blob: bb230e6c197b1ad9f4941180a14e3b3c471ca3af [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani (lachwani@pmc-sierra.com)
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2005 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33#include <linux/init.h>
34#include <linux/dma-mapping.h>
35#include <linux/tcp.h>
36#include <linux/udp.h>
37#include <linux/etherdevice.h>
38
39#include <linux/bitops.h>
40#include <linux/delay.h>
41#include <linux/ethtool.h>
42#include <asm/io.h>
43#include <asm/types.h>
44#include <asm/pgtable.h>
45#include <asm/system.h>
46#include <asm/delay.h>
47#include "mv643xx_eth.h"
48
49/*
50 * The first part is the high level driver of the gigE ethernet ports.
51 */
52
53/* Constants */
54#define VLAN_HLEN 4
55#define FCS_LEN 4
56#define WRAP NET_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
57#define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
58
59#define INT_CAUSE_UNMASK_ALL 0x0007ffff
60#define INT_CAUSE_UNMASK_ALL_EXT 0x0011ffff
61#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
62#define INT_CAUSE_MASK_ALL 0x00000000
63#define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
64#define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
65#endif
66
67#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
68#define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
69#else
70#define MAX_DESCS_PER_SKB 1
71#endif
72
73#define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
74#define PHY_WAIT_MICRO_SECONDS 10
75
76/* Static function declarations */
77static int eth_port_link_is_up(unsigned int eth_port_num);
78static void eth_port_uc_addr_get(struct net_device *dev,
79 unsigned char *MacAddr);
80static int mv643xx_eth_real_open(struct net_device *);
81static int mv643xx_eth_real_stop(struct net_device *);
82static int mv643xx_eth_change_mtu(struct net_device *, int);
83static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
84static void eth_port_init_mac_tables(unsigned int eth_port_num);
85#ifdef MV643XX_NAPI
86static int mv643xx_poll(struct net_device *dev, int *budget);
87#endif
88static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
89static int ethernet_phy_detect(unsigned int eth_port_num);
90static struct ethtool_ops mv643xx_ethtool_ops;
91
92static char mv643xx_driver_name[] = "mv643xx_eth";
93static char mv643xx_driver_version[] = "1.0";
94
95static void __iomem *mv643xx_eth_shared_base;
96
97/* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
98static spinlock_t mv643xx_eth_phy_lock = SPIN_LOCK_UNLOCKED;
99
100static inline u32 mv_read(int offset)
101{
Al Virodc074a82005-04-25 07:55:58 -0700102 void __iomem *reg_base;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103
104 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
105
106 return readl(reg_base + offset);
107}
108
109static inline void mv_write(int offset, u32 data)
110{
Al Virodc074a82005-04-25 07:55:58 -0700111 void __iomem *reg_base;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700112
113 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
114 writel(data, reg_base + offset);
115}
116
117/*
118 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
119 *
120 * Input : pointer to ethernet interface network device structure
121 * new mtu size
122 * Output : 0 upon success, -EINVAL upon failure
123 */
124static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
125{
126 struct mv643xx_private *mp = netdev_priv(dev);
127 unsigned long flags;
128
129 spin_lock_irqsave(&mp->lock, flags);
130
131 if ((new_mtu > 9500) || (new_mtu < 64)) {
132 spin_unlock_irqrestore(&mp->lock, flags);
133 return -EINVAL;
134 }
135
136 dev->mtu = new_mtu;
137 /*
138 * Stop then re-open the interface. This will allocate RX skb's with
139 * the new MTU.
140 * There is a possible danger that the open will not successed, due
141 * to memory is full, which might fail the open function.
142 */
143 if (netif_running(dev)) {
144 if (mv643xx_eth_real_stop(dev))
145 printk(KERN_ERR
146 "%s: Fatal error on stopping device\n",
147 dev->name);
148 if (mv643xx_eth_real_open(dev))
149 printk(KERN_ERR
150 "%s: Fatal error on opening device\n",
151 dev->name);
152 }
153
154 spin_unlock_irqrestore(&mp->lock, flags);
155 return 0;
156}
157
158/*
159 * mv643xx_eth_rx_task
160 *
161 * Fills / refills RX queue on a certain gigabit ethernet port
162 *
163 * Input : pointer to ethernet interface network device structure
164 * Output : N/A
165 */
166static void mv643xx_eth_rx_task(void *data)
167{
168 struct net_device *dev = (struct net_device *)data;
169 struct mv643xx_private *mp = netdev_priv(dev);
170 struct pkt_info pkt_info;
171 struct sk_buff *skb;
172
173 if (test_and_set_bit(0, &mp->rx_task_busy))
174 panic("%s: Error in test_set_bit / clear_bit", dev->name);
175
176 while (mp->rx_ring_skbs < (mp->rx_ring_size - 5)) {
177 skb = dev_alloc_skb(RX_SKB_SIZE);
178 if (!skb)
179 break;
180 mp->rx_ring_skbs++;
181 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
182 pkt_info.byte_cnt = RX_SKB_SIZE;
183 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
184 DMA_FROM_DEVICE);
185 pkt_info.return_info = skb;
186 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
187 printk(KERN_ERR
188 "%s: Error allocating RX Ring\n", dev->name);
189 break;
190 }
191 skb_reserve(skb, 2);
192 }
193 clear_bit(0, &mp->rx_task_busy);
194 /*
195 * If RX ring is empty of SKB, set a timer to try allocating
196 * again in a later time .
197 */
198 if ((mp->rx_ring_skbs == 0) && (mp->rx_timer_flag == 0)) {
199 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
200 /* After 100mSec */
201 mp->timeout.expires = jiffies + (HZ / 10);
202 add_timer(&mp->timeout);
203 mp->rx_timer_flag = 1;
204 }
205#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
206 else {
207 /* Return interrupts */
208 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
209 INT_CAUSE_UNMASK_ALL);
210 }
211#endif
212}
213
214/*
215 * mv643xx_eth_rx_task_timer_wrapper
216 *
217 * Timer routine to wake up RX queue filling task. This function is
218 * used only in case the RX queue is empty, and all alloc_skb has
219 * failed (due to out of memory event).
220 *
221 * Input : pointer to ethernet interface network device structure
222 * Output : N/A
223 */
224static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
225{
226 struct net_device *dev = (struct net_device *)data;
227 struct mv643xx_private *mp = netdev_priv(dev);
228
229 mp->rx_timer_flag = 0;
230 mv643xx_eth_rx_task((void *)data);
231}
232
233/*
234 * mv643xx_eth_update_mac_address
235 *
236 * Update the MAC address of the port in the address table
237 *
238 * Input : pointer to ethernet interface network device structure
239 * Output : N/A
240 */
241static void mv643xx_eth_update_mac_address(struct net_device *dev)
242{
243 struct mv643xx_private *mp = netdev_priv(dev);
244 unsigned int port_num = mp->port_num;
245
246 eth_port_init_mac_tables(port_num);
247 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
248 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
249}
250
251/*
252 * mv643xx_eth_set_rx_mode
253 *
254 * Change from promiscuos to regular rx mode
255 *
256 * Input : pointer to ethernet interface network device structure
257 * Output : N/A
258 */
259static void mv643xx_eth_set_rx_mode(struct net_device *dev)
260{
261 struct mv643xx_private *mp = netdev_priv(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700262
Linus Torvalds1da177e2005-04-16 15:20:36 -0700263 if (dev->flags & IFF_PROMISC)
Dale Farnsworth7342cd82005-09-02 12:36:48 -0700264 mp->port_config |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700265 else
Dale Farnsworth7342cd82005-09-02 12:36:48 -0700266 mp->port_config &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
267
268 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), mp->port_config);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700269}
270
271/*
272 * mv643xx_eth_set_mac_address
273 *
274 * Change the interface's mac address.
275 * No special hardware thing should be done because interface is always
276 * put in promiscuous mode.
277 *
278 * Input : pointer to ethernet interface network device structure and
279 * a pointer to the designated entry to be added to the cache.
280 * Output : zero upon success, negative upon failure
281 */
282static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
283{
284 int i;
285
286 for (i = 0; i < 6; i++)
287 /* +2 is for the offset of the HW addr type */
288 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
289 mv643xx_eth_update_mac_address(dev);
290 return 0;
291}
292
293/*
294 * mv643xx_eth_tx_timeout
295 *
296 * Called upon a timeout on transmitting a packet
297 *
298 * Input : pointer to ethernet interface network device structure.
299 * Output : N/A
300 */
301static void mv643xx_eth_tx_timeout(struct net_device *dev)
302{
303 struct mv643xx_private *mp = netdev_priv(dev);
304
305 printk(KERN_INFO "%s: TX timeout ", dev->name);
306
307 /* Do the reset outside of interrupt context */
308 schedule_work(&mp->tx_timeout_task);
309}
310
311/*
312 * mv643xx_eth_tx_timeout_task
313 *
314 * Actual routine to reset the adapter when a timeout on Tx has occurred
315 */
316static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
317{
318 struct mv643xx_private *mp = netdev_priv(dev);
319
320 netif_device_detach(dev);
321 eth_port_reset(mp->port_num);
322 eth_port_start(mp);
323 netif_device_attach(dev);
324}
325
326/*
327 * mv643xx_eth_free_tx_queue
328 *
329 * Input : dev - a pointer to the required interface
330 *
331 * Output : 0 if was able to release skb , nonzero otherwise
332 */
333static int mv643xx_eth_free_tx_queue(struct net_device *dev,
334 unsigned int eth_int_cause_ext)
335{
336 struct mv643xx_private *mp = netdev_priv(dev);
337 struct net_device_stats *stats = &mp->stats;
338 struct pkt_info pkt_info;
339 int released = 1;
340
341 if (!(eth_int_cause_ext & (BIT0 | BIT8)))
342 return released;
343
344 spin_lock(&mp->lock);
345
346 /* Check only queue 0 */
347 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
348 if (pkt_info.cmd_sts & BIT0) {
349 printk("%s: Error in TX\n", dev->name);
350 stats->tx_errors++;
351 }
352
353 /*
354 * If return_info is different than 0, release the skb.
355 * The case where return_info is not 0 is only in case
356 * when transmitted a scatter/gather packet, where only
357 * last skb releases the whole chain.
358 */
359 if (pkt_info.return_info) {
360 if (skb_shinfo(pkt_info.return_info)->nr_frags)
361 dma_unmap_page(NULL, pkt_info.buf_ptr,
362 pkt_info.byte_cnt,
363 DMA_TO_DEVICE);
364 else
365 dma_unmap_single(NULL, pkt_info.buf_ptr,
366 pkt_info.byte_cnt,
367 DMA_TO_DEVICE);
368
369 dev_kfree_skb_irq(pkt_info.return_info);
370 released = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700371 } else
372 dma_unmap_page(NULL, pkt_info.buf_ptr,
373 pkt_info.byte_cnt, DMA_TO_DEVICE);
374 }
375
376 spin_unlock(&mp->lock);
377
378 return released;
379}
380
381/*
382 * mv643xx_eth_receive
383 *
384 * This function is forward packets that are received from the port's
385 * queues toward kernel core or FastRoute them to another interface.
386 *
387 * Input : dev - a pointer to the required interface
388 * max - maximum number to receive (0 means unlimted)
389 *
390 * Output : number of served packets
391 */
392#ifdef MV643XX_NAPI
393static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
394#else
395static int mv643xx_eth_receive_queue(struct net_device *dev)
396#endif
397{
398 struct mv643xx_private *mp = netdev_priv(dev);
399 struct net_device_stats *stats = &mp->stats;
400 unsigned int received_packets = 0;
401 struct sk_buff *skb;
402 struct pkt_info pkt_info;
403
404#ifdef MV643XX_NAPI
Dale Farnsworthb1dd9ca2005-09-01 09:59:23 -0700405 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700406#else
407 while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
408#endif
409 mp->rx_ring_skbs--;
410 received_packets++;
Dale Farnsworthb1dd9ca2005-09-01 09:59:23 -0700411
Linus Torvalds1da177e2005-04-16 15:20:36 -0700412 /* Update statistics. Note byte count includes 4 byte CRC count */
413 stats->rx_packets++;
414 stats->rx_bytes += pkt_info.byte_cnt;
415 skb = pkt_info.return_info;
416 /*
417 * In case received a packet without first / last bits on OR
418 * the error summary bit is on, the packets needs to be dropeed.
419 */
420 if (((pkt_info.cmd_sts
421 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
422 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
423 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
424 stats->rx_dropped++;
425 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
426 ETH_RX_LAST_DESC)) !=
427 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
428 if (net_ratelimit())
429 printk(KERN_ERR
430 "%s: Received packet spread "
431 "on multiple descriptors\n",
432 dev->name);
433 }
434 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
435 stats->rx_errors++;
436
437 dev_kfree_skb_irq(skb);
438 } else {
439 /*
440 * The -4 is for the CRC in the trailer of the
441 * received packet
442 */
443 skb_put(skb, pkt_info.byte_cnt - 4);
444 skb->dev = dev;
445
446 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
447 skb->ip_summed = CHECKSUM_UNNECESSARY;
448 skb->csum = htons(
449 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
450 }
451 skb->protocol = eth_type_trans(skb, dev);
452#ifdef MV643XX_NAPI
453 netif_receive_skb(skb);
454#else
455 netif_rx(skb);
456#endif
457 }
458 }
459
460 return received_packets;
461}
462
463/*
464 * mv643xx_eth_int_handler
465 *
466 * Main interrupt handler for the gigbit ethernet ports
467 *
468 * Input : irq - irq number (not used)
469 * dev_id - a pointer to the required interface's data structure
470 * regs - not used
471 * Output : N/A
472 */
473
474static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
475 struct pt_regs *regs)
476{
477 struct net_device *dev = (struct net_device *)dev_id;
478 struct mv643xx_private *mp = netdev_priv(dev);
479 u32 eth_int_cause, eth_int_cause_ext = 0;
480 unsigned int port_num = mp->port_num;
481
482 /* Read interrupt cause registers */
483 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
484 INT_CAUSE_UNMASK_ALL;
485
486 if (eth_int_cause & BIT1)
487 eth_int_cause_ext = mv_read(
488 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
489 INT_CAUSE_UNMASK_ALL_EXT;
490
491#ifdef MV643XX_NAPI
492 if (!(eth_int_cause & 0x0007fffd)) {
493 /* Dont ack the Rx interrupt */
494#endif
495 /*
496 * Clear specific ethernet port intrerrupt registers by
497 * acknowleding relevant bits.
498 */
499 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
500 ~eth_int_cause);
501 if (eth_int_cause_ext != 0x0)
502 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
503 (port_num), ~eth_int_cause_ext);
504
505 /* UDP change : We may need this */
506 if ((eth_int_cause_ext & 0x0000ffff) &&
507 (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
508 (mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
509 netif_wake_queue(dev);
510#ifdef MV643XX_NAPI
511 } else {
512 if (netif_rx_schedule_prep(dev)) {
513 /* Mask all the interrupts */
514 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
515 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG
516 (port_num), 0);
517 __netif_rx_schedule(dev);
518 }
519#else
520 if (eth_int_cause & (BIT2 | BIT11))
521 mv643xx_eth_receive_queue(dev, 0);
522
523 /*
524 * After forwarded received packets to upper layer, add a task
525 * in an interrupts enabled context that refills the RX ring
526 * with skb's.
527 */
528#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
529 /* Unmask all interrupts on ethernet port */
530 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
531 INT_CAUSE_MASK_ALL);
532 queue_task(&mp->rx_task, &tq_immediate);
533 mark_bh(IMMEDIATE_BH);
534#else
535 mp->rx_task.func(dev);
536#endif
537#endif
538 }
539 /* PHY status changed */
540 if (eth_int_cause_ext & (BIT16 | BIT20)) {
541 if (eth_port_link_is_up(port_num)) {
542 netif_carrier_on(dev);
543 netif_wake_queue(dev);
544 /* Start TX queue */
545 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG
546 (port_num), 1);
547 } else {
548 netif_carrier_off(dev);
549 netif_stop_queue(dev);
550 }
551 }
552
553 /*
554 * If no real interrupt occured, exit.
555 * This can happen when using gigE interrupt coalescing mechanism.
556 */
557 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
558 return IRQ_NONE;
559
560 return IRQ_HANDLED;
561}
562
563#ifdef MV643XX_COAL
564
565/*
566 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
567 *
568 * DESCRIPTION:
569 * This routine sets the RX coalescing interrupt mechanism parameter.
570 * This parameter is a timeout counter, that counts in 64 t_clk
571 * chunks ; that when timeout event occurs a maskable interrupt
572 * occurs.
573 * The parameter is calculated using the tClk of the MV-643xx chip
574 * , and the required delay of the interrupt in usec.
575 *
576 * INPUT:
577 * unsigned int eth_port_num Ethernet port number
578 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
579 * unsigned int delay Delay in usec
580 *
581 * OUTPUT:
582 * Interrupt coalescing mechanism value is set in MV-643xx chip.
583 *
584 * RETURN:
585 * The interrupt coalescing value set in the gigE port.
586 *
587 */
588static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
589 unsigned int t_clk, unsigned int delay)
590{
591 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
592
593 /* Set RX Coalescing mechanism */
594 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
595 ((coal & 0x3fff) << 8) |
596 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
597 & 0xffc000ff));
598
599 return coal;
600}
601#endif
602
603/*
604 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
605 *
606 * DESCRIPTION:
607 * This routine sets the TX coalescing interrupt mechanism parameter.
608 * This parameter is a timeout counter, that counts in 64 t_clk
609 * chunks ; that when timeout event occurs a maskable interrupt
610 * occurs.
611 * The parameter is calculated using the t_cLK frequency of the
612 * MV-643xx chip and the required delay in the interrupt in uSec
613 *
614 * INPUT:
615 * unsigned int eth_port_num Ethernet port number
616 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
617 * unsigned int delay Delay in uSeconds
618 *
619 * OUTPUT:
620 * Interrupt coalescing mechanism value is set in MV-643xx chip.
621 *
622 * RETURN:
623 * The interrupt coalescing value set in the gigE port.
624 *
625 */
626static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
627 unsigned int t_clk, unsigned int delay)
628{
629 unsigned int coal;
630 coal = ((t_clk / 1000000) * delay) / 64;
631 /* Set TX Coalescing mechanism */
632 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
633 coal << 4);
634 return coal;
635}
636
637/*
638 * mv643xx_eth_open
639 *
640 * This function is called when openning the network device. The function
641 * should initialize all the hardware, initialize cyclic Rx/Tx
642 * descriptors chain and buffers and allocate an IRQ to the network
643 * device.
644 *
645 * Input : a pointer to the network device structure
646 *
647 * Output : zero of success , nonzero if fails.
648 */
649
650static int mv643xx_eth_open(struct net_device *dev)
651{
652 struct mv643xx_private *mp = netdev_priv(dev);
653 unsigned int port_num = mp->port_num;
654 int err;
655
656 spin_lock_irq(&mp->lock);
657
658 err = request_irq(dev->irq, mv643xx_eth_int_handler,
Benjamin Herrenschmidt16b81752005-04-16 15:24:30 -0700659 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700660
661 if (err) {
662 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
663 port_num);
664 err = -EAGAIN;
665 goto out;
666 }
667
668 if (mv643xx_eth_real_open(dev)) {
669 printk("%s: Error opening interface\n", dev->name);
670 err = -EBUSY;
671 goto out_free;
672 }
673
674 spin_unlock_irq(&mp->lock);
675
676 return 0;
677
678out_free:
679 free_irq(dev->irq, dev);
680
681out:
682 spin_unlock_irq(&mp->lock);
683
684 return err;
685}
686
687/*
688 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
689 *
690 * DESCRIPTION:
691 * This function prepares a Rx chained list of descriptors and packet
692 * buffers in a form of a ring. The routine must be called after port
693 * initialization routine and before port start routine.
694 * The Ethernet SDMA engine uses CPU bus addresses to access the various
695 * devices in the system (i.e. DRAM). This function uses the ethernet
696 * struct 'virtual to physical' routine (set by the user) to set the ring
697 * with physical addresses.
698 *
699 * INPUT:
700 * struct mv643xx_private *mp Ethernet Port Control srtuct.
701 *
702 * OUTPUT:
703 * The routine updates the Ethernet port control struct with information
704 * regarding the Rx descriptors and buffers.
705 *
706 * RETURN:
707 * None.
708 */
709static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
710{
711 volatile struct eth_rx_desc *p_rx_desc;
712 int rx_desc_num = mp->rx_ring_size;
713 int i;
714
715 /* initialize the next_desc_ptr links in the Rx descriptors ring */
716 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
717 for (i = 0; i < rx_desc_num; i++) {
718 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
719 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
720 }
721
722 /* Save Rx desc pointer to driver struct. */
723 mp->rx_curr_desc_q = 0;
724 mp->rx_used_desc_q = 0;
725
726 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
727
728 /* Add the queue to the list of RX queues of this port */
729 mp->port_rx_queue_command |= 1;
730}
731
732/*
733 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
734 *
735 * DESCRIPTION:
736 * This function prepares a Tx chained list of descriptors and packet
737 * buffers in a form of a ring. The routine must be called after port
738 * initialization routine and before port start routine.
739 * The Ethernet SDMA engine uses CPU bus addresses to access the various
740 * devices in the system (i.e. DRAM). This function uses the ethernet
741 * struct 'virtual to physical' routine (set by the user) to set the ring
742 * with physical addresses.
743 *
744 * INPUT:
745 * struct mv643xx_private *mp Ethernet Port Control srtuct.
746 *
747 * OUTPUT:
748 * The routine updates the Ethernet port control struct with information
749 * regarding the Tx descriptors and buffers.
750 *
751 * RETURN:
752 * None.
753 */
754static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
755{
756 int tx_desc_num = mp->tx_ring_size;
757 struct eth_tx_desc *p_tx_desc;
758 int i;
759
760 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
761 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
762 for (i = 0; i < tx_desc_num; i++) {
763 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
764 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
765 }
766
767 mp->tx_curr_desc_q = 0;
768 mp->tx_used_desc_q = 0;
769#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
770 mp->tx_first_desc_q = 0;
771#endif
772
773 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
774
775 /* Add the queue to the list of Tx queues of this port */
776 mp->port_tx_queue_command |= 1;
777}
778
779/* Helper function for mv643xx_eth_open */
780static int mv643xx_eth_real_open(struct net_device *dev)
781{
782 struct mv643xx_private *mp = netdev_priv(dev);
783 unsigned int port_num = mp->port_num;
784 unsigned int size;
785
786 /* Stop RX Queues */
787 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
788
789 /* Clear the ethernet port interrupts */
790 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
791 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
792
793 /* Unmask RX buffer and TX end interrupt */
794 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
795 INT_CAUSE_UNMASK_ALL);
796
797 /* Unmask phy and link status changes interrupts */
798 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
799 INT_CAUSE_UNMASK_ALL_EXT);
800
801 /* Set the MAC Address */
802 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
803
804 eth_port_init(mp);
805
806 INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
807
808 memset(&mp->timeout, 0, sizeof(struct timer_list));
809 mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
810 mp->timeout.data = (unsigned long)dev;
811
812 mp->rx_task_busy = 0;
813 mp->rx_timer_flag = 0;
814
815 /* Allocate RX and TX skb rings */
816 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
817 GFP_KERNEL);
818 if (!mp->rx_skb) {
819 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
820 return -ENOMEM;
821 }
822 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
823 GFP_KERNEL);
824 if (!mp->tx_skb) {
825 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
826 kfree(mp->rx_skb);
827 return -ENOMEM;
828 }
829
830 /* Allocate TX ring */
831 mp->tx_ring_skbs = 0;
832 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
833 mp->tx_desc_area_size = size;
834
835 if (mp->tx_sram_size) {
836 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
837 mp->tx_sram_size);
838 mp->tx_desc_dma = mp->tx_sram_addr;
839 } else
840 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
841 &mp->tx_desc_dma,
842 GFP_KERNEL);
843
844 if (!mp->p_tx_desc_area) {
845 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
846 dev->name, size);
847 kfree(mp->rx_skb);
848 kfree(mp->tx_skb);
849 return -ENOMEM;
850 }
851 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
852 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
853
854 ether_init_tx_desc_ring(mp);
855
856 /* Allocate RX ring */
857 mp->rx_ring_skbs = 0;
858 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
859 mp->rx_desc_area_size = size;
860
861 if (mp->rx_sram_size) {
862 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
863 mp->rx_sram_size);
864 mp->rx_desc_dma = mp->rx_sram_addr;
865 } else
866 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
867 &mp->rx_desc_dma,
868 GFP_KERNEL);
869
870 if (!mp->p_rx_desc_area) {
871 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
872 dev->name, size);
873 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
874 dev->name);
875 if (mp->rx_sram_size)
876 iounmap(mp->p_rx_desc_area);
877 else
878 dma_free_coherent(NULL, mp->tx_desc_area_size,
879 mp->p_tx_desc_area, mp->tx_desc_dma);
880 kfree(mp->rx_skb);
881 kfree(mp->tx_skb);
882 return -ENOMEM;
883 }
884 memset((void *)mp->p_rx_desc_area, 0, size);
885
886 ether_init_rx_desc_ring(mp);
887
888 mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
889
890 eth_port_start(mp);
891
892 /* Interrupt Coalescing */
893
894#ifdef MV643XX_COAL
895 mp->rx_int_coal =
896 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
897#endif
898
899 mp->tx_int_coal =
900 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
901
902 netif_start_queue(dev);
903
904 return 0;
905}
906
907static void mv643xx_eth_free_tx_rings(struct net_device *dev)
908{
909 struct mv643xx_private *mp = netdev_priv(dev);
910 unsigned int port_num = mp->port_num;
911 unsigned int curr;
912
913 /* Stop Tx Queues */
914 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
915
916 /* Free outstanding skb's on TX rings */
917 for (curr = 0; mp->tx_ring_skbs && curr < mp->tx_ring_size; curr++) {
918 if (mp->tx_skb[curr]) {
919 dev_kfree_skb(mp->tx_skb[curr]);
920 mp->tx_ring_skbs--;
921 }
922 }
923 if (mp->tx_ring_skbs)
924 printk("%s: Error on Tx descriptor free - could not free %d"
925 " descriptors\n", dev->name, mp->tx_ring_skbs);
926
927 /* Free TX ring */
928 if (mp->tx_sram_size)
929 iounmap(mp->p_tx_desc_area);
930 else
931 dma_free_coherent(NULL, mp->tx_desc_area_size,
932 mp->p_tx_desc_area, mp->tx_desc_dma);
933}
934
935static void mv643xx_eth_free_rx_rings(struct net_device *dev)
936{
937 struct mv643xx_private *mp = netdev_priv(dev);
938 unsigned int port_num = mp->port_num;
939 int curr;
940
941 /* Stop RX Queues */
942 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
943
944 /* Free preallocated skb's on RX rings */
945 for (curr = 0; mp->rx_ring_skbs && curr < mp->rx_ring_size; curr++) {
946 if (mp->rx_skb[curr]) {
947 dev_kfree_skb(mp->rx_skb[curr]);
948 mp->rx_ring_skbs--;
949 }
950 }
951
952 if (mp->rx_ring_skbs)
953 printk(KERN_ERR
954 "%s: Error in freeing Rx Ring. %d skb's still"
955 " stuck in RX Ring - ignoring them\n", dev->name,
956 mp->rx_ring_skbs);
957 /* Free RX ring */
958 if (mp->rx_sram_size)
959 iounmap(mp->p_rx_desc_area);
960 else
961 dma_free_coherent(NULL, mp->rx_desc_area_size,
962 mp->p_rx_desc_area, mp->rx_desc_dma);
963}
964
965/*
966 * mv643xx_eth_stop
967 *
968 * This function is used when closing the network device.
969 * It updates the hardware,
970 * release all memory that holds buffers and descriptors and release the IRQ.
971 * Input : a pointer to the device structure
972 * Output : zero if success , nonzero if fails
973 */
974
975/* Helper function for mv643xx_eth_stop */
976
977static int mv643xx_eth_real_stop(struct net_device *dev)
978{
979 struct mv643xx_private *mp = netdev_priv(dev);
980 unsigned int port_num = mp->port_num;
981
982 netif_carrier_off(dev);
983 netif_stop_queue(dev);
984
985 mv643xx_eth_free_tx_rings(dev);
986 mv643xx_eth_free_rx_rings(dev);
987
988 eth_port_reset(mp->port_num);
989
990 /* Disable ethernet port interrupts */
991 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
992 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
993
994 /* Mask RX buffer and TX end interrupt */
995 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
996
997 /* Mask phy and link status changes interrupts */
998 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num), 0);
999
1000 return 0;
1001}
1002
1003static int mv643xx_eth_stop(struct net_device *dev)
1004{
1005 struct mv643xx_private *mp = netdev_priv(dev);
1006
1007 spin_lock_irq(&mp->lock);
1008
1009 mv643xx_eth_real_stop(dev);
1010
1011 free_irq(dev->irq, dev);
1012 spin_unlock_irq(&mp->lock);
1013
1014 return 0;
1015}
1016
1017#ifdef MV643XX_NAPI
1018static void mv643xx_tx(struct net_device *dev)
1019{
1020 struct mv643xx_private *mp = netdev_priv(dev);
1021 struct pkt_info pkt_info;
1022
1023 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
1024 if (pkt_info.return_info) {
1025 if (skb_shinfo(pkt_info.return_info)->nr_frags)
1026 dma_unmap_page(NULL, pkt_info.buf_ptr,
1027 pkt_info.byte_cnt,
1028 DMA_TO_DEVICE);
1029 else
1030 dma_unmap_single(NULL, pkt_info.buf_ptr,
1031 pkt_info.byte_cnt,
1032 DMA_TO_DEVICE);
1033
1034 dev_kfree_skb_irq(pkt_info.return_info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001035 } else
1036 dma_unmap_page(NULL, pkt_info.buf_ptr,
1037 pkt_info.byte_cnt, DMA_TO_DEVICE);
1038 }
1039
1040 if (netif_queue_stopped(dev) &&
1041 mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB)
1042 netif_wake_queue(dev);
1043}
1044
1045/*
1046 * mv643xx_poll
1047 *
1048 * This function is used in case of NAPI
1049 */
1050static int mv643xx_poll(struct net_device *dev, int *budget)
1051{
1052 struct mv643xx_private *mp = netdev_priv(dev);
1053 int done = 1, orig_budget, work_done;
1054 unsigned int port_num = mp->port_num;
1055 unsigned long flags;
1056
1057#ifdef MV643XX_TX_FAST_REFILL
1058 if (++mp->tx_clean_threshold > 5) {
1059 spin_lock_irqsave(&mp->lock, flags);
1060 mv643xx_tx(dev);
1061 mp->tx_clean_threshold = 0;
1062 spin_unlock_irqrestore(&mp->lock, flags);
1063 }
1064#endif
1065
1066 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1067 != (u32) mp->rx_used_desc_q) {
1068 orig_budget = *budget;
1069 if (orig_budget > dev->quota)
1070 orig_budget = dev->quota;
1071 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1072 mp->rx_task.func(dev);
1073 *budget -= work_done;
1074 dev->quota -= work_done;
1075 if (work_done >= orig_budget)
1076 done = 0;
1077 }
1078
1079 if (done) {
1080 spin_lock_irqsave(&mp->lock, flags);
1081 __netif_rx_complete(dev);
1082 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1083 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1084 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1085 INT_CAUSE_UNMASK_ALL);
1086 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
1087 INT_CAUSE_UNMASK_ALL_EXT);
1088 spin_unlock_irqrestore(&mp->lock, flags);
1089 }
1090
1091 return done ? 0 : 1;
1092}
1093#endif
1094
1095/*
1096 * mv643xx_eth_start_xmit
1097 *
1098 * This function is queues a packet in the Tx descriptor for
1099 * required port.
1100 *
1101 * Input : skb - a pointer to socket buffer
1102 * dev - a pointer to the required port
1103 *
1104 * Output : zero upon success
1105 */
1106static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1107{
1108 struct mv643xx_private *mp = netdev_priv(dev);
1109 struct net_device_stats *stats = &mp->stats;
1110 ETH_FUNC_RET_STATUS status;
1111 unsigned long flags;
1112 struct pkt_info pkt_info;
1113
1114 if (netif_queue_stopped(dev)) {
1115 printk(KERN_ERR
1116 "%s: Tried sending packet when interface is stopped\n",
1117 dev->name);
1118 return 1;
1119 }
1120
1121 /* This is a hard error, log it. */
1122 if ((mp->tx_ring_size - mp->tx_ring_skbs) <=
1123 (skb_shinfo(skb)->nr_frags + 1)) {
1124 netif_stop_queue(dev);
1125 printk(KERN_ERR
1126 "%s: Bug in mv643xx_eth - Trying to transmit when"
1127 " queue full !\n", dev->name);
1128 return 1;
1129 }
1130
1131 /* Paranoid check - this shouldn't happen */
1132 if (skb == NULL) {
1133 stats->tx_dropped++;
1134 printk(KERN_ERR "mv64320_eth paranoid check failed\n");
1135 return 1;
1136 }
1137
1138 spin_lock_irqsave(&mp->lock, flags);
1139
1140 /* Update packet info data structure -- DMA owned, first last */
1141#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1142 if (!skb_shinfo(skb)->nr_frags) {
1143linear:
1144 if (skb->ip_summed != CHECKSUM_HW) {
Dale Farnsworth26006362005-08-22 15:53:29 -07001145 /* Errata BTS #50, IHL must be 5 if no HW checksum */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001146 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
Dale Farnsworth26006362005-08-22 15:53:29 -07001147 ETH_TX_FIRST_DESC |
1148 ETH_TX_LAST_DESC |
1149 5 << ETH_TX_IHL_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001150 pkt_info.l4i_chk = 0;
1151 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001152
1153 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
Dale Farnsworth26006362005-08-22 15:53:29 -07001154 ETH_TX_FIRST_DESC |
1155 ETH_TX_LAST_DESC |
1156 ETH_GEN_TCP_UDP_CHECKSUM |
1157 ETH_GEN_IP_V_4_CHECKSUM |
1158 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001159 /* CPU already calculated pseudo header checksum. */
1160 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1161 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1162 pkt_info.l4i_chk = skb->h.uh->check;
1163 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1164 pkt_info.l4i_chk = skb->h.th->check;
1165 else {
1166 printk(KERN_ERR
1167 "%s: chksum proto != TCP or UDP\n",
1168 dev->name);
1169 spin_unlock_irqrestore(&mp->lock, flags);
1170 return 1;
1171 }
1172 }
1173 pkt_info.byte_cnt = skb->len;
1174 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1175 DMA_TO_DEVICE);
1176 pkt_info.return_info = skb;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001177 status = eth_port_send(mp, &pkt_info);
1178 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1179 printk(KERN_ERR "%s: Error on transmitting packet\n",
1180 dev->name);
1181 stats->tx_bytes += pkt_info.byte_cnt;
1182 } else {
1183 unsigned int frag;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001184
1185 /* Since hardware can't handle unaligned fragments smaller
1186 * than 9 bytes, if we find any, we linearize the skb
1187 * and start again. When I've seen it, it's always been
1188 * the first frag (probably near the end of the page),
1189 * but we check all frags to be safe.
1190 */
1191 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1192 skb_frag_t *fragp;
1193
1194 fragp = &skb_shinfo(skb)->frags[frag];
1195 if (fragp->size <= 8 && fragp->page_offset & 0x7) {
1196 skb_linearize(skb, GFP_ATOMIC);
1197 printk(KERN_DEBUG "%s: unaligned tiny fragment"
1198 "%d of %d, fixed\n",
1199 dev->name, frag,
1200 skb_shinfo(skb)->nr_frags);
1201 goto linear;
1202 }
1203 }
1204
1205 /* first frag which is skb header */
1206 pkt_info.byte_cnt = skb_headlen(skb);
1207 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
1208 skb_headlen(skb),
1209 DMA_TO_DEVICE);
1210 pkt_info.l4i_chk = 0;
1211 pkt_info.return_info = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001212
Dale Farnsworth26006362005-08-22 15:53:29 -07001213 if (skb->ip_summed != CHECKSUM_HW)
1214 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1215 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1216 5 << ETH_TX_IHL_SHIFT;
1217 else {
1218 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1219 ETH_GEN_TCP_UDP_CHECKSUM |
1220 ETH_GEN_IP_V_4_CHECKSUM |
1221 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001222 /* CPU already calculated pseudo header checksum. */
1223 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1224 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1225 pkt_info.l4i_chk = skb->h.uh->check;
1226 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1227 pkt_info.l4i_chk = skb->h.th->check;
1228 else {
1229 printk(KERN_ERR
1230 "%s: chksum proto != TCP or UDP\n",
1231 dev->name);
1232 spin_unlock_irqrestore(&mp->lock, flags);
1233 return 1;
1234 }
1235 }
1236
1237 status = eth_port_send(mp, &pkt_info);
1238 if (status != ETH_OK) {
1239 if ((status == ETH_ERROR))
1240 printk(KERN_ERR
1241 "%s: Error on transmitting packet\n",
1242 dev->name);
1243 if (status == ETH_QUEUE_FULL)
1244 printk("Error on Queue Full \n");
1245 if (status == ETH_QUEUE_LAST_RESOURCE)
1246 printk("Tx resource error \n");
1247 }
1248 stats->tx_bytes += pkt_info.byte_cnt;
1249
1250 /* Check for the remaining frags */
1251 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1252 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1253 pkt_info.l4i_chk = 0x0000;
1254 pkt_info.cmd_sts = 0x00000000;
1255
1256 /* Last Frag enables interrupt and frees the skb */
1257 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1258 pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
1259 ETH_TX_LAST_DESC;
1260 pkt_info.return_info = skb;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001261 } else {
1262 pkt_info.return_info = 0;
1263 }
1264 pkt_info.l4i_chk = 0;
1265 pkt_info.byte_cnt = this_frag->size;
1266
1267 pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
1268 this_frag->page_offset,
1269 this_frag->size,
1270 DMA_TO_DEVICE);
1271
1272 status = eth_port_send(mp, &pkt_info);
1273
1274 if (status != ETH_OK) {
1275 if ((status == ETH_ERROR))
1276 printk(KERN_ERR "%s: Error on "
1277 "transmitting packet\n",
1278 dev->name);
1279
1280 if (status == ETH_QUEUE_LAST_RESOURCE)
1281 printk("Tx resource error \n");
1282
1283 if (status == ETH_QUEUE_FULL)
1284 printk("Queue is full \n");
1285 }
1286 stats->tx_bytes += pkt_info.byte_cnt;
1287 }
1288 }
1289#else
1290 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
1291 ETH_TX_LAST_DESC;
1292 pkt_info.l4i_chk = 0;
1293 pkt_info.byte_cnt = skb->len;
1294 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1295 DMA_TO_DEVICE);
1296 pkt_info.return_info = skb;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001297 status = eth_port_send(mp, &pkt_info);
1298 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1299 printk(KERN_ERR "%s: Error on transmitting packet\n",
1300 dev->name);
1301 stats->tx_bytes += pkt_info.byte_cnt;
1302#endif
1303
1304 /* Check if TX queue can handle another skb. If not, then
1305 * signal higher layers to stop requesting TX
1306 */
1307 if (mp->tx_ring_size <= (mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
1308 /*
1309 * Stop getting skb's from upper layers.
1310 * Getting skb's from upper layers will be enabled again after
1311 * packets are released.
1312 */
1313 netif_stop_queue(dev);
1314
1315 /* Update statistics and start of transmittion time */
1316 stats->tx_packets++;
1317 dev->trans_start = jiffies;
1318
1319 spin_unlock_irqrestore(&mp->lock, flags);
1320
1321 return 0; /* success */
1322}
1323
1324/*
1325 * mv643xx_eth_get_stats
1326 *
1327 * Returns a pointer to the interface statistics.
1328 *
1329 * Input : dev - a pointer to the required interface
1330 *
1331 * Output : a pointer to the interface's statistics
1332 */
1333
1334static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1335{
1336 struct mv643xx_private *mp = netdev_priv(dev);
1337
1338 return &mp->stats;
1339}
1340
1341/*/
1342 * mv643xx_eth_probe
1343 *
1344 * First function called after registering the network device.
1345 * It's purpose is to initialize the device as an ethernet device,
1346 * fill the ethernet device structure with pointers * to functions,
1347 * and set the MAC address of the interface
1348 *
1349 * Input : struct device *
1350 * Output : -ENOMEM if failed , 0 if success
1351 */
1352static int mv643xx_eth_probe(struct device *ddev)
1353{
1354 struct platform_device *pdev = to_platform_device(ddev);
1355 struct mv643xx_eth_platform_data *pd;
1356 int port_num = pdev->id;
1357 struct mv643xx_private *mp;
1358 struct net_device *dev;
1359 u8 *p;
1360 struct resource *res;
1361 int err;
1362
1363 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1364 if (!dev)
1365 return -ENOMEM;
1366
1367 dev_set_drvdata(ddev, dev);
1368
1369 mp = netdev_priv(dev);
1370
1371 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1372 BUG_ON(!res);
1373 dev->irq = res->start;
1374
1375 mp->port_num = port_num;
1376
1377 dev->open = mv643xx_eth_open;
1378 dev->stop = mv643xx_eth_stop;
1379 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1380 dev->get_stats = mv643xx_eth_get_stats;
1381 dev->set_mac_address = mv643xx_eth_set_mac_address;
1382 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1383
1384 /* No need to Tx Timeout */
1385 dev->tx_timeout = mv643xx_eth_tx_timeout;
1386#ifdef MV643XX_NAPI
1387 dev->poll = mv643xx_poll;
1388 dev->weight = 64;
1389#endif
1390
1391 dev->watchdog_timeo = 2 * HZ;
1392 dev->tx_queue_len = mp->tx_ring_size;
1393 dev->base_addr = 0;
1394 dev->change_mtu = mv643xx_eth_change_mtu;
1395 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1396
1397#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1398#ifdef MAX_SKB_FRAGS
1399 /*
1400 * Zero copy can only work if we use Discovery II memory. Else, we will
1401 * have to map the buffers to ISA memory which is only 16 MB
1402 */
1403 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HW_CSUM;
1404#endif
1405#endif
1406
1407 /* Configure the timeout task */
1408 INIT_WORK(&mp->tx_timeout_task,
1409 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1410
1411 spin_lock_init(&mp->lock);
1412
1413 /* set default config values */
1414 eth_port_uc_addr_get(dev, dev->dev_addr);
1415 mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE;
1416 mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE;
1417 mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE;
1418 mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE;
1419 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1420 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1421
1422 pd = pdev->dev.platform_data;
1423 if (pd) {
1424 if (pd->mac_addr != NULL)
1425 memcpy(dev->dev_addr, pd->mac_addr, 6);
1426
1427 if (pd->phy_addr || pd->force_phy_addr)
1428 ethernet_phy_set(port_num, pd->phy_addr);
1429
1430 if (pd->port_config || pd->force_port_config)
1431 mp->port_config = pd->port_config;
1432
1433 if (pd->port_config_extend || pd->force_port_config_extend)
1434 mp->port_config_extend = pd->port_config_extend;
1435
1436 if (pd->port_sdma_config || pd->force_port_sdma_config)
1437 mp->port_sdma_config = pd->port_sdma_config;
1438
1439 if (pd->port_serial_control || pd->force_port_serial_control)
1440 mp->port_serial_control = pd->port_serial_control;
1441
1442 if (pd->rx_queue_size)
1443 mp->rx_ring_size = pd->rx_queue_size;
1444
1445 if (pd->tx_queue_size)
1446 mp->tx_ring_size = pd->tx_queue_size;
1447
1448 if (pd->tx_sram_size) {
1449 mp->tx_sram_size = pd->tx_sram_size;
1450 mp->tx_sram_addr = pd->tx_sram_addr;
1451 }
1452
1453 if (pd->rx_sram_size) {
1454 mp->rx_sram_size = pd->rx_sram_size;
1455 mp->rx_sram_addr = pd->rx_sram_addr;
1456 }
1457 }
1458
1459 err = ethernet_phy_detect(port_num);
1460 if (err) {
1461 pr_debug("MV643xx ethernet port %d: "
1462 "No PHY detected at addr %d\n",
1463 port_num, ethernet_phy_get(port_num));
1464 return err;
1465 }
1466
1467 err = register_netdev(dev);
1468 if (err)
1469 goto out;
1470
1471 p = dev->dev_addr;
1472 printk(KERN_NOTICE
1473 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1474 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1475
1476 if (dev->features & NETIF_F_SG)
1477 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1478
1479 if (dev->features & NETIF_F_IP_CSUM)
1480 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1481 dev->name);
1482
1483#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1484 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1485#endif
1486
1487#ifdef MV643XX_COAL
1488 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1489 dev->name);
1490#endif
1491
1492#ifdef MV643XX_NAPI
1493 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1494#endif
1495
1496 return 0;
1497
1498out:
1499 free_netdev(dev);
1500
1501 return err;
1502}
1503
1504static int mv643xx_eth_remove(struct device *ddev)
1505{
1506 struct net_device *dev = dev_get_drvdata(ddev);
1507
1508 unregister_netdev(dev);
1509 flush_scheduled_work();
1510
1511 free_netdev(dev);
1512 dev_set_drvdata(ddev, NULL);
1513 return 0;
1514}
1515
1516static int mv643xx_eth_shared_probe(struct device *ddev)
1517{
1518 struct platform_device *pdev = to_platform_device(ddev);
1519 struct resource *res;
1520
1521 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1522
1523 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1524 if (res == NULL)
1525 return -ENODEV;
1526
1527 mv643xx_eth_shared_base = ioremap(res->start,
1528 MV643XX_ETH_SHARED_REGS_SIZE);
1529 if (mv643xx_eth_shared_base == NULL)
1530 return -ENOMEM;
1531
1532 return 0;
1533
1534}
1535
1536static int mv643xx_eth_shared_remove(struct device *ddev)
1537{
1538 iounmap(mv643xx_eth_shared_base);
1539 mv643xx_eth_shared_base = NULL;
1540
1541 return 0;
1542}
1543
1544static struct device_driver mv643xx_eth_driver = {
1545 .name = MV643XX_ETH_NAME,
1546 .bus = &platform_bus_type,
1547 .probe = mv643xx_eth_probe,
1548 .remove = mv643xx_eth_remove,
1549};
1550
1551static struct device_driver mv643xx_eth_shared_driver = {
1552 .name = MV643XX_ETH_SHARED_NAME,
1553 .bus = &platform_bus_type,
1554 .probe = mv643xx_eth_shared_probe,
1555 .remove = mv643xx_eth_shared_remove,
1556};
1557
1558/*
1559 * mv643xx_init_module
1560 *
1561 * Registers the network drivers into the Linux kernel
1562 *
1563 * Input : N/A
1564 *
1565 * Output : N/A
1566 */
1567static int __init mv643xx_init_module(void)
1568{
1569 int rc;
1570
1571 rc = driver_register(&mv643xx_eth_shared_driver);
1572 if (!rc) {
1573 rc = driver_register(&mv643xx_eth_driver);
1574 if (rc)
1575 driver_unregister(&mv643xx_eth_shared_driver);
1576 }
1577 return rc;
1578}
1579
1580/*
1581 * mv643xx_cleanup_module
1582 *
1583 * Registers the network drivers into the Linux kernel
1584 *
1585 * Input : N/A
1586 *
1587 * Output : N/A
1588 */
1589static void __exit mv643xx_cleanup_module(void)
1590{
1591 driver_unregister(&mv643xx_eth_driver);
1592 driver_unregister(&mv643xx_eth_shared_driver);
1593}
1594
1595module_init(mv643xx_init_module);
1596module_exit(mv643xx_cleanup_module);
1597
1598MODULE_LICENSE("GPL");
1599MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1600 " and Dale Farnsworth");
1601MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1602
1603/*
1604 * The second part is the low level driver of the gigE ethernet ports.
1605 */
1606
1607/*
1608 * Marvell's Gigabit Ethernet controller low level driver
1609 *
1610 * DESCRIPTION:
1611 * This file introduce low level API to Marvell's Gigabit Ethernet
1612 * controller. This Gigabit Ethernet Controller driver API controls
1613 * 1) Operations (i.e. port init, start, reset etc').
1614 * 2) Data flow (i.e. port send, receive etc').
1615 * Each Gigabit Ethernet port is controlled via
1616 * struct mv643xx_private.
1617 * This struct includes user configuration information as well as
1618 * driver internal data needed for its operations.
1619 *
1620 * Supported Features:
1621 * - This low level driver is OS independent. Allocating memory for
1622 * the descriptor rings and buffers are not within the scope of
1623 * this driver.
1624 * - The user is free from Rx/Tx queue managing.
1625 * - This low level driver introduce functionality API that enable
1626 * the to operate Marvell's Gigabit Ethernet Controller in a
1627 * convenient way.
1628 * - Simple Gigabit Ethernet port operation API.
1629 * - Simple Gigabit Ethernet port data flow API.
1630 * - Data flow and operation API support per queue functionality.
1631 * - Support cached descriptors for better performance.
1632 * - Enable access to all four DRAM banks and internal SRAM memory
1633 * spaces.
1634 * - PHY access and control API.
1635 * - Port control register configuration API.
1636 * - Full control over Unicast and Multicast MAC configurations.
1637 *
1638 * Operation flow:
1639 *
1640 * Initialization phase
1641 * This phase complete the initialization of the the
1642 * mv643xx_private struct.
1643 * User information regarding port configuration has to be set
1644 * prior to calling the port initialization routine.
1645 *
1646 * In this phase any port Tx/Rx activity is halted, MIB counters
1647 * are cleared, PHY address is set according to user parameter and
1648 * access to DRAM and internal SRAM memory spaces.
1649 *
1650 * Driver ring initialization
1651 * Allocating memory for the descriptor rings and buffers is not
1652 * within the scope of this driver. Thus, the user is required to
1653 * allocate memory for the descriptors ring and buffers. Those
1654 * memory parameters are used by the Rx and Tx ring initialization
1655 * routines in order to curve the descriptor linked list in a form
1656 * of a ring.
1657 * Note: Pay special attention to alignment issues when using
1658 * cached descriptors/buffers. In this phase the driver store
1659 * information in the mv643xx_private struct regarding each queue
1660 * ring.
1661 *
1662 * Driver start
1663 * This phase prepares the Ethernet port for Rx and Tx activity.
1664 * It uses the information stored in the mv643xx_private struct to
1665 * initialize the various port registers.
1666 *
1667 * Data flow:
1668 * All packet references to/from the driver are done using
1669 * struct pkt_info.
1670 * This struct is a unified struct used with Rx and Tx operations.
1671 * This way the user is not required to be familiar with neither
1672 * Tx nor Rx descriptors structures.
1673 * The driver's descriptors rings are management by indexes.
1674 * Those indexes controls the ring resources and used to indicate
1675 * a SW resource error:
1676 * 'current'
1677 * This index points to the current available resource for use. For
1678 * example in Rx process this index will point to the descriptor
1679 * that will be passed to the user upon calling the receive
1680 * routine. In Tx process, this index will point to the descriptor
1681 * that will be assigned with the user packet info and transmitted.
1682 * 'used'
1683 * This index points to the descriptor that need to restore its
1684 * resources. For example in Rx process, using the Rx buffer return
1685 * API will attach the buffer returned in packet info to the
1686 * descriptor pointed by 'used'. In Tx process, using the Tx
1687 * descriptor return will merely return the user packet info with
1688 * the command status of the transmitted buffer pointed by the
1689 * 'used' index. Nevertheless, it is essential to use this routine
1690 * to update the 'used' index.
1691 * 'first'
1692 * This index supports Tx Scatter-Gather. It points to the first
1693 * descriptor of a packet assembled of multiple buffers. For
1694 * example when in middle of Such packet we have a Tx resource
1695 * error the 'curr' index get the value of 'first' to indicate
1696 * that the ring returned to its state before trying to transmit
1697 * this packet.
1698 *
1699 * Receive operation:
1700 * The eth_port_receive API set the packet information struct,
1701 * passed by the caller, with received information from the
1702 * 'current' SDMA descriptor.
1703 * It is the user responsibility to return this resource back
1704 * to the Rx descriptor ring to enable the reuse of this source.
1705 * Return Rx resource is done using the eth_rx_return_buff API.
1706 *
1707 * Transmit operation:
1708 * The eth_port_send API supports Scatter-Gather which enables to
1709 * send a packet spanned over multiple buffers. This means that
1710 * for each packet info structure given by the user and put into
1711 * the Tx descriptors ring, will be transmitted only if the 'LAST'
1712 * bit will be set in the packet info command status field. This
1713 * API also consider restriction regarding buffer alignments and
1714 * sizes.
1715 * The user must return a Tx resource after ensuring the buffer
1716 * has been transmitted to enable the Tx ring indexes to update.
1717 *
1718 * BOARD LAYOUT
1719 * This device is on-board. No jumper diagram is necessary.
1720 *
1721 * EXTERNAL INTERFACE
1722 *
1723 * Prior to calling the initialization routine eth_port_init() the user
1724 * must set the following fields under mv643xx_private struct:
1725 * port_num User Ethernet port number.
1726 * port_mac_addr[6] User defined port MAC address.
1727 * port_config User port configuration value.
1728 * port_config_extend User port config extend value.
1729 * port_sdma_config User port SDMA config value.
1730 * port_serial_control User port serial control value.
1731 *
1732 * This driver data flow is done using the struct pkt_info which
1733 * is a unified struct for Rx and Tx operations:
1734 *
1735 * byte_cnt Tx/Rx descriptor buffer byte count.
1736 * l4i_chk CPU provided TCP Checksum. For Tx operation
1737 * only.
1738 * cmd_sts Tx/Rx descriptor command status.
1739 * buf_ptr Tx/Rx descriptor buffer pointer.
1740 * return_info Tx/Rx user resource return information.
1741 */
1742
1743/* defines */
1744/* SDMA command macros */
1745#define ETH_ENABLE_TX_QUEUE(eth_port) \
1746 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(eth_port), 1)
1747
1748/* locals */
1749
1750/* PHY routines */
1751static int ethernet_phy_get(unsigned int eth_port_num);
1752static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1753
1754/* Ethernet Port routines */
1755static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1756 int option);
1757
1758/*
1759 * eth_port_init - Initialize the Ethernet port driver
1760 *
1761 * DESCRIPTION:
1762 * This function prepares the ethernet port to start its activity:
1763 * 1) Completes the ethernet port driver struct initialization toward port
1764 * start routine.
1765 * 2) Resets the device to a quiescent state in case of warm reboot.
1766 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1767 * 4) Clean MAC tables. The reset status of those tables is unknown.
1768 * 5) Set PHY address.
1769 * Note: Call this routine prior to eth_port_start routine and after
1770 * setting user values in the user fields of Ethernet port control
1771 * struct.
1772 *
1773 * INPUT:
1774 * struct mv643xx_private *mp Ethernet port control struct
1775 *
1776 * OUTPUT:
1777 * See description.
1778 *
1779 * RETURN:
1780 * None.
1781 */
1782static void eth_port_init(struct mv643xx_private *mp)
1783{
1784 mp->port_rx_queue_command = 0;
1785 mp->port_tx_queue_command = 0;
1786
1787 mp->rx_resource_err = 0;
1788 mp->tx_resource_err = 0;
1789
1790 eth_port_reset(mp->port_num);
1791
1792 eth_port_init_mac_tables(mp->port_num);
1793
1794 ethernet_phy_reset(mp->port_num);
1795}
1796
1797/*
1798 * eth_port_start - Start the Ethernet port activity.
1799 *
1800 * DESCRIPTION:
1801 * This routine prepares the Ethernet port for Rx and Tx activity:
1802 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1803 * has been initialized a descriptor's ring (using
1804 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1805 * 2. Initialize and enable the Ethernet configuration port by writing to
1806 * the port's configuration and command registers.
1807 * 3. Initialize and enable the SDMA by writing to the SDMA's
1808 * configuration and command registers. After completing these steps,
1809 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1810 *
1811 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1812 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1813 * and ether_init_rx_desc_ring for Rx queues).
1814 *
1815 * INPUT:
1816 * struct mv643xx_private *mp Ethernet port control struct
1817 *
1818 * OUTPUT:
1819 * Ethernet port is ready to receive and transmit.
1820 *
1821 * RETURN:
1822 * None.
1823 */
1824static void eth_port_start(struct mv643xx_private *mp)
1825{
1826 unsigned int port_num = mp->port_num;
1827 int tx_curr_desc, rx_curr_desc;
1828
1829 /* Assignment of Tx CTRP of given queue */
1830 tx_curr_desc = mp->tx_curr_desc_q;
1831 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1832 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1833
1834 /* Assignment of Rx CRDP of given queue */
1835 rx_curr_desc = mp->rx_curr_desc_q;
1836 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1837 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1838
1839 /* Add the assigned Ethernet address to the port's address table */
1840 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
1841
1842 /* Assign port configuration and command. */
1843 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config);
1844
1845 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1846 mp->port_config_extend);
1847
1848
1849 /* Increase the Rx side buffer size if supporting GigE */
1850 if (mp->port_serial_control & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
1851 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1852 (mp->port_serial_control & 0xfff1ffff) | (0x5 << 17));
1853 else
1854 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1855 mp->port_serial_control);
1856
1857 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1858 mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)) |
1859 MV643XX_ETH_SERIAL_PORT_ENABLE);
1860
1861 /* Assign port SDMA configuration */
1862 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1863 mp->port_sdma_config);
1864
1865 /* Enable port Rx. */
1866 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
1867 mp->port_rx_queue_command);
Dale Farnsworth8f543712005-09-02 12:34:35 -07001868
1869 /* Disable port bandwidth limits by clearing MTU register */
1870 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001871}
1872
1873/*
1874 * eth_port_uc_addr_set - This function Set the port Unicast address.
1875 *
1876 * DESCRIPTION:
1877 * This function Set the port Ethernet MAC address.
1878 *
1879 * INPUT:
1880 * unsigned int eth_port_num Port number.
1881 * char * p_addr Address to be set
1882 *
1883 * OUTPUT:
1884 * Set MAC address low and high registers. also calls eth_port_uc_addr()
1885 * To set the unicast table with the proper information.
1886 *
1887 * RETURN:
1888 * N/A.
1889 *
1890 */
1891static void eth_port_uc_addr_set(unsigned int eth_port_num,
1892 unsigned char *p_addr)
1893{
1894 unsigned int mac_h;
1895 unsigned int mac_l;
1896
1897 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1898 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1899 (p_addr[3] << 0);
1900
1901 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1902 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1903
1904 /* Accept frames of this address */
1905 eth_port_uc_addr(eth_port_num, p_addr[5], ACCEPT_MAC_ADDR);
1906
1907 return;
1908}
1909
1910/*
1911 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1912 * (MAC address) from the ethernet hw registers.
1913 *
1914 * DESCRIPTION:
1915 * This function retrieves the port Ethernet MAC address.
1916 *
1917 * INPUT:
1918 * unsigned int eth_port_num Port number.
1919 * char *MacAddr pointer where the MAC address is stored
1920 *
1921 * OUTPUT:
1922 * Copy the MAC address to the location pointed to by MacAddr
1923 *
1924 * RETURN:
1925 * N/A.
1926 *
1927 */
1928static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1929{
1930 struct mv643xx_private *mp = netdev_priv(dev);
1931 unsigned int mac_h;
1932 unsigned int mac_l;
1933
1934 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1935 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1936
1937 p_addr[0] = (mac_h >> 24) & 0xff;
1938 p_addr[1] = (mac_h >> 16) & 0xff;
1939 p_addr[2] = (mac_h >> 8) & 0xff;
1940 p_addr[3] = mac_h & 0xff;
1941 p_addr[4] = (mac_l >> 8) & 0xff;
1942 p_addr[5] = mac_l & 0xff;
1943}
1944
1945/*
1946 * eth_port_uc_addr - This function Set the port unicast address table
1947 *
1948 * DESCRIPTION:
1949 * This function locates the proper entry in the Unicast table for the
1950 * specified MAC nibble and sets its properties according to function
1951 * parameters.
1952 *
1953 * INPUT:
1954 * unsigned int eth_port_num Port number.
1955 * unsigned char uc_nibble Unicast MAC Address last nibble.
1956 * int option 0 = Add, 1 = remove address.
1957 *
1958 * OUTPUT:
1959 * This function add/removes MAC addresses from the port unicast address
1960 * table.
1961 *
1962 * RETURN:
1963 * true is output succeeded.
1964 * false if option parameter is invalid.
1965 *
1966 */
1967static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1968 int option)
1969{
1970 unsigned int unicast_reg;
1971 unsigned int tbl_offset;
1972 unsigned int reg_offset;
1973
1974 /* Locate the Unicast table entry */
1975 uc_nibble = (0xf & uc_nibble);
1976 tbl_offset = (uc_nibble / 4) * 4; /* Register offset from unicast table base */
1977 reg_offset = uc_nibble % 4; /* Entry offset within the above register */
1978
1979 switch (option) {
1980 case REJECT_MAC_ADDR:
1981 /* Clear accepts frame bit at given unicast DA table entry */
1982 unicast_reg = mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1983 (eth_port_num) + tbl_offset));
1984
1985 unicast_reg &= (0x0E << (8 * reg_offset));
1986
1987 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1988 (eth_port_num) + tbl_offset), unicast_reg);
1989 break;
1990
1991 case ACCEPT_MAC_ADDR:
1992 /* Set accepts frame bit at unicast DA filter table entry */
1993 unicast_reg =
1994 mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1995 (eth_port_num) + tbl_offset));
1996
1997 unicast_reg |= (0x01 << (8 * reg_offset));
1998
1999 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2000 (eth_port_num) + tbl_offset), unicast_reg);
2001
2002 break;
2003
2004 default:
2005 return 0;
2006 }
2007
2008 return 1;
2009}
2010
2011/*
2012 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2013 *
2014 * DESCRIPTION:
2015 * Go through all the DA filter tables (Unicast, Special Multicast &
2016 * Other Multicast) and set each entry to 0.
2017 *
2018 * INPUT:
2019 * unsigned int eth_port_num Ethernet Port number.
2020 *
2021 * OUTPUT:
2022 * Multicast and Unicast packets are rejected.
2023 *
2024 * RETURN:
2025 * None.
2026 */
2027static void eth_port_init_mac_tables(unsigned int eth_port_num)
2028{
2029 int table_index;
2030
2031 /* Clear DA filter unicast table (Ex_dFUT) */
2032 for (table_index = 0; table_index <= 0xC; table_index += 4)
2033 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2034 (eth_port_num) + table_index), 0);
2035
2036 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2037 /* Clear DA filter special multicast table (Ex_dFSMT) */
2038 mv_write((MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2039 (eth_port_num) + table_index), 0);
2040 /* Clear DA filter other multicast table (Ex_dFOMT) */
2041 mv_write((MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2042 (eth_port_num) + table_index), 0);
2043 }
2044}
2045
2046/*
2047 * eth_clear_mib_counters - Clear all MIB counters
2048 *
2049 * DESCRIPTION:
2050 * This function clears all MIB counters of a specific ethernet port.
2051 * A read from the MIB counter will reset the counter.
2052 *
2053 * INPUT:
2054 * unsigned int eth_port_num Ethernet Port number.
2055 *
2056 * OUTPUT:
2057 * After reading all MIB counters, the counters resets.
2058 *
2059 * RETURN:
2060 * MIB counter value.
2061 *
2062 */
2063static void eth_clear_mib_counters(unsigned int eth_port_num)
2064{
2065 int i;
2066
2067 /* Perform dummy reads from MIB counters */
2068 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2069 i += 4)
2070 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2071}
2072
2073static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2074{
2075 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2076}
2077
2078static void eth_update_mib_counters(struct mv643xx_private *mp)
2079{
2080 struct mv643xx_mib_counters *p = &mp->mib_counters;
2081 int offset;
2082
2083 p->good_octets_received +=
2084 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2085 p->good_octets_received +=
2086 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2087
2088 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2089 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2090 offset += 4)
2091 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2092
2093 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2094 p->good_octets_sent +=
2095 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2096
2097 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2098 offset <= ETH_MIB_LATE_COLLISION;
2099 offset += 4)
2100 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2101}
2102
2103/*
2104 * ethernet_phy_detect - Detect whether a phy is present
2105 *
2106 * DESCRIPTION:
2107 * This function tests whether there is a PHY present on
2108 * the specified port.
2109 *
2110 * INPUT:
2111 * unsigned int eth_port_num Ethernet Port number.
2112 *
2113 * OUTPUT:
2114 * None
2115 *
2116 * RETURN:
2117 * 0 on success
2118 * -ENODEV on failure
2119 *
2120 */
2121static int ethernet_phy_detect(unsigned int port_num)
2122{
2123 unsigned int phy_reg_data0;
2124 int auto_neg;
2125
2126 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2127 auto_neg = phy_reg_data0 & 0x1000;
2128 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2129 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2130
2131 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2132 if ((phy_reg_data0 & 0x1000) == auto_neg)
2133 return -ENODEV; /* change didn't take */
2134
2135 phy_reg_data0 ^= 0x1000;
2136 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2137 return 0;
2138}
2139
2140/*
2141 * ethernet_phy_get - Get the ethernet port PHY address.
2142 *
2143 * DESCRIPTION:
2144 * This routine returns the given ethernet port PHY address.
2145 *
2146 * INPUT:
2147 * unsigned int eth_port_num Ethernet Port number.
2148 *
2149 * OUTPUT:
2150 * None.
2151 *
2152 * RETURN:
2153 * PHY address.
2154 *
2155 */
2156static int ethernet_phy_get(unsigned int eth_port_num)
2157{
2158 unsigned int reg_data;
2159
2160 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2161
2162 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2163}
2164
2165/*
2166 * ethernet_phy_set - Set the ethernet port PHY address.
2167 *
2168 * DESCRIPTION:
2169 * This routine sets the given ethernet port PHY address.
2170 *
2171 * INPUT:
2172 * unsigned int eth_port_num Ethernet Port number.
2173 * int phy_addr PHY address.
2174 *
2175 * OUTPUT:
2176 * None.
2177 *
2178 * RETURN:
2179 * None.
2180 *
2181 */
2182static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2183{
2184 u32 reg_data;
2185 int addr_shift = 5 * eth_port_num;
2186
2187 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2188 reg_data &= ~(0x1f << addr_shift);
2189 reg_data |= (phy_addr & 0x1f) << addr_shift;
2190 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2191}
2192
2193/*
2194 * ethernet_phy_reset - Reset Ethernet port PHY.
2195 *
2196 * DESCRIPTION:
2197 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2198 *
2199 * INPUT:
2200 * unsigned int eth_port_num Ethernet Port number.
2201 *
2202 * OUTPUT:
2203 * The PHY is reset.
2204 *
2205 * RETURN:
2206 * None.
2207 *
2208 */
2209static void ethernet_phy_reset(unsigned int eth_port_num)
2210{
2211 unsigned int phy_reg_data;
2212
2213 /* Reset the PHY */
2214 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2215 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2216 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2217}
2218
2219/*
2220 * eth_port_reset - Reset Ethernet port
2221 *
2222 * DESCRIPTION:
2223 * This routine resets the chip by aborting any SDMA engine activity and
2224 * clearing the MIB counters. The Receiver and the Transmit unit are in
2225 * idle state after this command is performed and the port is disabled.
2226 *
2227 * INPUT:
2228 * unsigned int eth_port_num Ethernet Port number.
2229 *
2230 * OUTPUT:
2231 * Channel activity is halted.
2232 *
2233 * RETURN:
2234 * None.
2235 *
2236 */
2237static void eth_port_reset(unsigned int port_num)
2238{
2239 unsigned int reg_data;
2240
2241 /* Stop Tx port activity. Check port Tx activity. */
2242 reg_data = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num));
2243
2244 if (reg_data & 0xFF) {
2245 /* Issue stop command for active channels only */
2246 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2247 (reg_data << 8));
2248
2249 /* Wait for all Tx activity to terminate. */
2250 /* Check port cause register that all Tx queues are stopped */
2251 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2252 & 0xFF)
2253 udelay(10);
2254 }
2255
2256 /* Stop Rx port activity. Check port Rx activity. */
2257 reg_data = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num));
2258
2259 if (reg_data & 0xFF) {
2260 /* Issue stop command for active channels only */
2261 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2262 (reg_data << 8));
2263
2264 /* Wait for all Rx activity to terminate. */
2265 /* Check port cause register that all Rx queues are stopped */
2266 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2267 & 0xFF)
2268 udelay(10);
2269 }
2270
2271 /* Clear all MIB counters */
2272 eth_clear_mib_counters(port_num);
2273
2274 /* Reset the Enable bit in the Configuration Register */
2275 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2276 reg_data &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
2277 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2278}
2279
Linus Torvalds1da177e2005-04-16 15:20:36 -07002280
2281static int eth_port_autoneg_supported(unsigned int eth_port_num)
2282{
2283 unsigned int phy_reg_data0;
2284
2285 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data0);
2286
2287 return phy_reg_data0 & 0x1000;
2288}
2289
2290static int eth_port_link_is_up(unsigned int eth_port_num)
2291{
2292 unsigned int phy_reg_data1;
2293
2294 eth_port_read_smi_reg(eth_port_num, 1, &phy_reg_data1);
2295
2296 if (eth_port_autoneg_supported(eth_port_num)) {
2297 if (phy_reg_data1 & 0x20) /* auto-neg complete */
2298 return 1;
2299 } else if (phy_reg_data1 & 0x4) /* link up */
2300 return 1;
2301
2302 return 0;
2303}
2304
2305/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002306 * eth_port_read_smi_reg - Read PHY registers
2307 *
2308 * DESCRIPTION:
2309 * This routine utilize the SMI interface to interact with the PHY in
2310 * order to perform PHY register read.
2311 *
2312 * INPUT:
2313 * unsigned int port_num Ethernet Port number.
2314 * unsigned int phy_reg PHY register address offset.
2315 * unsigned int *value Register value buffer.
2316 *
2317 * OUTPUT:
2318 * Write the value of a specified PHY register into given buffer.
2319 *
2320 * RETURN:
2321 * false if the PHY is busy or read data is not in valid state.
2322 * true otherwise.
2323 *
2324 */
2325static void eth_port_read_smi_reg(unsigned int port_num,
2326 unsigned int phy_reg, unsigned int *value)
2327{
2328 int phy_addr = ethernet_phy_get(port_num);
2329 unsigned long flags;
2330 int i;
2331
2332 /* the SMI register is a shared resource */
2333 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2334
2335 /* wait for the SMI register to become available */
2336 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2337 if (i == PHY_WAIT_ITERATIONS) {
2338 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2339 goto out;
2340 }
2341 udelay(PHY_WAIT_MICRO_SECONDS);
2342 }
2343
2344 mv_write(MV643XX_ETH_SMI_REG,
2345 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2346
2347 /* now wait for the data to be valid */
2348 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2349 if (i == PHY_WAIT_ITERATIONS) {
2350 printk("mv643xx PHY read timeout, port %d\n", port_num);
2351 goto out;
2352 }
2353 udelay(PHY_WAIT_MICRO_SECONDS);
2354 }
2355
2356 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2357out:
2358 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2359}
2360
2361/*
2362 * eth_port_write_smi_reg - Write to PHY registers
2363 *
2364 * DESCRIPTION:
2365 * This routine utilize the SMI interface to interact with the PHY in
2366 * order to perform writes to PHY registers.
2367 *
2368 * INPUT:
2369 * unsigned int eth_port_num Ethernet Port number.
2370 * unsigned int phy_reg PHY register address offset.
2371 * unsigned int value Register value.
2372 *
2373 * OUTPUT:
2374 * Write the given value to the specified PHY register.
2375 *
2376 * RETURN:
2377 * false if the PHY is busy.
2378 * true otherwise.
2379 *
2380 */
2381static void eth_port_write_smi_reg(unsigned int eth_port_num,
2382 unsigned int phy_reg, unsigned int value)
2383{
2384 int phy_addr;
2385 int i;
2386 unsigned long flags;
2387
2388 phy_addr = ethernet_phy_get(eth_port_num);
2389
2390 /* the SMI register is a shared resource */
2391 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2392
2393 /* wait for the SMI register to become available */
2394 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2395 if (i == PHY_WAIT_ITERATIONS) {
2396 printk("mv643xx PHY busy timeout, port %d\n",
2397 eth_port_num);
2398 goto out;
2399 }
2400 udelay(PHY_WAIT_MICRO_SECONDS);
2401 }
2402
2403 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2404 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2405out:
2406 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2407}
2408
2409/*
2410 * eth_port_send - Send an Ethernet packet
2411 *
2412 * DESCRIPTION:
2413 * This routine send a given packet described by p_pktinfo parameter. It
2414 * supports transmitting of a packet spaned over multiple buffers. The
2415 * routine updates 'curr' and 'first' indexes according to the packet
2416 * segment passed to the routine. In case the packet segment is first,
2417 * the 'first' index is update. In any case, the 'curr' index is updated.
2418 * If the routine get into Tx resource error it assigns 'curr' index as
2419 * 'first'. This way the function can abort Tx process of multiple
2420 * descriptors per packet.
2421 *
2422 * INPUT:
2423 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2424 * struct pkt_info *p_pkt_info User packet buffer.
2425 *
2426 * OUTPUT:
2427 * Tx ring 'curr' and 'first' indexes are updated.
2428 *
2429 * RETURN:
2430 * ETH_QUEUE_FULL in case of Tx resource error.
2431 * ETH_ERROR in case the routine can not access Tx desc ring.
2432 * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
2433 * ETH_OK otherwise.
2434 *
2435 */
2436#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2437/*
2438 * Modified to include the first descriptor pointer in case of SG
2439 */
2440static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2441 struct pkt_info *p_pkt_info)
2442{
2443 int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
2444 struct eth_tx_desc *current_descriptor;
2445 struct eth_tx_desc *first_descriptor;
2446 u32 command;
2447
2448 /* Do not process Tx ring in case of Tx ring resource error */
2449 if (mp->tx_resource_err)
2450 return ETH_QUEUE_FULL;
2451
2452 /*
2453 * The hardware requires that each buffer that is <= 8 bytes
2454 * in length must be aligned on an 8 byte boundary.
2455 */
2456 if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
2457 printk(KERN_ERR
2458 "mv643xx_eth port %d: packet size <= 8 problem\n",
2459 mp->port_num);
2460 return ETH_ERROR;
2461 }
2462
Dale Farnsworthb111ceb2005-09-02 10:25:24 -07002463 mp->tx_ring_skbs++;
2464 BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
2465
Linus Torvalds1da177e2005-04-16 15:20:36 -07002466 /* Get the Tx Desc ring indexes */
2467 tx_desc_curr = mp->tx_curr_desc_q;
2468 tx_desc_used = mp->tx_used_desc_q;
2469
2470 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2471
2472 tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
2473
2474 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2475 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2476 current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
2477 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2478
2479 command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
2480 ETH_BUFFER_OWNED_BY_DMA;
2481 if (command & ETH_TX_FIRST_DESC) {
2482 tx_first_desc = tx_desc_curr;
2483 mp->tx_first_desc_q = tx_first_desc;
2484 first_descriptor = current_descriptor;
2485 mp->tx_first_command = command;
2486 } else {
2487 tx_first_desc = mp->tx_first_desc_q;
2488 first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
2489 BUG_ON(first_descriptor == NULL);
2490 current_descriptor->cmd_sts = command;
2491 }
2492
2493 if (command & ETH_TX_LAST_DESC) {
2494 wmb();
2495 first_descriptor->cmd_sts = mp->tx_first_command;
2496
2497 wmb();
2498 ETH_ENABLE_TX_QUEUE(mp->port_num);
2499
2500 /*
2501 * Finish Tx packet. Update first desc in case of Tx resource
2502 * error */
2503 tx_first_desc = tx_next_desc;
2504 mp->tx_first_desc_q = tx_first_desc;
2505 }
2506
2507 /* Check for ring index overlap in the Tx desc ring */
2508 if (tx_next_desc == tx_desc_used) {
2509 mp->tx_resource_err = 1;
2510 mp->tx_curr_desc_q = tx_first_desc;
2511
2512 return ETH_QUEUE_LAST_RESOURCE;
2513 }
2514
2515 mp->tx_curr_desc_q = tx_next_desc;
2516
2517 return ETH_OK;
2518}
2519#else
2520static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2521 struct pkt_info *p_pkt_info)
2522{
2523 int tx_desc_curr;
2524 int tx_desc_used;
2525 struct eth_tx_desc *current_descriptor;
2526 unsigned int command_status;
2527
2528 /* Do not process Tx ring in case of Tx ring resource error */
2529 if (mp->tx_resource_err)
2530 return ETH_QUEUE_FULL;
2531
Dale Farnsworthb111ceb2005-09-02 10:25:24 -07002532 mp->tx_ring_skbs++;
2533 BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
2534
Linus Torvalds1da177e2005-04-16 15:20:36 -07002535 /* Get the Tx Desc ring indexes */
2536 tx_desc_curr = mp->tx_curr_desc_q;
2537 tx_desc_used = mp->tx_used_desc_q;
2538 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2539
2540 command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
2541 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2542 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2543 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2544
2545 /* Set last desc with DMA ownership and interrupt enable. */
2546 wmb();
2547 current_descriptor->cmd_sts = command_status |
2548 ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
2549
2550 wmb();
2551 ETH_ENABLE_TX_QUEUE(mp->port_num);
2552
2553 /* Finish Tx packet. Update first desc in case of Tx resource error */
2554 tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
2555
2556 /* Update the current descriptor */
2557 mp->tx_curr_desc_q = tx_desc_curr;
2558
2559 /* Check for ring index overlap in the Tx desc ring */
2560 if (tx_desc_curr == tx_desc_used) {
2561 mp->tx_resource_err = 1;
2562 return ETH_QUEUE_LAST_RESOURCE;
2563 }
2564
2565 return ETH_OK;
2566}
2567#endif
2568
2569/*
2570 * eth_tx_return_desc - Free all used Tx descriptors
2571 *
2572 * DESCRIPTION:
2573 * This routine returns the transmitted packet information to the caller.
2574 * It uses the 'first' index to support Tx desc return in case a transmit
2575 * of a packet spanned over multiple buffer still in process.
2576 * In case the Tx queue was in "resource error" condition, where there are
2577 * no available Tx resources, the function resets the resource error flag.
2578 *
2579 * INPUT:
2580 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2581 * struct pkt_info *p_pkt_info User packet buffer.
2582 *
2583 * OUTPUT:
2584 * Tx ring 'first' and 'used' indexes are updated.
2585 *
2586 * RETURN:
2587 * ETH_ERROR in case the routine can not access Tx desc ring.
2588 * ETH_RETRY in case there is transmission in process.
2589 * ETH_END_OF_JOB if the routine has nothing to release.
2590 * ETH_OK otherwise.
2591 *
2592 */
2593static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
2594 struct pkt_info *p_pkt_info)
2595{
2596 int tx_desc_used;
2597#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2598 int tx_busy_desc = mp->tx_first_desc_q;
2599#else
2600 int tx_busy_desc = mp->tx_curr_desc_q;
2601#endif
2602 struct eth_tx_desc *p_tx_desc_used;
2603 unsigned int command_status;
2604
2605 /* Get the Tx Desc ring indexes */
2606 tx_desc_used = mp->tx_used_desc_q;
2607
2608 p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
2609
2610 /* Sanity check */
2611 if (p_tx_desc_used == NULL)
2612 return ETH_ERROR;
2613
2614 /* Stop release. About to overlap the current available Tx descriptor */
2615 if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err)
2616 return ETH_END_OF_JOB;
2617
2618 command_status = p_tx_desc_used->cmd_sts;
2619
2620 /* Still transmitting... */
2621 if (command_status & (ETH_BUFFER_OWNED_BY_DMA))
2622 return ETH_RETRY;
2623
2624 /* Pass the packet information to the caller */
2625 p_pkt_info->cmd_sts = command_status;
2626 p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
2627 mp->tx_skb[tx_desc_used] = NULL;
2628
2629 /* Update the next descriptor to release. */
2630 mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
2631
2632 /* Any Tx return cancels the Tx resource error status */
2633 mp->tx_resource_err = 0;
2634
Dale Farnsworthb111ceb2005-09-02 10:25:24 -07002635 BUG_ON(mp->tx_ring_skbs == 0);
2636 mp->tx_ring_skbs--;
2637
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638 return ETH_OK;
2639}
2640
2641/*
2642 * eth_port_receive - Get received information from Rx ring.
2643 *
2644 * DESCRIPTION:
2645 * This routine returns the received data to the caller. There is no
2646 * data copying during routine operation. All information is returned
2647 * using pointer to packet information struct passed from the caller.
2648 * If the routine exhausts Rx ring resources then the resource error flag
2649 * is set.
2650 *
2651 * INPUT:
2652 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2653 * struct pkt_info *p_pkt_info User packet buffer.
2654 *
2655 * OUTPUT:
2656 * Rx ring current and used indexes are updated.
2657 *
2658 * RETURN:
2659 * ETH_ERROR in case the routine can not access Rx desc ring.
2660 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2661 * ETH_END_OF_JOB if there is no received data.
2662 * ETH_OK otherwise.
2663 */
2664static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2665 struct pkt_info *p_pkt_info)
2666{
2667 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2668 volatile struct eth_rx_desc *p_rx_desc;
2669 unsigned int command_status;
2670
2671 /* Do not process Rx ring in case of Rx ring resource error */
2672 if (mp->rx_resource_err)
2673 return ETH_QUEUE_FULL;
2674
2675 /* Get the Rx Desc ring 'curr and 'used' indexes */
2676 rx_curr_desc = mp->rx_curr_desc_q;
2677 rx_used_desc = mp->rx_used_desc_q;
2678
2679 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2680
2681 /* The following parameters are used to save readings from memory */
2682 command_status = p_rx_desc->cmd_sts;
2683 rmb();
2684
2685 /* Nothing to receive... */
2686 if (command_status & (ETH_BUFFER_OWNED_BY_DMA))
2687 return ETH_END_OF_JOB;
2688
2689 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2690 p_pkt_info->cmd_sts = command_status;
2691 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2692 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2693 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2694
2695 /* Clean the return info field to indicate that the packet has been */
2696 /* moved to the upper layers */
2697 mp->rx_skb[rx_curr_desc] = NULL;
2698
2699 /* Update current index in data structure */
2700 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2701 mp->rx_curr_desc_q = rx_next_curr_desc;
2702
2703 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2704 if (rx_next_curr_desc == rx_used_desc)
2705 mp->rx_resource_err = 1;
2706
2707 return ETH_OK;
2708}
2709
2710/*
2711 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2712 *
2713 * DESCRIPTION:
2714 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2715 * next 'used' descriptor and attached the returned buffer to it.
2716 * In case the Rx ring was in "resource error" condition, where there are
2717 * no available Rx resources, the function resets the resource error flag.
2718 *
2719 * INPUT:
2720 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2721 * struct pkt_info *p_pkt_info Information on returned buffer.
2722 *
2723 * OUTPUT:
2724 * New available Rx resource in Rx descriptor ring.
2725 *
2726 * RETURN:
2727 * ETH_ERROR in case the routine can not access Rx desc ring.
2728 * ETH_OK otherwise.
2729 */
2730static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2731 struct pkt_info *p_pkt_info)
2732{
2733 int used_rx_desc; /* Where to return Rx resource */
2734 volatile struct eth_rx_desc *p_used_rx_desc;
2735
2736 /* Get 'used' Rx descriptor */
2737 used_rx_desc = mp->rx_used_desc_q;
2738 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2739
2740 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2741 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2742 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2743
2744 /* Flush the write pipe */
2745
2746 /* Return the descriptor to DMA ownership */
2747 wmb();
2748 p_used_rx_desc->cmd_sts =
2749 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2750 wmb();
2751
2752 /* Move the used descriptor pointer to the next descriptor */
2753 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2754
2755 /* Any Rx return cancels the Rx resource error status */
2756 mp->rx_resource_err = 0;
2757
2758 return ETH_OK;
2759}
2760
2761/************* Begin ethtool support *************************/
2762
2763struct mv643xx_stats {
2764 char stat_string[ETH_GSTRING_LEN];
2765 int sizeof_stat;
2766 int stat_offset;
2767};
2768
2769#define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2770 offsetof(struct mv643xx_private, m)
2771
2772static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2773 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2774 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2775 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2776 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2777 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2778 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2779 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2780 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2781 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2782 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2783 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2784 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2785 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2786 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2787 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2788 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2789 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2790 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2791 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2792 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2793 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2794 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2795 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2796 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2797 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2798 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2799 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2800 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2801 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2802 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2803 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2804 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2805 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2806 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2807 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2808 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2809 { "collision", MV643XX_STAT(mib_counters.collision) },
2810 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2811};
2812
2813#define MV643XX_STATS_LEN \
2814 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2815
2816static int
2817mv643xx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2818{
2819 struct mv643xx_private *mp = netdev->priv;
2820 int port_num = mp->port_num;
2821 int autoneg = eth_port_autoneg_supported(port_num);
2822 int mode_10_bit;
2823 int auto_duplex;
2824 int half_duplex = 0;
2825 int full_duplex = 0;
2826 int auto_speed;
2827 int speed_10 = 0;
2828 int speed_100 = 0;
2829 int speed_1000 = 0;
2830
2831 u32 pcs = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2832 u32 psr = mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num));
2833
2834 mode_10_bit = psr & MV643XX_ETH_PORT_STATUS_MODE_10_BIT;
2835
2836 if (mode_10_bit) {
2837 ecmd->supported = SUPPORTED_10baseT_Half;
2838 } else {
2839 ecmd->supported = (SUPPORTED_10baseT_Half |
2840 SUPPORTED_10baseT_Full |
2841 SUPPORTED_100baseT_Half |
2842 SUPPORTED_100baseT_Full |
2843 SUPPORTED_1000baseT_Full |
2844 (autoneg ? SUPPORTED_Autoneg : 0) |
2845 SUPPORTED_TP);
2846
2847 auto_duplex = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX);
2848 auto_speed = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII);
2849
2850 ecmd->advertising = ADVERTISED_TP;
2851
2852 if (autoneg) {
2853 ecmd->advertising |= ADVERTISED_Autoneg;
2854
2855 if (auto_duplex) {
2856 half_duplex = 1;
2857 full_duplex = 1;
2858 } else {
2859 if (pcs & MV643XX_ETH_SET_FULL_DUPLEX_MODE)
2860 full_duplex = 1;
2861 else
2862 half_duplex = 1;
2863 }
2864
2865 if (auto_speed) {
2866 speed_10 = 1;
2867 speed_100 = 1;
2868 speed_1000 = 1;
2869 } else {
2870 if (pcs & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
2871 speed_1000 = 1;
2872 else if (pcs & MV643XX_ETH_SET_MII_SPEED_TO_100)
2873 speed_100 = 1;
2874 else
2875 speed_10 = 1;
2876 }
2877
2878 if (speed_10 & half_duplex)
2879 ecmd->advertising |= ADVERTISED_10baseT_Half;
2880 if (speed_10 & full_duplex)
2881 ecmd->advertising |= ADVERTISED_10baseT_Full;
2882 if (speed_100 & half_duplex)
2883 ecmd->advertising |= ADVERTISED_100baseT_Half;
2884 if (speed_100 & full_duplex)
2885 ecmd->advertising |= ADVERTISED_100baseT_Full;
2886 if (speed_1000)
2887 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2888 }
2889 }
2890
2891 ecmd->port = PORT_TP;
2892 ecmd->phy_address = ethernet_phy_get(port_num);
2893
2894 ecmd->transceiver = XCVR_EXTERNAL;
2895
2896 if (netif_carrier_ok(netdev)) {
2897 if (mode_10_bit)
2898 ecmd->speed = SPEED_10;
2899 else {
2900 if (psr & MV643XX_ETH_PORT_STATUS_GMII_1000)
2901 ecmd->speed = SPEED_1000;
2902 else if (psr & MV643XX_ETH_PORT_STATUS_MII_100)
2903 ecmd->speed = SPEED_100;
2904 else
2905 ecmd->speed = SPEED_10;
2906 }
2907
2908 if (psr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX)
2909 ecmd->duplex = DUPLEX_FULL;
2910 else
2911 ecmd->duplex = DUPLEX_HALF;
2912 } else {
2913 ecmd->speed = -1;
2914 ecmd->duplex = -1;
2915 }
2916
2917 ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2918 return 0;
2919}
2920
2921static void
2922mv643xx_get_drvinfo(struct net_device *netdev,
2923 struct ethtool_drvinfo *drvinfo)
2924{
2925 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2926 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2927 strncpy(drvinfo->fw_version, "N/A", 32);
2928 strncpy(drvinfo->bus_info, "mv643xx", 32);
2929 drvinfo->n_stats = MV643XX_STATS_LEN;
2930}
2931
2932static int
2933mv643xx_get_stats_count(struct net_device *netdev)
2934{
2935 return MV643XX_STATS_LEN;
2936}
2937
2938static void
2939mv643xx_get_ethtool_stats(struct net_device *netdev,
2940 struct ethtool_stats *stats, uint64_t *data)
2941{
2942 struct mv643xx_private *mp = netdev->priv;
2943 int i;
2944
2945 eth_update_mib_counters(mp);
2946
2947 for(i = 0; i < MV643XX_STATS_LEN; i++) {
2948 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
2949 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
2950 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
2951 }
2952}
2953
2954static void
2955mv643xx_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
2956{
2957 int i;
2958
2959 switch(stringset) {
2960 case ETH_SS_STATS:
2961 for (i=0; i < MV643XX_STATS_LEN; i++) {
2962 memcpy(data + i * ETH_GSTRING_LEN,
2963 mv643xx_gstrings_stats[i].stat_string,
2964 ETH_GSTRING_LEN);
2965 }
2966 break;
2967 }
2968}
2969
2970static struct ethtool_ops mv643xx_ethtool_ops = {
2971 .get_settings = mv643xx_get_settings,
2972 .get_drvinfo = mv643xx_get_drvinfo,
2973 .get_link = ethtool_op_get_link,
2974 .get_sg = ethtool_op_get_sg,
2975 .set_sg = ethtool_op_set_sg,
2976 .get_strings = mv643xx_get_strings,
2977 .get_stats_count = mv643xx_get_stats_count,
2978 .get_ethtool_stats = mv643xx_get_ethtool_stats,
2979};
2980
2981/************* End ethtool support *************************/