blob: cc4c9190b7fd861fb715953759a5b9068b03f7c3 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro, <bir7@leland.Stanford.Edu>
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40#ifndef _SOCK_H
41#define _SOCK_H
42
43#include <linux/config.h>
44#include <linux/list.h>
45#include <linux/timer.h>
46#include <linux/cache.h>
47#include <linux/module.h>
48#include <linux/netdevice.h>
49#include <linux/skbuff.h> /* struct sk_buff */
50#include <linux/security.h>
51
52#include <linux/filter.h>
53
54#include <asm/atomic.h>
55#include <net/dst.h>
56#include <net/checksum.h>
57
58/*
59 * This structure really needs to be cleaned up.
60 * Most of it is for TCP, and not used by any of
61 * the other protocols.
62 */
63
64/* Define this to get the SOCK_DBG debugging facility. */
65#define SOCK_DEBUGGING
66#ifdef SOCK_DEBUGGING
67#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
68 printk(KERN_DEBUG msg); } while (0)
69#else
70#define SOCK_DEBUG(sk, msg...) do { } while (0)
71#endif
72
73/* This is the per-socket lock. The spinlock provides a synchronization
74 * between user contexts and software interrupt processing, whereas the
75 * mini-semaphore synchronizes multiple users amongst themselves.
76 */
77struct sock_iocb;
78typedef struct {
79 spinlock_t slock;
80 struct sock_iocb *owner;
81 wait_queue_head_t wq;
82} socket_lock_t;
83
84#define sock_lock_init(__sk) \
85do { spin_lock_init(&((__sk)->sk_lock.slock)); \
86 (__sk)->sk_lock.owner = NULL; \
87 init_waitqueue_head(&((__sk)->sk_lock.wq)); \
88} while(0)
89
90struct sock;
91
92/**
Pavel Pisa4dc3b162005-05-01 08:59:25 -070093 * struct sock_common - minimal network layer representation of sockets
94 * @skc_family: network address family
95 * @skc_state: Connection state
96 * @skc_reuse: %SO_REUSEADDR setting
97 * @skc_bound_dev_if: bound device index if != 0
98 * @skc_node: main hash linkage for various protocol lookup tables
99 * @skc_bind_node: bind hash linkage for various protocol lookup tables
100 * @skc_refcnt: reference count
101 *
102 * This is the minimal network layer representation of sockets, the header
103 * for struct sock and struct tcp_tw_bucket.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700104 */
105struct sock_common {
106 unsigned short skc_family;
107 volatile unsigned char skc_state;
108 unsigned char skc_reuse;
109 int skc_bound_dev_if;
110 struct hlist_node skc_node;
111 struct hlist_node skc_bind_node;
112 atomic_t skc_refcnt;
113};
114
115/**
116 * struct sock - network layer representation of sockets
Pavel Pisa4dc3b162005-05-01 08:59:25 -0700117 * @__sk_common: shared layout with tcp_tw_bucket
118 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
119 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
120 * @sk_lock: synchronizer
121 * @sk_rcvbuf: size of receive buffer in bytes
122 * @sk_sleep: sock wait queue
123 * @sk_dst_cache: destination cache
124 * @sk_dst_lock: destination cache lock
125 * @sk_policy: flow policy
126 * @sk_rmem_alloc: receive queue bytes committed
127 * @sk_receive_queue: incoming packets
128 * @sk_wmem_alloc: transmit queue bytes committed
129 * @sk_write_queue: Packet sending queue
130 * @sk_omem_alloc: "o" is "option" or "other"
131 * @sk_wmem_queued: persistent queue size
132 * @sk_forward_alloc: space allocated forward
133 * @sk_allocation: allocation mode
134 * @sk_sndbuf: size of send buffer in bytes
135 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
136 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
137 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
138 * @sk_lingertime: %SO_LINGER l_linger setting
139 * @sk_hashent: hash entry in several tables (e.g. tcp_ehash)
140 * @sk_backlog: always used with the per-socket spinlock held
141 * @sk_callback_lock: used with the callbacks in the end of this struct
142 * @sk_error_queue: rarely used
143 * @sk_prot: protocol handlers inside a network family
144 * @sk_err: last error
145 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
146 * @sk_ack_backlog: current listen backlog
147 * @sk_max_ack_backlog: listen backlog set in listen()
148 * @sk_priority: %SO_PRIORITY setting
149 * @sk_type: socket type (%SOCK_STREAM, etc)
150 * @sk_protocol: which protocol this socket belongs in this network family
151 * @sk_peercred: %SO_PEERCRED setting
152 * @sk_rcvlowat: %SO_RCVLOWAT setting
153 * @sk_rcvtimeo: %SO_RCVTIMEO setting
154 * @sk_sndtimeo: %SO_SNDTIMEO setting
155 * @sk_filter: socket filtering instructions
156 * @sk_protinfo: private area, net family specific, when not using slab
157 * @sk_timer: sock cleanup timer
158 * @sk_stamp: time stamp of last packet received
159 * @sk_socket: Identd and reporting IO signals
160 * @sk_user_data: RPC layer private data
161 * @sk_sndmsg_page: cached page for sendmsg
162 * @sk_sndmsg_off: cached offset for sendmsg
163 * @sk_send_head: front of stuff to transmit
Martin Waitz67be2dd2005-05-01 08:59:26 -0700164 * @sk_security: used by security modules
Pavel Pisa4dc3b162005-05-01 08:59:25 -0700165 * @sk_write_pending: a write to stream socket waits to start
166 * @sk_state_change: callback to indicate change in the state of the sock
167 * @sk_data_ready: callback to indicate there is data to be processed
168 * @sk_write_space: callback to indicate there is bf sending space available
169 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
170 * @sk_backlog_rcv: callback to process the backlog
171 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172 */
173struct sock {
174 /*
175 * Now struct tcp_tw_bucket also uses sock_common, so please just
176 * don't add nothing before this first member (__sk_common) --acme
177 */
178 struct sock_common __sk_common;
179#define sk_family __sk_common.skc_family
180#define sk_state __sk_common.skc_state
181#define sk_reuse __sk_common.skc_reuse
182#define sk_bound_dev_if __sk_common.skc_bound_dev_if
183#define sk_node __sk_common.skc_node
184#define sk_bind_node __sk_common.skc_bind_node
185#define sk_refcnt __sk_common.skc_refcnt
186 unsigned char sk_shutdown : 2,
187 sk_no_check : 2,
188 sk_userlocks : 4;
189 unsigned char sk_protocol;
190 unsigned short sk_type;
191 int sk_rcvbuf;
192 socket_lock_t sk_lock;
193 wait_queue_head_t *sk_sleep;
194 struct dst_entry *sk_dst_cache;
195 struct xfrm_policy *sk_policy[2];
196 rwlock_t sk_dst_lock;
197 atomic_t sk_rmem_alloc;
198 atomic_t sk_wmem_alloc;
199 atomic_t sk_omem_alloc;
200 struct sk_buff_head sk_receive_queue;
201 struct sk_buff_head sk_write_queue;
202 int sk_wmem_queued;
203 int sk_forward_alloc;
204 unsigned int sk_allocation;
205 int sk_sndbuf;
206 int sk_route_caps;
207 int sk_hashent;
208 unsigned long sk_flags;
209 unsigned long sk_lingertime;
210 /*
211 * The backlog queue is special, it is always used with
212 * the per-socket spinlock held and requires low latency
213 * access. Therefore we special case it's implementation.
214 */
215 struct {
216 struct sk_buff *head;
217 struct sk_buff *tail;
218 } sk_backlog;
219 struct sk_buff_head sk_error_queue;
220 struct proto *sk_prot;
221 rwlock_t sk_callback_lock;
222 int sk_err,
223 sk_err_soft;
224 unsigned short sk_ack_backlog;
225 unsigned short sk_max_ack_backlog;
226 __u32 sk_priority;
227 struct ucred sk_peercred;
228 int sk_rcvlowat;
229 long sk_rcvtimeo;
230 long sk_sndtimeo;
231 struct sk_filter *sk_filter;
232 void *sk_protinfo;
233 struct timer_list sk_timer;
234 struct timeval sk_stamp;
235 struct socket *sk_socket;
236 void *sk_user_data;
237 struct page *sk_sndmsg_page;
238 struct sk_buff *sk_send_head;
239 __u32 sk_sndmsg_off;
240 int sk_write_pending;
241 void *sk_security;
242 void (*sk_state_change)(struct sock *sk);
243 void (*sk_data_ready)(struct sock *sk, int bytes);
244 void (*sk_write_space)(struct sock *sk);
245 void (*sk_error_report)(struct sock *sk);
246 int (*sk_backlog_rcv)(struct sock *sk,
247 struct sk_buff *skb);
248 void (*sk_destruct)(struct sock *sk);
249};
250
251/*
252 * Hashed lists helper routines
253 */
254static inline struct sock *__sk_head(struct hlist_head *head)
255{
256 return hlist_entry(head->first, struct sock, sk_node);
257}
258
259static inline struct sock *sk_head(struct hlist_head *head)
260{
261 return hlist_empty(head) ? NULL : __sk_head(head);
262}
263
264static inline struct sock *sk_next(struct sock *sk)
265{
266 return sk->sk_node.next ?
267 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
268}
269
270static inline int sk_unhashed(struct sock *sk)
271{
272 return hlist_unhashed(&sk->sk_node);
273}
274
275static inline int sk_hashed(struct sock *sk)
276{
277 return sk->sk_node.pprev != NULL;
278}
279
280static __inline__ void sk_node_init(struct hlist_node *node)
281{
282 node->pprev = NULL;
283}
284
285static __inline__ void __sk_del_node(struct sock *sk)
286{
287 __hlist_del(&sk->sk_node);
288}
289
290static __inline__ int __sk_del_node_init(struct sock *sk)
291{
292 if (sk_hashed(sk)) {
293 __sk_del_node(sk);
294 sk_node_init(&sk->sk_node);
295 return 1;
296 }
297 return 0;
298}
299
300/* Grab socket reference count. This operation is valid only
301 when sk is ALREADY grabbed f.e. it is found in hash table
302 or a list and the lookup is made under lock preventing hash table
303 modifications.
304 */
305
306static inline void sock_hold(struct sock *sk)
307{
308 atomic_inc(&sk->sk_refcnt);
309}
310
311/* Ungrab socket in the context, which assumes that socket refcnt
312 cannot hit zero, f.e. it is true in context of any socketcall.
313 */
314static inline void __sock_put(struct sock *sk)
315{
316 atomic_dec(&sk->sk_refcnt);
317}
318
319static __inline__ int sk_del_node_init(struct sock *sk)
320{
321 int rc = __sk_del_node_init(sk);
322
323 if (rc) {
324 /* paranoid for a while -acme */
325 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
326 __sock_put(sk);
327 }
328 return rc;
329}
330
331static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
332{
333 hlist_add_head(&sk->sk_node, list);
334}
335
336static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
337{
338 sock_hold(sk);
339 __sk_add_node(sk, list);
340}
341
342static __inline__ void __sk_del_bind_node(struct sock *sk)
343{
344 __hlist_del(&sk->sk_bind_node);
345}
346
347static __inline__ void sk_add_bind_node(struct sock *sk,
348 struct hlist_head *list)
349{
350 hlist_add_head(&sk->sk_bind_node, list);
351}
352
353#define sk_for_each(__sk, node, list) \
354 hlist_for_each_entry(__sk, node, list, sk_node)
355#define sk_for_each_from(__sk, node) \
356 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
357 hlist_for_each_entry_from(__sk, node, sk_node)
358#define sk_for_each_continue(__sk, node) \
359 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
360 hlist_for_each_entry_continue(__sk, node, sk_node)
361#define sk_for_each_safe(__sk, node, tmp, list) \
362 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
363#define sk_for_each_bound(__sk, node, list) \
364 hlist_for_each_entry(__sk, node, list, sk_bind_node)
365
366/* Sock flags */
367enum sock_flags {
368 SOCK_DEAD,
369 SOCK_DONE,
370 SOCK_URGINLINE,
371 SOCK_KEEPOPEN,
372 SOCK_LINGER,
373 SOCK_DESTROY,
374 SOCK_BROADCAST,
375 SOCK_TIMESTAMP,
376 SOCK_ZAPPED,
377 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
378 SOCK_DBG, /* %SO_DEBUG setting */
379 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
380 SOCK_NO_LARGESEND, /* whether to sent large segments or not */
381 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
382 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
383};
384
385static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
386{
387 __set_bit(flag, &sk->sk_flags);
388}
389
390static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
391{
392 __clear_bit(flag, &sk->sk_flags);
393}
394
395static inline int sock_flag(struct sock *sk, enum sock_flags flag)
396{
397 return test_bit(flag, &sk->sk_flags);
398}
399
400static inline void sk_acceptq_removed(struct sock *sk)
401{
402 sk->sk_ack_backlog--;
403}
404
405static inline void sk_acceptq_added(struct sock *sk)
406{
407 sk->sk_ack_backlog++;
408}
409
410static inline int sk_acceptq_is_full(struct sock *sk)
411{
412 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
413}
414
415/*
416 * Compute minimal free write space needed to queue new packets.
417 */
418static inline int sk_stream_min_wspace(struct sock *sk)
419{
420 return sk->sk_wmem_queued / 2;
421}
422
423static inline int sk_stream_wspace(struct sock *sk)
424{
425 return sk->sk_sndbuf - sk->sk_wmem_queued;
426}
427
428extern void sk_stream_write_space(struct sock *sk);
429
430static inline int sk_stream_memory_free(struct sock *sk)
431{
432 return sk->sk_wmem_queued < sk->sk_sndbuf;
433}
434
435extern void sk_stream_rfree(struct sk_buff *skb);
436
437static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
438{
439 skb->sk = sk;
440 skb->destructor = sk_stream_rfree;
441 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
442 sk->sk_forward_alloc -= skb->truesize;
443}
444
445static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
446{
447 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
448 sk->sk_wmem_queued -= skb->truesize;
449 sk->sk_forward_alloc += skb->truesize;
450 __kfree_skb(skb);
451}
452
453/* The per-socket spinlock must be held here. */
454#define sk_add_backlog(__sk, __skb) \
455do { if (!(__sk)->sk_backlog.tail) { \
456 (__sk)->sk_backlog.head = \
457 (__sk)->sk_backlog.tail = (__skb); \
458 } else { \
459 ((__sk)->sk_backlog.tail)->next = (__skb); \
460 (__sk)->sk_backlog.tail = (__skb); \
461 } \
462 (__skb)->next = NULL; \
463} while(0)
464
465#define sk_wait_event(__sk, __timeo, __condition) \
466({ int rc; \
467 release_sock(__sk); \
468 rc = __condition; \
469 if (!rc) { \
470 *(__timeo) = schedule_timeout(*(__timeo)); \
471 rc = __condition; \
472 } \
473 lock_sock(__sk); \
474 rc; \
475})
476
477extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
478extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
479extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
480extern int sk_stream_error(struct sock *sk, int flags, int err);
481extern void sk_stream_kill_queues(struct sock *sk);
482
483extern int sk_wait_data(struct sock *sk, long *timeo);
484
485/* Networking protocol blocks we attach to sockets.
486 * socket layer -> transport layer interface
487 * transport -> network interface is defined by struct inet_proto
488 */
489struct proto {
490 void (*close)(struct sock *sk,
491 long timeout);
492 int (*connect)(struct sock *sk,
493 struct sockaddr *uaddr,
494 int addr_len);
495 int (*disconnect)(struct sock *sk, int flags);
496
497 struct sock * (*accept) (struct sock *sk, int flags, int *err);
498
499 int (*ioctl)(struct sock *sk, int cmd,
500 unsigned long arg);
501 int (*init)(struct sock *sk);
502 int (*destroy)(struct sock *sk);
503 void (*shutdown)(struct sock *sk, int how);
504 int (*setsockopt)(struct sock *sk, int level,
505 int optname, char __user *optval,
506 int optlen);
507 int (*getsockopt)(struct sock *sk, int level,
508 int optname, char __user *optval,
509 int __user *option);
510 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
511 struct msghdr *msg, size_t len);
512 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
513 struct msghdr *msg,
514 size_t len, int noblock, int flags,
515 int *addr_len);
516 int (*sendpage)(struct sock *sk, struct page *page,
517 int offset, size_t size, int flags);
518 int (*bind)(struct sock *sk,
519 struct sockaddr *uaddr, int addr_len);
520
521 int (*backlog_rcv) (struct sock *sk,
522 struct sk_buff *skb);
523
524 /* Keeping track of sk's, looking them up, and port selection methods. */
525 void (*hash)(struct sock *sk);
526 void (*unhash)(struct sock *sk);
527 int (*get_port)(struct sock *sk, unsigned short snum);
528
529 /* Memory pressure */
530 void (*enter_memory_pressure)(void);
531 atomic_t *memory_allocated; /* Current allocated memory. */
532 atomic_t *sockets_allocated; /* Current number of sockets. */
533 /*
534 * Pressure flag: try to collapse.
535 * Technical note: it is used by multiple contexts non atomically.
536 * All the sk_stream_mem_schedule() is of this nature: accounting
537 * is strict, actions are advisory and have some latency.
538 */
539 int *memory_pressure;
540 int *sysctl_mem;
541 int *sysctl_wmem;
542 int *sysctl_rmem;
543 int max_header;
544
545 kmem_cache_t *slab;
546 unsigned int obj_size;
547
548 struct module *owner;
549
550 char name[32];
551
552 struct list_head node;
553
554 struct {
555 int inuse;
556 u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
557 } stats[NR_CPUS];
558};
559
560extern int proto_register(struct proto *prot, int alloc_slab);
561extern void proto_unregister(struct proto *prot);
562
563/* Called with local bh disabled */
564static __inline__ void sock_prot_inc_use(struct proto *prot)
565{
566 prot->stats[smp_processor_id()].inuse++;
567}
568
569static __inline__ void sock_prot_dec_use(struct proto *prot)
570{
571 prot->stats[smp_processor_id()].inuse--;
572}
573
574/* About 10 seconds */
575#define SOCK_DESTROY_TIME (10*HZ)
576
577/* Sockets 0-1023 can't be bound to unless you are superuser */
578#define PROT_SOCK 1024
579
580#define SHUTDOWN_MASK 3
581#define RCV_SHUTDOWN 1
582#define SEND_SHUTDOWN 2
583
584#define SOCK_SNDBUF_LOCK 1
585#define SOCK_RCVBUF_LOCK 2
586#define SOCK_BINDADDR_LOCK 4
587#define SOCK_BINDPORT_LOCK 8
588
589/* sock_iocb: used to kick off async processing of socket ios */
590struct sock_iocb {
591 struct list_head list;
592
593 int flags;
594 int size;
595 struct socket *sock;
596 struct sock *sk;
597 struct scm_cookie *scm;
598 struct msghdr *msg, async_msg;
599 struct iovec async_iov;
600 struct kiocb *kiocb;
601};
602
603static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
604{
605 return (struct sock_iocb *)iocb->private;
606}
607
608static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
609{
610 return si->kiocb;
611}
612
613struct socket_alloc {
614 struct socket socket;
615 struct inode vfs_inode;
616};
617
618static inline struct socket *SOCKET_I(struct inode *inode)
619{
620 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
621}
622
623static inline struct inode *SOCK_INODE(struct socket *socket)
624{
625 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
626}
627
628extern void __sk_stream_mem_reclaim(struct sock *sk);
629extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
630
631#define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
632
633static inline int sk_stream_pages(int amt)
634{
635 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
636}
637
638static inline void sk_stream_mem_reclaim(struct sock *sk)
639{
640 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
641 __sk_stream_mem_reclaim(sk);
642}
643
644static inline void sk_stream_writequeue_purge(struct sock *sk)
645{
646 struct sk_buff *skb;
647
648 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
649 sk_stream_free_skb(sk, skb);
650 sk_stream_mem_reclaim(sk);
651}
652
653static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
654{
655 return (int)skb->truesize <= sk->sk_forward_alloc ||
656 sk_stream_mem_schedule(sk, skb->truesize, 1);
657}
658
659/* Used by processes to "lock" a socket state, so that
660 * interrupts and bottom half handlers won't change it
661 * from under us. It essentially blocks any incoming
662 * packets, so that we won't get any new data or any
663 * packets that change the state of the socket.
664 *
665 * While locked, BH processing will add new packets to
666 * the backlog queue. This queue is processed by the
667 * owner of the socket lock right before it is released.
668 *
669 * Since ~2.3.5 it is also exclusive sleep lock serializing
670 * accesses from user process context.
671 */
672#define sock_owned_by_user(sk) ((sk)->sk_lock.owner)
673
674extern void FASTCALL(lock_sock(struct sock *sk));
675extern void FASTCALL(release_sock(struct sock *sk));
676
677/* BH context may only use the following locking interface. */
678#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
679#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
680
681extern struct sock *sk_alloc(int family, int priority,
682 struct proto *prot, int zero_it);
683extern void sk_free(struct sock *sk);
684
685extern struct sk_buff *sock_wmalloc(struct sock *sk,
686 unsigned long size, int force,
687 int priority);
688extern struct sk_buff *sock_rmalloc(struct sock *sk,
689 unsigned long size, int force,
690 int priority);
691extern void sock_wfree(struct sk_buff *skb);
692extern void sock_rfree(struct sk_buff *skb);
693
694extern int sock_setsockopt(struct socket *sock, int level,
695 int op, char __user *optval,
696 int optlen);
697
698extern int sock_getsockopt(struct socket *sock, int level,
699 int op, char __user *optval,
700 int __user *optlen);
701extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
702 unsigned long size,
703 int noblock,
704 int *errcode);
705extern void *sock_kmalloc(struct sock *sk, int size, int priority);
706extern void sock_kfree_s(struct sock *sk, void *mem, int size);
707extern void sk_send_sigurg(struct sock *sk);
708
709/*
710 * Functions to fill in entries in struct proto_ops when a protocol
711 * does not implement a particular function.
712 */
713extern int sock_no_bind(struct socket *,
714 struct sockaddr *, int);
715extern int sock_no_connect(struct socket *,
716 struct sockaddr *, int, int);
717extern int sock_no_socketpair(struct socket *,
718 struct socket *);
719extern int sock_no_accept(struct socket *,
720 struct socket *, int);
721extern int sock_no_getname(struct socket *,
722 struct sockaddr *, int *, int);
723extern unsigned int sock_no_poll(struct file *, struct socket *,
724 struct poll_table_struct *);
725extern int sock_no_ioctl(struct socket *, unsigned int,
726 unsigned long);
727extern int sock_no_listen(struct socket *, int);
728extern int sock_no_shutdown(struct socket *, int);
729extern int sock_no_getsockopt(struct socket *, int , int,
730 char __user *, int __user *);
731extern int sock_no_setsockopt(struct socket *, int, int,
732 char __user *, int);
733extern int sock_no_sendmsg(struct kiocb *, struct socket *,
734 struct msghdr *, size_t);
735extern int sock_no_recvmsg(struct kiocb *, struct socket *,
736 struct msghdr *, size_t, int);
737extern int sock_no_mmap(struct file *file,
738 struct socket *sock,
739 struct vm_area_struct *vma);
740extern ssize_t sock_no_sendpage(struct socket *sock,
741 struct page *page,
742 int offset, size_t size,
743 int flags);
744
745/*
746 * Functions to fill in entries in struct proto_ops when a protocol
747 * uses the inet style.
748 */
749extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
750 char __user *optval, int __user *optlen);
751extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
752 struct msghdr *msg, size_t size, int flags);
753extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
754 char __user *optval, int optlen);
755
756extern void sk_common_release(struct sock *sk);
757
758/*
759 * Default socket callbacks and setup code
760 */
761
762/* Initialise core socket variables */
763extern void sock_init_data(struct socket *sock, struct sock *sk);
764
765/**
766 * sk_filter - run a packet through a socket filter
767 * @sk: sock associated with &sk_buff
768 * @skb: buffer to filter
769 * @needlock: set to 1 if the sock is not locked by caller.
770 *
771 * Run the filter code and then cut skb->data to correct size returned by
772 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
773 * than pkt_len we keep whole skb->data. This is the socket level
774 * wrapper to sk_run_filter. It returns 0 if the packet should
775 * be accepted or -EPERM if the packet should be tossed.
776 *
777 */
778
779static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock)
780{
781 int err;
782
783 err = security_sock_rcv_skb(sk, skb);
784 if (err)
785 return err;
786
787 if (sk->sk_filter) {
788 struct sk_filter *filter;
789
790 if (needlock)
791 bh_lock_sock(sk);
792
793 filter = sk->sk_filter;
794 if (filter) {
795 int pkt_len = sk_run_filter(skb, filter->insns,
796 filter->len);
797 if (!pkt_len)
798 err = -EPERM;
799 else
800 skb_trim(skb, pkt_len);
801 }
802
803 if (needlock)
804 bh_unlock_sock(sk);
805 }
806 return err;
807}
808
809/**
810 * sk_filter_release: Release a socket filter
811 * @sk: socket
812 * @fp: filter to remove
813 *
814 * Remove a filter from a socket and release its resources.
815 */
816
817static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
818{
819 unsigned int size = sk_filter_len(fp);
820
821 atomic_sub(size, &sk->sk_omem_alloc);
822
823 if (atomic_dec_and_test(&fp->refcnt))
824 kfree(fp);
825}
826
827static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
828{
829 atomic_inc(&fp->refcnt);
830 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
831}
832
833/*
834 * Socket reference counting postulates.
835 *
836 * * Each user of socket SHOULD hold a reference count.
837 * * Each access point to socket (an hash table bucket, reference from a list,
838 * running timer, skb in flight MUST hold a reference count.
839 * * When reference count hits 0, it means it will never increase back.
840 * * When reference count hits 0, it means that no references from
841 * outside exist to this socket and current process on current CPU
842 * is last user and may/should destroy this socket.
843 * * sk_free is called from any context: process, BH, IRQ. When
844 * it is called, socket has no references from outside -> sk_free
845 * may release descendant resources allocated by the socket, but
846 * to the time when it is called, socket is NOT referenced by any
847 * hash tables, lists etc.
848 * * Packets, delivered from outside (from network or from another process)
849 * and enqueued on receive/error queues SHOULD NOT grab reference count,
850 * when they sit in queue. Otherwise, packets will leak to hole, when
851 * socket is looked up by one cpu and unhasing is made by another CPU.
852 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
853 * (leak to backlog). Packet socket does all the processing inside
854 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
855 * use separate SMP lock, so that they are prone too.
856 */
857
858/* Ungrab socket and destroy it, if it was the last reference. */
859static inline void sock_put(struct sock *sk)
860{
861 if (atomic_dec_and_test(&sk->sk_refcnt))
862 sk_free(sk);
863}
864
865/* Detach socket from process context.
866 * Announce socket dead, detach it from wait queue and inode.
867 * Note that parent inode held reference count on this struct sock,
868 * we do not release it in this function, because protocol
869 * probably wants some additional cleanups or even continuing
870 * to work with this socket (TCP).
871 */
872static inline void sock_orphan(struct sock *sk)
873{
874 write_lock_bh(&sk->sk_callback_lock);
875 sock_set_flag(sk, SOCK_DEAD);
876 sk->sk_socket = NULL;
877 sk->sk_sleep = NULL;
878 write_unlock_bh(&sk->sk_callback_lock);
879}
880
881static inline void sock_graft(struct sock *sk, struct socket *parent)
882{
883 write_lock_bh(&sk->sk_callback_lock);
884 sk->sk_sleep = &parent->wait;
885 parent->sk = sk;
886 sk->sk_socket = parent;
887 write_unlock_bh(&sk->sk_callback_lock);
888}
889
890extern int sock_i_uid(struct sock *sk);
891extern unsigned long sock_i_ino(struct sock *sk);
892
893static inline struct dst_entry *
894__sk_dst_get(struct sock *sk)
895{
896 return sk->sk_dst_cache;
897}
898
899static inline struct dst_entry *
900sk_dst_get(struct sock *sk)
901{
902 struct dst_entry *dst;
903
904 read_lock(&sk->sk_dst_lock);
905 dst = sk->sk_dst_cache;
906 if (dst)
907 dst_hold(dst);
908 read_unlock(&sk->sk_dst_lock);
909 return dst;
910}
911
912static inline void
913__sk_dst_set(struct sock *sk, struct dst_entry *dst)
914{
915 struct dst_entry *old_dst;
916
917 old_dst = sk->sk_dst_cache;
918 sk->sk_dst_cache = dst;
919 dst_release(old_dst);
920}
921
922static inline void
923sk_dst_set(struct sock *sk, struct dst_entry *dst)
924{
925 write_lock(&sk->sk_dst_lock);
926 __sk_dst_set(sk, dst);
927 write_unlock(&sk->sk_dst_lock);
928}
929
930static inline void
931__sk_dst_reset(struct sock *sk)
932{
933 struct dst_entry *old_dst;
934
935 old_dst = sk->sk_dst_cache;
936 sk->sk_dst_cache = NULL;
937 dst_release(old_dst);
938}
939
940static inline void
941sk_dst_reset(struct sock *sk)
942{
943 write_lock(&sk->sk_dst_lock);
944 __sk_dst_reset(sk);
945 write_unlock(&sk->sk_dst_lock);
946}
947
948static inline struct dst_entry *
949__sk_dst_check(struct sock *sk, u32 cookie)
950{
951 struct dst_entry *dst = sk->sk_dst_cache;
952
953 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
954 sk->sk_dst_cache = NULL;
955 dst_release(dst);
956 return NULL;
957 }
958
959 return dst;
960}
961
962static inline struct dst_entry *
963sk_dst_check(struct sock *sk, u32 cookie)
964{
965 struct dst_entry *dst = sk_dst_get(sk);
966
967 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
968 sk_dst_reset(sk);
969 dst_release(dst);
970 return NULL;
971 }
972
973 return dst;
974}
975
976static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
977{
978 sk->sk_wmem_queued += skb->truesize;
979 sk->sk_forward_alloc -= skb->truesize;
980}
981
982static inline int skb_copy_to_page(struct sock *sk, char __user *from,
983 struct sk_buff *skb, struct page *page,
984 int off, int copy)
985{
986 if (skb->ip_summed == CHECKSUM_NONE) {
987 int err = 0;
988 unsigned int csum = csum_and_copy_from_user(from,
989 page_address(page) + off,
990 copy, 0, &err);
991 if (err)
992 return err;
993 skb->csum = csum_block_add(skb->csum, csum, skb->len);
994 } else if (copy_from_user(page_address(page) + off, from, copy))
995 return -EFAULT;
996
997 skb->len += copy;
998 skb->data_len += copy;
999 skb->truesize += copy;
1000 sk->sk_wmem_queued += copy;
1001 sk->sk_forward_alloc -= copy;
1002 return 0;
1003}
1004
1005/*
1006 * Queue a received datagram if it will fit. Stream and sequenced
1007 * protocols can't normally use this as they need to fit buffers in
1008 * and play with them.
1009 *
1010 * Inlined as it's very short and called for pretty much every
1011 * packet ever received.
1012 */
1013
1014static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1015{
1016 sock_hold(sk);
1017 skb->sk = sk;
1018 skb->destructor = sock_wfree;
1019 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1020}
1021
1022static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1023{
1024 skb->sk = sk;
1025 skb->destructor = sock_rfree;
1026 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1027}
1028
1029extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1030 unsigned long expires);
1031
1032extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1033
1034static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1035{
1036 int err = 0;
1037 int skb_len;
1038
1039 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1040 number of warnings when compiling with -W --ANK
1041 */
1042 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1043 (unsigned)sk->sk_rcvbuf) {
1044 err = -ENOMEM;
1045 goto out;
1046 }
1047
1048 /* It would be deadlock, if sock_queue_rcv_skb is used
1049 with socket lock! We assume that users of this
1050 function are lock free.
1051 */
1052 err = sk_filter(sk, skb, 1);
1053 if (err)
1054 goto out;
1055
1056 skb->dev = NULL;
1057 skb_set_owner_r(skb, sk);
1058
1059 /* Cache the SKB length before we tack it onto the receive
1060 * queue. Once it is added it no longer belongs to us and
1061 * may be freed by other threads of control pulling packets
1062 * from the queue.
1063 */
1064 skb_len = skb->len;
1065
1066 skb_queue_tail(&sk->sk_receive_queue, skb);
1067
1068 if (!sock_flag(sk, SOCK_DEAD))
1069 sk->sk_data_ready(sk, skb_len);
1070out:
1071 return err;
1072}
1073
1074static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1075{
1076 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1077 number of warnings when compiling with -W --ANK
1078 */
1079 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1080 (unsigned)sk->sk_rcvbuf)
1081 return -ENOMEM;
1082 skb_set_owner_r(skb, sk);
1083 skb_queue_tail(&sk->sk_error_queue, skb);
1084 if (!sock_flag(sk, SOCK_DEAD))
1085 sk->sk_data_ready(sk, skb->len);
1086 return 0;
1087}
1088
1089/*
1090 * Recover an error report and clear atomically
1091 */
1092
1093static inline int sock_error(struct sock *sk)
1094{
1095 int err = xchg(&sk->sk_err, 0);
1096 return -err;
1097}
1098
1099static inline unsigned long sock_wspace(struct sock *sk)
1100{
1101 int amt = 0;
1102
1103 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1104 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1105 if (amt < 0)
1106 amt = 0;
1107 }
1108 return amt;
1109}
1110
1111static inline void sk_wake_async(struct sock *sk, int how, int band)
1112{
1113 if (sk->sk_socket && sk->sk_socket->fasync_list)
1114 sock_wake_async(sk->sk_socket, how, band);
1115}
1116
1117#define SOCK_MIN_SNDBUF 2048
1118#define SOCK_MIN_RCVBUF 256
1119
1120static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1121{
1122 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1123 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1124 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1125 }
1126}
1127
1128static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1129 int size, int mem, int gfp)
1130{
1131 struct sk_buff *skb = alloc_skb(size + sk->sk_prot->max_header, gfp);
1132
1133 if (skb) {
1134 skb->truesize += mem;
1135 if (sk->sk_forward_alloc >= (int)skb->truesize ||
1136 sk_stream_mem_schedule(sk, skb->truesize, 0)) {
1137 skb_reserve(skb, sk->sk_prot->max_header);
1138 return skb;
1139 }
1140 __kfree_skb(skb);
1141 } else {
1142 sk->sk_prot->enter_memory_pressure();
1143 sk_stream_moderate_sndbuf(sk);
1144 }
1145 return NULL;
1146}
1147
1148static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1149 int size, int gfp)
1150{
1151 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1152}
1153
1154static inline struct page *sk_stream_alloc_page(struct sock *sk)
1155{
1156 struct page *page = NULL;
1157
1158 if (sk->sk_forward_alloc >= (int)PAGE_SIZE ||
1159 sk_stream_mem_schedule(sk, PAGE_SIZE, 0))
1160 page = alloc_pages(sk->sk_allocation, 0);
1161 else {
1162 sk->sk_prot->enter_memory_pressure();
1163 sk_stream_moderate_sndbuf(sk);
1164 }
1165 return page;
1166}
1167
1168#define sk_stream_for_retrans_queue(skb, sk) \
1169 for (skb = (sk)->sk_write_queue.next; \
1170 (skb != (sk)->sk_send_head) && \
1171 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1172 skb = skb->next)
1173
1174/*
1175 * Default write policy as shown to user space via poll/select/SIGIO
1176 */
1177static inline int sock_writeable(const struct sock *sk)
1178{
1179 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1180}
1181
1182static inline int gfp_any(void)
1183{
1184 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1185}
1186
1187static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1188{
1189 return noblock ? 0 : sk->sk_rcvtimeo;
1190}
1191
1192static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1193{
1194 return noblock ? 0 : sk->sk_sndtimeo;
1195}
1196
1197static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1198{
1199 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1200}
1201
1202/* Alas, with timeout socket operations are not restartable.
1203 * Compare this to poll().
1204 */
1205static inline int sock_intr_errno(long timeo)
1206{
1207 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1208}
1209
1210static __inline__ void
1211sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1212{
1213 struct timeval *stamp = &skb->stamp;
1214 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1215 /* Race occurred between timestamp enabling and packet
1216 receiving. Fill in the current time for now. */
1217 if (stamp->tv_sec == 0)
1218 do_gettimeofday(stamp);
1219 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval),
1220 stamp);
1221 } else
1222 sk->sk_stamp = *stamp;
1223}
1224
1225/**
1226 * sk_eat_skb - Release a skb if it is no longer needed
Pavel Pisa4dc3b162005-05-01 08:59:25 -07001227 * @sk: socket to eat this skb from
1228 * @skb: socket buffer to eat
Linus Torvalds1da177e2005-04-16 15:20:36 -07001229 *
1230 * This routine must be called with interrupts disabled or with the socket
1231 * locked so that the sk_buff queue operation is ok.
1232*/
1233static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
1234{
1235 __skb_unlink(skb, &sk->sk_receive_queue);
1236 __kfree_skb(skb);
1237}
1238
1239extern void sock_enable_timestamp(struct sock *sk);
1240extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1241
1242/*
1243 * Enable debug/info messages
1244 */
1245
1246#if 0
1247#define NETDEBUG(x) do { } while (0)
1248#define LIMIT_NETDEBUG(x) do {} while(0)
1249#else
1250#define NETDEBUG(x) do { x; } while (0)
1251#define LIMIT_NETDEBUG(x) do { if (net_ratelimit()) { x; } } while(0)
1252#endif
1253
1254/*
1255 * Macros for sleeping on a socket. Use them like this:
1256 *
1257 * SOCK_SLEEP_PRE(sk)
1258 * if (condition)
1259 * schedule();
1260 * SOCK_SLEEP_POST(sk)
1261 *
1262 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1263 * and when the last use of them in DECnet has gone, I'm intending to
1264 * remove them.
1265 */
1266
1267#define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1268 DECLARE_WAITQUEUE(wait, tsk); \
1269 tsk->state = TASK_INTERRUPTIBLE; \
1270 add_wait_queue((sk)->sk_sleep, &wait); \
1271 release_sock(sk);
1272
1273#define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1274 remove_wait_queue((sk)->sk_sleep, &wait); \
1275 lock_sock(sk); \
1276 }
1277
1278static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1279{
1280 if (valbool)
1281 sock_set_flag(sk, bit);
1282 else
1283 sock_reset_flag(sk, bit);
1284}
1285
1286extern __u32 sysctl_wmem_max;
1287extern __u32 sysctl_rmem_max;
1288
1289#ifdef CONFIG_NET
1290int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
1291#else
1292static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
1293{
1294 return -ENODEV;
1295}
1296#endif
1297
1298#endif /* _SOCK_H */