blob: 7ae18eaed6c5d869d3e7d89bffd484bbe9798147 [file] [log] [blame]
David Brownell15a05802007-08-08 09:12:54 -07001/*
2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3 *
4 * (C) Copyright 2005, Intec Automation,
5 * Mike Lavender (mike@steroidmicros)
6 * (C) Copyright 2006-2007, David Brownell
7 * (C) Copyright 2007, Axis Communications,
8 * Hans-Peter Nilsson (hp@axis.com)
9 * (C) Copyright 2007, ATRON electronic GmbH,
10 * Jan Nikitenko <jan.nikitenko@gmail.com>
11 *
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27#include <linux/hrtimer.h>
28#include <linux/delay.h>
David Brownell23fd5042007-10-14 14:50:25 -070029#include <linux/bio.h>
David Brownell15a05802007-08-08 09:12:54 -070030#include <linux/dma-mapping.h>
31#include <linux/crc7.h>
32#include <linux/crc-itu-t.h>
Al Viroe5712a62007-10-17 01:09:07 +010033#include <linux/scatterlist.h>
David Brownell15a05802007-08-08 09:12:54 -070034
35#include <linux/mmc/host.h>
36#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
37
38#include <linux/spi/spi.h>
39#include <linux/spi/mmc_spi.h>
40
41#include <asm/unaligned.h>
42
43
44/* NOTES:
45 *
46 * - For now, we won't try to interoperate with a real mmc/sd/sdio
47 * controller, although some of them do have hardware support for
48 * SPI protocol. The main reason for such configs would be mmc-ish
49 * cards like DataFlash, which don't support that "native" protocol.
50 *
51 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52 * switch between driver stacks, and in any case if "native" mode
53 * is available, it will be faster and hence preferable.
54 *
55 * - MMC depends on a different chipselect management policy than the
56 * SPI interface currently supports for shared bus segments: it needs
57 * to issue multiple spi_message requests with the chipselect active,
58 * using the results of one message to decide the next one to issue.
59 *
60 * Pending updates to the programming interface, this driver expects
61 * that it not share the bus with other drivers (precluding conflicts).
62 *
63 * - We tell the controller to keep the chipselect active from the
64 * beginning of an mmc_host_ops.request until the end. So beware
65 * of SPI controller drivers that mis-handle the cs_change flag!
66 *
67 * However, many cards seem OK with chipselect flapping up/down
68 * during that time ... at least on unshared bus segments.
69 */
70
71
72/*
73 * Local protocol constants, internal to data block protocols.
74 */
75
76/* Response tokens used to ack each block written: */
77#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
78#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
79#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
80#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
81
82/* Read and write blocks start with these tokens and end with crc;
83 * on error, read tokens act like a subset of R2_SPI_* values.
84 */
85#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
86#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
87#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
88
89#define MMC_SPI_BLOCKSIZE 512
90
91
92/* These fixed timeouts come from the latest SD specs, which say to ignore
93 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the
94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95 * reads which takes nowhere near that long. Older cards may be able to use
96 * shorter timeouts ... but why bother?
97 */
98#define readblock_timeout ktime_set(0, 100 * 1000 * 1000)
99#define writeblock_timeout ktime_set(0, 250 * 1000 * 1000)
100#define r1b_timeout ktime_set(3, 0)
101
102
103/****************************************************************************/
104
105/*
106 * Local Data Structures
107 */
108
109/* "scratch" is per-{command,block} data exchanged with the card */
110struct scratch {
111 u8 status[29];
112 u8 data_token;
113 __be16 crc_val;
114};
115
116struct mmc_spi_host {
117 struct mmc_host *mmc;
118 struct spi_device *spi;
119
120 unsigned char power_mode;
121 u16 powerup_msecs;
122
123 struct mmc_spi_platform_data *pdata;
124
125 /* for bulk data transfers */
126 struct spi_transfer token, t, crc, early_status;
127 struct spi_message m;
128
129 /* for status readback */
130 struct spi_transfer status;
131 struct spi_message readback;
132
133 /* underlying DMA-aware controller, or null */
134 struct device *dma_dev;
135
136 /* buffer used for commands and for message "overhead" */
137 struct scratch *data;
138 dma_addr_t data_dma;
139
140 /* Specs say to write ones most of the time, even when the card
141 * has no need to read its input data; and many cards won't care.
142 * This is our source of those ones.
143 */
144 void *ones;
145 dma_addr_t ones_dma;
146};
147
148
149/****************************************************************************/
150
151/*
152 * MMC-over-SPI protocol glue, used by the MMC stack interface
153 */
154
155static inline int mmc_cs_off(struct mmc_spi_host *host)
156{
157 /* chipselect will always be inactive after setup() */
158 return spi_setup(host->spi);
159}
160
161static int
162mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
163{
164 int status;
165
166 if (len > sizeof(*host->data)) {
167 WARN_ON(1);
168 return -EIO;
169 }
170
171 host->status.len = len;
172
173 if (host->dma_dev)
174 dma_sync_single_for_device(host->dma_dev,
175 host->data_dma, sizeof(*host->data),
176 DMA_FROM_DEVICE);
177
178 status = spi_sync(host->spi, &host->readback);
179 if (status == 0)
180 status = host->readback.status;
181
182 if (host->dma_dev)
183 dma_sync_single_for_cpu(host->dma_dev,
184 host->data_dma, sizeof(*host->data),
185 DMA_FROM_DEVICE);
186
187 return status;
188}
189
190static int
191mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte)
192{
193 u8 *cp = host->data->status;
194
195 timeout = ktime_add(timeout, ktime_get());
196
197 while (1) {
198 int status;
199 unsigned i;
200
201 status = mmc_spi_readbytes(host, n);
202 if (status < 0)
203 return status;
204
205 for (i = 0; i < n; i++) {
206 if (cp[i] != byte)
207 return cp[i];
208 }
209
210 /* REVISIT investigate msleep() to avoid busy-wait I/O
211 * in at least some cases.
212 */
213 if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0)
214 break;
215 }
216 return -ETIMEDOUT;
217}
218
219static inline int
220mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout)
221{
222 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
223}
224
225static int mmc_spi_readtoken(struct mmc_spi_host *host)
226{
227 return mmc_spi_skip(host, readblock_timeout, 1, 0xff);
228}
229
230
231/*
232 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
233 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
234 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
235 *
236 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
237 * newer cards R7 (IF_COND).
238 */
239
240static char *maptype(struct mmc_command *cmd)
241{
242 switch (mmc_spi_resp_type(cmd)) {
243 case MMC_RSP_SPI_R1: return "R1";
244 case MMC_RSP_SPI_R1B: return "R1B";
245 case MMC_RSP_SPI_R2: return "R2/R5";
246 case MMC_RSP_SPI_R3: return "R3/R4/R7";
247 default: return "?";
248 }
249}
250
251/* return zero, else negative errno after setting cmd->error */
252static int mmc_spi_response_get(struct mmc_spi_host *host,
253 struct mmc_command *cmd, int cs_on)
254{
255 u8 *cp = host->data->status;
256 u8 *end = cp + host->t.len;
257 int value = 0;
258 char tag[32];
259
260 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
261 cmd->opcode, maptype(cmd));
262
263 /* Except for data block reads, the whole response will already
264 * be stored in the scratch buffer. It's somewhere after the
265 * command and the first byte we read after it. We ignore that
266 * first byte. After STOP_TRANSMISSION command it may include
267 * two data bits, but otherwise it's all ones.
268 */
269 cp += 8;
270 while (cp < end && *cp == 0xff)
271 cp++;
272
273 /* Data block reads (R1 response types) may need more data... */
274 if (cp == end) {
275 unsigned i;
276
277 cp = host->data->status;
278
279 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
280 * status byte ... and we already scanned 2 bytes.
281 *
282 * REVISIT block read paths use nasty byte-at-a-time I/O
283 * so it can always DMA directly into the target buffer.
284 * It'd probably be better to memcpy() the first chunk and
285 * avoid extra i/o calls...
286 */
287 for (i = 2; i < 9; i++) {
288 value = mmc_spi_readbytes(host, 1);
289 if (value < 0)
290 goto done;
291 if (*cp != 0xff)
292 goto checkstatus;
293 }
294 value = -ETIMEDOUT;
295 goto done;
296 }
297
298checkstatus:
299 if (*cp & 0x80) {
300 dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n",
301 tag, *cp);
302 value = -EBADR;
303 goto done;
304 }
305
306 cmd->resp[0] = *cp++;
307 cmd->error = 0;
308
309 /* Status byte: the entire seven-bit R1 response. */
310 if (cmd->resp[0] != 0) {
311 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS
312 | R1_SPI_ILLEGAL_COMMAND)
313 & cmd->resp[0])
314 value = -EINVAL;
315 else if (R1_SPI_COM_CRC & cmd->resp[0])
316 value = -EILSEQ;
317 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
318 & cmd->resp[0])
319 value = -EIO;
320 /* else R1_SPI_IDLE, "it's resetting" */
321 }
322
323 switch (mmc_spi_resp_type(cmd)) {
324
325 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
326 * and less-common stuff like various erase operations.
327 */
328 case MMC_RSP_SPI_R1B:
329 /* maybe we read all the busy tokens already */
330 while (cp < end && *cp == 0)
331 cp++;
332 if (cp == end)
333 mmc_spi_wait_unbusy(host, r1b_timeout);
334 break;
335
336 /* SPI R2 == R1 + second status byte; SEND_STATUS
337 * SPI R5 == R1 + data byte; IO_RW_DIRECT
338 */
339 case MMC_RSP_SPI_R2:
340 cmd->resp[0] |= *cp << 8;
341 break;
342
343 /* SPI R3, R4, or R7 == R1 + 4 bytes */
344 case MMC_RSP_SPI_R3:
345 cmd->resp[1] = be32_to_cpu(get_unaligned((u32 *)cp));
346 break;
347
348 /* SPI R1 == just one status byte */
349 case MMC_RSP_SPI_R1:
350 break;
351
352 default:
353 dev_dbg(&host->spi->dev, "bad response type %04x\n",
354 mmc_spi_resp_type(cmd));
355 if (value >= 0)
356 value = -EINVAL;
357 goto done;
358 }
359
360 if (value < 0)
361 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
362 tag, cmd->resp[0], cmd->resp[1]);
363
364 /* disable chipselect on errors and some success cases */
365 if (value >= 0 && cs_on)
366 return value;
367done:
368 if (value < 0)
369 cmd->error = value;
370 mmc_cs_off(host);
371 return value;
372}
373
374/* Issue command and read its response.
375 * Returns zero on success, negative for error.
376 *
377 * On error, caller must cope with mmc core retry mechanism. That
378 * means immediate low-level resubmit, which affects the bus lock...
379 */
380static int
381mmc_spi_command_send(struct mmc_spi_host *host,
382 struct mmc_request *mrq,
383 struct mmc_command *cmd, int cs_on)
384{
385 struct scratch *data = host->data;
386 u8 *cp = data->status;
387 u32 arg = cmd->arg;
388 int status;
389 struct spi_transfer *t;
390
391 /* We can handle most commands (except block reads) in one full
392 * duplex I/O operation before either starting the next transfer
393 * (data block or command) or else deselecting the card.
394 *
395 * First, write 7 bytes:
396 * - an all-ones byte to ensure the card is ready
397 * - opcode byte (plus start and transmission bits)
398 * - four bytes of big-endian argument
399 * - crc7 (plus end bit) ... always computed, it's cheap
400 *
401 * We init the whole buffer to all-ones, which is what we need
402 * to write while we're reading (later) response data.
403 */
404 memset(cp++, 0xff, sizeof(data->status));
405
406 *cp++ = 0x40 | cmd->opcode;
407 *cp++ = (u8)(arg >> 24);
408 *cp++ = (u8)(arg >> 16);
409 *cp++ = (u8)(arg >> 8);
410 *cp++ = (u8)arg;
411 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
412
413 /* Then, read up to 13 bytes (while writing all-ones):
414 * - N(CR) (== 1..8) bytes of all-ones
415 * - status byte (for all response types)
416 * - the rest of the response, either:
417 * + nothing, for R1 or R1B responses
418 * + second status byte, for R2 responses
419 * + four data bytes, for R3 and R7 responses
420 *
421 * Finally, read some more bytes ... in the nice cases we know in
422 * advance how many, and reading 1 more is always OK:
423 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
424 * - N(RC) (== 1..N) bytes of all-ones, before next command
425 * - N(WR) (== 1..N) bytes of all-ones, before data write
426 *
427 * So in those cases one full duplex I/O of at most 21 bytes will
428 * handle the whole command, leaving the card ready to receive a
429 * data block or new command. We do that whenever we can, shaving
430 * CPU and IRQ costs (especially when using DMA or FIFOs).
431 *
432 * There are two other cases, where it's not generally practical
433 * to rely on a single I/O:
434 *
435 * - R1B responses need at least N(EC) bytes of all-zeroes.
436 *
437 * In this case we can *try* to fit it into one I/O, then
438 * maybe read more data later.
439 *
440 * - Data block reads are more troublesome, since a variable
441 * number of padding bytes precede the token and data.
442 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
443 * + N(AC) (== 1..many) bytes of all-ones
444 *
445 * In this case we currently only have minimal speedups here:
446 * when N(CR) == 1 we can avoid I/O in response_get().
447 */
448 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
449 cp += 2; /* min(N(CR)) + status */
450 /* R1 */
451 } else {
452 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
453 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
454 cp++;
455 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
456 cp += 4;
457 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
458 cp = data->status + sizeof(data->status);
459 /* else: R1 (most commands) */
460 }
461
462 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n",
463 cmd->opcode, maptype(cmd));
464
465 /* send command, leaving chipselect active */
466 spi_message_init(&host->m);
467
468 t = &host->t;
469 memset(t, 0, sizeof(*t));
470 t->tx_buf = t->rx_buf = data->status;
471 t->tx_dma = t->rx_dma = host->data_dma;
472 t->len = cp - data->status;
473 t->cs_change = 1;
474 spi_message_add_tail(t, &host->m);
475
476 if (host->dma_dev) {
477 host->m.is_dma_mapped = 1;
478 dma_sync_single_for_device(host->dma_dev,
479 host->data_dma, sizeof(*host->data),
480 DMA_BIDIRECTIONAL);
481 }
482 status = spi_sync(host->spi, &host->m);
483 if (status == 0)
484 status = host->m.status;
485
486 if (host->dma_dev)
487 dma_sync_single_for_cpu(host->dma_dev,
488 host->data_dma, sizeof(*host->data),
489 DMA_BIDIRECTIONAL);
490 if (status < 0) {
491 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
492 cmd->error = status;
493 return status;
494 }
495
496 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
497 return mmc_spi_response_get(host, cmd, cs_on);
498}
499
500/* Build data message with up to four separate transfers. For TX, we
501 * start by writing the data token. And in most cases, we finish with
502 * a status transfer.
503 *
504 * We always provide TX data for data and CRC. The MMC/SD protocol
505 * requires us to write ones; but Linux defaults to writing zeroes;
506 * so we explicitly initialize it to all ones on RX paths.
507 *
508 * We also handle DMA mapping, so the underlying SPI controller does
509 * not need to (re)do it for each message.
510 */
511static void
512mmc_spi_setup_data_message(
513 struct mmc_spi_host *host,
514 int multiple,
515 enum dma_data_direction direction)
516{
517 struct spi_transfer *t;
518 struct scratch *scratch = host->data;
519 dma_addr_t dma = host->data_dma;
520
521 spi_message_init(&host->m);
522 if (dma)
523 host->m.is_dma_mapped = 1;
524
525 /* for reads, readblock() skips 0xff bytes before finding
526 * the token; for writes, this transfer issues that token.
527 */
528 if (direction == DMA_TO_DEVICE) {
529 t = &host->token;
530 memset(t, 0, sizeof(*t));
531 t->len = 1;
532 if (multiple)
533 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
534 else
535 scratch->data_token = SPI_TOKEN_SINGLE;
536 t->tx_buf = &scratch->data_token;
537 if (dma)
538 t->tx_dma = dma + offsetof(struct scratch, data_token);
539 spi_message_add_tail(t, &host->m);
540 }
541
542 /* Body of transfer is buffer, then CRC ...
543 * either TX-only, or RX with TX-ones.
544 */
545 t = &host->t;
546 memset(t, 0, sizeof(*t));
547 t->tx_buf = host->ones;
548 t->tx_dma = host->ones_dma;
549 /* length and actual buffer info are written later */
550 spi_message_add_tail(t, &host->m);
551
552 t = &host->crc;
553 memset(t, 0, sizeof(*t));
554 t->len = 2;
555 if (direction == DMA_TO_DEVICE) {
556 /* the actual CRC may get written later */
557 t->tx_buf = &scratch->crc_val;
558 if (dma)
559 t->tx_dma = dma + offsetof(struct scratch, crc_val);
560 } else {
561 t->tx_buf = host->ones;
562 t->tx_dma = host->ones_dma;
563 t->rx_buf = &scratch->crc_val;
564 if (dma)
565 t->rx_dma = dma + offsetof(struct scratch, crc_val);
566 }
567 spi_message_add_tail(t, &host->m);
568
569 /*
570 * A single block read is followed by N(EC) [0+] all-ones bytes
571 * before deselect ... don't bother.
572 *
573 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
574 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
575 * collect that single byte, so readblock() doesn't need to.
576 *
577 * For a write, the one-byte data response follows immediately, then
578 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
579 * Then single block reads may deselect, and multiblock ones issue
580 * the next token (next data block, or STOP_TRAN). We can try to
581 * minimize I/O ops by using a single read to collect end-of-busy.
582 */
583 if (multiple || direction == DMA_TO_DEVICE) {
584 t = &host->early_status;
585 memset(t, 0, sizeof(*t));
586 t->len = (direction == DMA_TO_DEVICE)
587 ? sizeof(scratch->status)
588 : 1;
589 t->tx_buf = host->ones;
590 t->tx_dma = host->ones_dma;
591 t->rx_buf = scratch->status;
592 if (dma)
593 t->rx_dma = dma + offsetof(struct scratch, status);
594 t->cs_change = 1;
595 spi_message_add_tail(t, &host->m);
596 }
597}
598
599/*
600 * Write one block:
601 * - caller handled preceding N(WR) [1+] all-ones bytes
602 * - data block
603 * + token
604 * + data bytes
605 * + crc16
606 * - an all-ones byte ... card writes a data-response byte
607 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
608 *
609 * Return negative errno, else success.
610 */
611static int
612mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t)
613{
614 struct spi_device *spi = host->spi;
615 int status, i;
616 struct scratch *scratch = host->data;
617
618 if (host->mmc->use_spi_crc)
619 scratch->crc_val = cpu_to_be16(
620 crc_itu_t(0, t->tx_buf, t->len));
621 if (host->dma_dev)
622 dma_sync_single_for_device(host->dma_dev,
623 host->data_dma, sizeof(*scratch),
624 DMA_BIDIRECTIONAL);
625
626 status = spi_sync(spi, &host->m);
627 if (status == 0)
628 status = host->m.status;
629
630 if (status != 0) {
631 dev_dbg(&spi->dev, "write error (%d)\n", status);
632 return status;
633 }
634
635 if (host->dma_dev)
636 dma_sync_single_for_cpu(host->dma_dev,
637 host->data_dma, sizeof(*scratch),
638 DMA_BIDIRECTIONAL);
639
640 /*
641 * Get the transmission data-response reply. It must follow
642 * immediately after the data block we transferred. This reply
643 * doesn't necessarily tell whether the write operation succeeded;
644 * it just says if the transmission was ok and whether *earlier*
645 * writes succeeded; see the standard.
646 */
647 switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) {
648 case SPI_RESPONSE_ACCEPTED:
649 status = 0;
650 break;
651 case SPI_RESPONSE_CRC_ERR:
652 /* host shall then issue MMC_STOP_TRANSMISSION */
653 status = -EILSEQ;
654 break;
655 case SPI_RESPONSE_WRITE_ERR:
656 /* host shall then issue MMC_STOP_TRANSMISSION,
657 * and should MMC_SEND_STATUS to sort it out
658 */
659 status = -EIO;
660 break;
661 default:
662 status = -EPROTO;
663 break;
664 }
665 if (status != 0) {
666 dev_dbg(&spi->dev, "write error %02x (%d)\n",
667 scratch->status[0], status);
668 return status;
669 }
670
671 t->tx_buf += t->len;
672 if (host->dma_dev)
673 t->tx_dma += t->len;
674
675 /* Return when not busy. If we didn't collect that status yet,
676 * we'll need some more I/O.
677 */
678 for (i = 1; i < sizeof(scratch->status); i++) {
679 if (scratch->status[i] != 0)
680 return 0;
681 }
682 return mmc_spi_wait_unbusy(host, writeblock_timeout);
683}
684
685/*
686 * Read one block:
687 * - skip leading all-ones bytes ... either
688 * + N(AC) [1..f(clock,CSD)] usually, else
689 * + N(CX) [0..8] when reading CSD or CID
690 * - data block
691 * + token ... if error token, no data or crc
692 * + data bytes
693 * + crc16
694 *
695 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
696 * before dropping chipselect.
697 *
698 * For multiblock reads, caller either reads the next block or issues a
699 * STOP_TRANSMISSION command.
700 */
701static int
702mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t)
703{
704 struct spi_device *spi = host->spi;
705 int status;
706 struct scratch *scratch = host->data;
707
708 /* At least one SD card sends an all-zeroes byte when N(CX)
709 * applies, before the all-ones bytes ... just cope with that.
710 */
711 status = mmc_spi_readbytes(host, 1);
712 if (status < 0)
713 return status;
714 status = scratch->status[0];
715 if (status == 0xff || status == 0)
716 status = mmc_spi_readtoken(host);
717
718 if (status == SPI_TOKEN_SINGLE) {
719 if (host->dma_dev) {
720 dma_sync_single_for_device(host->dma_dev,
721 host->data_dma, sizeof(*scratch),
722 DMA_BIDIRECTIONAL);
723 dma_sync_single_for_device(host->dma_dev,
724 t->rx_dma, t->len,
725 DMA_FROM_DEVICE);
726 }
727
728 status = spi_sync(spi, &host->m);
729 if (status == 0)
730 status = host->m.status;
731
732 if (host->dma_dev) {
733 dma_sync_single_for_cpu(host->dma_dev,
734 host->data_dma, sizeof(*scratch),
735 DMA_BIDIRECTIONAL);
736 dma_sync_single_for_cpu(host->dma_dev,
737 t->rx_dma, t->len,
738 DMA_FROM_DEVICE);
739 }
740
741 } else {
742 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
743
744 /* we've read extra garbage, timed out, etc */
745 if (status < 0)
746 return status;
747
748 /* low four bits are an R2 subset, fifth seems to be
749 * vendor specific ... map them all to generic error..
750 */
751 return -EIO;
752 }
753
754 if (host->mmc->use_spi_crc) {
755 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
756
757 be16_to_cpus(&scratch->crc_val);
758 if (scratch->crc_val != crc) {
759 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
760 "computed=0x%04x len=%d\n",
761 scratch->crc_val, crc, t->len);
762 return -EILSEQ;
763 }
764 }
765
766 t->rx_buf += t->len;
767 if (host->dma_dev)
768 t->rx_dma += t->len;
769
770 return 0;
771}
772
773/*
774 * An MMC/SD data stage includes one or more blocks, optional CRCs,
775 * and inline handshaking. That handhaking makes it unlike most
776 * other SPI protocol stacks.
777 */
778static void
779mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
780 struct mmc_data *data, u32 blk_size)
781{
782 struct spi_device *spi = host->spi;
783 struct device *dma_dev = host->dma_dev;
784 struct spi_transfer *t;
785 enum dma_data_direction direction;
786 struct scatterlist *sg;
787 unsigned n_sg;
788 int multiple = (data->blocks > 1);
789
790 if (data->flags & MMC_DATA_READ)
791 direction = DMA_FROM_DEVICE;
792 else
793 direction = DMA_TO_DEVICE;
794 mmc_spi_setup_data_message(host, multiple, direction);
795 t = &host->t;
796
797 /* Handle scatterlist segments one at a time, with synch for
798 * each 512-byte block
799 */
800 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
801 int status = 0;
802 dma_addr_t dma_addr = 0;
803 void *kmap_addr;
804 unsigned length = sg->length;
805 enum dma_data_direction dir = direction;
806
807 /* set up dma mapping for controller drivers that might
808 * use DMA ... though they may fall back to PIO
809 */
810 if (dma_dev) {
811 /* never invalidate whole *shared* pages ... */
812 if ((sg->offset != 0 || length != PAGE_SIZE)
813 && dir == DMA_FROM_DEVICE)
814 dir = DMA_BIDIRECTIONAL;
815
816 dma_addr = dma_map_page(dma_dev, sg->page, 0,
817 PAGE_SIZE, dir);
818 if (direction == DMA_TO_DEVICE)
819 t->tx_dma = dma_addr + sg->offset;
820 else
821 t->rx_dma = dma_addr + sg->offset;
822 }
823
824 /* allow pio too; we don't allow highmem */
825 kmap_addr = kmap(sg->page);
826 if (direction == DMA_TO_DEVICE)
827 t->tx_buf = kmap_addr + sg->offset;
828 else
829 t->rx_buf = kmap_addr + sg->offset;
830
831 /* transfer each block, and update request status */
832 while (length) {
833 t->len = min(length, blk_size);
834
835 dev_dbg(&host->spi->dev,
836 " mmc_spi: %s block, %d bytes\n",
837 (direction == DMA_TO_DEVICE)
838 ? "write"
839 : "read",
840 t->len);
841
842 if (direction == DMA_TO_DEVICE)
843 status = mmc_spi_writeblock(host, t);
844 else
845 status = mmc_spi_readblock(host, t);
846 if (status < 0)
847 break;
848
849 data->bytes_xfered += t->len;
850 length -= t->len;
851
852 if (!multiple)
853 break;
854 }
855
856 /* discard mappings */
857 if (direction == DMA_FROM_DEVICE)
858 flush_kernel_dcache_page(sg->page);
859 kunmap(sg->page);
860 if (dma_dev)
861 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
862
863 if (status < 0) {
864 data->error = status;
865 dev_dbg(&spi->dev, "%s status %d\n",
866 (direction == DMA_TO_DEVICE)
867 ? "write" : "read",
868 status);
869 break;
870 }
871 }
872
873 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
874 * can be issued before multiblock writes. Unlike its more widely
875 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
876 * that can affect the STOP_TRAN logic. Complete (and current)
877 * MMC specs should sort that out before Linux starts using CMD23.
878 */
879 if (direction == DMA_TO_DEVICE && multiple) {
880 struct scratch *scratch = host->data;
881 int tmp;
882 const unsigned statlen = sizeof(scratch->status);
883
884 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n");
885
886 /* Tweak the per-block message we set up earlier by morphing
887 * it to hold single buffer with the token followed by some
888 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
889 * "not busy any longer" status, and leave chip selected.
890 */
891 INIT_LIST_HEAD(&host->m.transfers);
892 list_add(&host->early_status.transfer_list,
893 &host->m.transfers);
894
895 memset(scratch->status, 0xff, statlen);
896 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
897
898 host->early_status.tx_buf = host->early_status.rx_buf;
899 host->early_status.tx_dma = host->early_status.rx_dma;
900 host->early_status.len = statlen;
901
902 if (host->dma_dev)
903 dma_sync_single_for_device(host->dma_dev,
904 host->data_dma, sizeof(*scratch),
905 DMA_BIDIRECTIONAL);
906
907 tmp = spi_sync(spi, &host->m);
908 if (tmp == 0)
909 tmp = host->m.status;
910
911 if (host->dma_dev)
912 dma_sync_single_for_cpu(host->dma_dev,
913 host->data_dma, sizeof(*scratch),
914 DMA_BIDIRECTIONAL);
915
916 if (tmp < 0) {
917 if (!data->error)
918 data->error = tmp;
919 return;
920 }
921
922 /* Ideally we collected "not busy" status with one I/O,
923 * avoiding wasteful byte-at-a-time scanning... but more
924 * I/O is often needed.
925 */
926 for (tmp = 2; tmp < statlen; tmp++) {
927 if (scratch->status[tmp] != 0)
928 return;
929 }
930 tmp = mmc_spi_wait_unbusy(host, writeblock_timeout);
931 if (tmp < 0 && !data->error)
932 data->error = tmp;
933 }
934}
935
936/****************************************************************************/
937
938/*
939 * MMC driver implementation -- the interface to the MMC stack
940 */
941
942static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
943{
944 struct mmc_spi_host *host = mmc_priv(mmc);
945 int status = -EINVAL;
946
947#ifdef DEBUG
948 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
949 {
950 struct mmc_command *cmd;
951 int invalid = 0;
952
953 cmd = mrq->cmd;
954 if (!mmc_spi_resp_type(cmd)) {
955 dev_dbg(&host->spi->dev, "bogus command\n");
956 cmd->error = -EINVAL;
957 invalid = 1;
958 }
959
960 cmd = mrq->stop;
961 if (cmd && !mmc_spi_resp_type(cmd)) {
962 dev_dbg(&host->spi->dev, "bogus STOP command\n");
963 cmd->error = -EINVAL;
964 invalid = 1;
965 }
966
967 if (invalid) {
968 dump_stack();
969 mmc_request_done(host->mmc, mrq);
970 return;
971 }
972 }
973#endif
974
975 /* issue command; then optionally data and stop */
976 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
977 if (status == 0 && mrq->data) {
978 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
979 if (mrq->stop)
980 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
981 else
982 mmc_cs_off(host);
983 }
984
985 mmc_request_done(host->mmc, mrq);
986}
987
988/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
989 *
990 * NOTE that here we can't know that the card has just been powered up;
991 * not all MMC/SD sockets support power switching.
992 *
993 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
994 * this doesn't seem to do the right thing at all...
995 */
996static void mmc_spi_initsequence(struct mmc_spi_host *host)
997{
998 /* Try to be very sure any previous command has completed;
999 * wait till not-busy, skip debris from any old commands.
1000 */
1001 mmc_spi_wait_unbusy(host, r1b_timeout);
1002 mmc_spi_readbytes(host, 10);
1003
1004 /*
1005 * Do a burst with chipselect active-high. We need to do this to
1006 * meet the requirement of 74 clock cycles with both chipselect
1007 * and CMD (MOSI) high before CMD0 ... after the card has been
1008 * powered up to Vdd(min), and so is ready to take commands.
1009 *
1010 * Some cards are particularly needy of this (e.g. Viking "SD256")
1011 * while most others don't seem to care.
1012 *
1013 * Note that this is one of the places MMC/SD plays games with the
1014 * SPI protocol. Another is that when chipselect is released while
1015 * the card returns BUSY status, the clock must issue several cycles
1016 * with chipselect high before the card will stop driving its output.
1017 */
1018 host->spi->mode |= SPI_CS_HIGH;
1019 if (spi_setup(host->spi) != 0) {
1020 /* Just warn; most cards work without it. */
1021 dev_warn(&host->spi->dev,
1022 "can't change chip-select polarity\n");
1023 host->spi->mode &= ~SPI_CS_HIGH;
1024 } else {
1025 mmc_spi_readbytes(host, 18);
1026
1027 host->spi->mode &= ~SPI_CS_HIGH;
1028 if (spi_setup(host->spi) != 0) {
1029 /* Wot, we can't get the same setup we had before? */
1030 dev_err(&host->spi->dev,
1031 "can't restore chip-select polarity\n");
1032 }
1033 }
1034}
1035
1036static char *mmc_powerstring(u8 power_mode)
1037{
1038 switch (power_mode) {
1039 case MMC_POWER_OFF: return "off";
1040 case MMC_POWER_UP: return "up";
1041 case MMC_POWER_ON: return "on";
1042 }
1043 return "?";
1044}
1045
1046static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1047{
1048 struct mmc_spi_host *host = mmc_priv(mmc);
1049
1050 if (host->power_mode != ios->power_mode) {
1051 int canpower;
1052
1053 canpower = host->pdata && host->pdata->setpower;
1054
1055 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1056 mmc_powerstring(ios->power_mode),
1057 ios->vdd,
1058 canpower ? ", can switch" : "");
1059
1060 /* switch power on/off if possible, accounting for
1061 * max 250msec powerup time if needed.
1062 */
1063 if (canpower) {
1064 switch (ios->power_mode) {
1065 case MMC_POWER_OFF:
1066 case MMC_POWER_UP:
1067 host->pdata->setpower(&host->spi->dev,
1068 ios->vdd);
1069 if (ios->power_mode == MMC_POWER_UP)
1070 msleep(host->powerup_msecs);
1071 }
1072 }
1073
1074 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1075 if (ios->power_mode == MMC_POWER_ON)
1076 mmc_spi_initsequence(host);
1077
1078 /* If powering down, ground all card inputs to avoid power
1079 * delivery from data lines! On a shared SPI bus, this
1080 * will probably be temporary; 6.4.2 of the simplified SD
1081 * spec says this must last at least 1msec.
1082 *
1083 * - Clock low means CPOL 0, e.g. mode 0
1084 * - MOSI low comes from writing zero
1085 * - Chipselect is usually active low...
1086 */
1087 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1088 int mres;
1089
1090 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1091 mres = spi_setup(host->spi);
1092 if (mres < 0)
1093 dev_dbg(&host->spi->dev,
1094 "switch to SPI mode 0 failed\n");
1095
1096 if (spi_w8r8(host->spi, 0x00) < 0)
1097 dev_dbg(&host->spi->dev,
1098 "put spi signals to low failed\n");
1099
1100 /*
1101 * Now clock should be low due to spi mode 0;
1102 * MOSI should be low because of written 0x00;
1103 * chipselect should be low (it is active low)
1104 * power supply is off, so now MMC is off too!
1105 *
1106 * FIXME no, chipselect can be high since the
1107 * device is inactive and SPI_CS_HIGH is clear...
1108 */
1109 msleep(10);
1110 if (mres == 0) {
1111 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1112 mres = spi_setup(host->spi);
1113 if (mres < 0)
1114 dev_dbg(&host->spi->dev,
1115 "switch back to SPI mode 3"
1116 " failed\n");
1117 }
1118 }
1119
1120 host->power_mode = ios->power_mode;
1121 }
1122
1123 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1124 int status;
1125
1126 host->spi->max_speed_hz = ios->clock;
1127 status = spi_setup(host->spi);
1128 dev_dbg(&host->spi->dev,
1129 "mmc_spi: clock to %d Hz, %d\n",
1130 host->spi->max_speed_hz, status);
1131 }
1132}
1133
1134static int mmc_spi_get_ro(struct mmc_host *mmc)
1135{
1136 struct mmc_spi_host *host = mmc_priv(mmc);
1137
1138 if (host->pdata && host->pdata->get_ro)
1139 return host->pdata->get_ro(mmc->parent);
1140 /* board doesn't support read only detection; assume writeable */
1141 return 0;
1142}
1143
1144
1145static const struct mmc_host_ops mmc_spi_ops = {
1146 .request = mmc_spi_request,
1147 .set_ios = mmc_spi_set_ios,
1148 .get_ro = mmc_spi_get_ro,
1149};
1150
1151
1152/****************************************************************************/
1153
1154/*
1155 * SPI driver implementation
1156 */
1157
1158static irqreturn_t
1159mmc_spi_detect_irq(int irq, void *mmc)
1160{
1161 struct mmc_spi_host *host = mmc_priv(mmc);
1162 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1163
1164 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1165 return IRQ_HANDLED;
1166}
1167
1168static int mmc_spi_probe(struct spi_device *spi)
1169{
1170 void *ones;
1171 struct mmc_host *mmc;
1172 struct mmc_spi_host *host;
1173 int status;
1174
1175 /* MMC and SD specs only seem to care that sampling is on the
1176 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1177 * should be legit. We'll use mode 0 since it seems to be a
1178 * bit less troublesome on some hardware ... unclear why.
1179 */
1180 spi->mode = SPI_MODE_0;
1181 spi->bits_per_word = 8;
1182
1183 status = spi_setup(spi);
1184 if (status < 0) {
1185 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1186 spi->mode, spi->max_speed_hz / 1000,
1187 status);
1188 return status;
1189 }
1190
1191 /* We can use the bus safely iff nobody else will interfere with
1192 * us. That is, either we have the experimental exclusive access
1193 * primitives ... or else there's nobody to share it with.
1194 */
1195 if (spi->master->num_chipselect > 1) {
1196 struct device *parent = spi->dev.parent;
1197
1198 /* If there are multiple devices on this bus, we
1199 * can't proceed.
1200 */
1201 spin_lock(&parent->klist_children.k_lock);
1202 if (parent->klist_children.k_list.next
1203 != parent->klist_children.k_list.prev)
1204 status = -EMLINK;
1205 else
1206 status = 0;
1207 spin_unlock(&parent->klist_children.k_lock);
1208 if (status < 0) {
1209 dev_err(&spi->dev, "can't share SPI bus\n");
1210 return status;
1211 }
1212
1213 /* REVISIT we can't guarantee another device won't
1214 * be added later. It's uncommon though ... for now,
1215 * work as if this is safe.
1216 */
1217 dev_warn(&spi->dev, "ASSUMING unshared SPI bus!\n");
1218 }
1219
1220 /* We need a supply of ones to transmit. This is the only time
1221 * the CPU touches these, so cache coherency isn't a concern.
1222 *
1223 * NOTE if many systems use more than one MMC-over-SPI connector
1224 * it'd save some memory to share this. That's evidently rare.
1225 */
1226 status = -ENOMEM;
1227 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1228 if (!ones)
1229 goto nomem;
1230 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1231
1232 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1233 if (!mmc)
1234 goto nomem;
1235
1236 mmc->ops = &mmc_spi_ops;
1237 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1238
1239 /* As long as we keep track of the number of successfully
1240 * transmitted blocks, we're good for multiwrite.
1241 */
1242 mmc->caps = MMC_CAP_SPI | MMC_CAP_MULTIWRITE;
1243
1244 /* SPI doesn't need the lowspeed device identification thing for
1245 * MMC or SD cards, since it never comes up in open drain mode.
1246 * That's good; some SPI masters can't handle very low speeds!
1247 *
1248 * However, low speed SDIO cards need not handle over 400 KHz;
1249 * that's the only reason not to use a few MHz for f_min (until
1250 * the upper layer reads the target frequency from the CSD).
1251 */
1252 mmc->f_min = 400000;
1253 mmc->f_max = spi->max_speed_hz;
1254
1255 host = mmc_priv(mmc);
1256 host->mmc = mmc;
1257 host->spi = spi;
1258
1259 host->ones = ones;
1260
1261 /* Platform data is used to hook up things like card sensing
1262 * and power switching gpios.
1263 */
1264 host->pdata = spi->dev.platform_data;
1265 if (host->pdata)
1266 mmc->ocr_avail = host->pdata->ocr_mask;
1267 if (!mmc->ocr_avail) {
1268 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1269 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1270 }
1271 if (host->pdata && host->pdata->setpower) {
1272 host->powerup_msecs = host->pdata->powerup_msecs;
1273 if (!host->powerup_msecs || host->powerup_msecs > 250)
1274 host->powerup_msecs = 250;
1275 }
1276
1277 dev_set_drvdata(&spi->dev, mmc);
1278
1279 /* preallocate dma buffers */
1280 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1281 if (!host->data)
1282 goto fail_nobuf1;
1283
Tony Jones49dce682007-10-16 01:27:48 -07001284 if (spi->master->dev.parent->dma_mask) {
1285 struct device *dev = spi->master->dev.parent;
David Brownell15a05802007-08-08 09:12:54 -07001286
1287 host->dma_dev = dev;
1288 host->ones_dma = dma_map_single(dev, ones,
1289 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1290 host->data_dma = dma_map_single(dev, host->data,
1291 sizeof(*host->data), DMA_BIDIRECTIONAL);
1292
1293 /* REVISIT in theory those map operations can fail... */
1294
1295 dma_sync_single_for_cpu(host->dma_dev,
1296 host->data_dma, sizeof(*host->data),
1297 DMA_BIDIRECTIONAL);
1298 }
1299
1300 /* setup message for status/busy readback */
1301 spi_message_init(&host->readback);
1302 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1303
1304 spi_message_add_tail(&host->status, &host->readback);
1305 host->status.tx_buf = host->ones;
1306 host->status.tx_dma = host->ones_dma;
1307 host->status.rx_buf = &host->data->status;
1308 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1309 host->status.cs_change = 1;
1310
1311 /* register card detect irq */
1312 if (host->pdata && host->pdata->init) {
1313 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1314 if (status != 0)
1315 goto fail_glue_init;
1316 }
1317
1318 status = mmc_add_host(mmc);
1319 if (status != 0)
1320 goto fail_add_host;
1321
1322 dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1323 mmc->class_dev.bus_id,
1324 host->dma_dev ? "" : ", no DMA",
1325 (host->pdata && host->pdata->get_ro)
1326 ? "" : ", no WP",
1327 (host->pdata && host->pdata->setpower)
1328 ? "" : ", no poweroff");
1329 return 0;
1330
1331fail_add_host:
1332 mmc_remove_host (mmc);
1333fail_glue_init:
1334 if (host->dma_dev)
1335 dma_unmap_single(host->dma_dev, host->data_dma,
1336 sizeof(*host->data), DMA_BIDIRECTIONAL);
1337 kfree(host->data);
1338
1339fail_nobuf1:
1340 mmc_free_host(mmc);
1341 dev_set_drvdata(&spi->dev, NULL);
1342
1343nomem:
1344 kfree(ones);
1345 return status;
1346}
1347
1348
1349static int __devexit mmc_spi_remove(struct spi_device *spi)
1350{
1351 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1352 struct mmc_spi_host *host;
1353
1354 if (mmc) {
1355 host = mmc_priv(mmc);
1356
1357 /* prevent new mmc_detect_change() calls */
1358 if (host->pdata && host->pdata->exit)
1359 host->pdata->exit(&spi->dev, mmc);
1360
1361 mmc_remove_host(mmc);
1362
1363 if (host->dma_dev) {
1364 dma_unmap_single(host->dma_dev, host->ones_dma,
1365 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1366 dma_unmap_single(host->dma_dev, host->data_dma,
1367 sizeof(*host->data), DMA_BIDIRECTIONAL);
1368 }
1369
1370 kfree(host->data);
1371 kfree(host->ones);
1372
1373 spi->max_speed_hz = mmc->f_max;
1374 mmc_free_host(mmc);
1375 dev_set_drvdata(&spi->dev, NULL);
1376 }
1377 return 0;
1378}
1379
1380
1381static struct spi_driver mmc_spi_driver = {
1382 .driver = {
1383 .name = "mmc_spi",
1384 .bus = &spi_bus_type,
1385 .owner = THIS_MODULE,
1386 },
1387 .probe = mmc_spi_probe,
1388 .remove = __devexit_p(mmc_spi_remove),
1389};
1390
1391
1392static int __init mmc_spi_init(void)
1393{
1394 return spi_register_driver(&mmc_spi_driver);
1395}
1396module_init(mmc_spi_init);
1397
1398
1399static void __exit mmc_spi_exit(void)
1400{
1401 spi_unregister_driver(&mmc_spi_driver);
1402}
1403module_exit(mmc_spi_exit);
1404
1405
1406MODULE_AUTHOR("Mike Lavender, David Brownell, "
1407 "Hans-Peter Nilsson, Jan Nikitenko");
1408MODULE_DESCRIPTION("SPI SD/MMC host driver");
1409MODULE_LICENSE("GPL");