Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Ethernet driver for Motorola MPC8xx. |
| 3 | * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) |
| 4 | * |
| 5 | * I copied the basic skeleton from the lance driver, because I did not |
| 6 | * know how to write the Linux driver, but I did know how the LANCE worked. |
| 7 | * |
| 8 | * This version of the driver is somewhat selectable for the different |
| 9 | * processor/board combinations. It works for the boards I know about |
| 10 | * now, and should be easily modified to include others. Some of the |
| 11 | * configuration information is contained in <asm/commproc.h> and the |
| 12 | * remainder is here. |
| 13 | * |
| 14 | * Buffer descriptors are kept in the CPM dual port RAM, and the frame |
| 15 | * buffers are in the host memory. |
| 16 | * |
| 17 | * Right now, I am very watseful with the buffers. I allocate memory |
| 18 | * pages and then divide them into 2K frame buffers. This way I know I |
| 19 | * have buffers large enough to hold one frame within one buffer descriptor. |
| 20 | * Once I get this working, I will use 64 or 128 byte CPM buffers, which |
| 21 | * will be much more memory efficient and will easily handle lots of |
| 22 | * small packets. |
| 23 | * |
| 24 | */ |
| 25 | #include <linux/config.h> |
| 26 | #include <linux/kernel.h> |
| 27 | #include <linux/sched.h> |
| 28 | #include <linux/string.h> |
| 29 | #include <linux/ptrace.h> |
| 30 | #include <linux/errno.h> |
| 31 | #include <linux/ioport.h> |
| 32 | #include <linux/slab.h> |
| 33 | #include <linux/interrupt.h> |
| 34 | #include <linux/pci.h> |
| 35 | #include <linux/init.h> |
| 36 | #include <linux/delay.h> |
| 37 | #include <linux/netdevice.h> |
| 38 | #include <linux/etherdevice.h> |
| 39 | #include <linux/skbuff.h> |
| 40 | #include <linux/spinlock.h> |
| 41 | #include <linux/dma-mapping.h> |
| 42 | #include <linux/bitops.h> |
| 43 | |
| 44 | #include <asm/8xx_immap.h> |
| 45 | #include <asm/pgtable.h> |
| 46 | #include <asm/mpc8xx.h> |
| 47 | #include <asm/uaccess.h> |
| 48 | #include <asm/commproc.h> |
| 49 | |
| 50 | /* |
| 51 | * Theory of Operation |
| 52 | * |
| 53 | * The MPC8xx CPM performs the Ethernet processing on SCC1. It can use |
| 54 | * an aribtrary number of buffers on byte boundaries, but must have at |
| 55 | * least two receive buffers to prevent constant overrun conditions. |
| 56 | * |
| 57 | * The buffer descriptors are allocated from the CPM dual port memory |
| 58 | * with the data buffers allocated from host memory, just like all other |
| 59 | * serial communication protocols. The host memory buffers are allocated |
| 60 | * from the free page pool, and then divided into smaller receive and |
| 61 | * transmit buffers. The size of the buffers should be a power of two, |
| 62 | * since that nicely divides the page. This creates a ring buffer |
| 63 | * structure similar to the LANCE and other controllers. |
| 64 | * |
| 65 | * Like the LANCE driver: |
| 66 | * The driver runs as two independent, single-threaded flows of control. One |
| 67 | * is the send-packet routine, which enforces single-threaded use by the |
| 68 | * cep->tx_busy flag. The other thread is the interrupt handler, which is |
| 69 | * single threaded by the hardware and other software. |
| 70 | * |
| 71 | * The send packet thread has partial control over the Tx ring and the |
| 72 | * 'cep->tx_busy' flag. It sets the tx_busy flag whenever it's queuing a Tx |
| 73 | * packet. If the next queue slot is empty, it clears the tx_busy flag when |
| 74 | * finished otherwise it sets the 'lp->tx_full' flag. |
| 75 | * |
| 76 | * The MBX has a control register external to the MPC8xx that has some |
| 77 | * control of the Ethernet interface. Information is in the manual for |
| 78 | * your board. |
| 79 | * |
| 80 | * The RPX boards have an external control/status register. Consult the |
| 81 | * programming documents for details unique to your board. |
| 82 | * |
| 83 | * For the TQM8xx(L) modules, there is no control register interface. |
| 84 | * All functions are directly controlled using I/O pins. See <asm/commproc.h>. |
| 85 | */ |
| 86 | |
| 87 | /* The transmitter timeout |
| 88 | */ |
| 89 | #define TX_TIMEOUT (2*HZ) |
| 90 | |
| 91 | /* The number of Tx and Rx buffers. These are allocated from the page |
| 92 | * pool. The code may assume these are power of two, so it is best |
| 93 | * to keep them that size. |
| 94 | * We don't need to allocate pages for the transmitter. We just use |
| 95 | * the skbuffer directly. |
| 96 | */ |
| 97 | #ifdef CONFIG_ENET_BIG_BUFFERS |
| 98 | #define CPM_ENET_RX_PAGES 32 |
| 99 | #define CPM_ENET_RX_FRSIZE 2048 |
| 100 | #define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE) |
| 101 | #define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES) |
| 102 | #define TX_RING_SIZE 64 /* Must be power of two */ |
| 103 | #define TX_RING_MOD_MASK 63 /* for this to work */ |
| 104 | #else |
| 105 | #define CPM_ENET_RX_PAGES 4 |
| 106 | #define CPM_ENET_RX_FRSIZE 2048 |
| 107 | #define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE) |
| 108 | #define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES) |
| 109 | #define TX_RING_SIZE 8 /* Must be power of two */ |
| 110 | #define TX_RING_MOD_MASK 7 /* for this to work */ |
| 111 | #endif |
| 112 | |
| 113 | /* The CPM stores dest/src/type, data, and checksum for receive packets. |
| 114 | */ |
| 115 | #define PKT_MAXBUF_SIZE 1518 |
| 116 | #define PKT_MINBUF_SIZE 64 |
| 117 | #define PKT_MAXBLR_SIZE 1520 |
| 118 | |
| 119 | /* The CPM buffer descriptors track the ring buffers. The rx_bd_base and |
| 120 | * tx_bd_base always point to the base of the buffer descriptors. The |
| 121 | * cur_rx and cur_tx point to the currently available buffer. |
| 122 | * The dirty_tx tracks the current buffer that is being sent by the |
| 123 | * controller. The cur_tx and dirty_tx are equal under both completely |
| 124 | * empty and completely full conditions. The empty/ready indicator in |
| 125 | * the buffer descriptor determines the actual condition. |
| 126 | */ |
| 127 | struct scc_enet_private { |
| 128 | /* The saved address of a sent-in-place packet/buffer, for skfree(). */ |
| 129 | struct sk_buff* tx_skbuff[TX_RING_SIZE]; |
| 130 | ushort skb_cur; |
| 131 | ushort skb_dirty; |
| 132 | |
| 133 | /* CPM dual port RAM relative addresses. |
| 134 | */ |
| 135 | cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ |
| 136 | cbd_t *tx_bd_base; |
| 137 | cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ |
| 138 | cbd_t *dirty_tx; /* The ring entries to be free()ed. */ |
| 139 | scc_t *sccp; |
| 140 | |
| 141 | /* Virtual addresses for the receive buffers because we can't |
| 142 | * do a __va() on them anymore. |
| 143 | */ |
| 144 | unsigned char *rx_vaddr[RX_RING_SIZE]; |
| 145 | struct net_device_stats stats; |
| 146 | uint tx_full; |
| 147 | spinlock_t lock; |
| 148 | }; |
| 149 | |
| 150 | static int scc_enet_open(struct net_device *dev); |
| 151 | static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); |
| 152 | static int scc_enet_rx(struct net_device *dev); |
| 153 | static void scc_enet_interrupt(void *dev_id, struct pt_regs *regs); |
| 154 | static int scc_enet_close(struct net_device *dev); |
| 155 | static struct net_device_stats *scc_enet_get_stats(struct net_device *dev); |
| 156 | static void set_multicast_list(struct net_device *dev); |
| 157 | |
| 158 | /* Get this from various configuration locations (depends on board). |
| 159 | */ |
| 160 | /*static ushort my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };*/ |
| 161 | |
| 162 | /* Typically, 860(T) boards use SCC1 for Ethernet, and other 8xx boards |
| 163 | * use SCC2. Some even may use SCC3. |
| 164 | * This is easily extended if necessary. |
| 165 | */ |
| 166 | #if defined(CONFIG_SCC3_ENET) |
| 167 | #define CPM_CR_ENET CPM_CR_CH_SCC3 |
| 168 | #define PROFF_ENET PROFF_SCC3 |
| 169 | #define SCC_ENET 2 /* Index, not number! */ |
| 170 | #define CPMVEC_ENET CPMVEC_SCC3 |
| 171 | #elif defined(CONFIG_SCC2_ENET) |
| 172 | #define CPM_CR_ENET CPM_CR_CH_SCC2 |
| 173 | #define PROFF_ENET PROFF_SCC2 |
| 174 | #define SCC_ENET 1 /* Index, not number! */ |
| 175 | #define CPMVEC_ENET CPMVEC_SCC2 |
| 176 | #elif defined(CONFIG_SCC1_ENET) |
| 177 | #define CPM_CR_ENET CPM_CR_CH_SCC1 |
| 178 | #define PROFF_ENET PROFF_SCC1 |
| 179 | #define SCC_ENET 0 /* Index, not number! */ |
| 180 | #define CPMVEC_ENET CPMVEC_SCC1 |
| 181 | #else |
| 182 | #error CONFIG_SCCx_ENET not defined |
| 183 | #endif |
| 184 | |
| 185 | static int |
| 186 | scc_enet_open(struct net_device *dev) |
| 187 | { |
| 188 | |
| 189 | /* I should reset the ring buffers here, but I don't yet know |
| 190 | * a simple way to do that. |
| 191 | */ |
| 192 | |
| 193 | netif_start_queue(dev); |
| 194 | return 0; /* Always succeed */ |
| 195 | } |
| 196 | |
| 197 | static int |
| 198 | scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 199 | { |
| 200 | struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; |
| 201 | volatile cbd_t *bdp; |
| 202 | |
| 203 | /* Fill in a Tx ring entry */ |
| 204 | bdp = cep->cur_tx; |
| 205 | |
| 206 | #ifndef final_version |
| 207 | if (bdp->cbd_sc & BD_ENET_TX_READY) { |
| 208 | /* Ooops. All transmit buffers are full. Bail out. |
| 209 | * This should not happen, since cep->tx_busy should be set. |
| 210 | */ |
| 211 | printk("%s: tx queue full!.\n", dev->name); |
| 212 | return 1; |
| 213 | } |
| 214 | #endif |
| 215 | |
| 216 | /* Clear all of the status flags. |
| 217 | */ |
| 218 | bdp->cbd_sc &= ~BD_ENET_TX_STATS; |
| 219 | |
| 220 | /* If the frame is short, tell CPM to pad it. |
| 221 | */ |
| 222 | if (skb->len <= ETH_ZLEN) |
| 223 | bdp->cbd_sc |= BD_ENET_TX_PAD; |
| 224 | else |
| 225 | bdp->cbd_sc &= ~BD_ENET_TX_PAD; |
| 226 | |
| 227 | /* Set buffer length and buffer pointer. |
| 228 | */ |
| 229 | bdp->cbd_datlen = skb->len; |
| 230 | bdp->cbd_bufaddr = __pa(skb->data); |
| 231 | |
| 232 | /* Save skb pointer. |
| 233 | */ |
| 234 | cep->tx_skbuff[cep->skb_cur] = skb; |
| 235 | |
| 236 | cep->stats.tx_bytes += skb->len; |
| 237 | cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK; |
| 238 | |
| 239 | /* Push the data cache so the CPM does not get stale memory |
| 240 | * data. |
| 241 | */ |
| 242 | flush_dcache_range((unsigned long)(skb->data), |
| 243 | (unsigned long)(skb->data + skb->len)); |
| 244 | |
| 245 | spin_lock_irq(&cep->lock); |
| 246 | |
| 247 | /* Send it on its way. Tell CPM its ready, interrupt when done, |
| 248 | * its the last BD of the frame, and to put the CRC on the end. |
| 249 | */ |
| 250 | bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); |
| 251 | |
| 252 | dev->trans_start = jiffies; |
| 253 | |
| 254 | /* If this was the last BD in the ring, start at the beginning again. |
| 255 | */ |
| 256 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) |
| 257 | bdp = cep->tx_bd_base; |
| 258 | else |
| 259 | bdp++; |
| 260 | |
| 261 | if (bdp->cbd_sc & BD_ENET_TX_READY) { |
| 262 | netif_stop_queue(dev); |
| 263 | cep->tx_full = 1; |
| 264 | } |
| 265 | |
| 266 | cep->cur_tx = (cbd_t *)bdp; |
| 267 | |
| 268 | spin_unlock_irq(&cep->lock); |
| 269 | |
| 270 | return 0; |
| 271 | } |
| 272 | |
| 273 | static void |
| 274 | scc_enet_timeout(struct net_device *dev) |
| 275 | { |
| 276 | struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; |
| 277 | |
| 278 | printk("%s: transmit timed out.\n", dev->name); |
| 279 | cep->stats.tx_errors++; |
| 280 | #ifndef final_version |
| 281 | { |
| 282 | int i; |
| 283 | cbd_t *bdp; |
| 284 | printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n", |
| 285 | cep->cur_tx, cep->tx_full ? " (full)" : "", |
| 286 | cep->cur_rx); |
| 287 | bdp = cep->tx_bd_base; |
| 288 | for (i = 0 ; i < TX_RING_SIZE; i++, bdp++) |
| 289 | printk("%04x %04x %08x\n", |
| 290 | bdp->cbd_sc, |
| 291 | bdp->cbd_datlen, |
| 292 | bdp->cbd_bufaddr); |
| 293 | bdp = cep->rx_bd_base; |
| 294 | for (i = 0 ; i < RX_RING_SIZE; i++, bdp++) |
| 295 | printk("%04x %04x %08x\n", |
| 296 | bdp->cbd_sc, |
| 297 | bdp->cbd_datlen, |
| 298 | bdp->cbd_bufaddr); |
| 299 | } |
| 300 | #endif |
| 301 | if (!cep->tx_full) |
| 302 | netif_wake_queue(dev); |
| 303 | } |
| 304 | |
| 305 | /* The interrupt handler. |
| 306 | * This is called from the CPM handler, not the MPC core interrupt. |
| 307 | */ |
| 308 | static void |
| 309 | scc_enet_interrupt(void *dev_id, struct pt_regs *regs) |
| 310 | { |
| 311 | struct net_device *dev = dev_id; |
| 312 | volatile struct scc_enet_private *cep; |
| 313 | volatile cbd_t *bdp; |
| 314 | ushort int_events; |
| 315 | int must_restart; |
| 316 | |
| 317 | cep = (struct scc_enet_private *)dev->priv; |
| 318 | |
| 319 | /* Get the interrupt events that caused us to be here. |
| 320 | */ |
| 321 | int_events = cep->sccp->scc_scce; |
| 322 | cep->sccp->scc_scce = int_events; |
| 323 | must_restart = 0; |
| 324 | |
| 325 | /* Handle receive event in its own function. |
| 326 | */ |
| 327 | if (int_events & SCCE_ENET_RXF) |
| 328 | scc_enet_rx(dev_id); |
| 329 | |
| 330 | /* Check for a transmit error. The manual is a little unclear |
| 331 | * about this, so the debug code until I get it figured out. It |
| 332 | * appears that if TXE is set, then TXB is not set. However, |
| 333 | * if carrier sense is lost during frame transmission, the TXE |
| 334 | * bit is set, "and continues the buffer transmission normally." |
| 335 | * I don't know if "normally" implies TXB is set when the buffer |
| 336 | * descriptor is closed.....trial and error :-). |
| 337 | */ |
| 338 | |
| 339 | /* Transmit OK, or non-fatal error. Update the buffer descriptors. |
| 340 | */ |
| 341 | if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) { |
| 342 | spin_lock(&cep->lock); |
| 343 | bdp = cep->dirty_tx; |
| 344 | while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) { |
| 345 | if ((bdp==cep->cur_tx) && (cep->tx_full == 0)) |
| 346 | break; |
| 347 | |
| 348 | if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ |
| 349 | cep->stats.tx_heartbeat_errors++; |
| 350 | if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ |
| 351 | cep->stats.tx_window_errors++; |
| 352 | if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ |
| 353 | cep->stats.tx_aborted_errors++; |
| 354 | if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ |
| 355 | cep->stats.tx_fifo_errors++; |
| 356 | if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ |
| 357 | cep->stats.tx_carrier_errors++; |
| 358 | |
| 359 | |
| 360 | /* No heartbeat or Lost carrier are not really bad errors. |
| 361 | * The others require a restart transmit command. |
| 362 | */ |
| 363 | if (bdp->cbd_sc & |
| 364 | (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { |
| 365 | must_restart = 1; |
| 366 | cep->stats.tx_errors++; |
| 367 | } |
| 368 | |
| 369 | cep->stats.tx_packets++; |
| 370 | |
| 371 | /* Deferred means some collisions occurred during transmit, |
| 372 | * but we eventually sent the packet OK. |
| 373 | */ |
| 374 | if (bdp->cbd_sc & BD_ENET_TX_DEF) |
| 375 | cep->stats.collisions++; |
| 376 | |
| 377 | /* Free the sk buffer associated with this last transmit. |
| 378 | */ |
| 379 | dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]); |
| 380 | cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK; |
| 381 | |
| 382 | /* Update pointer to next buffer descriptor to be transmitted. |
| 383 | */ |
| 384 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) |
| 385 | bdp = cep->tx_bd_base; |
| 386 | else |
| 387 | bdp++; |
| 388 | |
| 389 | /* I don't know if we can be held off from processing these |
| 390 | * interrupts for more than one frame time. I really hope |
| 391 | * not. In such a case, we would now want to check the |
| 392 | * currently available BD (cur_tx) and determine if any |
| 393 | * buffers between the dirty_tx and cur_tx have also been |
| 394 | * sent. We would want to process anything in between that |
| 395 | * does not have BD_ENET_TX_READY set. |
| 396 | */ |
| 397 | |
| 398 | /* Since we have freed up a buffer, the ring is no longer |
| 399 | * full. |
| 400 | */ |
| 401 | if (cep->tx_full) { |
| 402 | cep->tx_full = 0; |
| 403 | if (netif_queue_stopped(dev)) |
| 404 | netif_wake_queue(dev); |
| 405 | } |
| 406 | |
| 407 | cep->dirty_tx = (cbd_t *)bdp; |
| 408 | } |
| 409 | |
| 410 | if (must_restart) { |
| 411 | volatile cpm8xx_t *cp; |
| 412 | |
| 413 | /* Some transmit errors cause the transmitter to shut |
| 414 | * down. We now issue a restart transmit. Since the |
| 415 | * errors close the BD and update the pointers, the restart |
| 416 | * _should_ pick up without having to reset any of our |
| 417 | * pointers either. |
| 418 | */ |
| 419 | cp = cpmp; |
| 420 | cp->cp_cpcr = |
| 421 | mk_cr_cmd(CPM_CR_ENET, CPM_CR_RESTART_TX) | CPM_CR_FLG; |
| 422 | while (cp->cp_cpcr & CPM_CR_FLG); |
| 423 | } |
| 424 | spin_unlock(&cep->lock); |
| 425 | } |
| 426 | |
| 427 | /* Check for receive busy, i.e. packets coming but no place to |
| 428 | * put them. This "can't happen" because the receive interrupt |
| 429 | * is tossing previous frames. |
| 430 | */ |
| 431 | if (int_events & SCCE_ENET_BSY) { |
| 432 | cep->stats.rx_dropped++; |
| 433 | printk("CPM ENET: BSY can't happen.\n"); |
| 434 | } |
| 435 | |
| 436 | return; |
| 437 | } |
| 438 | |
| 439 | /* During a receive, the cur_rx points to the current incoming buffer. |
| 440 | * When we update through the ring, if the next incoming buffer has |
| 441 | * not been given to the system, we just set the empty indicator, |
| 442 | * effectively tossing the packet. |
| 443 | */ |
| 444 | static int |
| 445 | scc_enet_rx(struct net_device *dev) |
| 446 | { |
| 447 | struct scc_enet_private *cep; |
| 448 | volatile cbd_t *bdp; |
| 449 | struct sk_buff *skb; |
| 450 | ushort pkt_len; |
| 451 | |
| 452 | cep = (struct scc_enet_private *)dev->priv; |
| 453 | |
| 454 | /* First, grab all of the stats for the incoming packet. |
| 455 | * These get messed up if we get called due to a busy condition. |
| 456 | */ |
| 457 | bdp = cep->cur_rx; |
| 458 | |
| 459 | for (;;) { |
| 460 | if (bdp->cbd_sc & BD_ENET_RX_EMPTY) |
| 461 | break; |
| 462 | |
| 463 | #ifndef final_version |
| 464 | /* Since we have allocated space to hold a complete frame, both |
| 465 | * the first and last indicators should be set. |
| 466 | */ |
| 467 | if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) != |
| 468 | (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) |
| 469 | printk("CPM ENET: rcv is not first+last\n"); |
| 470 | #endif |
| 471 | |
| 472 | /* Frame too long or too short. |
| 473 | */ |
| 474 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) |
| 475 | cep->stats.rx_length_errors++; |
| 476 | if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ |
| 477 | cep->stats.rx_frame_errors++; |
| 478 | if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ |
| 479 | cep->stats.rx_crc_errors++; |
| 480 | if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ |
| 481 | cep->stats.rx_crc_errors++; |
| 482 | |
| 483 | /* Report late collisions as a frame error. |
| 484 | * On this error, the BD is closed, but we don't know what we |
| 485 | * have in the buffer. So, just drop this frame on the floor. |
| 486 | */ |
| 487 | if (bdp->cbd_sc & BD_ENET_RX_CL) { |
| 488 | cep->stats.rx_frame_errors++; |
| 489 | } |
| 490 | else { |
| 491 | |
| 492 | /* Process the incoming frame. |
| 493 | */ |
| 494 | cep->stats.rx_packets++; |
| 495 | pkt_len = bdp->cbd_datlen; |
| 496 | cep->stats.rx_bytes += pkt_len; |
| 497 | |
| 498 | /* This does 16 byte alignment, much more than we need. |
| 499 | * The packet length includes FCS, but we don't want to |
| 500 | * include that when passing upstream as it messes up |
| 501 | * bridging applications. |
| 502 | */ |
| 503 | skb = dev_alloc_skb(pkt_len-4); |
| 504 | |
| 505 | if (skb == NULL) { |
| 506 | printk("%s: Memory squeeze, dropping packet.\n", dev->name); |
| 507 | cep->stats.rx_dropped++; |
| 508 | } |
| 509 | else { |
| 510 | skb->dev = dev; |
| 511 | skb_put(skb,pkt_len-4); /* Make room */ |
| 512 | eth_copy_and_sum(skb, |
| 513 | cep->rx_vaddr[bdp - cep->rx_bd_base], |
| 514 | pkt_len-4, 0); |
| 515 | skb->protocol=eth_type_trans(skb,dev); |
| 516 | netif_rx(skb); |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | /* Clear the status flags for this buffer. |
| 521 | */ |
| 522 | bdp->cbd_sc &= ~BD_ENET_RX_STATS; |
| 523 | |
| 524 | /* Mark the buffer empty. |
| 525 | */ |
| 526 | bdp->cbd_sc |= BD_ENET_RX_EMPTY; |
| 527 | |
| 528 | /* Update BD pointer to next entry. |
| 529 | */ |
| 530 | if (bdp->cbd_sc & BD_ENET_RX_WRAP) |
| 531 | bdp = cep->rx_bd_base; |
| 532 | else |
| 533 | bdp++; |
| 534 | |
| 535 | } |
| 536 | cep->cur_rx = (cbd_t *)bdp; |
| 537 | |
| 538 | return 0; |
| 539 | } |
| 540 | |
| 541 | static int |
| 542 | scc_enet_close(struct net_device *dev) |
| 543 | { |
| 544 | /* Don't know what to do yet. |
| 545 | */ |
| 546 | netif_stop_queue(dev); |
| 547 | |
| 548 | return 0; |
| 549 | } |
| 550 | |
| 551 | static struct net_device_stats *scc_enet_get_stats(struct net_device *dev) |
| 552 | { |
| 553 | struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; |
| 554 | |
| 555 | return &cep->stats; |
| 556 | } |
| 557 | |
| 558 | /* Set or clear the multicast filter for this adaptor. |
| 559 | * Skeleton taken from sunlance driver. |
| 560 | * The CPM Ethernet implementation allows Multicast as well as individual |
| 561 | * MAC address filtering. Some of the drivers check to make sure it is |
| 562 | * a group multicast address, and discard those that are not. I guess I |
| 563 | * will do the same for now, but just remove the test if you want |
| 564 | * individual filtering as well (do the upper net layers want or support |
| 565 | * this kind of feature?). |
| 566 | */ |
| 567 | |
| 568 | static void set_multicast_list(struct net_device *dev) |
| 569 | { |
| 570 | struct scc_enet_private *cep; |
| 571 | struct dev_mc_list *dmi; |
| 572 | u_char *mcptr, *tdptr; |
| 573 | volatile scc_enet_t *ep; |
| 574 | int i, j; |
| 575 | cep = (struct scc_enet_private *)dev->priv; |
| 576 | |
| 577 | /* Get pointer to SCC area in parameter RAM. |
| 578 | */ |
| 579 | ep = (scc_enet_t *)dev->base_addr; |
| 580 | |
| 581 | if (dev->flags&IFF_PROMISC) { |
| 582 | |
| 583 | /* Log any net taps. */ |
| 584 | printk("%s: Promiscuous mode enabled.\n", dev->name); |
| 585 | cep->sccp->scc_psmr |= SCC_PSMR_PRO; |
| 586 | } else { |
| 587 | |
| 588 | cep->sccp->scc_psmr &= ~SCC_PSMR_PRO; |
| 589 | |
| 590 | if (dev->flags & IFF_ALLMULTI) { |
| 591 | /* Catch all multicast addresses, so set the |
| 592 | * filter to all 1's. |
| 593 | */ |
| 594 | ep->sen_gaddr1 = 0xffff; |
| 595 | ep->sen_gaddr2 = 0xffff; |
| 596 | ep->sen_gaddr3 = 0xffff; |
| 597 | ep->sen_gaddr4 = 0xffff; |
| 598 | } |
| 599 | else { |
| 600 | /* Clear filter and add the addresses in the list. |
| 601 | */ |
| 602 | ep->sen_gaddr1 = 0; |
| 603 | ep->sen_gaddr2 = 0; |
| 604 | ep->sen_gaddr3 = 0; |
| 605 | ep->sen_gaddr4 = 0; |
| 606 | |
| 607 | dmi = dev->mc_list; |
| 608 | |
| 609 | for (i=0; i<dev->mc_count; i++) { |
| 610 | |
| 611 | /* Only support group multicast for now. |
| 612 | */ |
| 613 | if (!(dmi->dmi_addr[0] & 1)) |
| 614 | continue; |
| 615 | |
| 616 | /* The address in dmi_addr is LSB first, |
| 617 | * and taddr is MSB first. We have to |
| 618 | * copy bytes MSB first from dmi_addr. |
| 619 | */ |
| 620 | mcptr = (u_char *)dmi->dmi_addr + 5; |
| 621 | tdptr = (u_char *)&ep->sen_taddrh; |
| 622 | for (j=0; j<6; j++) |
| 623 | *tdptr++ = *mcptr--; |
| 624 | |
| 625 | /* Ask CPM to run CRC and set bit in |
| 626 | * filter mask. |
| 627 | */ |
| 628 | cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_SET_GADDR) | CPM_CR_FLG; |
| 629 | /* this delay is necessary here -- Cort */ |
| 630 | udelay(10); |
| 631 | while (cpmp->cp_cpcr & CPM_CR_FLG); |
| 632 | } |
| 633 | } |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | /* Initialize the CPM Ethernet on SCC. If EPPC-Bug loaded us, or performed |
| 638 | * some other network I/O, a whole bunch of this has already been set up. |
| 639 | * It is no big deal if we do it again, we just have to disable the |
| 640 | * transmit and receive to make sure we don't catch the CPM with some |
| 641 | * inconsistent control information. |
| 642 | */ |
| 643 | static int __init scc_enet_init(void) |
| 644 | { |
| 645 | struct net_device *dev; |
| 646 | struct scc_enet_private *cep; |
| 647 | int i, j, k, err; |
| 648 | uint dp_offset; |
| 649 | unsigned char *eap, *ba; |
| 650 | dma_addr_t mem_addr; |
| 651 | bd_t *bd; |
| 652 | volatile cbd_t *bdp; |
| 653 | volatile cpm8xx_t *cp; |
| 654 | volatile scc_t *sccp; |
| 655 | volatile scc_enet_t *ep; |
| 656 | volatile immap_t *immap; |
| 657 | |
| 658 | cp = cpmp; /* Get pointer to Communication Processor */ |
| 659 | |
| 660 | immap = (immap_t *)(mfspr(SPRN_IMMR) & 0xFFFF0000); /* and to internal registers */ |
| 661 | |
| 662 | bd = (bd_t *)__res; |
| 663 | |
| 664 | dev = alloc_etherdev(sizeof(*cep)); |
| 665 | if (!dev) |
| 666 | return -ENOMEM; |
| 667 | |
| 668 | cep = dev->priv; |
| 669 | spin_lock_init(&cep->lock); |
| 670 | |
| 671 | /* Get pointer to SCC area in parameter RAM. |
| 672 | */ |
| 673 | ep = (scc_enet_t *)(&cp->cp_dparam[PROFF_ENET]); |
| 674 | |
| 675 | /* And another to the SCC register area. |
| 676 | */ |
| 677 | sccp = (volatile scc_t *)(&cp->cp_scc[SCC_ENET]); |
| 678 | cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */ |
| 679 | |
| 680 | /* Disable receive and transmit in case EPPC-Bug started it. |
| 681 | */ |
| 682 | sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT); |
| 683 | |
| 684 | /* Cookbook style from the MPC860 manual..... |
| 685 | * Not all of this is necessary if EPPC-Bug has initialized |
| 686 | * the network. |
| 687 | * So far we are lucky, all board configurations use the same |
| 688 | * pins, or at least the same I/O Port for these functions..... |
| 689 | * It can't last though...... |
| 690 | */ |
| 691 | |
| 692 | #if (defined(PA_ENET_RXD) && defined(PA_ENET_TXD)) |
| 693 | /* Configure port A pins for Txd and Rxd. |
| 694 | */ |
| 695 | immap->im_ioport.iop_papar |= (PA_ENET_RXD | PA_ENET_TXD); |
| 696 | immap->im_ioport.iop_padir &= ~(PA_ENET_RXD | PA_ENET_TXD); |
| 697 | immap->im_ioport.iop_paodr &= ~PA_ENET_TXD; |
| 698 | #elif (defined(PB_ENET_RXD) && defined(PB_ENET_TXD)) |
| 699 | /* Configure port B pins for Txd and Rxd. |
| 700 | */ |
| 701 | immap->im_cpm.cp_pbpar |= (PB_ENET_RXD | PB_ENET_TXD); |
| 702 | immap->im_cpm.cp_pbdir &= ~(PB_ENET_RXD | PB_ENET_TXD); |
| 703 | immap->im_cpm.cp_pbodr &= ~PB_ENET_TXD; |
| 704 | #else |
| 705 | #error Exactly ONE pair of PA_ENET_[RT]XD, PB_ENET_[RT]XD must be defined |
| 706 | #endif |
| 707 | |
| 708 | #if defined(PC_ENET_LBK) |
| 709 | /* Configure port C pins to disable External Loopback |
| 710 | */ |
| 711 | immap->im_ioport.iop_pcpar &= ~PC_ENET_LBK; |
| 712 | immap->im_ioport.iop_pcdir |= PC_ENET_LBK; |
| 713 | immap->im_ioport.iop_pcso &= ~PC_ENET_LBK; |
| 714 | immap->im_ioport.iop_pcdat &= ~PC_ENET_LBK; /* Disable Loopback */ |
| 715 | #endif /* PC_ENET_LBK */ |
| 716 | |
| 717 | /* Configure port C pins to enable CLSN and RENA. |
| 718 | */ |
| 719 | immap->im_ioport.iop_pcpar &= ~(PC_ENET_CLSN | PC_ENET_RENA); |
| 720 | immap->im_ioport.iop_pcdir &= ~(PC_ENET_CLSN | PC_ENET_RENA); |
| 721 | immap->im_ioport.iop_pcso |= (PC_ENET_CLSN | PC_ENET_RENA); |
| 722 | |
| 723 | /* Configure port A for TCLK and RCLK. |
| 724 | */ |
| 725 | immap->im_ioport.iop_papar |= (PA_ENET_TCLK | PA_ENET_RCLK); |
| 726 | immap->im_ioport.iop_padir &= ~(PA_ENET_TCLK | PA_ENET_RCLK); |
| 727 | |
| 728 | /* Configure Serial Interface clock routing. |
| 729 | * First, clear all SCC bits to zero, then set the ones we want. |
| 730 | */ |
| 731 | cp->cp_sicr &= ~SICR_ENET_MASK; |
| 732 | cp->cp_sicr |= SICR_ENET_CLKRT; |
| 733 | |
| 734 | /* Manual says set SDDR, but I can't find anything with that |
| 735 | * name. I think it is a misprint, and should be SDCR. This |
| 736 | * has already been set by the communication processor initialization. |
| 737 | */ |
| 738 | |
| 739 | /* Allocate space for the buffer descriptors in the DP ram. |
| 740 | * These are relative offsets in the DP ram address space. |
| 741 | * Initialize base addresses for the buffer descriptors. |
| 742 | */ |
| 743 | dp_offset = cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8); |
| 744 | ep->sen_genscc.scc_rbase = dp_offset; |
| 745 | cep->rx_bd_base = cpm_dpram_addr(dp_offset); |
| 746 | |
| 747 | dp_offset = cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8); |
| 748 | ep->sen_genscc.scc_tbase = dp_offset; |
| 749 | cep->tx_bd_base = cpm_dpram_addr(dp_offset); |
| 750 | |
| 751 | cep->dirty_tx = cep->cur_tx = cep->tx_bd_base; |
| 752 | cep->cur_rx = cep->rx_bd_base; |
| 753 | |
| 754 | /* Issue init Rx BD command for SCC. |
| 755 | * Manual says to perform an Init Rx parameters here. We have |
| 756 | * to perform both Rx and Tx because the SCC may have been |
| 757 | * already running. |
| 758 | * In addition, we have to do it later because we don't yet have |
| 759 | * all of the BD control/status set properly. |
| 760 | cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_RX) | CPM_CR_FLG; |
| 761 | while (cp->cp_cpcr & CPM_CR_FLG); |
| 762 | */ |
| 763 | |
| 764 | /* Initialize function code registers for big-endian. |
| 765 | */ |
| 766 | ep->sen_genscc.scc_rfcr = SCC_EB; |
| 767 | ep->sen_genscc.scc_tfcr = SCC_EB; |
| 768 | |
| 769 | /* Set maximum bytes per receive buffer. |
| 770 | * This appears to be an Ethernet frame size, not the buffer |
| 771 | * fragment size. It must be a multiple of four. |
| 772 | */ |
| 773 | ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE; |
| 774 | |
| 775 | /* Set CRC preset and mask. |
| 776 | */ |
| 777 | ep->sen_cpres = 0xffffffff; |
| 778 | ep->sen_cmask = 0xdebb20e3; |
| 779 | |
| 780 | ep->sen_crcec = 0; /* CRC Error counter */ |
| 781 | ep->sen_alec = 0; /* alignment error counter */ |
| 782 | ep->sen_disfc = 0; /* discard frame counter */ |
| 783 | |
| 784 | ep->sen_pads = 0x8888; /* Tx short frame pad character */ |
| 785 | ep->sen_retlim = 15; /* Retry limit threshold */ |
| 786 | |
| 787 | ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */ |
| 788 | ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */ |
| 789 | |
| 790 | ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */ |
| 791 | ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */ |
| 792 | |
| 793 | /* Clear hash tables. |
| 794 | */ |
| 795 | ep->sen_gaddr1 = 0; |
| 796 | ep->sen_gaddr2 = 0; |
| 797 | ep->sen_gaddr3 = 0; |
| 798 | ep->sen_gaddr4 = 0; |
| 799 | ep->sen_iaddr1 = 0; |
| 800 | ep->sen_iaddr2 = 0; |
| 801 | ep->sen_iaddr3 = 0; |
| 802 | ep->sen_iaddr4 = 0; |
| 803 | |
| 804 | /* Set Ethernet station address. |
| 805 | */ |
| 806 | eap = (unsigned char *)&(ep->sen_paddrh); |
| 807 | for (i=5; i>=0; i--) |
| 808 | *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i]; |
| 809 | |
| 810 | ep->sen_pper = 0; /* 'cause the book says so */ |
| 811 | ep->sen_taddrl = 0; /* temp address (LSB) */ |
| 812 | ep->sen_taddrm = 0; |
| 813 | ep->sen_taddrh = 0; /* temp address (MSB) */ |
| 814 | |
| 815 | /* Now allocate the host memory pages and initialize the |
| 816 | * buffer descriptors. |
| 817 | */ |
| 818 | bdp = cep->tx_bd_base; |
| 819 | for (i=0; i<TX_RING_SIZE; i++) { |
| 820 | |
| 821 | /* Initialize the BD for every fragment in the page. |
| 822 | */ |
| 823 | bdp->cbd_sc = 0; |
| 824 | bdp->cbd_bufaddr = 0; |
| 825 | bdp++; |
| 826 | } |
| 827 | |
| 828 | /* Set the last buffer to wrap. |
| 829 | */ |
| 830 | bdp--; |
| 831 | bdp->cbd_sc |= BD_SC_WRAP; |
| 832 | |
| 833 | bdp = cep->rx_bd_base; |
| 834 | k = 0; |
| 835 | for (i=0; i<CPM_ENET_RX_PAGES; i++) { |
| 836 | |
| 837 | /* Allocate a page. |
| 838 | */ |
| 839 | ba = (unsigned char *)dma_alloc_coherent(NULL, PAGE_SIZE, |
| 840 | &mem_addr, GFP_KERNEL); |
| 841 | /* BUG: no check for failure */ |
| 842 | |
| 843 | /* Initialize the BD for every fragment in the page. |
| 844 | */ |
| 845 | for (j=0; j<CPM_ENET_RX_FRPPG; j++) { |
| 846 | bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR; |
| 847 | bdp->cbd_bufaddr = mem_addr; |
| 848 | cep->rx_vaddr[k++] = ba; |
| 849 | mem_addr += CPM_ENET_RX_FRSIZE; |
| 850 | ba += CPM_ENET_RX_FRSIZE; |
| 851 | bdp++; |
| 852 | } |
| 853 | } |
| 854 | |
| 855 | /* Set the last buffer to wrap. |
| 856 | */ |
| 857 | bdp--; |
| 858 | bdp->cbd_sc |= BD_SC_WRAP; |
| 859 | |
| 860 | /* Let's re-initialize the channel now. We have to do it later |
| 861 | * than the manual describes because we have just now finished |
| 862 | * the BD initialization. |
| 863 | */ |
| 864 | cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_TRX) | CPM_CR_FLG; |
| 865 | while (cp->cp_cpcr & CPM_CR_FLG); |
| 866 | |
| 867 | cep->skb_cur = cep->skb_dirty = 0; |
| 868 | |
| 869 | sccp->scc_scce = 0xffff; /* Clear any pending events */ |
| 870 | |
| 871 | /* Enable interrupts for transmit error, complete frame |
| 872 | * received, and any transmit buffer we have also set the |
| 873 | * interrupt flag. |
| 874 | */ |
| 875 | sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB); |
| 876 | |
| 877 | /* Install our interrupt handler. |
| 878 | */ |
| 879 | cpm_install_handler(CPMVEC_ENET, scc_enet_interrupt, dev); |
| 880 | |
| 881 | /* Set GSMR_H to enable all normal operating modes. |
| 882 | * Set GSMR_L to enable Ethernet to MC68160. |
| 883 | */ |
| 884 | sccp->scc_gsmrh = 0; |
| 885 | sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET); |
| 886 | |
| 887 | /* Set sync/delimiters. |
| 888 | */ |
| 889 | sccp->scc_dsr = 0xd555; |
| 890 | |
| 891 | /* Set processing mode. Use Ethernet CRC, catch broadcast, and |
| 892 | * start frame search 22 bit times after RENA. |
| 893 | */ |
| 894 | sccp->scc_psmr = (SCC_PSMR_ENCRC | SCC_PSMR_NIB22); |
| 895 | |
| 896 | /* It is now OK to enable the Ethernet transmitter. |
| 897 | * Unfortunately, there are board implementation differences here. |
| 898 | */ |
| 899 | #if (!defined (PB_ENET_TENA) && defined (PC_ENET_TENA)) |
| 900 | immap->im_ioport.iop_pcpar |= PC_ENET_TENA; |
| 901 | immap->im_ioport.iop_pcdir &= ~PC_ENET_TENA; |
| 902 | #elif ( defined (PB_ENET_TENA) && !defined (PC_ENET_TENA)) |
| 903 | cp->cp_pbpar |= PB_ENET_TENA; |
| 904 | cp->cp_pbdir |= PB_ENET_TENA; |
| 905 | #else |
| 906 | #error Configuration Error: define exactly ONE of PB_ENET_TENA, PC_ENET_TENA |
| 907 | #endif |
| 908 | |
| 909 | #if defined(CONFIG_RPXLITE) || defined(CONFIG_RPXCLASSIC) |
| 910 | /* And while we are here, set the configuration to enable ethernet. |
| 911 | */ |
| 912 | *((volatile uint *)RPX_CSR_ADDR) &= ~BCSR0_ETHLPBK; |
| 913 | *((volatile uint *)RPX_CSR_ADDR) |= |
| 914 | (BCSR0_ETHEN | BCSR0_COLTESTDIS | BCSR0_FULLDPLXDIS); |
| 915 | #endif |
| 916 | |
| 917 | #ifdef CONFIG_BSEIP |
| 918 | /* BSE uses port B and C for PHY control. |
| 919 | */ |
| 920 | cp->cp_pbpar &= ~(PB_BSE_POWERUP | PB_BSE_FDXDIS); |
| 921 | cp->cp_pbdir |= (PB_BSE_POWERUP | PB_BSE_FDXDIS); |
| 922 | cp->cp_pbdat |= (PB_BSE_POWERUP | PB_BSE_FDXDIS); |
| 923 | |
| 924 | immap->im_ioport.iop_pcpar &= ~PC_BSE_LOOPBACK; |
| 925 | immap->im_ioport.iop_pcdir |= PC_BSE_LOOPBACK; |
| 926 | immap->im_ioport.iop_pcso &= ~PC_BSE_LOOPBACK; |
| 927 | immap->im_ioport.iop_pcdat &= ~PC_BSE_LOOPBACK; |
| 928 | #endif |
| 929 | |
| 930 | #ifdef CONFIG_FADS |
| 931 | cp->cp_pbpar |= PB_ENET_TENA; |
| 932 | cp->cp_pbdir |= PB_ENET_TENA; |
| 933 | |
| 934 | /* Enable the EEST PHY. |
| 935 | */ |
| 936 | *((volatile uint *)BCSR1) &= ~BCSR1_ETHEN; |
| 937 | #endif |
| 938 | |
| 939 | dev->base_addr = (unsigned long)ep; |
| 940 | #if 0 |
| 941 | dev->name = "CPM_ENET"; |
| 942 | #endif |
| 943 | |
| 944 | /* The CPM Ethernet specific entries in the device structure. */ |
| 945 | dev->open = scc_enet_open; |
| 946 | dev->hard_start_xmit = scc_enet_start_xmit; |
| 947 | dev->tx_timeout = scc_enet_timeout; |
| 948 | dev->watchdog_timeo = TX_TIMEOUT; |
| 949 | dev->stop = scc_enet_close; |
| 950 | dev->get_stats = scc_enet_get_stats; |
| 951 | dev->set_multicast_list = set_multicast_list; |
| 952 | |
| 953 | err = register_netdev(dev); |
| 954 | if (err) { |
| 955 | free_netdev(dev); |
| 956 | return err; |
| 957 | } |
| 958 | |
| 959 | /* And last, enable the transmit and receive processing. |
| 960 | */ |
| 961 | sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); |
| 962 | |
| 963 | printk("%s: CPM ENET Version 0.2 on SCC%d, ", dev->name, SCC_ENET+1); |
| 964 | for (i=0; i<5; i++) |
| 965 | printk("%02x:", dev->dev_addr[i]); |
| 966 | printk("%02x\n", dev->dev_addr[5]); |
| 967 | |
| 968 | return 0; |
| 969 | } |
| 970 | |
| 971 | module_init(scc_enet_init); |