Johannes Berg | 571ecf6 | 2007-07-27 15:43:22 +0200 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2002-2005, Instant802 Networks, Inc. |
| 3 | * Copyright 2005-2006, Devicescape Software, Inc. |
| 4 | * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| 5 | * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/skbuff.h> |
| 14 | #include <linux/netdevice.h> |
| 15 | #include <linux/etherdevice.h> |
| 16 | #include <net/iw_handler.h> |
| 17 | #include <net/mac80211.h> |
| 18 | #include <net/ieee80211_radiotap.h> |
| 19 | |
| 20 | #include "ieee80211_i.h" |
| 21 | #include "ieee80211_led.h" |
| 22 | #include "ieee80211_common.h" |
| 23 | #include "wep.h" |
| 24 | #include "wpa.h" |
| 25 | #include "tkip.h" |
| 26 | #include "wme.h" |
| 27 | |
| 28 | /* pre-rx handlers |
| 29 | * |
| 30 | * these don't have dev/sdata fields in the rx data |
| 31 | */ |
| 32 | |
| 33 | static ieee80211_txrx_result |
| 34 | ieee80211_rx_h_load_stats(struct ieee80211_txrx_data *rx) |
| 35 | { |
| 36 | struct ieee80211_local *local = rx->local; |
| 37 | struct sk_buff *skb = rx->skb; |
| 38 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| 39 | u32 load = 0, hdrtime; |
| 40 | struct ieee80211_rate *rate; |
| 41 | struct ieee80211_hw_mode *mode = local->hw.conf.mode; |
| 42 | int i; |
| 43 | |
| 44 | /* Estimate total channel use caused by this frame */ |
| 45 | |
| 46 | if (unlikely(mode->num_rates < 0)) |
| 47 | return TXRX_CONTINUE; |
| 48 | |
| 49 | rate = &mode->rates[0]; |
| 50 | for (i = 0; i < mode->num_rates; i++) { |
| 51 | if (mode->rates[i].val == rx->u.rx.status->rate) { |
| 52 | rate = &mode->rates[i]; |
| 53 | break; |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values, |
| 58 | * 1 usec = 1/8 * (1080 / 10) = 13.5 */ |
| 59 | |
| 60 | if (mode->mode == MODE_IEEE80211A || |
| 61 | mode->mode == MODE_ATHEROS_TURBO || |
| 62 | mode->mode == MODE_ATHEROS_TURBOG || |
| 63 | (mode->mode == MODE_IEEE80211G && |
| 64 | rate->flags & IEEE80211_RATE_ERP)) |
| 65 | hdrtime = CHAN_UTIL_HDR_SHORT; |
| 66 | else |
| 67 | hdrtime = CHAN_UTIL_HDR_LONG; |
| 68 | |
| 69 | load = hdrtime; |
| 70 | if (!is_multicast_ether_addr(hdr->addr1)) |
| 71 | load += hdrtime; |
| 72 | |
| 73 | load += skb->len * rate->rate_inv; |
| 74 | |
| 75 | /* Divide channel_use by 8 to avoid wrapping around the counter */ |
| 76 | load >>= CHAN_UTIL_SHIFT; |
| 77 | local->channel_use_raw += load; |
| 78 | if (rx->sta) |
| 79 | rx->sta->channel_use_raw += load; |
| 80 | rx->u.rx.load = load; |
| 81 | |
| 82 | return TXRX_CONTINUE; |
| 83 | } |
| 84 | |
| 85 | ieee80211_rx_handler ieee80211_rx_pre_handlers[] = |
| 86 | { |
| 87 | ieee80211_rx_h_parse_qos, |
| 88 | ieee80211_rx_h_load_stats, |
| 89 | NULL |
| 90 | }; |
| 91 | |
| 92 | /* rx handlers */ |
| 93 | |
| 94 | static ieee80211_txrx_result |
| 95 | ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx) |
| 96 | { |
| 97 | rx->sdata->channel_use_raw += rx->u.rx.load; |
| 98 | return TXRX_CONTINUE; |
| 99 | } |
| 100 | |
| 101 | static void |
| 102 | ieee80211_rx_monitor(struct net_device *dev, struct sk_buff *skb, |
| 103 | struct ieee80211_rx_status *status) |
| 104 | { |
| 105 | struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| 106 | struct ieee80211_sub_if_data *sdata; |
| 107 | struct ieee80211_rate *rate; |
| 108 | struct ieee80211_rtap_hdr { |
| 109 | struct ieee80211_radiotap_header hdr; |
| 110 | u8 flags; |
| 111 | u8 rate; |
| 112 | __le16 chan_freq; |
| 113 | __le16 chan_flags; |
| 114 | u8 antsignal; |
| 115 | } __attribute__ ((packed)) *rthdr; |
| 116 | |
| 117 | skb->dev = dev; |
| 118 | |
| 119 | sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| 120 | |
| 121 | if (status->flag & RX_FLAG_RADIOTAP) |
| 122 | goto out; |
| 123 | |
| 124 | if (skb_headroom(skb) < sizeof(*rthdr)) { |
| 125 | I802_DEBUG_INC(local->rx_expand_skb_head); |
| 126 | if (pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) { |
| 127 | dev_kfree_skb(skb); |
| 128 | return; |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | rthdr = (struct ieee80211_rtap_hdr *) skb_push(skb, sizeof(*rthdr)); |
| 133 | memset(rthdr, 0, sizeof(*rthdr)); |
| 134 | rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); |
| 135 | rthdr->hdr.it_present = |
| 136 | cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | |
| 137 | (1 << IEEE80211_RADIOTAP_RATE) | |
| 138 | (1 << IEEE80211_RADIOTAP_CHANNEL) | |
| 139 | (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL)); |
| 140 | rthdr->flags = local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS ? |
| 141 | IEEE80211_RADIOTAP_F_FCS : 0; |
| 142 | rate = ieee80211_get_rate(local, status->phymode, status->rate); |
| 143 | if (rate) |
| 144 | rthdr->rate = rate->rate / 5; |
| 145 | rthdr->chan_freq = cpu_to_le16(status->freq); |
| 146 | rthdr->chan_flags = |
| 147 | status->phymode == MODE_IEEE80211A ? |
| 148 | cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ) : |
| 149 | cpu_to_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ); |
| 150 | rthdr->antsignal = status->ssi; |
| 151 | |
| 152 | out: |
| 153 | sdata->stats.rx_packets++; |
| 154 | sdata->stats.rx_bytes += skb->len; |
| 155 | |
| 156 | skb_set_mac_header(skb, 0); |
| 157 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 158 | skb->pkt_type = PACKET_OTHERHOST; |
| 159 | skb->protocol = htons(ETH_P_802_2); |
| 160 | memset(skb->cb, 0, sizeof(skb->cb)); |
| 161 | netif_rx(skb); |
| 162 | } |
| 163 | |
| 164 | static ieee80211_txrx_result |
| 165 | ieee80211_rx_h_monitor(struct ieee80211_txrx_data *rx) |
| 166 | { |
| 167 | if (rx->sdata->type == IEEE80211_IF_TYPE_MNTR) { |
| 168 | ieee80211_rx_monitor(rx->dev, rx->skb, rx->u.rx.status); |
| 169 | return TXRX_QUEUED; |
| 170 | } |
| 171 | |
| 172 | if (rx->u.rx.status->flag & RX_FLAG_RADIOTAP) |
| 173 | skb_pull(rx->skb, ieee80211_get_radiotap_len(rx->skb->data)); |
| 174 | |
| 175 | return TXRX_CONTINUE; |
| 176 | } |
| 177 | |
| 178 | static ieee80211_txrx_result |
| 179 | ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx) |
| 180 | { |
| 181 | struct ieee80211_local *local = rx->local; |
| 182 | struct sk_buff *skb = rx->skb; |
| 183 | |
| 184 | if (unlikely(local->sta_scanning != 0)) { |
| 185 | ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status); |
| 186 | return TXRX_QUEUED; |
| 187 | } |
| 188 | |
| 189 | if (unlikely(rx->u.rx.in_scan)) { |
| 190 | /* scanning finished during invoking of handlers */ |
| 191 | I802_DEBUG_INC(local->rx_handlers_drop_passive_scan); |
| 192 | return TXRX_DROP; |
| 193 | } |
| 194 | |
| 195 | return TXRX_CONTINUE; |
| 196 | } |
| 197 | |
| 198 | static ieee80211_txrx_result |
| 199 | ieee80211_rx_h_check(struct ieee80211_txrx_data *rx) |
| 200 | { |
| 201 | struct ieee80211_hdr *hdr; |
| 202 | int always_sta_key; |
| 203 | hdr = (struct ieee80211_hdr *) rx->skb->data; |
| 204 | |
| 205 | /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ |
| 206 | if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { |
| 207 | if (unlikely(rx->fc & IEEE80211_FCTL_RETRY && |
| 208 | rx->sta->last_seq_ctrl[rx->u.rx.queue] == |
| 209 | hdr->seq_ctrl)) { |
| 210 | if (rx->u.rx.ra_match) { |
| 211 | rx->local->dot11FrameDuplicateCount++; |
| 212 | rx->sta->num_duplicates++; |
| 213 | } |
| 214 | return TXRX_DROP; |
| 215 | } else |
| 216 | rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl; |
| 217 | } |
| 218 | |
| 219 | if ((rx->local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) && |
| 220 | rx->skb->len > FCS_LEN) |
| 221 | skb_trim(rx->skb, rx->skb->len - FCS_LEN); |
| 222 | |
| 223 | if (unlikely(rx->skb->len < 16)) { |
| 224 | I802_DEBUG_INC(rx->local->rx_handlers_drop_short); |
| 225 | return TXRX_DROP; |
| 226 | } |
| 227 | |
| 228 | if (!rx->u.rx.ra_match) |
| 229 | rx->skb->pkt_type = PACKET_OTHERHOST; |
| 230 | else if (compare_ether_addr(rx->dev->dev_addr, hdr->addr1) == 0) |
| 231 | rx->skb->pkt_type = PACKET_HOST; |
| 232 | else if (is_multicast_ether_addr(hdr->addr1)) { |
| 233 | if (is_broadcast_ether_addr(hdr->addr1)) |
| 234 | rx->skb->pkt_type = PACKET_BROADCAST; |
| 235 | else |
| 236 | rx->skb->pkt_type = PACKET_MULTICAST; |
| 237 | } else |
| 238 | rx->skb->pkt_type = PACKET_OTHERHOST; |
| 239 | |
| 240 | /* Drop disallowed frame classes based on STA auth/assoc state; |
| 241 | * IEEE 802.11, Chap 5.5. |
| 242 | * |
| 243 | * 80211.o does filtering only based on association state, i.e., it |
| 244 | * drops Class 3 frames from not associated stations. hostapd sends |
| 245 | * deauth/disassoc frames when needed. In addition, hostapd is |
| 246 | * responsible for filtering on both auth and assoc states. |
| 247 | */ |
| 248 | if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA || |
| 249 | ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL && |
| 250 | (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) && |
| 251 | rx->sdata->type != IEEE80211_IF_TYPE_IBSS && |
| 252 | (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) { |
| 253 | if ((!(rx->fc & IEEE80211_FCTL_FROMDS) && |
| 254 | !(rx->fc & IEEE80211_FCTL_TODS) && |
| 255 | (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) |
| 256 | || !rx->u.rx.ra_match) { |
| 257 | /* Drop IBSS frames and frames for other hosts |
| 258 | * silently. */ |
| 259 | return TXRX_DROP; |
| 260 | } |
| 261 | |
| 262 | if (!rx->local->apdev) |
| 263 | return TXRX_DROP; |
| 264 | |
| 265 | ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status, |
| 266 | ieee80211_msg_sta_not_assoc); |
| 267 | return TXRX_QUEUED; |
| 268 | } |
| 269 | |
| 270 | if (rx->sdata->type == IEEE80211_IF_TYPE_STA) |
| 271 | always_sta_key = 0; |
| 272 | else |
| 273 | always_sta_key = 1; |
| 274 | |
| 275 | if (rx->sta && rx->sta->key && always_sta_key) { |
| 276 | rx->key = rx->sta->key; |
| 277 | } else { |
| 278 | if (rx->sta && rx->sta->key) |
| 279 | rx->key = rx->sta->key; |
| 280 | else |
| 281 | rx->key = rx->sdata->default_key; |
| 282 | |
| 283 | if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) && |
| 284 | rx->fc & IEEE80211_FCTL_PROTECTED) { |
| 285 | int keyidx = ieee80211_wep_get_keyidx(rx->skb); |
| 286 | |
| 287 | if (keyidx >= 0 && keyidx < NUM_DEFAULT_KEYS && |
| 288 | (!rx->sta || !rx->sta->key || keyidx > 0)) |
| 289 | rx->key = rx->sdata->keys[keyidx]; |
| 290 | |
| 291 | if (!rx->key) { |
| 292 | if (!rx->u.rx.ra_match) |
| 293 | return TXRX_DROP; |
| 294 | printk(KERN_DEBUG "%s: RX WEP frame with " |
| 295 | "unknown keyidx %d (A1=" MAC_FMT " A2=" |
| 296 | MAC_FMT " A3=" MAC_FMT ")\n", |
| 297 | rx->dev->name, keyidx, |
| 298 | MAC_ARG(hdr->addr1), |
| 299 | MAC_ARG(hdr->addr2), |
| 300 | MAC_ARG(hdr->addr3)); |
| 301 | if (!rx->local->apdev) |
| 302 | return TXRX_DROP; |
| 303 | ieee80211_rx_mgmt( |
| 304 | rx->local, rx->skb, rx->u.rx.status, |
| 305 | ieee80211_msg_wep_frame_unknown_key); |
| 306 | return TXRX_QUEUED; |
| 307 | } |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | if (rx->fc & IEEE80211_FCTL_PROTECTED && rx->key && rx->u.rx.ra_match) { |
| 312 | rx->key->tx_rx_count++; |
| 313 | if (unlikely(rx->local->key_tx_rx_threshold && |
| 314 | rx->key->tx_rx_count > |
| 315 | rx->local->key_tx_rx_threshold)) { |
| 316 | ieee80211_key_threshold_notify(rx->dev, rx->key, |
| 317 | rx->sta); |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | return TXRX_CONTINUE; |
| 322 | } |
| 323 | |
| 324 | static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta) |
| 325 | { |
| 326 | struct ieee80211_sub_if_data *sdata; |
| 327 | sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev); |
| 328 | |
| 329 | if (sdata->bss) |
| 330 | atomic_inc(&sdata->bss->num_sta_ps); |
| 331 | sta->flags |= WLAN_STA_PS; |
| 332 | sta->pspoll = 0; |
| 333 | #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| 334 | printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d enters power " |
| 335 | "save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid); |
| 336 | #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| 337 | } |
| 338 | |
| 339 | static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta) |
| 340 | { |
| 341 | struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| 342 | struct sk_buff *skb; |
| 343 | int sent = 0; |
| 344 | struct ieee80211_sub_if_data *sdata; |
| 345 | struct ieee80211_tx_packet_data *pkt_data; |
| 346 | |
| 347 | sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev); |
| 348 | if (sdata->bss) |
| 349 | atomic_dec(&sdata->bss->num_sta_ps); |
| 350 | sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM); |
| 351 | sta->pspoll = 0; |
| 352 | if (!skb_queue_empty(&sta->ps_tx_buf)) { |
| 353 | if (local->ops->set_tim) |
| 354 | local->ops->set_tim(local_to_hw(local), sta->aid, 0); |
| 355 | if (sdata->bss) |
| 356 | bss_tim_clear(local, sdata->bss, sta->aid); |
| 357 | } |
| 358 | #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| 359 | printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d exits power " |
| 360 | "save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid); |
| 361 | #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| 362 | /* Send all buffered frames to the station */ |
| 363 | while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) { |
| 364 | pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; |
| 365 | sent++; |
| 366 | pkt_data->requeue = 1; |
| 367 | dev_queue_xmit(skb); |
| 368 | } |
| 369 | while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) { |
| 370 | pkt_data = (struct ieee80211_tx_packet_data *) skb->cb; |
| 371 | local->total_ps_buffered--; |
| 372 | sent++; |
| 373 | #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| 374 | printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d send PS frame " |
| 375 | "since STA not sleeping anymore\n", dev->name, |
| 376 | MAC_ARG(sta->addr), sta->aid); |
| 377 | #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| 378 | pkt_data->requeue = 1; |
| 379 | dev_queue_xmit(skb); |
| 380 | } |
| 381 | |
| 382 | return sent; |
| 383 | } |
| 384 | |
| 385 | static ieee80211_txrx_result |
| 386 | ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx) |
| 387 | { |
| 388 | struct sta_info *sta = rx->sta; |
| 389 | struct net_device *dev = rx->dev; |
| 390 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; |
| 391 | |
| 392 | if (!sta) |
| 393 | return TXRX_CONTINUE; |
| 394 | |
| 395 | /* Update last_rx only for IBSS packets which are for the current |
| 396 | * BSSID to avoid keeping the current IBSS network alive in cases where |
| 397 | * other STAs are using different BSSID. */ |
| 398 | if (rx->sdata->type == IEEE80211_IF_TYPE_IBSS) { |
| 399 | u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len); |
| 400 | if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0) |
| 401 | sta->last_rx = jiffies; |
| 402 | } else |
| 403 | if (!is_multicast_ether_addr(hdr->addr1) || |
| 404 | rx->sdata->type == IEEE80211_IF_TYPE_STA) { |
| 405 | /* Update last_rx only for unicast frames in order to prevent |
| 406 | * the Probe Request frames (the only broadcast frames from a |
| 407 | * STA in infrastructure mode) from keeping a connection alive. |
| 408 | */ |
| 409 | sta->last_rx = jiffies; |
| 410 | } |
| 411 | |
| 412 | if (!rx->u.rx.ra_match) |
| 413 | return TXRX_CONTINUE; |
| 414 | |
| 415 | sta->rx_fragments++; |
| 416 | sta->rx_bytes += rx->skb->len; |
| 417 | sta->last_rssi = (sta->last_rssi * 15 + |
| 418 | rx->u.rx.status->ssi) / 16; |
| 419 | sta->last_signal = (sta->last_signal * 15 + |
| 420 | rx->u.rx.status->signal) / 16; |
| 421 | sta->last_noise = (sta->last_noise * 15 + |
| 422 | rx->u.rx.status->noise) / 16; |
| 423 | |
| 424 | if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) { |
| 425 | /* Change STA power saving mode only in the end of a frame |
| 426 | * exchange sequence */ |
| 427 | if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM)) |
| 428 | rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta); |
| 429 | else if (!(sta->flags & WLAN_STA_PS) && |
| 430 | (rx->fc & IEEE80211_FCTL_PM)) |
| 431 | ap_sta_ps_start(dev, sta); |
| 432 | } |
| 433 | |
| 434 | /* Drop data::nullfunc frames silently, since they are used only to |
| 435 | * control station power saving mode. */ |
| 436 | if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && |
| 437 | (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) { |
| 438 | I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); |
| 439 | /* Update counter and free packet here to avoid counting this |
| 440 | * as a dropped packed. */ |
| 441 | sta->rx_packets++; |
| 442 | dev_kfree_skb(rx->skb); |
| 443 | return TXRX_QUEUED; |
| 444 | } |
| 445 | |
| 446 | return TXRX_CONTINUE; |
| 447 | } /* ieee80211_rx_h_sta_process */ |
| 448 | |
| 449 | static ieee80211_txrx_result |
| 450 | ieee80211_rx_h_wep_weak_iv_detection(struct ieee80211_txrx_data *rx) |
| 451 | { |
| 452 | if (!rx->sta || !(rx->fc & IEEE80211_FCTL_PROTECTED) || |
| 453 | (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA || |
| 454 | !rx->key || rx->key->alg != ALG_WEP || !rx->u.rx.ra_match) |
| 455 | return TXRX_CONTINUE; |
| 456 | |
| 457 | /* Check for weak IVs, if hwaccel did not remove IV from the frame */ |
| 458 | if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) || |
| 459 | rx->key->force_sw_encrypt) { |
| 460 | u8 *iv = ieee80211_wep_is_weak_iv(rx->skb, rx->key); |
| 461 | if (iv) { |
| 462 | rx->sta->wep_weak_iv_count++; |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | return TXRX_CONTINUE; |
| 467 | } |
| 468 | |
| 469 | static ieee80211_txrx_result |
| 470 | ieee80211_rx_h_wep_decrypt(struct ieee80211_txrx_data *rx) |
| 471 | { |
| 472 | /* If the device handles decryption totally, skip this test */ |
| 473 | if (rx->local->hw.flags & IEEE80211_HW_DEVICE_HIDES_WEP) |
| 474 | return TXRX_CONTINUE; |
| 475 | |
| 476 | if ((rx->key && rx->key->alg != ALG_WEP) || |
| 477 | !(rx->fc & IEEE80211_FCTL_PROTECTED) || |
| 478 | ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA && |
| 479 | ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || |
| 480 | (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH))) |
| 481 | return TXRX_CONTINUE; |
| 482 | |
| 483 | if (!rx->key) { |
| 484 | printk(KERN_DEBUG "%s: RX WEP frame, but no key set\n", |
| 485 | rx->dev->name); |
| 486 | return TXRX_DROP; |
| 487 | } |
| 488 | |
| 489 | if (!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED) || |
| 490 | rx->key->force_sw_encrypt) { |
| 491 | if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) { |
| 492 | printk(KERN_DEBUG "%s: RX WEP frame, decrypt " |
| 493 | "failed\n", rx->dev->name); |
| 494 | return TXRX_DROP; |
| 495 | } |
| 496 | } else if (rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) { |
| 497 | ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key); |
| 498 | /* remove ICV */ |
| 499 | skb_trim(rx->skb, rx->skb->len - 4); |
| 500 | } |
| 501 | |
| 502 | return TXRX_CONTINUE; |
| 503 | } |
| 504 | |
| 505 | static inline struct ieee80211_fragment_entry * |
| 506 | ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, |
| 507 | unsigned int frag, unsigned int seq, int rx_queue, |
| 508 | struct sk_buff **skb) |
| 509 | { |
| 510 | struct ieee80211_fragment_entry *entry; |
| 511 | int idx; |
| 512 | |
| 513 | idx = sdata->fragment_next; |
| 514 | entry = &sdata->fragments[sdata->fragment_next++]; |
| 515 | if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) |
| 516 | sdata->fragment_next = 0; |
| 517 | |
| 518 | if (!skb_queue_empty(&entry->skb_list)) { |
| 519 | #ifdef CONFIG_MAC80211_DEBUG |
| 520 | struct ieee80211_hdr *hdr = |
| 521 | (struct ieee80211_hdr *) entry->skb_list.next->data; |
| 522 | printk(KERN_DEBUG "%s: RX reassembly removed oldest " |
| 523 | "fragment entry (idx=%d age=%lu seq=%d last_frag=%d " |
| 524 | "addr1=" MAC_FMT " addr2=" MAC_FMT "\n", |
| 525 | sdata->dev->name, idx, |
| 526 | jiffies - entry->first_frag_time, entry->seq, |
| 527 | entry->last_frag, MAC_ARG(hdr->addr1), |
| 528 | MAC_ARG(hdr->addr2)); |
| 529 | #endif /* CONFIG_MAC80211_DEBUG */ |
| 530 | __skb_queue_purge(&entry->skb_list); |
| 531 | } |
| 532 | |
| 533 | __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ |
| 534 | *skb = NULL; |
| 535 | entry->first_frag_time = jiffies; |
| 536 | entry->seq = seq; |
| 537 | entry->rx_queue = rx_queue; |
| 538 | entry->last_frag = frag; |
| 539 | entry->ccmp = 0; |
| 540 | entry->extra_len = 0; |
| 541 | |
| 542 | return entry; |
| 543 | } |
| 544 | |
| 545 | static inline struct ieee80211_fragment_entry * |
| 546 | ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, |
| 547 | u16 fc, unsigned int frag, unsigned int seq, |
| 548 | int rx_queue, struct ieee80211_hdr *hdr) |
| 549 | { |
| 550 | struct ieee80211_fragment_entry *entry; |
| 551 | int i, idx; |
| 552 | |
| 553 | idx = sdata->fragment_next; |
| 554 | for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { |
| 555 | struct ieee80211_hdr *f_hdr; |
| 556 | u16 f_fc; |
| 557 | |
| 558 | idx--; |
| 559 | if (idx < 0) |
| 560 | idx = IEEE80211_FRAGMENT_MAX - 1; |
| 561 | |
| 562 | entry = &sdata->fragments[idx]; |
| 563 | if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || |
| 564 | entry->rx_queue != rx_queue || |
| 565 | entry->last_frag + 1 != frag) |
| 566 | continue; |
| 567 | |
| 568 | f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data; |
| 569 | f_fc = le16_to_cpu(f_hdr->frame_control); |
| 570 | |
| 571 | if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) || |
| 572 | compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 || |
| 573 | compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0) |
| 574 | continue; |
| 575 | |
| 576 | if (entry->first_frag_time + 2 * HZ < jiffies) { |
| 577 | __skb_queue_purge(&entry->skb_list); |
| 578 | continue; |
| 579 | } |
| 580 | return entry; |
| 581 | } |
| 582 | |
| 583 | return NULL; |
| 584 | } |
| 585 | |
| 586 | static ieee80211_txrx_result |
| 587 | ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx) |
| 588 | { |
| 589 | struct ieee80211_hdr *hdr; |
| 590 | u16 sc; |
| 591 | unsigned int frag, seq; |
| 592 | struct ieee80211_fragment_entry *entry; |
| 593 | struct sk_buff *skb; |
| 594 | |
| 595 | hdr = (struct ieee80211_hdr *) rx->skb->data; |
| 596 | sc = le16_to_cpu(hdr->seq_ctrl); |
| 597 | frag = sc & IEEE80211_SCTL_FRAG; |
| 598 | |
| 599 | if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) || |
| 600 | (rx->skb)->len < 24 || |
| 601 | is_multicast_ether_addr(hdr->addr1))) { |
| 602 | /* not fragmented */ |
| 603 | goto out; |
| 604 | } |
| 605 | I802_DEBUG_INC(rx->local->rx_handlers_fragments); |
| 606 | |
| 607 | seq = (sc & IEEE80211_SCTL_SEQ) >> 4; |
| 608 | |
| 609 | if (frag == 0) { |
| 610 | /* This is the first fragment of a new frame. */ |
| 611 | entry = ieee80211_reassemble_add(rx->sdata, frag, seq, |
| 612 | rx->u.rx.queue, &(rx->skb)); |
| 613 | if (rx->key && rx->key->alg == ALG_CCMP && |
| 614 | (rx->fc & IEEE80211_FCTL_PROTECTED)) { |
| 615 | /* Store CCMP PN so that we can verify that the next |
| 616 | * fragment has a sequential PN value. */ |
| 617 | entry->ccmp = 1; |
| 618 | memcpy(entry->last_pn, |
| 619 | rx->key->u.ccmp.rx_pn[rx->u.rx.queue], |
| 620 | CCMP_PN_LEN); |
| 621 | } |
| 622 | return TXRX_QUEUED; |
| 623 | } |
| 624 | |
| 625 | /* This is a fragment for a frame that should already be pending in |
| 626 | * fragment cache. Add this fragment to the end of the pending entry. |
| 627 | */ |
| 628 | entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq, |
| 629 | rx->u.rx.queue, hdr); |
| 630 | if (!entry) { |
| 631 | I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); |
| 632 | return TXRX_DROP; |
| 633 | } |
| 634 | |
| 635 | /* Verify that MPDUs within one MSDU have sequential PN values. |
| 636 | * (IEEE 802.11i, 8.3.3.4.5) */ |
| 637 | if (entry->ccmp) { |
| 638 | int i; |
| 639 | u8 pn[CCMP_PN_LEN], *rpn; |
| 640 | if (!rx->key || rx->key->alg != ALG_CCMP) |
| 641 | return TXRX_DROP; |
| 642 | memcpy(pn, entry->last_pn, CCMP_PN_LEN); |
| 643 | for (i = CCMP_PN_LEN - 1; i >= 0; i--) { |
| 644 | pn[i]++; |
| 645 | if (pn[i]) |
| 646 | break; |
| 647 | } |
| 648 | rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue]; |
| 649 | if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) { |
| 650 | printk(KERN_DEBUG "%s: defrag: CCMP PN not sequential" |
| 651 | " A2=" MAC_FMT " PN=%02x%02x%02x%02x%02x%02x " |
| 652 | "(expected %02x%02x%02x%02x%02x%02x)\n", |
| 653 | rx->dev->name, MAC_ARG(hdr->addr2), |
| 654 | rpn[0], rpn[1], rpn[2], rpn[3], rpn[4], rpn[5], |
| 655 | pn[0], pn[1], pn[2], pn[3], pn[4], pn[5]); |
| 656 | return TXRX_DROP; |
| 657 | } |
| 658 | memcpy(entry->last_pn, pn, CCMP_PN_LEN); |
| 659 | } |
| 660 | |
| 661 | skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc)); |
| 662 | __skb_queue_tail(&entry->skb_list, rx->skb); |
| 663 | entry->last_frag = frag; |
| 664 | entry->extra_len += rx->skb->len; |
| 665 | if (rx->fc & IEEE80211_FCTL_MOREFRAGS) { |
| 666 | rx->skb = NULL; |
| 667 | return TXRX_QUEUED; |
| 668 | } |
| 669 | |
| 670 | rx->skb = __skb_dequeue(&entry->skb_list); |
| 671 | if (skb_tailroom(rx->skb) < entry->extra_len) { |
| 672 | I802_DEBUG_INC(rx->local->rx_expand_skb_head2); |
| 673 | if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, |
| 674 | GFP_ATOMIC))) { |
| 675 | I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); |
| 676 | __skb_queue_purge(&entry->skb_list); |
| 677 | return TXRX_DROP; |
| 678 | } |
| 679 | } |
| 680 | while ((skb = __skb_dequeue(&entry->skb_list))) { |
| 681 | memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); |
| 682 | dev_kfree_skb(skb); |
| 683 | } |
| 684 | |
| 685 | /* Complete frame has been reassembled - process it now */ |
| 686 | rx->fragmented = 1; |
| 687 | |
| 688 | out: |
| 689 | if (rx->sta) |
| 690 | rx->sta->rx_packets++; |
| 691 | if (is_multicast_ether_addr(hdr->addr1)) |
| 692 | rx->local->dot11MulticastReceivedFrameCount++; |
| 693 | else |
| 694 | ieee80211_led_rx(rx->local); |
| 695 | return TXRX_CONTINUE; |
| 696 | } |
| 697 | |
| 698 | static ieee80211_txrx_result |
| 699 | ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx) |
| 700 | { |
| 701 | struct sk_buff *skb; |
| 702 | int no_pending_pkts; |
| 703 | |
| 704 | if (likely(!rx->sta || |
| 705 | (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL || |
| 706 | (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL || |
| 707 | !rx->u.rx.ra_match)) |
| 708 | return TXRX_CONTINUE; |
| 709 | |
| 710 | skb = skb_dequeue(&rx->sta->tx_filtered); |
| 711 | if (!skb) { |
| 712 | skb = skb_dequeue(&rx->sta->ps_tx_buf); |
| 713 | if (skb) |
| 714 | rx->local->total_ps_buffered--; |
| 715 | } |
| 716 | no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) && |
| 717 | skb_queue_empty(&rx->sta->ps_tx_buf); |
| 718 | |
| 719 | if (skb) { |
| 720 | struct ieee80211_hdr *hdr = |
| 721 | (struct ieee80211_hdr *) skb->data; |
| 722 | |
| 723 | /* tell TX path to send one frame even though the STA may |
| 724 | * still remain is PS mode after this frame exchange */ |
| 725 | rx->sta->pspoll = 1; |
| 726 | |
| 727 | #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| 728 | printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS Poll (entries " |
| 729 | "after %d)\n", |
| 730 | MAC_ARG(rx->sta->addr), rx->sta->aid, |
| 731 | skb_queue_len(&rx->sta->ps_tx_buf)); |
| 732 | #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| 733 | |
| 734 | /* Use MoreData flag to indicate whether there are more |
| 735 | * buffered frames for this STA */ |
| 736 | if (no_pending_pkts) { |
| 737 | hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA); |
| 738 | rx->sta->flags &= ~WLAN_STA_TIM; |
| 739 | } else |
| 740 | hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); |
| 741 | |
| 742 | dev_queue_xmit(skb); |
| 743 | |
| 744 | if (no_pending_pkts) { |
| 745 | if (rx->local->ops->set_tim) |
| 746 | rx->local->ops->set_tim(local_to_hw(rx->local), |
| 747 | rx->sta->aid, 0); |
| 748 | if (rx->sdata->bss) |
| 749 | bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid); |
| 750 | } |
| 751 | #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| 752 | } else if (!rx->u.rx.sent_ps_buffered) { |
| 753 | printk(KERN_DEBUG "%s: STA " MAC_FMT " sent PS Poll even " |
| 754 | "though there is no buffered frames for it\n", |
| 755 | rx->dev->name, MAC_ARG(rx->sta->addr)); |
| 756 | #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| 757 | |
| 758 | } |
| 759 | |
| 760 | /* Free PS Poll skb here instead of returning TXRX_DROP that would |
| 761 | * count as an dropped frame. */ |
| 762 | dev_kfree_skb(rx->skb); |
| 763 | |
| 764 | return TXRX_QUEUED; |
| 765 | } |
| 766 | |
| 767 | static ieee80211_txrx_result |
| 768 | ieee80211_rx_h_802_1x_pae(struct ieee80211_txrx_data *rx) |
| 769 | { |
| 770 | if (rx->sdata->eapol && ieee80211_is_eapol(rx->skb) && |
| 771 | rx->sdata->type != IEEE80211_IF_TYPE_STA && rx->u.rx.ra_match) { |
| 772 | /* Pass both encrypted and unencrypted EAPOL frames to user |
| 773 | * space for processing. */ |
| 774 | if (!rx->local->apdev) |
| 775 | return TXRX_DROP; |
| 776 | ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status, |
| 777 | ieee80211_msg_normal); |
| 778 | return TXRX_QUEUED; |
| 779 | } |
| 780 | |
| 781 | if (unlikely(rx->sdata->ieee802_1x && |
| 782 | (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && |
| 783 | (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC && |
| 784 | (!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)) && |
| 785 | !ieee80211_is_eapol(rx->skb))) { |
| 786 | #ifdef CONFIG_MAC80211_DEBUG |
| 787 | struct ieee80211_hdr *hdr = |
| 788 | (struct ieee80211_hdr *) rx->skb->data; |
| 789 | printk(KERN_DEBUG "%s: dropped frame from " MAC_FMT |
| 790 | " (unauthorized port)\n", rx->dev->name, |
| 791 | MAC_ARG(hdr->addr2)); |
| 792 | #endif /* CONFIG_MAC80211_DEBUG */ |
| 793 | return TXRX_DROP; |
| 794 | } |
| 795 | |
| 796 | return TXRX_CONTINUE; |
| 797 | } |
| 798 | |
| 799 | static ieee80211_txrx_result |
| 800 | ieee80211_rx_h_drop_unencrypted(struct ieee80211_txrx_data *rx) |
| 801 | { |
| 802 | /* If the device handles decryption totally, skip this test */ |
| 803 | if (rx->local->hw.flags & IEEE80211_HW_DEVICE_HIDES_WEP) |
| 804 | return TXRX_CONTINUE; |
| 805 | |
| 806 | /* Drop unencrypted frames if key is set. */ |
| 807 | if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) && |
| 808 | (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && |
| 809 | (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC && |
| 810 | (rx->key || rx->sdata->drop_unencrypted) && |
| 811 | (rx->sdata->eapol == 0 || |
| 812 | !ieee80211_is_eapol(rx->skb)))) { |
| 813 | printk(KERN_DEBUG "%s: RX non-WEP frame, but expected " |
| 814 | "encryption\n", rx->dev->name); |
| 815 | return TXRX_DROP; |
| 816 | } |
| 817 | return TXRX_CONTINUE; |
| 818 | } |
| 819 | |
| 820 | static ieee80211_txrx_result |
| 821 | ieee80211_rx_h_data(struct ieee80211_txrx_data *rx) |
| 822 | { |
| 823 | struct net_device *dev = rx->dev; |
| 824 | struct ieee80211_local *local = rx->local; |
| 825 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; |
| 826 | u16 fc, hdrlen, ethertype; |
| 827 | u8 *payload; |
| 828 | u8 dst[ETH_ALEN]; |
| 829 | u8 src[ETH_ALEN]; |
| 830 | struct sk_buff *skb = rx->skb, *skb2; |
| 831 | struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| 832 | |
| 833 | fc = rx->fc; |
| 834 | if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)) |
| 835 | return TXRX_CONTINUE; |
| 836 | |
| 837 | if (unlikely(!WLAN_FC_DATA_PRESENT(fc))) |
| 838 | return TXRX_DROP; |
| 839 | |
| 840 | hdrlen = ieee80211_get_hdrlen(fc); |
| 841 | |
| 842 | /* convert IEEE 802.11 header + possible LLC headers into Ethernet |
| 843 | * header |
| 844 | * IEEE 802.11 address fields: |
| 845 | * ToDS FromDS Addr1 Addr2 Addr3 Addr4 |
| 846 | * 0 0 DA SA BSSID n/a |
| 847 | * 0 1 DA BSSID SA n/a |
| 848 | * 1 0 BSSID SA DA n/a |
| 849 | * 1 1 RA TA DA SA |
| 850 | */ |
| 851 | |
| 852 | switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { |
| 853 | case IEEE80211_FCTL_TODS: |
| 854 | /* BSSID SA DA */ |
| 855 | memcpy(dst, hdr->addr3, ETH_ALEN); |
| 856 | memcpy(src, hdr->addr2, ETH_ALEN); |
| 857 | |
| 858 | if (unlikely(sdata->type != IEEE80211_IF_TYPE_AP && |
| 859 | sdata->type != IEEE80211_IF_TYPE_VLAN)) { |
| 860 | printk(KERN_DEBUG "%s: dropped ToDS frame (BSSID=" |
| 861 | MAC_FMT " SA=" MAC_FMT " DA=" MAC_FMT ")\n", |
| 862 | dev->name, MAC_ARG(hdr->addr1), |
| 863 | MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr3)); |
| 864 | return TXRX_DROP; |
| 865 | } |
| 866 | break; |
| 867 | case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): |
| 868 | /* RA TA DA SA */ |
| 869 | memcpy(dst, hdr->addr3, ETH_ALEN); |
| 870 | memcpy(src, hdr->addr4, ETH_ALEN); |
| 871 | |
| 872 | if (unlikely(sdata->type != IEEE80211_IF_TYPE_WDS)) { |
| 873 | printk(KERN_DEBUG "%s: dropped FromDS&ToDS frame (RA=" |
| 874 | MAC_FMT " TA=" MAC_FMT " DA=" MAC_FMT " SA=" |
| 875 | MAC_FMT ")\n", |
| 876 | rx->dev->name, MAC_ARG(hdr->addr1), |
| 877 | MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr3), |
| 878 | MAC_ARG(hdr->addr4)); |
| 879 | return TXRX_DROP; |
| 880 | } |
| 881 | break; |
| 882 | case IEEE80211_FCTL_FROMDS: |
| 883 | /* DA BSSID SA */ |
| 884 | memcpy(dst, hdr->addr1, ETH_ALEN); |
| 885 | memcpy(src, hdr->addr3, ETH_ALEN); |
| 886 | |
| 887 | if (sdata->type != IEEE80211_IF_TYPE_STA) { |
| 888 | return TXRX_DROP; |
| 889 | } |
| 890 | break; |
| 891 | case 0: |
| 892 | /* DA SA BSSID */ |
| 893 | memcpy(dst, hdr->addr1, ETH_ALEN); |
| 894 | memcpy(src, hdr->addr2, ETH_ALEN); |
| 895 | |
| 896 | if (sdata->type != IEEE80211_IF_TYPE_IBSS) { |
| 897 | if (net_ratelimit()) { |
| 898 | printk(KERN_DEBUG "%s: dropped IBSS frame (DA=" |
| 899 | MAC_FMT " SA=" MAC_FMT " BSSID=" MAC_FMT |
| 900 | ")\n", |
| 901 | dev->name, MAC_ARG(hdr->addr1), |
| 902 | MAC_ARG(hdr->addr2), |
| 903 | MAC_ARG(hdr->addr3)); |
| 904 | } |
| 905 | return TXRX_DROP; |
| 906 | } |
| 907 | break; |
| 908 | } |
| 909 | |
| 910 | payload = skb->data + hdrlen; |
| 911 | |
| 912 | if (unlikely(skb->len - hdrlen < 8)) { |
| 913 | if (net_ratelimit()) { |
| 914 | printk(KERN_DEBUG "%s: RX too short data frame " |
| 915 | "payload\n", dev->name); |
| 916 | } |
| 917 | return TXRX_DROP; |
| 918 | } |
| 919 | |
| 920 | ethertype = (payload[6] << 8) | payload[7]; |
| 921 | |
| 922 | if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && |
| 923 | ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || |
| 924 | compare_ether_addr(payload, bridge_tunnel_header) == 0)) { |
| 925 | /* remove RFC1042 or Bridge-Tunnel encapsulation and |
| 926 | * replace EtherType */ |
| 927 | skb_pull(skb, hdrlen + 6); |
| 928 | memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); |
| 929 | memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); |
| 930 | } else { |
| 931 | struct ethhdr *ehdr; |
| 932 | __be16 len; |
| 933 | skb_pull(skb, hdrlen); |
| 934 | len = htons(skb->len); |
| 935 | ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); |
| 936 | memcpy(ehdr->h_dest, dst, ETH_ALEN); |
| 937 | memcpy(ehdr->h_source, src, ETH_ALEN); |
| 938 | ehdr->h_proto = len; |
| 939 | } |
| 940 | skb->dev = dev; |
| 941 | |
| 942 | skb2 = NULL; |
| 943 | |
| 944 | sdata->stats.rx_packets++; |
| 945 | sdata->stats.rx_bytes += skb->len; |
| 946 | |
| 947 | if (local->bridge_packets && (sdata->type == IEEE80211_IF_TYPE_AP |
| 948 | || sdata->type == IEEE80211_IF_TYPE_VLAN) && rx->u.rx.ra_match) { |
| 949 | if (is_multicast_ether_addr(skb->data)) { |
| 950 | /* send multicast frames both to higher layers in |
| 951 | * local net stack and back to the wireless media */ |
| 952 | skb2 = skb_copy(skb, GFP_ATOMIC); |
| 953 | if (!skb2) |
| 954 | printk(KERN_DEBUG "%s: failed to clone " |
| 955 | "multicast frame\n", dev->name); |
| 956 | } else { |
| 957 | struct sta_info *dsta; |
| 958 | dsta = sta_info_get(local, skb->data); |
| 959 | if (dsta && !dsta->dev) { |
| 960 | printk(KERN_DEBUG "Station with null dev " |
| 961 | "structure!\n"); |
| 962 | } else if (dsta && dsta->dev == dev) { |
| 963 | /* Destination station is associated to this |
| 964 | * AP, so send the frame directly to it and |
| 965 | * do not pass the frame to local net stack. |
| 966 | */ |
| 967 | skb2 = skb; |
| 968 | skb = NULL; |
| 969 | } |
| 970 | if (dsta) |
| 971 | sta_info_put(dsta); |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | if (skb) { |
| 976 | /* deliver to local stack */ |
| 977 | skb->protocol = eth_type_trans(skb, dev); |
| 978 | memset(skb->cb, 0, sizeof(skb->cb)); |
| 979 | netif_rx(skb); |
| 980 | } |
| 981 | |
| 982 | if (skb2) { |
| 983 | /* send to wireless media */ |
| 984 | skb2->protocol = __constant_htons(ETH_P_802_3); |
| 985 | skb_set_network_header(skb2, 0); |
| 986 | skb_set_mac_header(skb2, 0); |
| 987 | dev_queue_xmit(skb2); |
| 988 | } |
| 989 | |
| 990 | return TXRX_QUEUED; |
| 991 | } |
| 992 | |
| 993 | static ieee80211_txrx_result |
| 994 | ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx) |
| 995 | { |
| 996 | struct ieee80211_sub_if_data *sdata; |
| 997 | |
| 998 | if (!rx->u.rx.ra_match) |
| 999 | return TXRX_DROP; |
| 1000 | |
| 1001 | sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); |
| 1002 | if ((sdata->type == IEEE80211_IF_TYPE_STA || |
| 1003 | sdata->type == IEEE80211_IF_TYPE_IBSS) && |
| 1004 | !rx->local->user_space_mlme) { |
| 1005 | ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status); |
| 1006 | } else { |
| 1007 | /* Management frames are sent to hostapd for processing */ |
| 1008 | if (!rx->local->apdev) |
| 1009 | return TXRX_DROP; |
| 1010 | ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status, |
| 1011 | ieee80211_msg_normal); |
| 1012 | } |
| 1013 | return TXRX_QUEUED; |
| 1014 | } |
| 1015 | |
| 1016 | static inline ieee80211_txrx_result __ieee80211_invoke_rx_handlers( |
| 1017 | struct ieee80211_local *local, |
| 1018 | ieee80211_rx_handler *handlers, |
| 1019 | struct ieee80211_txrx_data *rx, |
| 1020 | struct sta_info *sta) |
| 1021 | { |
| 1022 | ieee80211_rx_handler *handler; |
| 1023 | ieee80211_txrx_result res = TXRX_DROP; |
| 1024 | |
| 1025 | for (handler = handlers; *handler != NULL; handler++) { |
| 1026 | res = (*handler)(rx); |
| 1027 | if (res != TXRX_CONTINUE) { |
| 1028 | if (res == TXRX_DROP) { |
| 1029 | I802_DEBUG_INC(local->rx_handlers_drop); |
| 1030 | if (sta) |
| 1031 | sta->rx_dropped++; |
| 1032 | } |
| 1033 | if (res == TXRX_QUEUED) |
| 1034 | I802_DEBUG_INC(local->rx_handlers_queued); |
| 1035 | break; |
| 1036 | } |
| 1037 | } |
| 1038 | |
| 1039 | if (res == TXRX_DROP) { |
| 1040 | dev_kfree_skb(rx->skb); |
| 1041 | } |
| 1042 | return res; |
| 1043 | } |
| 1044 | |
| 1045 | static inline void ieee80211_invoke_rx_handlers(struct ieee80211_local *local, |
| 1046 | ieee80211_rx_handler *handlers, |
| 1047 | struct ieee80211_txrx_data *rx, |
| 1048 | struct sta_info *sta) |
| 1049 | { |
| 1050 | if (__ieee80211_invoke_rx_handlers(local, handlers, rx, sta) == |
| 1051 | TXRX_CONTINUE) |
| 1052 | dev_kfree_skb(rx->skb); |
| 1053 | } |
| 1054 | |
| 1055 | static void ieee80211_rx_michael_mic_report(struct net_device *dev, |
| 1056 | struct ieee80211_hdr *hdr, |
| 1057 | struct sta_info *sta, |
| 1058 | struct ieee80211_txrx_data *rx) |
| 1059 | { |
| 1060 | int keyidx, hdrlen; |
| 1061 | |
| 1062 | hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb); |
| 1063 | if (rx->skb->len >= hdrlen + 4) |
| 1064 | keyidx = rx->skb->data[hdrlen + 3] >> 6; |
| 1065 | else |
| 1066 | keyidx = -1; |
| 1067 | |
| 1068 | /* TODO: verify that this is not triggered by fragmented |
| 1069 | * frames (hw does not verify MIC for them). */ |
| 1070 | printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC " |
| 1071 | "failure from " MAC_FMT " to " MAC_FMT " keyidx=%d\n", |
| 1072 | dev->name, MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr1), keyidx); |
| 1073 | |
| 1074 | if (!sta) { |
| 1075 | /* Some hardware versions seem to generate incorrect |
| 1076 | * Michael MIC reports; ignore them to avoid triggering |
| 1077 | * countermeasures. */ |
| 1078 | printk(KERN_DEBUG "%s: ignored spurious Michael MIC " |
| 1079 | "error for unknown address " MAC_FMT "\n", |
| 1080 | dev->name, MAC_ARG(hdr->addr2)); |
| 1081 | goto ignore; |
| 1082 | } |
| 1083 | |
| 1084 | if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) { |
| 1085 | printk(KERN_DEBUG "%s: ignored spurious Michael MIC " |
| 1086 | "error for a frame with no ISWEP flag (src " |
| 1087 | MAC_FMT ")\n", dev->name, MAC_ARG(hdr->addr2)); |
| 1088 | goto ignore; |
| 1089 | } |
| 1090 | |
| 1091 | if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) && |
| 1092 | rx->sdata->type == IEEE80211_IF_TYPE_AP) { |
| 1093 | keyidx = ieee80211_wep_get_keyidx(rx->skb); |
| 1094 | /* AP with Pairwise keys support should never receive Michael |
| 1095 | * MIC errors for non-zero keyidx because these are reserved |
| 1096 | * for group keys and only the AP is sending real multicast |
| 1097 | * frames in BSS. */ |
| 1098 | if (keyidx) { |
| 1099 | printk(KERN_DEBUG "%s: ignored Michael MIC error for " |
| 1100 | "a frame with non-zero keyidx (%d) (src " MAC_FMT |
| 1101 | ")\n", dev->name, keyidx, MAC_ARG(hdr->addr2)); |
| 1102 | goto ignore; |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA && |
| 1107 | ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || |
| 1108 | (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) { |
| 1109 | printk(KERN_DEBUG "%s: ignored spurious Michael MIC " |
| 1110 | "error for a frame that cannot be encrypted " |
| 1111 | "(fc=0x%04x) (src " MAC_FMT ")\n", |
| 1112 | dev->name, rx->fc, MAC_ARG(hdr->addr2)); |
| 1113 | goto ignore; |
| 1114 | } |
| 1115 | |
| 1116 | do { |
| 1117 | union iwreq_data wrqu; |
| 1118 | char *buf = kmalloc(128, GFP_ATOMIC); |
| 1119 | if (!buf) |
| 1120 | break; |
| 1121 | |
| 1122 | /* TODO: needed parameters: count, key type, TSC */ |
| 1123 | sprintf(buf, "MLME-MICHAELMICFAILURE.indication(" |
| 1124 | "keyid=%d %scast addr=" MAC_FMT ")", |
| 1125 | keyidx, hdr->addr1[0] & 0x01 ? "broad" : "uni", |
| 1126 | MAC_ARG(hdr->addr2)); |
| 1127 | memset(&wrqu, 0, sizeof(wrqu)); |
| 1128 | wrqu.data.length = strlen(buf); |
| 1129 | wireless_send_event(rx->dev, IWEVCUSTOM, &wrqu, buf); |
| 1130 | kfree(buf); |
| 1131 | } while (0); |
| 1132 | |
| 1133 | /* TODO: consider verifying the MIC error report with software |
| 1134 | * implementation if we get too many spurious reports from the |
| 1135 | * hardware. */ |
| 1136 | if (!rx->local->apdev) |
| 1137 | goto ignore; |
| 1138 | ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status, |
| 1139 | ieee80211_msg_michael_mic_failure); |
| 1140 | return; |
| 1141 | |
| 1142 | ignore: |
| 1143 | dev_kfree_skb(rx->skb); |
| 1144 | rx->skb = NULL; |
| 1145 | } |
| 1146 | |
| 1147 | ieee80211_rx_handler ieee80211_rx_handlers[] = |
| 1148 | { |
| 1149 | ieee80211_rx_h_if_stats, |
| 1150 | ieee80211_rx_h_monitor, |
| 1151 | ieee80211_rx_h_passive_scan, |
| 1152 | ieee80211_rx_h_check, |
| 1153 | ieee80211_rx_h_sta_process, |
| 1154 | ieee80211_rx_h_ccmp_decrypt, |
| 1155 | ieee80211_rx_h_tkip_decrypt, |
| 1156 | ieee80211_rx_h_wep_weak_iv_detection, |
| 1157 | ieee80211_rx_h_wep_decrypt, |
| 1158 | ieee80211_rx_h_defragment, |
| 1159 | ieee80211_rx_h_ps_poll, |
| 1160 | ieee80211_rx_h_michael_mic_verify, |
| 1161 | /* this must be after decryption - so header is counted in MPDU mic |
| 1162 | * must be before pae and data, so QOS_DATA format frames |
| 1163 | * are not passed to user space by these functions |
| 1164 | */ |
| 1165 | ieee80211_rx_h_remove_qos_control, |
| 1166 | ieee80211_rx_h_802_1x_pae, |
| 1167 | ieee80211_rx_h_drop_unencrypted, |
| 1168 | ieee80211_rx_h_data, |
| 1169 | ieee80211_rx_h_mgmt, |
| 1170 | NULL |
| 1171 | }; |
| 1172 | |
| 1173 | /* main receive path */ |
| 1174 | |
| 1175 | /* |
| 1176 | * This is the receive path handler. It is called by a low level driver when an |
| 1177 | * 802.11 MPDU is received from the hardware. |
| 1178 | */ |
| 1179 | void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, |
| 1180 | struct ieee80211_rx_status *status) |
| 1181 | { |
| 1182 | struct ieee80211_local *local = hw_to_local(hw); |
| 1183 | struct ieee80211_sub_if_data *sdata; |
| 1184 | struct sta_info *sta; |
| 1185 | struct ieee80211_hdr *hdr; |
| 1186 | struct ieee80211_txrx_data rx; |
| 1187 | u16 type; |
| 1188 | int multicast; |
| 1189 | int radiotap_len = 0; |
| 1190 | |
| 1191 | if (status->flag & RX_FLAG_RADIOTAP) { |
| 1192 | radiotap_len = ieee80211_get_radiotap_len(skb->data); |
| 1193 | skb_pull(skb, radiotap_len); |
| 1194 | } |
| 1195 | |
| 1196 | hdr = (struct ieee80211_hdr *) skb->data; |
| 1197 | memset(&rx, 0, sizeof(rx)); |
| 1198 | rx.skb = skb; |
| 1199 | rx.local = local; |
| 1200 | |
| 1201 | rx.u.rx.status = status; |
| 1202 | rx.fc = skb->len >= 2 ? le16_to_cpu(hdr->frame_control) : 0; |
| 1203 | type = rx.fc & IEEE80211_FCTL_FTYPE; |
| 1204 | if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT) |
| 1205 | local->dot11ReceivedFragmentCount++; |
| 1206 | multicast = is_multicast_ether_addr(hdr->addr1); |
| 1207 | |
| 1208 | if (skb->len >= 16) |
| 1209 | sta = rx.sta = sta_info_get(local, hdr->addr2); |
| 1210 | else |
| 1211 | sta = rx.sta = NULL; |
| 1212 | |
| 1213 | if (sta) { |
| 1214 | rx.dev = sta->dev; |
| 1215 | rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev); |
| 1216 | } |
| 1217 | |
| 1218 | if ((status->flag & RX_FLAG_MMIC_ERROR)) { |
| 1219 | ieee80211_rx_michael_mic_report(local->mdev, hdr, sta, &rx); |
| 1220 | goto end; |
| 1221 | } |
| 1222 | |
| 1223 | if (unlikely(local->sta_scanning)) |
| 1224 | rx.u.rx.in_scan = 1; |
| 1225 | |
| 1226 | if (__ieee80211_invoke_rx_handlers(local, local->rx_pre_handlers, &rx, |
| 1227 | sta) != TXRX_CONTINUE) |
| 1228 | goto end; |
| 1229 | skb = rx.skb; |
| 1230 | |
| 1231 | skb_push(skb, radiotap_len); |
| 1232 | if (sta && !sta->assoc_ap && !(sta->flags & WLAN_STA_WDS) && |
| 1233 | !local->iff_promiscs && !multicast) { |
| 1234 | rx.u.rx.ra_match = 1; |
| 1235 | ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx, |
| 1236 | sta); |
| 1237 | } else { |
| 1238 | struct ieee80211_sub_if_data *prev = NULL; |
| 1239 | struct sk_buff *skb_new; |
| 1240 | u8 *bssid = ieee80211_get_bssid(hdr, skb->len - radiotap_len); |
| 1241 | |
| 1242 | read_lock(&local->sub_if_lock); |
| 1243 | list_for_each_entry(sdata, &local->sub_if_list, list) { |
| 1244 | rx.u.rx.ra_match = 1; |
| 1245 | switch (sdata->type) { |
| 1246 | case IEEE80211_IF_TYPE_STA: |
| 1247 | if (!bssid) |
| 1248 | continue; |
| 1249 | if (!ieee80211_bssid_match(bssid, |
| 1250 | sdata->u.sta.bssid)) { |
| 1251 | if (!rx.u.rx.in_scan) |
| 1252 | continue; |
| 1253 | rx.u.rx.ra_match = 0; |
| 1254 | } else if (!multicast && |
| 1255 | compare_ether_addr(sdata->dev->dev_addr, |
| 1256 | hdr->addr1) != 0) { |
| 1257 | if (!sdata->promisc) |
| 1258 | continue; |
| 1259 | rx.u.rx.ra_match = 0; |
| 1260 | } |
| 1261 | break; |
| 1262 | case IEEE80211_IF_TYPE_IBSS: |
| 1263 | if (!bssid) |
| 1264 | continue; |
| 1265 | if (!ieee80211_bssid_match(bssid, |
| 1266 | sdata->u.sta.bssid)) { |
| 1267 | if (!rx.u.rx.in_scan) |
| 1268 | continue; |
| 1269 | rx.u.rx.ra_match = 0; |
| 1270 | } else if (!multicast && |
| 1271 | compare_ether_addr(sdata->dev->dev_addr, |
| 1272 | hdr->addr1) != 0) { |
| 1273 | if (!sdata->promisc) |
| 1274 | continue; |
| 1275 | rx.u.rx.ra_match = 0; |
| 1276 | } else if (!sta) |
| 1277 | sta = rx.sta = |
| 1278 | ieee80211_ibss_add_sta(sdata->dev, |
| 1279 | skb, bssid, |
| 1280 | hdr->addr2); |
| 1281 | break; |
| 1282 | case IEEE80211_IF_TYPE_AP: |
| 1283 | if (!bssid) { |
| 1284 | if (compare_ether_addr(sdata->dev->dev_addr, |
| 1285 | hdr->addr1) != 0) |
| 1286 | continue; |
| 1287 | } else if (!ieee80211_bssid_match(bssid, |
| 1288 | sdata->dev->dev_addr)) { |
| 1289 | if (!rx.u.rx.in_scan) |
| 1290 | continue; |
| 1291 | rx.u.rx.ra_match = 0; |
| 1292 | } |
| 1293 | if (sdata->dev == local->mdev && |
| 1294 | !rx.u.rx.in_scan) |
| 1295 | /* do not receive anything via |
| 1296 | * master device when not scanning */ |
| 1297 | continue; |
| 1298 | break; |
| 1299 | case IEEE80211_IF_TYPE_WDS: |
| 1300 | if (bssid || |
| 1301 | (rx.fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA) |
| 1302 | continue; |
| 1303 | if (compare_ether_addr(sdata->u.wds.remote_addr, |
| 1304 | hdr->addr2) != 0) |
| 1305 | continue; |
| 1306 | break; |
| 1307 | } |
| 1308 | |
| 1309 | if (prev) { |
| 1310 | skb_new = skb_copy(skb, GFP_ATOMIC); |
| 1311 | if (!skb_new) { |
| 1312 | if (net_ratelimit()) |
| 1313 | printk(KERN_DEBUG "%s: failed to copy " |
| 1314 | "multicast frame for %s", |
| 1315 | local->mdev->name, prev->dev->name); |
| 1316 | continue; |
| 1317 | } |
| 1318 | rx.skb = skb_new; |
| 1319 | rx.dev = prev->dev; |
| 1320 | rx.sdata = prev; |
| 1321 | ieee80211_invoke_rx_handlers(local, |
| 1322 | local->rx_handlers, |
| 1323 | &rx, sta); |
| 1324 | } |
| 1325 | prev = sdata; |
| 1326 | } |
| 1327 | if (prev) { |
| 1328 | rx.skb = skb; |
| 1329 | rx.dev = prev->dev; |
| 1330 | rx.sdata = prev; |
| 1331 | ieee80211_invoke_rx_handlers(local, local->rx_handlers, |
| 1332 | &rx, sta); |
| 1333 | } else |
| 1334 | dev_kfree_skb(skb); |
| 1335 | read_unlock(&local->sub_if_lock); |
| 1336 | } |
| 1337 | |
| 1338 | end: |
| 1339 | if (sta) |
| 1340 | sta_info_put(sta); |
| 1341 | } |
| 1342 | EXPORT_SYMBOL(__ieee80211_rx); |
| 1343 | |
| 1344 | /* This is a version of the rx handler that can be called from hard irq |
| 1345 | * context. Post the skb on the queue and schedule the tasklet */ |
| 1346 | void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb, |
| 1347 | struct ieee80211_rx_status *status) |
| 1348 | { |
| 1349 | struct ieee80211_local *local = hw_to_local(hw); |
| 1350 | |
| 1351 | BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); |
| 1352 | |
| 1353 | skb->dev = local->mdev; |
| 1354 | /* copy status into skb->cb for use by tasklet */ |
| 1355 | memcpy(skb->cb, status, sizeof(*status)); |
| 1356 | skb->pkt_type = IEEE80211_RX_MSG; |
| 1357 | skb_queue_tail(&local->skb_queue, skb); |
| 1358 | tasklet_schedule(&local->tasklet); |
| 1359 | } |
| 1360 | EXPORT_SYMBOL(ieee80211_rx_irqsafe); |