blob: bd9ed9b0247b1d48de85680c7bed66e04b1787a2 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
David Woodhouse265489f2005-07-06 13:13:13 +010010 * $Id: file.c,v 1.102 2005/07/06 12:13:09 dwmw2 Exp $
Linus Torvalds1da177e2005-04-16 15:20:36 -070011 *
12 */
13
Linus Torvalds1da177e2005-04-16 15:20:36 -070014#include <linux/kernel.h>
15#include <linux/slab.h>
16#include <linux/fs.h>
17#include <linux/time.h>
18#include <linux/pagemap.h>
19#include <linux/highmem.h>
20#include <linux/crc32.h>
21#include <linux/jffs2.h>
22#include "nodelist.h"
23
24extern int generic_file_open(struct inode *, struct file *) __attribute__((weak));
25extern loff_t generic_file_llseek(struct file *file, loff_t offset, int origin) __attribute__((weak));
26
27static int jffs2_commit_write (struct file *filp, struct page *pg,
28 unsigned start, unsigned end);
29static int jffs2_prepare_write (struct file *filp, struct page *pg,
30 unsigned start, unsigned end);
31static int jffs2_readpage (struct file *filp, struct page *pg);
32
33int jffs2_fsync(struct file *filp, struct dentry *dentry, int datasync)
34{
35 struct inode *inode = dentry->d_inode;
36 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
37
38 /* Trigger GC to flush any pending writes for this inode */
39 jffs2_flush_wbuf_gc(c, inode->i_ino);
40
41 return 0;
42}
43
44struct file_operations jffs2_file_operations =
45{
46 .llseek = generic_file_llseek,
47 .open = generic_file_open,
48 .read = generic_file_read,
49 .write = generic_file_write,
50 .ioctl = jffs2_ioctl,
51 .mmap = generic_file_readonly_mmap,
52 .fsync = jffs2_fsync,
Linus Torvalds1da177e2005-04-16 15:20:36 -070053 .sendfile = generic_file_sendfile
Linus Torvalds1da177e2005-04-16 15:20:36 -070054};
55
56/* jffs2_file_inode_operations */
57
58struct inode_operations jffs2_file_inode_operations =
59{
60 .setattr = jffs2_setattr
61};
62
63struct address_space_operations jffs2_file_address_operations =
64{
65 .readpage = jffs2_readpage,
66 .prepare_write =jffs2_prepare_write,
67 .commit_write = jffs2_commit_write
68};
69
70static int jffs2_do_readpage_nolock (struct inode *inode, struct page *pg)
71{
72 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
73 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
74 unsigned char *pg_buf;
75 int ret;
76
77 D2(printk(KERN_DEBUG "jffs2_do_readpage_nolock(): ino #%lu, page at offset 0x%lx\n", inode->i_ino, pg->index << PAGE_CACHE_SHIFT));
78
Matt Mackallcd7619d2005-05-01 08:59:01 -070079 BUG_ON(!PageLocked(pg));
Linus Torvalds1da177e2005-04-16 15:20:36 -070080
81 pg_buf = kmap(pg);
82 /* FIXME: Can kmap fail? */
83
84 ret = jffs2_read_inode_range(c, f, pg_buf, pg->index << PAGE_CACHE_SHIFT, PAGE_CACHE_SIZE);
85
86 if (ret) {
87 ClearPageUptodate(pg);
88 SetPageError(pg);
89 } else {
90 SetPageUptodate(pg);
91 ClearPageError(pg);
92 }
93
94 flush_dcache_page(pg);
95 kunmap(pg);
96
97 D2(printk(KERN_DEBUG "readpage finished\n"));
98 return 0;
99}
100
101int jffs2_do_readpage_unlock(struct inode *inode, struct page *pg)
102{
103 int ret = jffs2_do_readpage_nolock(inode, pg);
104 unlock_page(pg);
105 return ret;
106}
107
108
109static int jffs2_readpage (struct file *filp, struct page *pg)
110{
111 struct jffs2_inode_info *f = JFFS2_INODE_INFO(pg->mapping->host);
112 int ret;
113
114 down(&f->sem);
115 ret = jffs2_do_readpage_unlock(pg->mapping->host, pg);
116 up(&f->sem);
117 return ret;
118}
119
120static int jffs2_prepare_write (struct file *filp, struct page *pg,
121 unsigned start, unsigned end)
122{
123 struct inode *inode = pg->mapping->host;
124 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
125 uint32_t pageofs = pg->index << PAGE_CACHE_SHIFT;
126 int ret = 0;
127
128 D1(printk(KERN_DEBUG "jffs2_prepare_write()\n"));
129
130 if (pageofs > inode->i_size) {
131 /* Make new hole frag from old EOF to new page */
132 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
133 struct jffs2_raw_inode ri;
134 struct jffs2_full_dnode *fn;
135 uint32_t phys_ofs, alloc_len;
136
137 D1(printk(KERN_DEBUG "Writing new hole frag 0x%x-0x%x between current EOF and new page\n",
138 (unsigned int)inode->i_size, pageofs));
139
140 ret = jffs2_reserve_space(c, sizeof(ri), &phys_ofs, &alloc_len, ALLOC_NORMAL);
141 if (ret)
142 return ret;
143
144 down(&f->sem);
145 memset(&ri, 0, sizeof(ri));
146
147 ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
148 ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
149 ri.totlen = cpu_to_je32(sizeof(ri));
150 ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));
151
152 ri.ino = cpu_to_je32(f->inocache->ino);
153 ri.version = cpu_to_je32(++f->highest_version);
154 ri.mode = cpu_to_jemode(inode->i_mode);
155 ri.uid = cpu_to_je16(inode->i_uid);
156 ri.gid = cpu_to_je16(inode->i_gid);
157 ri.isize = cpu_to_je32(max((uint32_t)inode->i_size, pageofs));
158 ri.atime = ri.ctime = ri.mtime = cpu_to_je32(get_seconds());
159 ri.offset = cpu_to_je32(inode->i_size);
160 ri.dsize = cpu_to_je32(pageofs - inode->i_size);
161 ri.csize = cpu_to_je32(0);
162 ri.compr = JFFS2_COMPR_ZERO;
163 ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
164 ri.data_crc = cpu_to_je32(0);
165
166 fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_NORMAL);
167
168 if (IS_ERR(fn)) {
169 ret = PTR_ERR(fn);
170 jffs2_complete_reservation(c);
171 up(&f->sem);
172 return ret;
173 }
174 ret = jffs2_add_full_dnode_to_inode(c, f, fn);
175 if (f->metadata) {
176 jffs2_mark_node_obsolete(c, f->metadata->raw);
177 jffs2_free_full_dnode(f->metadata);
178 f->metadata = NULL;
179 }
180 if (ret) {
181 D1(printk(KERN_DEBUG "Eep. add_full_dnode_to_inode() failed in prepare_write, returned %d\n", ret));
182 jffs2_mark_node_obsolete(c, fn->raw);
183 jffs2_free_full_dnode(fn);
184 jffs2_complete_reservation(c);
185 up(&f->sem);
186 return ret;
187 }
188 jffs2_complete_reservation(c);
189 inode->i_size = pageofs;
190 up(&f->sem);
191 }
192
193 /* Read in the page if it wasn't already present, unless it's a whole page */
194 if (!PageUptodate(pg) && (start || end < PAGE_CACHE_SIZE)) {
195 down(&f->sem);
196 ret = jffs2_do_readpage_nolock(inode, pg);
197 up(&f->sem);
198 }
199 D1(printk(KERN_DEBUG "end prepare_write(). pg->flags %lx\n", pg->flags));
200 return ret;
201}
202
203static int jffs2_commit_write (struct file *filp, struct page *pg,
204 unsigned start, unsigned end)
205{
206 /* Actually commit the write from the page cache page we're looking at.
207 * For now, we write the full page out each time. It sucks, but it's simple
208 */
209 struct inode *inode = pg->mapping->host;
210 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
211 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
212 struct jffs2_raw_inode *ri;
213 unsigned aligned_start = start & ~3;
214 int ret = 0;
215 uint32_t writtenlen = 0;
216
217 D1(printk(KERN_DEBUG "jffs2_commit_write(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n",
218 inode->i_ino, pg->index << PAGE_CACHE_SHIFT, start, end, pg->flags));
219
220 if (!start && end == PAGE_CACHE_SIZE) {
221 /* We need to avoid deadlock with page_cache_read() in
222 jffs2_garbage_collect_pass(). So we have to mark the
223 page up to date, to prevent page_cache_read() from
224 trying to re-lock it. */
225 SetPageUptodate(pg);
226 }
227
228 ri = jffs2_alloc_raw_inode();
229
230 if (!ri) {
231 D1(printk(KERN_DEBUG "jffs2_commit_write(): Allocation of raw inode failed\n"));
232 return -ENOMEM;
233 }
234
235 /* Set the fields that the generic jffs2_write_inode_range() code can't find */
236 ri->ino = cpu_to_je32(inode->i_ino);
237 ri->mode = cpu_to_jemode(inode->i_mode);
238 ri->uid = cpu_to_je16(inode->i_uid);
239 ri->gid = cpu_to_je16(inode->i_gid);
240 ri->isize = cpu_to_je32((uint32_t)inode->i_size);
241 ri->atime = ri->ctime = ri->mtime = cpu_to_je32(get_seconds());
242
243 /* In 2.4, it was already kmapped by generic_file_write(). Doesn't
244 hurt to do it again. The alternative is ifdefs, which are ugly. */
245 kmap(pg);
246
247 ret = jffs2_write_inode_range(c, f, ri, page_address(pg) + aligned_start,
248 (pg->index << PAGE_CACHE_SHIFT) + aligned_start,
249 end - aligned_start, &writtenlen);
250
251 kunmap(pg);
252
253 if (ret) {
254 /* There was an error writing. */
255 SetPageError(pg);
256 }
257
258 /* Adjust writtenlen for the padding we did, so we don't confuse our caller */
259 if (writtenlen < (start&3))
260 writtenlen = 0;
261 else
262 writtenlen -= (start&3);
263
264 if (writtenlen) {
265 if (inode->i_size < (pg->index << PAGE_CACHE_SHIFT) + start + writtenlen) {
266 inode->i_size = (pg->index << PAGE_CACHE_SHIFT) + start + writtenlen;
267 inode->i_blocks = (inode->i_size + 511) >> 9;
268
269 inode->i_ctime = inode->i_mtime = ITIME(je32_to_cpu(ri->ctime));
270 }
271 }
272
273 jffs2_free_raw_inode(ri);
274
275 if (start+writtenlen < end) {
276 /* generic_file_write has written more to the page cache than we've
277 actually written to the medium. Mark the page !Uptodate so that
278 it gets reread */
279 D1(printk(KERN_DEBUG "jffs2_commit_write(): Not all bytes written. Marking page !uptodate\n"));
280 SetPageError(pg);
281 ClearPageUptodate(pg);
282 }
283
284 D1(printk(KERN_DEBUG "jffs2_commit_write() returning %d\n",writtenlen?writtenlen:ret));
285 return writtenlen?writtenlen:ret;
286}