL) { |
| 207 | unsigned int len; |
| 208 | |
| 209 | spin_lock_irqsave(&conn->c_lock, flags); |
| 210 | |
| 211 | if (!list_empty(&conn->c_send_queue)) { |
| 212 | rm = list_entry(conn->c_send_queue.next, |
| 213 | struct rds_message, |
| 214 | m_conn_item); |
| 215 | rds_message_addref(rm); |
| 216 | |
| 217 | /* |
| 218 | * Move the message from the send queue to the retransmit |
| 219 | * list right away. |
| 220 | */ |
| 221 | list_move_tail(&rm->m_conn_item, &conn->c_retrans); |
| 222 | } |
| 223 | |
| 224 | spin_unlock_irqrestore(&conn->c_lock, flags); |
| 225 | |
| 226 | if (rm == NULL) { |
| 227 | was_empty = 1; |
| 228 | break; |
| 229 | } |
| 230 | |
| 231 | /* Unfortunately, the way Infiniband deals with |
| 232 | * RDMA to a bad MR key is by moving the entire |
| 233 | * queue pair to error state. We cold possibly |
| 234 | * recover from that, but right now we drop the |
| 235 | * connection. |
| 236 | * Therefore, we never retransmit messages with RDMA ops. |
| 237 | */ |
| 238 | if (rm->m_rdma_op |
| 239 | && test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) { |
| 240 | spin_lock_irqsave(&conn->c_lock, flags); |
| 241 | if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) |
| 242 | list_move(&rm->m_conn_item, &to_be_dropped); |
| 243 | spin_unlock_irqrestore(&conn->c_lock, flags); |
| 244 | rds_message_put(rm); |
| 245 | continue; |
| 246 | } |
| 247 | |
| 248 | /* Require an ACK every once in a while */ |
| 249 | len = ntohl(rm->m_inc.i_hdr.h_len); |
| 250 | if (conn->c_unacked_packets == 0 |
| 251 | || conn->c_unacked_bytes < len) { |
| 252 | __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); |
| 253 | |
| 254 | conn->c_unacked_packets = rds_sysctl_max_unacked_packets; |
| 255 | conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes; |
| 256 | rds_stats_inc(s_send_ack_required); |
| 257 | } else { |
| 258 | conn->c_unacked_bytes -= len; |
| 259 | conn->c_unacked_packets--; |
| 260 | } |
| 261 | |
| 262 | conn->c_xmit_rm = rm; |
| 263 | } |
| 264 | |
| 265 | /* |
| 266 | * Try and send an rdma message. Let's see if we can |
| 267 | * keep this simple and require that the transport either |
| 268 | * send the whole rdma or none of it. |
| 269 | */ |
| 270 | if (rm->m_rdma_op && !conn->c_xmit_rdma_sent) { |
| 271 | ret = conn->c_trans->xmit_rdma(conn, rm->m_rdma_op); |
| 272 | if (ret) |
| 273 | break; |
| 274 | conn->c_xmit_rdma_sent = 1; |
| 275 | /* The transport owns the mapped memory for now. |
| 276 | * You can't unmap it while it's on the send queue */ |
| 277 | set_bit(RDS_MSG_MAPPED, &rm->m_flags); |
| 278 | } |
| 279 | |
| 280 | if (conn->c_xmit_hdr_off < sizeof(struct rds_header) || |
| 281 | conn->c_xmit_sg < rm->m_nents) { |
| 282 | ret = conn->c_trans->xmit(conn, rm, |
| 283 | conn->c_xmit_hdr_off, |
| 284 | conn->c_xmit_sg, |
| 285 | conn->c_xmit_data_off); |
| 286 | if (ret <= 0) |
| 287 | break; |
| 288 | |
| 289 | if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) { |
| 290 | tmp = min_t(int, ret, |
| 291 | sizeof(struct rds_header) - |
| 292 | conn->c_xmit_hdr_off); |
| 293 | conn->c_xmit_hdr_off += tmp; |
| 294 | ret -= tmp; |
| 295 | } |
| 296 | |
| 297 | sg = &rm->m_sg[conn->c_xmit_sg]; |
| 298 | while (ret) { |
| 299 | tmp = min_t(int, ret, sg->length - |
| 300 | conn->c_xmit_data_off); |
| 301 | conn->c_xmit_data_off += tmp; |
| 302 | ret -= tmp; |
| 303 | if (conn->c_xmit_data_off == sg->length) { |
| 304 | conn->c_xmit_data_off = 0; |
| 305 | sg++; |
| 306 | conn->c_xmit_sg++; |
| 307 | BUG_ON(ret != 0 && |
| 308 | conn->c_xmit_sg == rm->m_nents); |
| 309 | } |
| 310 | } |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | /* Nuke any messages we decided not to retransmit. */ |
| 315 | if (!list_empty(&to_be_dropped)) |
| 316 | rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); |
| 317 | |
| 318 | if (conn->c_trans->xmit_complete) |
| 319 | conn->c_trans->xmit_complete(conn); |
| 320 | |
| 321 | /* |
| 322 | * We might be racing with another sender who queued a message but |
| 323 | * backed off on noticing that we held the c_send_lock. If we check |
| 324 | * for queued messages after dropping the sem then either we'll |
| 325 | * see the queued message or the queuer will get the sem. If we |
| 326 | * notice the queued message then we trigger an immediate retry. |
| 327 | * |
| 328 | * We need to be careful only to do this when we stopped processing |
| 329 | * the send queue because it was empty. It's the only way we |
| 330 | * stop processing the loop when the transport hasn't taken |
| 331 | * responsibility for forward progress. |
| 332 | */ |
| 333 | mutex_unlock(&conn->c_send_lock); |
| 334 | |
| 335 | if (conn->c_map_bytes || (send_quota == 0 && !was_empty)) { |
| 336 | /* We exhausted the send quota, but there's work left to |
| 337 | * do. Return and (re-)schedule the send worker. |
| 338 | */ |
| 339 | ret = -EAGAIN; |
| 340 | } |
| 341 | |
| 342 | if (ret == 0 && was_empty) { |
| 343 | /* A simple bit test would be way faster than taking the |
| 344 | * spin lock */ |
| 345 | spin_lock_irqsave(&conn->c_lock, flags); |
| 346 | if (!list_empty(&conn->c_send_queue)) { |
| 347 | rds_stats_inc(s_send_sem_queue_raced); |
| 348 | ret = -EAGAIN; |
| 349 | } |
| 350 | spin_unlock_irqrestore(&conn->c_lock, flags); |
| 351 | } |
| 352 | out: |
| 353 | return ret; |
| 354 | } |
| 355 | |
| 356 | static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) |
| 357 | { |
| 358 | u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); |
| 359 | |
| 360 | assert_spin_locked(&rs->rs_lock); |
| 361 | |
| 362 | BUG_ON(rs->rs_snd_bytes < len); |
| 363 | rs->rs_snd_bytes -= len; |
| 364 | |
| 365 | if (rs->rs_snd_bytes == 0) |
| 366 | rds_stats_inc(s_send_queue_empty); |
| 367 | } |
| 368 | |
| 369 | static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, |
| 370 | is_acked_func is_acked) |
| 371 | { |
| 372 | if (is_acked) |
| 373 | return is_acked(rm, ack); |
| 374 | return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; |
| 375 | } |
| 376 | |
| 377 | /* |
| 378 | * Returns true if there are no messages on the send and retransmit queues |
| 379 | * which have a sequence number greater than or equal to the given sequence |
| 380 | * number. |
| 381 | */ |
| 382 | int rds_send_acked_before(struct rds_connection *conn, u64 seq) |
| 383 | { |
| 384 | struct rds_message *rm, *tmp; |
| 385 | int ret = 1; |
| 386 | |
| 387 | spin_lock(&conn->c_lock); |
| 388 | |
| 389 | list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { |
| 390 | if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq) |
| 391 | ret = 0; |
| 392 | break; |
| 393 | } |
| 394 | |
| 395 | list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) { |
| 396 | if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq) |
| 397 | ret = 0; |
| 398 | break; |
| 399 | } |
| 400 | |
| 401 | spin_unlock(&conn->c_lock); |
| 402 | |
| 403 | return ret; |
| 404 | } |
| 405 | |
| 406 | /* |
| 407 | * This is pretty similar to what happens below in the ACK |
| 408 | * handling code - except that we call here as soon as we get |
| 409 | * the IB send completion on the RDMA op and the accompanying |
| 410 | * message. |
| 411 | */ |
| 412 | void rds_rdma_send_complete(struct rds_message *rm, int status) |
| 413 | { |
| 414 | struct rds_sock *rs = NULL; |
| 415 | struct rds_rdma_op *ro; |
| 416 | struct rds_notifier *notifier; |
| 417 | |
| 418 | spin_lock(&rm->m_rs_lock); |
| 419 | |
| 420 | ro = rm->m_rdma_op; |
| 421 | if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) |
| 422 | && ro && ro->r_notify && ro->r_notifier) { |
| 423 | notifier = ro->r_notifier; |
| 424 | rs = rm->m_rs; |
| 425 | sock_hold(rds_rs_to_sk(rs)); |
| 426 | |
| 427 | notifier->n_status = status; |
| 428 | spin_lock(&rs->rs_lock); |
| 429 | list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); |
| 430 | spin_unlock(&rs->rs_lock); |
| 431 | |
| 432 | ro->r_notifier = NULL; |
| 433 | } |
| 434 | |
| 435 | spin_unlock(&rm->m_rs_lock); |
| 436 | |
| 437 | if (rs) { |
| 438 | rds_wake_sk_sleep(rs); |
| 439 | sock_put(rds_rs_to_sk(rs)); |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * This is the same as rds_rdma_send_complete except we |
| 445 | * don't do any locking - we have all the ingredients (message, |
| 446 | * socket, socket lock) and can just move the notifier. |
| 447 | */ |
| 448 | static inline void |
| 449 | __rds_rdma_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) |
| 450 | { |
| 451 | struct rds_rdma_op *ro; |
| 452 | |
| 453 | ro = rm->m_rdma_op; |
| 454 | if (ro && ro->r_notify && ro->r_notifier) { |
| 455 | ro->r_notifier->n_status = status; |
| 456 | list_add_tail(&ro->r_notifier->n_list, &rs->rs_notify_queue); |
| 457 | ro->r_notifier = NULL; |
| 458 | } |
| 459 | |
| 460 | /* No need to wake the app - caller does this */ |
| 461 | } |
| 462 | |
| 463 | /* |
| 464 | * This is called from the IB send completion when we detect |
| 465 | * a RDMA operation that failed with remote access error. |
| 466 | * So speed is not an issue here. |
| 467 | */ |
| 468 | struct rds_message *rds_send_get_message(struct rds_connection *conn, |
| 469 | struct rds_rdma_op *op) |
| 470 | { |
| 471 | struct rds_message *rm, *tmp, *found = NULL; |
| 472 | unsigned long flags; |
| 473 | |
| 474 | spin_lock_irqsave(&conn->c_lock, flags); |
| 475 | |
| 476 | list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { |
| 477 | if (rm->m_rdma_op == op) { |
| 478 | atomic_inc(&rm->m_refcount); |
| 479 | found = rm; |
| 480 | goto out; |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) { |
| 485 | if (rm->m_rdma_op == op) { |
| 486 | atomic_inc(&rm->m_refcount); |
| 487 | found = rm; |
| 488 | break; |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | out: |
| 493 | spin_unlock_irqrestore(&conn->c_lock, flags); |
| 494 | |
| 495 | return found; |
| 496 | } |
| 497 | |
| 498 | /* |
| 499 | * This removes messages from the socket's list if they're on it. The list |
| 500 | * argument must be private to the caller, we must be able to modify it |
| 501 | * without locks. The messages must have a reference held for their |
| 502 | * position on the list. This function will drop that reference after |
| 503 | * removing the messages from the 'messages' list regardless of if it found |
| 504 | * the messages on the socket list or not. |
| 505 | */ |
| 506 | void rds_send_remove_from_sock(struct list_head *messages, int status) |
| 507 | { |
| 508 | unsigned long flags = 0; /* silence gcc :P */ |
| 509 | struct rds_sock *rs = NULL; |
| 510 | struct rds_message *rm; |
| 511 | |
| 512 | local_irq_save(flags); |
| 513 | while (!list_empty(messages)) { |
| 514 | rm = list_entry(messages->next, struct rds_message, |
| 515 | m_conn_item); |
| 516 | list_del_init(&rm->m_conn_item); |
| 517 | |
| 518 | /* |
| 519 | * If we see this flag cleared then we're *sure* that someone |
| 520 | * else beat us to removing it from the sock. If we race |
| 521 | * with their flag update we'll get the lock and then really |
| 522 | * see that the flag has been cleared. |
| 523 | * |
| 524 | * The message spinlock makes sure nobody clears rm->m_rs |
| 525 | * while we're messing with it. It does not prevent the |
| 526 | * message from being removed from the socket, though. |
| 527 | */ |
| 528 | spin_lock(&rm->m_rs_lock); |
| 529 | if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) |
| 530 | goto unlock_and_drop; |
| 531 | |
| 532 | if (rs != rm->m_rs) { |
| 533 | if (rs) { |
| 534 | spin_unlock(&rs->rs_lock); |
| 535 | rds_wake_sk_sleep(rs); |
| 536 | sock_put(rds_rs_to_sk(rs)); |
| 537 | } |
| 538 | rs = rm->m_rs; |
| 539 | spin_lock(&rs->rs_lock); |
| 540 | sock_hold(rds_rs_to_sk(rs)); |
| 541 | } |
| 542 | |
| 543 | if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { |
| 544 | struct rds_rdma_op *ro = rm->m_rdma_op; |
| 545 | struct rds_notifier *notifier; |
| 546 | |
| 547 | list_del_init(&rm->m_sock_item); |
| 548 | rds_send_sndbuf_remove(rs, rm); |
| 549 | |
| 550 | if (ro && ro->r_notifier |
| 551 | && (status || ro->r_notify)) { |
| 552 | notifier = ro->r_notifier; |
| 553 | list_add_tail(¬ifier->n_list, |
| 554 | &rs->rs_notify_queue); |
| 555 | if (!notifier->n_status) |
| 556 | notifier->n_status = status; |
| 557 | rm->m_rdma_op->r_notifier = NULL; |
| 558 | } |
| 559 | rds_message_put(rm); |
| 560 | rm->m_rs = NULL; |
| 561 | } |
| 562 | |
| 563 | unlock_and_drop: |
| 564 | spin_unlock(&rm->m_rs_lock); |
| 565 | rds_message_put(rm); |
| 566 | } |
| 567 | |
| 568 | if (rs) { |
| 569 | spin_unlock(&rs->rs_lock); |
| 570 | rds_wake_sk_sleep(rs); |
| 571 | sock_put(rds_rs_to_sk(rs)); |
| 572 | } |
| 573 | local_irq_restore(flags); |
| 574 | } |
| 575 | |
| 576 | /* |
| 577 | * Transports call here when they've determined that the receiver queued |
| 578 | * messages up to, and including, the given sequence number. Messages are |
| 579 | * moved to the retrans queue when rds_send_xmit picks them off the send |
| 580 | * queue. This means that in the TCP case, the message may not have been |
| 581 | * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked |
| 582 | * checks the RDS_MSG_HAS_ACK_SEQ bit. |
| 583 | * |
| 584 | * XXX It's not clear to me how this is safely serialized with socket |
| 585 | * destruction. Maybe it should bail if it sees SOCK_DEAD. |
| 586 | */ |
| 587 | void rds_send_drop_acked(struct rds_connection *conn, u64 ack, |
| 588 | is_acked_func is_acked) |
| 589 | { |
| 590 | struct rds_message *rm, *tmp; |
| 591 | unsigned long flags; |
| 592 | LIST_HEAD(list); |
| 593 | |
| 594 | spin_lock_irqsave(&conn->c_lock, flags); |
| 595 | |
| 596 | list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { |
| 597 | if (!rds_send_is_acked(rm, ack, is_acked)) |
| 598 | break; |
| 599 | |
| 600 | list_move(&rm->m_conn_item, &list); |
| 601 | clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); |
| 602 | } |
| 603 | |
| 604 | /* order flag updates with spin locks */ |
| 605 | if (!list_empty(&list)) |
| 606 | smp_mb__after_clear_bit(); |
| 607 | |
| 608 | spin_unlock_irqrestore(&conn->c_lock, flags); |
| 609 | |
| 610 | /* now remove the messages from the sock list as needed */ |
| 611 | rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); |
| 612 | } |
| 613 | |
| 614 | void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest) |
| 615 | { |
| 616 | struct rds_message *rm, *tmp; |
| 617 | struct rds_connection *conn; |
| 618 | unsigned long flags; |
| 619 | LIST_HEAD(list); |
| 620 | int wake = 0; |
| 621 | |
| 622 | /* get all the messages we're dropping under the rs lock */ |
| 623 | spin_lock_irqsave(&rs->rs_lock, flags); |
| 624 | |
| 625 | list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { |
| 626 | if (dest && (dest->sin_addr.s_addr != rm->m_daddr || |
| 627 | dest->sin_port != rm->m_inc.i_hdr.h_dport)) |
| 628 | continue; |
| 629 | |
| 630 | wake = 1; |
| 631 | list_move(&rm->m_sock_item, &list); |
| 632 | rds_send_sndbuf_remove(rs, rm); |
| 633 | clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); |
| 634 | |
| 635 | /* If this is a RDMA operation, notify the app. */ |
| 636 | __rds_rdma_send_complete(rs, rm, RDS_RDMA_CANCELED); |
| 637 | } |
| 638 | |
| 639 | /* order flag updates with the rs lock */ |
| 640 | if (wake) |
| 641 | smp_mb__after_clear_bit(); |
| 642 | |
| 643 | spin_unlock_irqrestore(&rs->rs_lock, flags); |
| 644 | |
| 645 | if (wake) |
| 646 | rds_wake_sk_sleep(rs); |
| 647 | |
| 648 | conn = NULL; |
| 649 | |
| 650 | /* now remove the messages from the conn list as needed */ |
| 651 | list_for_each_entry(rm, &list, m_sock_item) { |
| 652 | /* We do this here rather than in the loop above, so that |
| 653 | * we don't have to nest m_rs_lock under rs->rs_lock */ |
| 654 | spin_lock(&rm->m_rs_lock); |
| 655 | rm->m_rs = NULL; |
| 656 | spin_unlock(&rm->m_rs_lock); |
| 657 | |
| 658 | /* |
| 659 | * If we see this flag cleared then we're *sure* that someone |
| 660 | * else beat us to removing it from the conn. If we race |
| 661 | * with their flag update we'll get the lock and then really |
| 662 | * see that the flag has been cleared. |
| 663 | */ |
| 664 | if (!test_bit(RDS_MSG_ON_CONN, &rm->m_flags)) |
| 665 | continue; |
| 666 | |
| 667 | if (conn != rm->m_inc.i_conn) { |
| 668 | if (conn) |
| 669 | spin_unlock_irqrestore(&conn->c_lock, flags); |
| 670 | conn = rm->m_inc.i_conn; |
| 671 | spin_lock_irqsave(&conn->c_lock, flags); |
| 672 | } |
| 673 | |
| 674 | if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { |
| 675 | list_del_init(&rm->m_conn_item); |
| 676 | rds_message_put(rm); |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | if (conn) |
| 681 | spin_unlock_irqrestore(&conn->c_lock, flags); |
| 682 | |
| 683 | while (!list_empty(&list)) { |
| 684 | rm = list_entry(list.next, struct rds_message, m_sock_item); |
| 685 | list_del_init(&rm->m_sock_item); |
| 686 | |
| 687 | rds_message_wait(rm); |
| 688 | rds_message_put(rm); |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | /* |
| 693 | * we only want this to fire once so we use the callers 'queued'. It's |
| 694 | * possible that another thread can race with us and remove the |
| 695 | * message from the flow with RDS_CANCEL_SENT_TO. |
| 696 | */ |
| 697 | static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, |
| 698 | struct rds_message *rm, __be16 sport, |
| 699 | __be16 dport, int *queued) |
| 700 | { |
| 701 | unsigned long flags; |
| 702 | u32 len; |
| 703 | |
| 704 | if (*queued) |
| 705 | goto out; |
| 706 | |
| 707 | len = be32_to_cpu(rm->m_inc.i_hdr.h_len); |
| 708 | |
| 709 | /* this is the only place which holds both the socket's rs_lock |
| 710 | * and the connection's c_lock */ |
| 711 | spin_lock_irqsave(&rs->rs_lock, flags); |
| 712 | |
| 713 | /* |
| 714 | * If there is a little space in sndbuf, we don't queue anything, |
| 715 | * and userspace gets -EAGAIN. But poll() indicates there's send |
| 716 | * room. This can lead to bad behavior (spinning) if snd_bytes isn't |
| 717 | * freed up by incoming acks. So we check the *old* value of |
| 718 | * rs_snd_bytes here to allow the last msg to exceed the buffer, |
| 719 | * and poll() now knows no more data can be sent. |
| 720 | */ |
| 721 | if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { |
| 722 | rs->rs_snd_bytes += len; |
| 723 | |
| 724 | /* let recv side know we are close to send space exhaustion. |
| 725 | * This is probably not the optimal way to do it, as this |
| 726 | * means we set the flag on *all* messages as soon as our |
| 727 | * throughput hits a certain threshold. |
| 728 | */ |
| 729 | if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) |
| 730 | __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); |
| 731 | |
| 732 | list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); |
| 733 | set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); |
| 734 | rds_message_addref(rm); |
| 735 | rm->m_rs = rs; |
| 736 | |
| 737 | /* The code ordering is a little weird, but we're |
| 738 | trying to minimize the time we hold c_lock */ |
| 739 | rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); |
| 740 | rm->m_inc.i_conn = conn; |
| 741 | rds_message_addref(rm); |
| 742 | |
| 743 | spin_lock(&conn->c_lock); |
| 744 | rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++); |
| 745 | list_add_tail(&rm->m_conn_item, &conn->c_send_queue); |
| 746 | set_bit(RDS_MSG_ON_CONN, &rm->m_flags); |
| 747 | spin_unlock(&conn->c_lock); |
| 748 | |
| 749 | rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", |
| 750 | rm, len, rs, rs->rs_snd_bytes, |
| 751 | (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); |
| 752 | |
| 753 | *queued = 1; |
| 754 | } |
| 755 | |
| 756 | spin_unlock_irqrestore(&rs->rs_lock, flags); |
| 757 | out: |
| 758 | return *queued; |
| 759 | } |
| 760 | |
| 761 | static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, |
| 762 | struct msghdr *msg, int *allocated_mr) |
| 763 | { |
| 764 | struct cmsghdr *cmsg; |
| 765 | int ret = 0; |
| 766 | |
| 767 | for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) { |
| 768 | if (!CMSG_OK(msg, cmsg)) |
| 769 | return -EINVAL; |
| 770 | |
| 771 | if (cmsg->cmsg_level != SOL_RDS) |
| 772 | continue; |
| 773 | |
| 774 | /* As a side effect, RDMA_DEST and RDMA_MAP will set |
| 775 | * rm->m_rdma_cookie and rm->m_rdma_mr. |
| 776 | */ |
| 777 | switch (cmsg->cmsg_type) { |
| 778 | case RDS_CMSG_RDMA_ARGS: |
| 779 | ret = rds_cmsg_rdma_args(rs, rm, cmsg); |
| 780 | break; |
| 781 | |
| 782 | case RDS_CMSG_RDMA_DEST: |
| 783 | ret = rds_cmsg_rdma_dest(rs, rm, cmsg); |
| 784 | break; |
| 785 | |
| 786 | case RDS_CMSG_RDMA_MAP: |
| 787 | ret = rds_cmsg_rdma_map(rs, rm, cmsg); |
| 788 | if (!ret) |
| 789 | *allocated_mr = 1; |
| 790 | break; |
| 791 | |
| 792 | default: |
| 793 | return -EINVAL; |
| 794 | } |
| 795 | |
| 796 | if (ret) |
| 797 | break; |
| 798 | } |
| 799 | |
| 800 | return ret; |
| 801 | } |
| 802 | |
| 803 | int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, |
| 804 | size_t payload_len) |
| 805 | { |
| 806 | struct sock *sk = sock->sk; |
| 807 | struct rds_sock *rs = rds_sk_to_rs(sk); |
| 808 | struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name; |
| 809 | __be32 daddr; |
| 810 | __be16 dport; |
| 811 | struct rds_message *rm = NULL; |
| 812 | struct rds_connection *conn; |
| 813 | int ret = 0; |
| 814 | int queued = 0, allocated_mr = 0; |
| 815 | int nonblock = msg->msg_flags & MSG_DONTWAIT; |
| 816 | long timeo = sock_rcvtimeo(sk, nonblock); |
| 817 | |
| 818 | /* Mirror Linux UDP mirror of BSD error message compatibility */ |
| 819 | /* XXX: Perhaps MSG_MORE someday */ |
| 820 | if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) { |
| 821 | printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags); |
| 822 | ret = -EOPNOTSUPP; |
| 823 | goto out; |
| 824 | } |
| 825 | |
| 826 | if (msg->msg_namelen) { |
| 827 | /* XXX fail non-unicast destination IPs? */ |
| 828 | if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) { |
| 829 | ret = -EINVAL; |
| 830 | goto out; |
| 831 | } |
| 832 | daddr = usin->sin_addr.s_addr; |
| 833 | dport = usin->sin_port; |
| 834 | } else { |
| 835 | /* We only care about consistency with ->connect() */ |
| 836 | lock_sock(sk); |
| 837 | daddr = rs->rs_conn_addr; |
| 838 | dport = rs->rs_conn_port; |
| 839 | release_sock(sk); |
| 840 | } |
| 841 | |
| 842 | /* racing with another thread binding seems ok here */ |
| 843 | if (daddr == 0 || rs->rs_bound_addr == 0) { |
| 844 | ret = -ENOTCONN; /* XXX not a great errno */ |
| 845 | goto out; |
| 846 | } |
| 847 | |
| 848 | rm = rds_message_copy_from_user(msg->msg_iov, payload_len); |
| 849 | if (IS_ERR(rm)) { |
| 850 | ret = PTR_ERR(rm); |
| 851 | rm = NULL; |
| 852 | goto out; |
| 853 | } |
| 854 | |
| 855 | rm->m_daddr = daddr; |
| 856 | |
| 857 | /* Parse any control messages the user may have included. */ |
| 858 | ret = rds_cmsg_send(rs, rm, msg, &allocated_mr); |
| 859 | if (ret) |
| 860 | goto out; |
| 861 | |
| 862 | /* rds_conn_create has a spinlock that runs with IRQ off. |
| 863 | * Caching the conn in the socket helps a lot. */ |
| 864 | if (rs->rs_conn && rs->rs_conn->c_faddr == daddr) |
| 865 | conn = rs->rs_conn; |
| 866 | else { |
| 867 | conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr, |
| 868 | rs->rs_transport, |
| 869 | sock->sk->sk_allocation); |
| 870 | if (IS_ERR(conn)) { |
| 871 | ret = PTR_ERR(conn); |
| 872 | goto out; |
| 873 | } |
| 874 | rs->rs_conn = conn; |
| 875 | } |
| 876 | |
| 877 | if ((rm->m_rdma_cookie || rm->m_rdma_op) |
| 878 | && conn->c_trans->xmit_rdma == NULL) { |
| 879 | if (printk_ratelimit()) |
| 880 | printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", |
| 881 | rm->m_rdma_op, conn->c_trans->xmit_rdma); |
| 882 | ret = -EOPNOTSUPP; |
| 883 | goto out; |
| 884 | } |
| 885 | |
| 886 | /* If the connection is down, trigger a connect. We may |
| 887 | * have scheduled a delayed reconnect however - in this case |
| 888 | * we should not interfere. |
| 889 | */ |
| 890 | if (rds_conn_state(conn) == RDS_CONN_DOWN |
| 891 | && !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags)) |
| 892 | queue_delayed_work(rds_wq, &conn->c_conn_w, 0); |
| 893 | |
| 894 | ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); |
| 895 | if (ret) |
| 896 | goto out; |
| 897 | |
| 898 | while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port, |
| 899 | dport, &queued)) { |
| 900 | rds_stats_inc(s_send_queue_full); |
| 901 | /* XXX make sure this is reasonable */ |
| 902 | if (payload_len > rds_sk_sndbuf(rs)) { |
| 903 | ret = -EMSGSIZE; |
| 904 | goto out; |
| 905 | } |
| 906 | if (nonblock) { |
| 907 | ret = -EAGAIN; |
| 908 | goto out; |
| 909 | } |
| 910 | |
| 911 | timeo = wait_event_interruptible_timeout(*sk->sk_sleep, |
| 912 | rds_send_queue_rm(rs, conn, rm, |
| 913 | rs->rs_bound_port, |
| 914 | dport, |
| 915 | &queued), |
| 916 | timeo); |
| 917 | rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); |
| 918 | if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) |
| 919 | continue; |
| 920 | |
| 921 | ret = timeo; |
| 922 | if (ret == 0) |
| 923 | ret = -ETIMEDOUT; |
| 924 | goto out; |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | * By now we've committed to the send. We reuse rds_send_worker() |
| 929 | * to retry sends in the rds thread if the transport asks us to. |
| 930 | */ |
| 931 | rds_stats_inc(s_send_queued); |
| 932 | |
| 933 | if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags)) |
| 934 | rds_send_worker(&conn->c_send_w.work); |
| 935 | |
| 936 | rds_message_put(rm); |
| 937 | return payload_len; |
| 938 | |
| 939 | out: |
| 940 | /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. |
| 941 | * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN |
| 942 | * or in any other way, we need to destroy the MR again */ |
| 943 | if (allocated_mr) |
| 944 | rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); |
| 945 | |
| 946 | if (rm) |
| 947 | rds_message_put(rm); |
| 948 | return ret; |
| 949 | } |
| 950 | |
| 951 | /* |
| 952 | * Reply to a ping packet. |
| 953 | */ |
| 954 | int |
| 955 | rds_send_pong(struct rds_connection *conn, __be16 dport) |
| 956 | { |
| 957 | struct rds_message *rm; |
| 958 | unsigned long flags; |
| 959 | int ret = 0; |
| 960 | |
| 961 | rm = rds_message_alloc(0, GFP_ATOMIC); |
| 962 | if (rm == NULL) { |
| 963 | ret = -ENOMEM; |
| 964 | goto out; |
| 965 | } |
| 966 | |
| 967 | rm->m_daddr = conn->c_faddr; |
| 968 | |
| 969 | /* If the connection is down, trigger a connect. We may |
| 970 | * have scheduled a delayed reconnect however - in this case |
| 971 | * we should not interfere. |
| 972 | */ |
| 973 | if (rds_conn_state(conn) == RDS_CONN_DOWN |
| 974 | && !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags)) |
| 975 | queue_delayed_work(rds_wq, &conn->c_conn_w, 0); |
| 976 | |
| 977 | ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL); |
| 978 | if (ret) |
| 979 | goto out; |
| 980 | |
| 981 | spin_lock_irqsave(&conn->c_lock, flags); |
| 982 | list_add_tail(&rm->m_conn_item, &conn->c_send_queue); |
| 983 | set_bit(RDS_MSG_ON_CONN, &rm->m_flags); |
| 984 | rds_message_addref(rm); |
| 985 | rm->m_inc.i_conn = conn; |
| 986 | |
| 987 | rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport, |
| 988 | conn->c_next_tx_seq); |
| 989 | conn->c_next_tx_seq++; |
| 990 | spin_unlock_irqrestore(&conn->c_lock, flags); |
| 991 | |
| 992 | rds_stats_inc(s_send_queued); |
| 993 | rds_stats_inc(s_send_pong); |
| 994 | |
| 995 | queue_delayed_work(rds_wq, &conn->c_send_w, 0); |
| 996 | rds_message_put(rm); |
| 997 | return 0; |
| 998 | |
| 999 | out: |
| 1000 | if (rm) |
| 1001 | rds_message_put(rm); |
| 1002 | return ret; |
| 1003 | } |