Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /** |
| 2 | * aops.c - NTFS kernel address space operations and page cache handling. |
| 3 | * Part of the Linux-NTFS project. |
| 4 | * |
| 5 | * Copyright (c) 2001-2004 Anton Altaparmakov |
| 6 | * Copyright (c) 2002 Richard Russon |
| 7 | * |
| 8 | * This program/include file is free software; you can redistribute it and/or |
| 9 | * modify it under the terms of the GNU General Public License as published |
| 10 | * by the Free Software Foundation; either version 2 of the License, or |
| 11 | * (at your option) any later version. |
| 12 | * |
| 13 | * This program/include file is distributed in the hope that it will be |
| 14 | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty |
| 15 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | * GNU General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program (in the main directory of the Linux-NTFS |
| 20 | * distribution in the file COPYING); if not, write to the Free Software |
| 21 | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 22 | */ |
| 23 | |
| 24 | #include <linux/errno.h> |
| 25 | #include <linux/mm.h> |
| 26 | #include <linux/pagemap.h> |
| 27 | #include <linux/swap.h> |
| 28 | #include <linux/buffer_head.h> |
| 29 | #include <linux/writeback.h> |
| 30 | |
| 31 | #include "aops.h" |
| 32 | #include "attrib.h" |
| 33 | #include "debug.h" |
| 34 | #include "inode.h" |
| 35 | #include "mft.h" |
| 36 | #include "runlist.h" |
| 37 | #include "types.h" |
| 38 | #include "ntfs.h" |
| 39 | |
| 40 | /** |
| 41 | * ntfs_end_buffer_async_read - async io completion for reading attributes |
| 42 | * @bh: buffer head on which io is completed |
| 43 | * @uptodate: whether @bh is now uptodate or not |
| 44 | * |
| 45 | * Asynchronous I/O completion handler for reading pages belonging to the |
| 46 | * attribute address space of an inode. The inodes can either be files or |
| 47 | * directories or they can be fake inodes describing some attribute. |
| 48 | * |
| 49 | * If NInoMstProtected(), perform the post read mst fixups when all IO on the |
| 50 | * page has been completed and mark the page uptodate or set the error bit on |
| 51 | * the page. To determine the size of the records that need fixing up, we |
| 52 | * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs |
| 53 | * record size, and index_block_size_bits, to the log(base 2) of the ntfs |
| 54 | * record size. |
| 55 | */ |
| 56 | static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate) |
| 57 | { |
| 58 | static DEFINE_SPINLOCK(page_uptodate_lock); |
| 59 | unsigned long flags; |
| 60 | struct buffer_head *tmp; |
| 61 | struct page *page; |
| 62 | ntfs_inode *ni; |
| 63 | int page_uptodate = 1; |
| 64 | |
| 65 | page = bh->b_page; |
| 66 | ni = NTFS_I(page->mapping->host); |
| 67 | |
| 68 | if (likely(uptodate)) { |
| 69 | s64 file_ofs; |
| 70 | |
| 71 | set_buffer_uptodate(bh); |
| 72 | |
| 73 | file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) + |
| 74 | bh_offset(bh); |
| 75 | /* Check for the current buffer head overflowing. */ |
| 76 | if (file_ofs + bh->b_size > ni->initialized_size) { |
| 77 | char *addr; |
| 78 | int ofs = 0; |
| 79 | |
| 80 | if (file_ofs < ni->initialized_size) |
| 81 | ofs = ni->initialized_size - file_ofs; |
| 82 | addr = kmap_atomic(page, KM_BIO_SRC_IRQ); |
| 83 | memset(addr + bh_offset(bh) + ofs, 0, bh->b_size - ofs); |
| 84 | flush_dcache_page(page); |
| 85 | kunmap_atomic(addr, KM_BIO_SRC_IRQ); |
| 86 | } |
| 87 | } else { |
| 88 | clear_buffer_uptodate(bh); |
| 89 | ntfs_error(ni->vol->sb, "Buffer I/O error, logical block %llu.", |
| 90 | (unsigned long long)bh->b_blocknr); |
| 91 | SetPageError(page); |
| 92 | } |
| 93 | spin_lock_irqsave(&page_uptodate_lock, flags); |
| 94 | clear_buffer_async_read(bh); |
| 95 | unlock_buffer(bh); |
| 96 | tmp = bh; |
| 97 | do { |
| 98 | if (!buffer_uptodate(tmp)) |
| 99 | page_uptodate = 0; |
| 100 | if (buffer_async_read(tmp)) { |
| 101 | if (likely(buffer_locked(tmp))) |
| 102 | goto still_busy; |
| 103 | /* Async buffers must be locked. */ |
| 104 | BUG(); |
| 105 | } |
| 106 | tmp = tmp->b_this_page; |
| 107 | } while (tmp != bh); |
| 108 | spin_unlock_irqrestore(&page_uptodate_lock, flags); |
| 109 | /* |
| 110 | * If none of the buffers had errors then we can set the page uptodate, |
| 111 | * but we first have to perform the post read mst fixups, if the |
| 112 | * attribute is mst protected, i.e. if NInoMstProteced(ni) is true. |
| 113 | * Note we ignore fixup errors as those are detected when |
| 114 | * map_mft_record() is called which gives us per record granularity |
| 115 | * rather than per page granularity. |
| 116 | */ |
| 117 | if (!NInoMstProtected(ni)) { |
| 118 | if (likely(page_uptodate && !PageError(page))) |
| 119 | SetPageUptodate(page); |
| 120 | } else { |
| 121 | char *addr; |
| 122 | unsigned int i, recs; |
| 123 | u32 rec_size; |
| 124 | |
| 125 | rec_size = ni->itype.index.block_size; |
| 126 | recs = PAGE_CACHE_SIZE / rec_size; |
| 127 | /* Should have been verified before we got here... */ |
| 128 | BUG_ON(!recs); |
| 129 | addr = kmap_atomic(page, KM_BIO_SRC_IRQ); |
| 130 | for (i = 0; i < recs; i++) |
| 131 | post_read_mst_fixup((NTFS_RECORD*)(addr + |
| 132 | i * rec_size), rec_size); |
| 133 | flush_dcache_page(page); |
| 134 | kunmap_atomic(addr, KM_BIO_SRC_IRQ); |
| 135 | if (likely(!PageError(page) && page_uptodate)) |
| 136 | SetPageUptodate(page); |
| 137 | } |
| 138 | unlock_page(page); |
| 139 | return; |
| 140 | still_busy: |
| 141 | spin_unlock_irqrestore(&page_uptodate_lock, flags); |
| 142 | return; |
| 143 | } |
| 144 | |
| 145 | /** |
| 146 | * ntfs_read_block - fill a @page of an address space with data |
| 147 | * @page: page cache page to fill with data |
| 148 | * |
| 149 | * Fill the page @page of the address space belonging to the @page->host inode. |
| 150 | * We read each buffer asynchronously and when all buffers are read in, our io |
| 151 | * completion handler ntfs_end_buffer_read_async(), if required, automatically |
| 152 | * applies the mst fixups to the page before finally marking it uptodate and |
| 153 | * unlocking it. |
| 154 | * |
| 155 | * We only enforce allocated_size limit because i_size is checked for in |
| 156 | * generic_file_read(). |
| 157 | * |
| 158 | * Return 0 on success and -errno on error. |
| 159 | * |
| 160 | * Contains an adapted version of fs/buffer.c::block_read_full_page(). |
| 161 | */ |
| 162 | static int ntfs_read_block(struct page *page) |
| 163 | { |
| 164 | VCN vcn; |
| 165 | LCN lcn; |
| 166 | ntfs_inode *ni; |
| 167 | ntfs_volume *vol; |
| 168 | runlist_element *rl; |
| 169 | struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; |
| 170 | sector_t iblock, lblock, zblock; |
| 171 | unsigned int blocksize, vcn_ofs; |
| 172 | int i, nr; |
| 173 | unsigned char blocksize_bits; |
| 174 | |
| 175 | ni = NTFS_I(page->mapping->host); |
| 176 | vol = ni->vol; |
| 177 | |
| 178 | /* $MFT/$DATA must have its complete runlist in memory at all times. */ |
| 179 | BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni)); |
| 180 | |
| 181 | blocksize_bits = VFS_I(ni)->i_blkbits; |
| 182 | blocksize = 1 << blocksize_bits; |
| 183 | |
| 184 | if (!page_has_buffers(page)) |
| 185 | create_empty_buffers(page, blocksize, 0); |
| 186 | bh = head = page_buffers(page); |
| 187 | if (unlikely(!bh)) { |
| 188 | unlock_page(page); |
| 189 | return -ENOMEM; |
| 190 | } |
| 191 | |
| 192 | iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits); |
| 193 | lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits; |
| 194 | zblock = (ni->initialized_size + blocksize - 1) >> blocksize_bits; |
| 195 | |
| 196 | /* Loop through all the buffers in the page. */ |
| 197 | rl = NULL; |
| 198 | nr = i = 0; |
| 199 | do { |
| 200 | u8 *kaddr; |
| 201 | |
| 202 | if (unlikely(buffer_uptodate(bh))) |
| 203 | continue; |
| 204 | if (unlikely(buffer_mapped(bh))) { |
| 205 | arr[nr++] = bh; |
| 206 | continue; |
| 207 | } |
| 208 | bh->b_bdev = vol->sb->s_bdev; |
| 209 | /* Is the block within the allowed limits? */ |
| 210 | if (iblock < lblock) { |
| 211 | BOOL is_retry = FALSE; |
| 212 | |
| 213 | /* Convert iblock into corresponding vcn and offset. */ |
| 214 | vcn = (VCN)iblock << blocksize_bits >> |
| 215 | vol->cluster_size_bits; |
| 216 | vcn_ofs = ((VCN)iblock << blocksize_bits) & |
| 217 | vol->cluster_size_mask; |
| 218 | if (!rl) { |
| 219 | lock_retry_remap: |
| 220 | down_read(&ni->runlist.lock); |
| 221 | rl = ni->runlist.rl; |
| 222 | } |
| 223 | if (likely(rl != NULL)) { |
| 224 | /* Seek to element containing target vcn. */ |
| 225 | while (rl->length && rl[1].vcn <= vcn) |
| 226 | rl++; |
| 227 | lcn = ntfs_rl_vcn_to_lcn(rl, vcn); |
| 228 | } else |
| 229 | lcn = LCN_RL_NOT_MAPPED; |
| 230 | /* Successful remap. */ |
| 231 | if (lcn >= 0) { |
| 232 | /* Setup buffer head to correct block. */ |
| 233 | bh->b_blocknr = ((lcn << vol->cluster_size_bits) |
| 234 | + vcn_ofs) >> blocksize_bits; |
| 235 | set_buffer_mapped(bh); |
| 236 | /* Only read initialized data blocks. */ |
| 237 | if (iblock < zblock) { |
| 238 | arr[nr++] = bh; |
| 239 | continue; |
| 240 | } |
| 241 | /* Fully non-initialized data block, zero it. */ |
| 242 | goto handle_zblock; |
| 243 | } |
| 244 | /* It is a hole, need to zero it. */ |
| 245 | if (lcn == LCN_HOLE) |
| 246 | goto handle_hole; |
| 247 | /* If first try and runlist unmapped, map and retry. */ |
| 248 | if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { |
| 249 | int err; |
| 250 | is_retry = TRUE; |
| 251 | /* |
| 252 | * Attempt to map runlist, dropping lock for |
| 253 | * the duration. |
| 254 | */ |
| 255 | up_read(&ni->runlist.lock); |
| 256 | err = ntfs_map_runlist(ni, vcn); |
| 257 | if (likely(!err)) |
| 258 | goto lock_retry_remap; |
| 259 | rl = NULL; |
| 260 | lcn = err; |
| 261 | } |
| 262 | /* Hard error, zero out region. */ |
| 263 | bh->b_blocknr = -1; |
| 264 | SetPageError(page); |
| 265 | ntfs_error(vol->sb, "Failed to read from inode 0x%lx, " |
| 266 | "attribute type 0x%x, vcn 0x%llx, " |
| 267 | "offset 0x%x because its location on " |
| 268 | "disk could not be determined%s " |
| 269 | "(error code %lli).", ni->mft_no, |
| 270 | ni->type, (unsigned long long)vcn, |
| 271 | vcn_ofs, is_retry ? " even after " |
| 272 | "retrying" : "", (long long)lcn); |
| 273 | } |
| 274 | /* |
| 275 | * Either iblock was outside lblock limits or |
| 276 | * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion |
| 277 | * of the page and set the buffer uptodate. |
| 278 | */ |
| 279 | handle_hole: |
| 280 | bh->b_blocknr = -1UL; |
| 281 | clear_buffer_mapped(bh); |
| 282 | handle_zblock: |
| 283 | kaddr = kmap_atomic(page, KM_USER0); |
| 284 | memset(kaddr + i * blocksize, 0, blocksize); |
| 285 | flush_dcache_page(page); |
| 286 | kunmap_atomic(kaddr, KM_USER0); |
| 287 | set_buffer_uptodate(bh); |
| 288 | } while (i++, iblock++, (bh = bh->b_this_page) != head); |
| 289 | |
| 290 | /* Release the lock if we took it. */ |
| 291 | if (rl) |
| 292 | up_read(&ni->runlist.lock); |
| 293 | |
| 294 | /* Check we have at least one buffer ready for i/o. */ |
| 295 | if (nr) { |
| 296 | struct buffer_head *tbh; |
| 297 | |
| 298 | /* Lock the buffers. */ |
| 299 | for (i = 0; i < nr; i++) { |
| 300 | tbh = arr[i]; |
| 301 | lock_buffer(tbh); |
| 302 | tbh->b_end_io = ntfs_end_buffer_async_read; |
| 303 | set_buffer_async_read(tbh); |
| 304 | } |
| 305 | /* Finally, start i/o on the buffers. */ |
| 306 | for (i = 0; i < nr; i++) { |
| 307 | tbh = arr[i]; |
| 308 | if (likely(!buffer_uptodate(tbh))) |
| 309 | submit_bh(READ, tbh); |
| 310 | else |
| 311 | ntfs_end_buffer_async_read(tbh, 1); |
| 312 | } |
| 313 | return 0; |
| 314 | } |
| 315 | /* No i/o was scheduled on any of the buffers. */ |
| 316 | if (likely(!PageError(page))) |
| 317 | SetPageUptodate(page); |
| 318 | else /* Signal synchronous i/o error. */ |
| 319 | nr = -EIO; |
| 320 | unlock_page(page); |
| 321 | return nr; |
| 322 | } |
| 323 | |
| 324 | /** |
| 325 | * ntfs_readpage - fill a @page of a @file with data from the device |
| 326 | * @file: open file to which the page @page belongs or NULL |
| 327 | * @page: page cache page to fill with data |
| 328 | * |
| 329 | * For non-resident attributes, ntfs_readpage() fills the @page of the open |
| 330 | * file @file by calling the ntfs version of the generic block_read_full_page() |
| 331 | * function, ntfs_read_block(), which in turn creates and reads in the buffers |
| 332 | * associated with the page asynchronously. |
| 333 | * |
| 334 | * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the |
| 335 | * data from the mft record (which at this stage is most likely in memory) and |
| 336 | * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as |
| 337 | * even if the mft record is not cached at this point in time, we need to wait |
| 338 | * for it to be read in before we can do the copy. |
| 339 | * |
| 340 | * Return 0 on success and -errno on error. |
| 341 | */ |
| 342 | static int ntfs_readpage(struct file *file, struct page *page) |
| 343 | { |
| 344 | loff_t i_size; |
| 345 | ntfs_inode *ni, *base_ni; |
| 346 | u8 *kaddr; |
| 347 | ntfs_attr_search_ctx *ctx; |
| 348 | MFT_RECORD *mrec; |
| 349 | u32 attr_len; |
| 350 | int err = 0; |
| 351 | |
| 352 | BUG_ON(!PageLocked(page)); |
| 353 | /* |
| 354 | * This can potentially happen because we clear PageUptodate() during |
| 355 | * ntfs_writepage() of MstProtected() attributes. |
| 356 | */ |
| 357 | if (PageUptodate(page)) { |
| 358 | unlock_page(page); |
| 359 | return 0; |
| 360 | } |
| 361 | ni = NTFS_I(page->mapping->host); |
| 362 | |
| 363 | /* NInoNonResident() == NInoIndexAllocPresent() */ |
| 364 | if (NInoNonResident(ni)) { |
| 365 | /* |
| 366 | * Only unnamed $DATA attributes can be compressed or |
| 367 | * encrypted. |
| 368 | */ |
| 369 | if (ni->type == AT_DATA && !ni->name_len) { |
| 370 | /* If file is encrypted, deny access, just like NT4. */ |
| 371 | if (NInoEncrypted(ni)) { |
| 372 | err = -EACCES; |
| 373 | goto err_out; |
| 374 | } |
| 375 | /* Compressed data streams are handled in compress.c. */ |
| 376 | if (NInoCompressed(ni)) |
| 377 | return ntfs_read_compressed_block(page); |
| 378 | } |
| 379 | /* Normal data stream. */ |
| 380 | return ntfs_read_block(page); |
| 381 | } |
| 382 | /* |
| 383 | * Attribute is resident, implying it is not compressed or encrypted. |
| 384 | * This also means the attribute is smaller than an mft record and |
| 385 | * hence smaller than a page, so can simply zero out any pages with |
| 386 | * index above 0. We can also do this if the file size is 0. |
| 387 | */ |
| 388 | if (unlikely(page->index > 0 || !i_size_read(VFS_I(ni)))) { |
| 389 | kaddr = kmap_atomic(page, KM_USER0); |
| 390 | memset(kaddr, 0, PAGE_CACHE_SIZE); |
| 391 | flush_dcache_page(page); |
| 392 | kunmap_atomic(kaddr, KM_USER0); |
| 393 | goto done; |
| 394 | } |
| 395 | if (!NInoAttr(ni)) |
| 396 | base_ni = ni; |
| 397 | else |
| 398 | base_ni = ni->ext.base_ntfs_ino; |
| 399 | /* Map, pin, and lock the mft record. */ |
| 400 | mrec = map_mft_record(base_ni); |
| 401 | if (IS_ERR(mrec)) { |
| 402 | err = PTR_ERR(mrec); |
| 403 | goto err_out; |
| 404 | } |
| 405 | ctx = ntfs_attr_get_search_ctx(base_ni, mrec); |
| 406 | if (unlikely(!ctx)) { |
| 407 | err = -ENOMEM; |
| 408 | goto unm_err_out; |
| 409 | } |
| 410 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| 411 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
| 412 | if (unlikely(err)) |
| 413 | goto put_unm_err_out; |
| 414 | attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); |
| 415 | i_size = i_size_read(VFS_I(ni)); |
| 416 | if (unlikely(attr_len > i_size)) |
| 417 | attr_len = i_size; |
| 418 | kaddr = kmap_atomic(page, KM_USER0); |
| 419 | /* Copy the data to the page. */ |
| 420 | memcpy(kaddr, (u8*)ctx->attr + |
| 421 | le16_to_cpu(ctx->attr->data.resident.value_offset), |
| 422 | attr_len); |
| 423 | /* Zero the remainder of the page. */ |
| 424 | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); |
| 425 | flush_dcache_page(page); |
| 426 | kunmap_atomic(kaddr, KM_USER0); |
| 427 | put_unm_err_out: |
| 428 | ntfs_attr_put_search_ctx(ctx); |
| 429 | unm_err_out: |
| 430 | unmap_mft_record(base_ni); |
| 431 | done: |
| 432 | SetPageUptodate(page); |
| 433 | err_out: |
| 434 | unlock_page(page); |
| 435 | return err; |
| 436 | } |
| 437 | |
| 438 | #ifdef NTFS_RW |
| 439 | |
| 440 | /** |
| 441 | * ntfs_write_block - write a @page to the backing store |
| 442 | * @page: page cache page to write out |
| 443 | * @wbc: writeback control structure |
| 444 | * |
| 445 | * This function is for writing pages belonging to non-resident, non-mst |
| 446 | * protected attributes to their backing store. |
| 447 | * |
| 448 | * For a page with buffers, map and write the dirty buffers asynchronously |
| 449 | * under page writeback. For a page without buffers, create buffers for the |
| 450 | * page, then proceed as above. |
| 451 | * |
| 452 | * If a page doesn't have buffers the page dirty state is definitive. If a page |
| 453 | * does have buffers, the page dirty state is just a hint, and the buffer dirty |
| 454 | * state is definitive. (A hint which has rules: dirty buffers against a clean |
| 455 | * page is illegal. Other combinations are legal and need to be handled. In |
| 456 | * particular a dirty page containing clean buffers for example.) |
| 457 | * |
| 458 | * Return 0 on success and -errno on error. |
| 459 | * |
| 460 | * Based on ntfs_read_block() and __block_write_full_page(). |
| 461 | */ |
| 462 | static int ntfs_write_block(struct page *page, struct writeback_control *wbc) |
| 463 | { |
| 464 | VCN vcn; |
| 465 | LCN lcn; |
| 466 | sector_t block, dblock, iblock; |
| 467 | struct inode *vi; |
| 468 | ntfs_inode *ni; |
| 469 | ntfs_volume *vol; |
| 470 | runlist_element *rl; |
| 471 | struct buffer_head *bh, *head; |
| 472 | unsigned int blocksize, vcn_ofs; |
| 473 | int err; |
| 474 | BOOL need_end_writeback; |
| 475 | unsigned char blocksize_bits; |
| 476 | |
| 477 | vi = page->mapping->host; |
| 478 | ni = NTFS_I(vi); |
| 479 | vol = ni->vol; |
| 480 | |
| 481 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " |
| 482 | "0x%lx.", ni->mft_no, ni->type, page->index); |
| 483 | |
| 484 | BUG_ON(!NInoNonResident(ni)); |
| 485 | BUG_ON(NInoMstProtected(ni)); |
| 486 | |
| 487 | blocksize_bits = vi->i_blkbits; |
| 488 | blocksize = 1 << blocksize_bits; |
| 489 | |
| 490 | if (!page_has_buffers(page)) { |
| 491 | BUG_ON(!PageUptodate(page)); |
| 492 | create_empty_buffers(page, blocksize, |
| 493 | (1 << BH_Uptodate) | (1 << BH_Dirty)); |
| 494 | } |
| 495 | bh = head = page_buffers(page); |
| 496 | if (unlikely(!bh)) { |
| 497 | ntfs_warning(vol->sb, "Error allocating page buffers. " |
| 498 | "Redirtying page so we try again later."); |
| 499 | /* |
| 500 | * Put the page back on mapping->dirty_pages, but leave its |
| 501 | * buffer's dirty state as-is. |
| 502 | */ |
| 503 | redirty_page_for_writepage(wbc, page); |
| 504 | unlock_page(page); |
| 505 | return 0; |
| 506 | } |
| 507 | |
| 508 | /* NOTE: Different naming scheme to ntfs_read_block()! */ |
| 509 | |
| 510 | /* The first block in the page. */ |
| 511 | block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits); |
| 512 | |
| 513 | /* The first out of bounds block for the data size. */ |
| 514 | dblock = (vi->i_size + blocksize - 1) >> blocksize_bits; |
| 515 | |
| 516 | /* The last (fully or partially) initialized block. */ |
| 517 | iblock = ni->initialized_size >> blocksize_bits; |
| 518 | |
| 519 | /* |
| 520 | * Be very careful. We have no exclusion from __set_page_dirty_buffers |
| 521 | * here, and the (potentially unmapped) buffers may become dirty at |
| 522 | * any time. If a buffer becomes dirty here after we've inspected it |
| 523 | * then we just miss that fact, and the page stays dirty. |
| 524 | * |
| 525 | * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; |
| 526 | * handle that here by just cleaning them. |
| 527 | */ |
| 528 | |
| 529 | /* |
| 530 | * Loop through all the buffers in the page, mapping all the dirty |
| 531 | * buffers to disk addresses and handling any aliases from the |
| 532 | * underlying block device's mapping. |
| 533 | */ |
| 534 | rl = NULL; |
| 535 | err = 0; |
| 536 | do { |
| 537 | BOOL is_retry = FALSE; |
| 538 | |
| 539 | if (unlikely(block >= dblock)) { |
| 540 | /* |
| 541 | * Mapped buffers outside i_size will occur, because |
| 542 | * this page can be outside i_size when there is a |
| 543 | * truncate in progress. The contents of such buffers |
| 544 | * were zeroed by ntfs_writepage(). |
| 545 | * |
| 546 | * FIXME: What about the small race window where |
| 547 | * ntfs_writepage() has not done any clearing because |
| 548 | * the page was within i_size but before we get here, |
| 549 | * vmtruncate() modifies i_size? |
| 550 | */ |
| 551 | clear_buffer_dirty(bh); |
| 552 | set_buffer_uptodate(bh); |
| 553 | continue; |
| 554 | } |
| 555 | |
| 556 | /* Clean buffers are not written out, so no need to map them. */ |
| 557 | if (!buffer_dirty(bh)) |
| 558 | continue; |
| 559 | |
| 560 | /* Make sure we have enough initialized size. */ |
| 561 | if (unlikely((block >= iblock) && |
| 562 | (ni->initialized_size < vi->i_size))) { |
| 563 | /* |
| 564 | * If this page is fully outside initialized size, zero |
| 565 | * out all pages between the current initialized size |
| 566 | * and the current page. Just use ntfs_readpage() to do |
| 567 | * the zeroing transparently. |
| 568 | */ |
| 569 | if (block > iblock) { |
| 570 | // TODO: |
| 571 | // For each page do: |
| 572 | // - read_cache_page() |
| 573 | // Again for each page do: |
| 574 | // - wait_on_page_locked() |
| 575 | // - Check (PageUptodate(page) && |
| 576 | // !PageError(page)) |
| 577 | // Update initialized size in the attribute and |
| 578 | // in the inode. |
| 579 | // Again, for each page do: |
| 580 | // __set_page_dirty_buffers(); |
| 581 | // page_cache_release() |
| 582 | // We don't need to wait on the writes. |
| 583 | // Update iblock. |
| 584 | } |
| 585 | /* |
| 586 | * The current page straddles initialized size. Zero |
| 587 | * all non-uptodate buffers and set them uptodate (and |
| 588 | * dirty?). Note, there aren't any non-uptodate buffers |
| 589 | * if the page is uptodate. |
| 590 | * FIXME: For an uptodate page, the buffers may need to |
| 591 | * be written out because they were not initialized on |
| 592 | * disk before. |
| 593 | */ |
| 594 | if (!PageUptodate(page)) { |
| 595 | // TODO: |
| 596 | // Zero any non-uptodate buffers up to i_size. |
| 597 | // Set them uptodate and dirty. |
| 598 | } |
| 599 | // TODO: |
| 600 | // Update initialized size in the attribute and in the |
| 601 | // inode (up to i_size). |
| 602 | // Update iblock. |
| 603 | // FIXME: This is inefficient. Try to batch the two |
| 604 | // size changes to happen in one go. |
| 605 | ntfs_error(vol->sb, "Writing beyond initialized size " |
| 606 | "is not supported yet. Sorry."); |
| 607 | err = -EOPNOTSUPP; |
| 608 | break; |
| 609 | // Do NOT set_buffer_new() BUT DO clear buffer range |
| 610 | // outside write request range. |
| 611 | // set_buffer_uptodate() on complete buffers as well as |
| 612 | // set_buffer_dirty(). |
| 613 | } |
| 614 | |
| 615 | /* No need to map buffers that are already mapped. */ |
| 616 | if (buffer_mapped(bh)) |
| 617 | continue; |
| 618 | |
| 619 | /* Unmapped, dirty buffer. Need to map it. */ |
| 620 | bh->b_bdev = vol->sb->s_bdev; |
| 621 | |
| 622 | /* Convert block into corresponding vcn and offset. */ |
| 623 | vcn = (VCN)block << blocksize_bits; |
| 624 | vcn_ofs = vcn & vol->cluster_size_mask; |
| 625 | vcn >>= vol->cluster_size_bits; |
| 626 | if (!rl) { |
| 627 | lock_retry_remap: |
| 628 | down_read(&ni->runlist.lock); |
| 629 | rl = ni->runlist.rl; |
| 630 | } |
| 631 | if (likely(rl != NULL)) { |
| 632 | /* Seek to element containing target vcn. */ |
| 633 | while (rl->length && rl[1].vcn <= vcn) |
| 634 | rl++; |
| 635 | lcn = ntfs_rl_vcn_to_lcn(rl, vcn); |
| 636 | } else |
| 637 | lcn = LCN_RL_NOT_MAPPED; |
| 638 | /* Successful remap. */ |
| 639 | if (lcn >= 0) { |
| 640 | /* Setup buffer head to point to correct block. */ |
| 641 | bh->b_blocknr = ((lcn << vol->cluster_size_bits) + |
| 642 | vcn_ofs) >> blocksize_bits; |
| 643 | set_buffer_mapped(bh); |
| 644 | continue; |
| 645 | } |
| 646 | /* It is a hole, need to instantiate it. */ |
| 647 | if (lcn == LCN_HOLE) { |
| 648 | // TODO: Instantiate the hole. |
| 649 | // clear_buffer_new(bh); |
| 650 | // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); |
| 651 | ntfs_error(vol->sb, "Writing into sparse regions is " |
| 652 | "not supported yet. Sorry."); |
| 653 | err = -EOPNOTSUPP; |
| 654 | break; |
| 655 | } |
| 656 | /* If first try and runlist unmapped, map and retry. */ |
| 657 | if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { |
| 658 | is_retry = TRUE; |
| 659 | /* |
| 660 | * Attempt to map runlist, dropping lock for |
| 661 | * the duration. |
| 662 | */ |
| 663 | up_read(&ni->runlist.lock); |
| 664 | err = ntfs_map_runlist(ni, vcn); |
| 665 | if (likely(!err)) |
| 666 | goto lock_retry_remap; |
| 667 | rl = NULL; |
| 668 | lcn = err; |
| 669 | } |
| 670 | /* Failed to map the buffer, even after retrying. */ |
| 671 | bh->b_blocknr = -1; |
| 672 | ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " |
| 673 | "attribute type 0x%x, vcn 0x%llx, offset 0x%x " |
| 674 | "because its location on disk could not be " |
| 675 | "determined%s (error code %lli).", ni->mft_no, |
| 676 | ni->type, (unsigned long long)vcn, |
| 677 | vcn_ofs, is_retry ? " even after " |
| 678 | "retrying" : "", (long long)lcn); |
| 679 | if (!err) |
| 680 | err = -EIO; |
| 681 | break; |
| 682 | } while (block++, (bh = bh->b_this_page) != head); |
| 683 | |
| 684 | /* Release the lock if we took it. */ |
| 685 | if (rl) |
| 686 | up_read(&ni->runlist.lock); |
| 687 | |
| 688 | /* For the error case, need to reset bh to the beginning. */ |
| 689 | bh = head; |
| 690 | |
| 691 | /* Just an optimization, so ->readpage() isn't called later. */ |
| 692 | if (unlikely(!PageUptodate(page))) { |
| 693 | int uptodate = 1; |
| 694 | do { |
| 695 | if (!buffer_uptodate(bh)) { |
| 696 | uptodate = 0; |
| 697 | bh = head; |
| 698 | break; |
| 699 | } |
| 700 | } while ((bh = bh->b_this_page) != head); |
| 701 | if (uptodate) |
| 702 | SetPageUptodate(page); |
| 703 | } |
| 704 | |
| 705 | /* Setup all mapped, dirty buffers for async write i/o. */ |
| 706 | do { |
| 707 | get_bh(bh); |
| 708 | if (buffer_mapped(bh) && buffer_dirty(bh)) { |
| 709 | lock_buffer(bh); |
| 710 | if (test_clear_buffer_dirty(bh)) { |
| 711 | BUG_ON(!buffer_uptodate(bh)); |
| 712 | mark_buffer_async_write(bh); |
| 713 | } else |
| 714 | unlock_buffer(bh); |
| 715 | } else if (unlikely(err)) { |
| 716 | /* |
| 717 | * For the error case. The buffer may have been set |
| 718 | * dirty during attachment to a dirty page. |
| 719 | */ |
| 720 | if (err != -ENOMEM) |
| 721 | clear_buffer_dirty(bh); |
| 722 | } |
| 723 | } while ((bh = bh->b_this_page) != head); |
| 724 | |
| 725 | if (unlikely(err)) { |
| 726 | // TODO: Remove the -EOPNOTSUPP check later on... |
| 727 | if (unlikely(err == -EOPNOTSUPP)) |
| 728 | err = 0; |
| 729 | else if (err == -ENOMEM) { |
| 730 | ntfs_warning(vol->sb, "Error allocating memory. " |
| 731 | "Redirtying page so we try again " |
| 732 | "later."); |
| 733 | /* |
| 734 | * Put the page back on mapping->dirty_pages, but |
| 735 | * leave its buffer's dirty state as-is. |
| 736 | */ |
| 737 | redirty_page_for_writepage(wbc, page); |
| 738 | err = 0; |
| 739 | } else |
| 740 | SetPageError(page); |
| 741 | } |
| 742 | |
| 743 | BUG_ON(PageWriteback(page)); |
| 744 | set_page_writeback(page); /* Keeps try_to_free_buffers() away. */ |
| 745 | unlock_page(page); |
| 746 | |
| 747 | /* |
| 748 | * Submit the prepared buffers for i/o. Note the page is unlocked, |
| 749 | * and the async write i/o completion handler can end_page_writeback() |
| 750 | * at any time after the *first* submit_bh(). So the buffers can then |
| 751 | * disappear... |
| 752 | */ |
| 753 | need_end_writeback = TRUE; |
| 754 | do { |
| 755 | struct buffer_head *next = bh->b_this_page; |
| 756 | if (buffer_async_write(bh)) { |
| 757 | submit_bh(WRITE, bh); |
| 758 | need_end_writeback = FALSE; |
| 759 | } |
| 760 | put_bh(bh); |
| 761 | bh = next; |
| 762 | } while (bh != head); |
| 763 | |
| 764 | /* If no i/o was started, need to end_page_writeback(). */ |
| 765 | if (unlikely(need_end_writeback)) |
| 766 | end_page_writeback(page); |
| 767 | |
| 768 | ntfs_debug("Done."); |
| 769 | return err; |
| 770 | } |
| 771 | |
| 772 | /** |
| 773 | * ntfs_write_mst_block - write a @page to the backing store |
| 774 | * @page: page cache page to write out |
| 775 | * @wbc: writeback control structure |
| 776 | * |
| 777 | * This function is for writing pages belonging to non-resident, mst protected |
| 778 | * attributes to their backing store. The only supported attributes are index |
| 779 | * allocation and $MFT/$DATA. Both directory inodes and index inodes are |
| 780 | * supported for the index allocation case. |
| 781 | * |
| 782 | * The page must remain locked for the duration of the write because we apply |
| 783 | * the mst fixups, write, and then undo the fixups, so if we were to unlock the |
| 784 | * page before undoing the fixups, any other user of the page will see the |
| 785 | * page contents as corrupt. |
| 786 | * |
| 787 | * We clear the page uptodate flag for the duration of the function to ensure |
| 788 | * exclusion for the $MFT/$DATA case against someone mapping an mft record we |
| 789 | * are about to apply the mst fixups to. |
| 790 | * |
| 791 | * Return 0 on success and -errno on error. |
| 792 | * |
| 793 | * Based on ntfs_write_block(), ntfs_mft_writepage(), and |
| 794 | * write_mft_record_nolock(). |
| 795 | */ |
| 796 | static int ntfs_write_mst_block(struct page *page, |
| 797 | struct writeback_control *wbc) |
| 798 | { |
| 799 | sector_t block, dblock, rec_block; |
| 800 | struct inode *vi = page->mapping->host; |
| 801 | ntfs_inode *ni = NTFS_I(vi); |
| 802 | ntfs_volume *vol = ni->vol; |
| 803 | u8 *kaddr; |
| 804 | unsigned char bh_size_bits = vi->i_blkbits; |
| 805 | unsigned int bh_size = 1 << bh_size_bits; |
| 806 | unsigned int rec_size = ni->itype.index.block_size; |
| 807 | ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size]; |
| 808 | struct buffer_head *bh, *head, *tbh, *rec_start_bh; |
| 809 | int max_bhs = PAGE_CACHE_SIZE / bh_size; |
| 810 | struct buffer_head *bhs[max_bhs]; |
| 811 | runlist_element *rl; |
| 812 | int i, nr_locked_nis, nr_recs, nr_bhs, bhs_per_rec, err, err2; |
| 813 | unsigned rec_size_bits; |
| 814 | BOOL sync, is_mft, page_is_dirty, rec_is_dirty; |
| 815 | |
| 816 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " |
| 817 | "0x%lx.", vi->i_ino, ni->type, page->index); |
| 818 | BUG_ON(!NInoNonResident(ni)); |
| 819 | BUG_ON(!NInoMstProtected(ni)); |
| 820 | is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino); |
| 821 | /* |
| 822 | * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page |
| 823 | * in its page cache were to be marked dirty. However this should |
| 824 | * never happen with the current driver and considering we do not |
| 825 | * handle this case here we do want to BUG(), at least for now. |
| 826 | */ |
| 827 | BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) || |
| 828 | (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION))); |
| 829 | BUG_ON(!max_bhs); |
| 830 | |
| 831 | /* Were we called for sync purposes? */ |
| 832 | sync = (wbc->sync_mode == WB_SYNC_ALL); |
| 833 | |
| 834 | /* Make sure we have mapped buffers. */ |
| 835 | BUG_ON(!page_has_buffers(page)); |
| 836 | bh = head = page_buffers(page); |
| 837 | BUG_ON(!bh); |
| 838 | |
| 839 | rec_size_bits = ni->itype.index.block_size_bits; |
| 840 | BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits)); |
| 841 | bhs_per_rec = rec_size >> bh_size_bits; |
| 842 | BUG_ON(!bhs_per_rec); |
| 843 | |
| 844 | /* The first block in the page. */ |
| 845 | rec_block = block = (sector_t)page->index << |
| 846 | (PAGE_CACHE_SHIFT - bh_size_bits); |
| 847 | |
| 848 | /* The first out of bounds block for the data size. */ |
| 849 | dblock = (vi->i_size + bh_size - 1) >> bh_size_bits; |
| 850 | |
| 851 | rl = NULL; |
| 852 | err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0; |
| 853 | page_is_dirty = rec_is_dirty = FALSE; |
| 854 | rec_start_bh = NULL; |
| 855 | do { |
| 856 | BOOL is_retry = FALSE; |
| 857 | |
| 858 | if (likely(block < rec_block)) { |
| 859 | if (unlikely(block >= dblock)) { |
| 860 | clear_buffer_dirty(bh); |
| 861 | continue; |
| 862 | } |
| 863 | /* |
| 864 | * This block is not the first one in the record. We |
| 865 | * ignore the buffer's dirty state because we could |
| 866 | * have raced with a parallel mark_ntfs_record_dirty(). |
| 867 | */ |
| 868 | if (!rec_is_dirty) |
| 869 | continue; |
| 870 | if (unlikely(err2)) { |
| 871 | if (err2 != -ENOMEM) |
| 872 | clear_buffer_dirty(bh); |
| 873 | continue; |
| 874 | } |
| 875 | } else /* if (block == rec_block) */ { |
| 876 | BUG_ON(block > rec_block); |
| 877 | /* This block is the first one in the record. */ |
| 878 | rec_block += bhs_per_rec; |
| 879 | err2 = 0; |
| 880 | if (unlikely(block >= dblock)) { |
| 881 | clear_buffer_dirty(bh); |
| 882 | continue; |
| 883 | } |
| 884 | if (!buffer_dirty(bh)) { |
| 885 | /* Clean records are not written out. */ |
| 886 | rec_is_dirty = FALSE; |
| 887 | continue; |
| 888 | } |
| 889 | rec_is_dirty = TRUE; |
| 890 | rec_start_bh = bh; |
| 891 | } |
| 892 | /* Need to map the buffer if it is not mapped already. */ |
| 893 | if (unlikely(!buffer_mapped(bh))) { |
| 894 | VCN vcn; |
| 895 | LCN lcn; |
| 896 | unsigned int vcn_ofs; |
| 897 | |
| 898 | /* Obtain the vcn and offset of the current block. */ |
| 899 | vcn = (VCN)block << bh_size_bits; |
| 900 | vcn_ofs = vcn & vol->cluster_size_mask; |
| 901 | vcn >>= vol->cluster_size_bits; |
| 902 | if (!rl) { |
| 903 | lock_retry_remap: |
| 904 | down_read(&ni->runlist.lock); |
| 905 | rl = ni->runlist.rl; |
| 906 | } |
| 907 | if (likely(rl != NULL)) { |
| 908 | /* Seek to element containing target vcn. */ |
| 909 | while (rl->length && rl[1].vcn <= vcn) |
| 910 | rl++; |
| 911 | lcn = ntfs_rl_vcn_to_lcn(rl, vcn); |
| 912 | } else |
| 913 | lcn = LCN_RL_NOT_MAPPED; |
| 914 | /* Successful remap. */ |
| 915 | if (likely(lcn >= 0)) { |
| 916 | /* Setup buffer head to correct block. */ |
| 917 | bh->b_blocknr = ((lcn << |
| 918 | vol->cluster_size_bits) + |
| 919 | vcn_ofs) >> bh_size_bits; |
| 920 | set_buffer_mapped(bh); |
| 921 | } else { |
| 922 | /* |
| 923 | * Remap failed. Retry to map the runlist once |
| 924 | * unless we are working on $MFT which always |
| 925 | * has the whole of its runlist in memory. |
| 926 | */ |
| 927 | if (!is_mft && !is_retry && |
| 928 | lcn == LCN_RL_NOT_MAPPED) { |
| 929 | is_retry = TRUE; |
| 930 | /* |
| 931 | * Attempt to map runlist, dropping |
| 932 | * lock for the duration. |
| 933 | */ |
| 934 | up_read(&ni->runlist.lock); |
| 935 | err2 = ntfs_map_runlist(ni, vcn); |
| 936 | if (likely(!err2)) |
| 937 | goto lock_retry_remap; |
| 938 | if (err2 == -ENOMEM) |
| 939 | page_is_dirty = TRUE; |
| 940 | lcn = err2; |
| 941 | } else |
| 942 | err2 = -EIO; |
| 943 | /* Hard error. Abort writing this record. */ |
| 944 | if (!err || err == -ENOMEM) |
| 945 | err = err2; |
| 946 | bh->b_blocknr = -1; |
| 947 | ntfs_error(vol->sb, "Cannot write ntfs record " |
| 948 | "0x%llx (inode 0x%lx, " |
| 949 | "attribute type 0x%x) because " |
| 950 | "its location on disk could " |
| 951 | "not be determined (error " |
| 952 | "code %lli).", (s64)block << |
| 953 | bh_size_bits >> |
| 954 | vol->mft_record_size_bits, |
| 955 | ni->mft_no, ni->type, |
| 956 | (long long)lcn); |
| 957 | /* |
| 958 | * If this is not the first buffer, remove the |
| 959 | * buffers in this record from the list of |
| 960 | * buffers to write and clear their dirty bit |
| 961 | * if not error -ENOMEM. |
| 962 | */ |
| 963 | if (rec_start_bh != bh) { |
| 964 | while (bhs[--nr_bhs] != rec_start_bh) |
| 965 | ; |
| 966 | if (err2 != -ENOMEM) { |
| 967 | do { |
| 968 | clear_buffer_dirty( |
| 969 | rec_start_bh); |
| 970 | } while ((rec_start_bh = |
| 971 | rec_start_bh-> |
| 972 | b_this_page) != |
| 973 | bh); |
| 974 | } |
| 975 | } |
| 976 | continue; |
| 977 | } |
| 978 | } |
| 979 | BUG_ON(!buffer_uptodate(bh)); |
| 980 | BUG_ON(nr_bhs >= max_bhs); |
| 981 | bhs[nr_bhs++] = bh; |
| 982 | } while (block++, (bh = bh->b_this_page) != head); |
| 983 | if (unlikely(rl)) |
| 984 | up_read(&ni->runlist.lock); |
| 985 | /* If there were no dirty buffers, we are done. */ |
| 986 | if (!nr_bhs) |
| 987 | goto done; |
| 988 | /* Map the page so we can access its contents. */ |
| 989 | kaddr = kmap(page); |
| 990 | /* Clear the page uptodate flag whilst the mst fixups are applied. */ |
| 991 | BUG_ON(!PageUptodate(page)); |
| 992 | ClearPageUptodate(page); |
| 993 | for (i = 0; i < nr_bhs; i++) { |
| 994 | unsigned int ofs; |
| 995 | |
| 996 | /* Skip buffers which are not at the beginning of records. */ |
| 997 | if (i % bhs_per_rec) |
| 998 | continue; |
| 999 | tbh = bhs[i]; |
| 1000 | ofs = bh_offset(tbh); |
| 1001 | if (is_mft) { |
| 1002 | ntfs_inode *tni; |
| 1003 | unsigned long mft_no; |
| 1004 | |
| 1005 | /* Get the mft record number. */ |
| 1006 | mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs) |
| 1007 | >> rec_size_bits; |
| 1008 | /* Check whether to write this mft record. */ |
| 1009 | tni = NULL; |
| 1010 | if (!ntfs_may_write_mft_record(vol, mft_no, |
| 1011 | (MFT_RECORD*)(kaddr + ofs), &tni)) { |
| 1012 | /* |
| 1013 | * The record should not be written. This |
| 1014 | * means we need to redirty the page before |
| 1015 | * returning. |
| 1016 | */ |
| 1017 | page_is_dirty = TRUE; |
| 1018 | /* |
| 1019 | * Remove the buffers in this mft record from |
| 1020 | * the list of buffers to write. |
| 1021 | */ |
| 1022 | do { |
| 1023 | bhs[i] = NULL; |
| 1024 | } while (++i % bhs_per_rec); |
| 1025 | continue; |
| 1026 | } |
| 1027 | /* |
| 1028 | * The record should be written. If a locked ntfs |
| 1029 | * inode was returned, add it to the array of locked |
| 1030 | * ntfs inodes. |
| 1031 | */ |
| 1032 | if (tni) |
| 1033 | locked_nis[nr_locked_nis++] = tni; |
| 1034 | } |
| 1035 | /* Apply the mst protection fixups. */ |
| 1036 | err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs), |
| 1037 | rec_size); |
| 1038 | if (unlikely(err2)) { |
| 1039 | if (!err || err == -ENOMEM) |
| 1040 | err = -EIO; |
| 1041 | ntfs_error(vol->sb, "Failed to apply mst fixups " |
| 1042 | "(inode 0x%lx, attribute type 0x%x, " |
| 1043 | "page index 0x%lx, page offset 0x%x)!" |
| 1044 | " Unmount and run chkdsk.", vi->i_ino, |
| 1045 | ni->type, page->index, ofs); |
| 1046 | /* |
| 1047 | * Mark all the buffers in this record clean as we do |
| 1048 | * not want to write corrupt data to disk. |
| 1049 | */ |
| 1050 | do { |
| 1051 | clear_buffer_dirty(bhs[i]); |
| 1052 | bhs[i] = NULL; |
| 1053 | } while (++i % bhs_per_rec); |
| 1054 | continue; |
| 1055 | } |
| 1056 | nr_recs++; |
| 1057 | } |
| 1058 | /* If no records are to be written out, we are done. */ |
| 1059 | if (!nr_recs) |
| 1060 | goto unm_done; |
| 1061 | flush_dcache_page(page); |
| 1062 | /* Lock buffers and start synchronous write i/o on them. */ |
| 1063 | for (i = 0; i < nr_bhs; i++) { |
| 1064 | tbh = bhs[i]; |
| 1065 | if (!tbh) |
| 1066 | continue; |
| 1067 | if (unlikely(test_set_buffer_locked(tbh))) |
| 1068 | BUG(); |
| 1069 | /* The buffer dirty state is now irrelevant, just clean it. */ |
| 1070 | clear_buffer_dirty(tbh); |
| 1071 | BUG_ON(!buffer_uptodate(tbh)); |
| 1072 | BUG_ON(!buffer_mapped(tbh)); |
| 1073 | get_bh(tbh); |
| 1074 | tbh->b_end_io = end_buffer_write_sync; |
| 1075 | submit_bh(WRITE, tbh); |
| 1076 | } |
| 1077 | /* Synchronize the mft mirror now if not @sync. */ |
| 1078 | if (is_mft && !sync) |
| 1079 | goto do_mirror; |
| 1080 | do_wait: |
| 1081 | /* Wait on i/o completion of buffers. */ |
| 1082 | for (i = 0; i < nr_bhs; i++) { |
| 1083 | tbh = bhs[i]; |
| 1084 | if (!tbh) |
| 1085 | continue; |
| 1086 | wait_on_buffer(tbh); |
| 1087 | if (unlikely(!buffer_uptodate(tbh))) { |
| 1088 | ntfs_error(vol->sb, "I/O error while writing ntfs " |
| 1089 | "record buffer (inode 0x%lx, " |
| 1090 | "attribute type 0x%x, page index " |
| 1091 | "0x%lx, page offset 0x%lx)! Unmount " |
| 1092 | "and run chkdsk.", vi->i_ino, ni->type, |
| 1093 | page->index, bh_offset(tbh)); |
| 1094 | if (!err || err == -ENOMEM) |
| 1095 | err = -EIO; |
| 1096 | /* |
| 1097 | * Set the buffer uptodate so the page and buffer |
| 1098 | * states do not become out of sync. |
| 1099 | */ |
| 1100 | set_buffer_uptodate(tbh); |
| 1101 | } |
| 1102 | } |
| 1103 | /* If @sync, now synchronize the mft mirror. */ |
| 1104 | if (is_mft && sync) { |
| 1105 | do_mirror: |
| 1106 | for (i = 0; i < nr_bhs; i++) { |
| 1107 | unsigned long mft_no; |
| 1108 | unsigned int ofs; |
| 1109 | |
| 1110 | /* |
| 1111 | * Skip buffers which are not at the beginning of |
| 1112 | * records. |
| 1113 | */ |
| 1114 | if (i % bhs_per_rec) |
| 1115 | continue; |
| 1116 | tbh = bhs[i]; |
| 1117 | /* Skip removed buffers (and hence records). */ |
| 1118 | if (!tbh) |
| 1119 | continue; |
| 1120 | ofs = bh_offset(tbh); |
| 1121 | /* Get the mft record number. */ |
| 1122 | mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs) |
| 1123 | >> rec_size_bits; |
| 1124 | if (mft_no < vol->mftmirr_size) |
| 1125 | ntfs_sync_mft_mirror(vol, mft_no, |
| 1126 | (MFT_RECORD*)(kaddr + ofs), |
| 1127 | sync); |
| 1128 | } |
| 1129 | if (!sync) |
| 1130 | goto do_wait; |
| 1131 | } |
| 1132 | /* Remove the mst protection fixups again. */ |
| 1133 | for (i = 0; i < nr_bhs; i++) { |
| 1134 | if (!(i % bhs_per_rec)) { |
| 1135 | tbh = bhs[i]; |
| 1136 | if (!tbh) |
| 1137 | continue; |
| 1138 | post_write_mst_fixup((NTFS_RECORD*)(kaddr + |
| 1139 | bh_offset(tbh))); |
| 1140 | } |
| 1141 | } |
| 1142 | flush_dcache_page(page); |
| 1143 | unm_done: |
| 1144 | /* Unlock any locked inodes. */ |
| 1145 | while (nr_locked_nis-- > 0) { |
| 1146 | ntfs_inode *tni, *base_tni; |
| 1147 | |
| 1148 | tni = locked_nis[nr_locked_nis]; |
| 1149 | /* Get the base inode. */ |
| 1150 | down(&tni->extent_lock); |
| 1151 | if (tni->nr_extents >= 0) |
| 1152 | base_tni = tni; |
| 1153 | else { |
| 1154 | base_tni = tni->ext.base_ntfs_ino; |
| 1155 | BUG_ON(!base_tni); |
| 1156 | } |
| 1157 | up(&tni->extent_lock); |
| 1158 | ntfs_debug("Unlocking %s inode 0x%lx.", |
| 1159 | tni == base_tni ? "base" : "extent", |
| 1160 | tni->mft_no); |
| 1161 | up(&tni->mrec_lock); |
| 1162 | atomic_dec(&tni->count); |
| 1163 | iput(VFS_I(base_tni)); |
| 1164 | } |
| 1165 | SetPageUptodate(page); |
| 1166 | kunmap(page); |
| 1167 | done: |
| 1168 | if (unlikely(err && err != -ENOMEM)) { |
| 1169 | /* |
| 1170 | * Set page error if there is only one ntfs record in the page. |
| 1171 | * Otherwise we would loose per-record granularity. |
| 1172 | */ |
| 1173 | if (ni->itype.index.block_size == PAGE_CACHE_SIZE) |
| 1174 | SetPageError(page); |
| 1175 | NVolSetErrors(vol); |
| 1176 | } |
| 1177 | if (page_is_dirty) { |
| 1178 | ntfs_debug("Page still contains one or more dirty ntfs " |
| 1179 | "records. Redirtying the page starting at " |
| 1180 | "record 0x%lx.", page->index << |
| 1181 | (PAGE_CACHE_SHIFT - rec_size_bits)); |
| 1182 | redirty_page_for_writepage(wbc, page); |
| 1183 | unlock_page(page); |
| 1184 | } else { |
| 1185 | /* |
| 1186 | * Keep the VM happy. This must be done otherwise the |
| 1187 | * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though |
| 1188 | * the page is clean. |
| 1189 | */ |
| 1190 | BUG_ON(PageWriteback(page)); |
| 1191 | set_page_writeback(page); |
| 1192 | unlock_page(page); |
| 1193 | end_page_writeback(page); |
| 1194 | } |
| 1195 | if (likely(!err)) |
| 1196 | ntfs_debug("Done."); |
| 1197 | return err; |
| 1198 | } |
| 1199 | |
| 1200 | /** |
| 1201 | * ntfs_writepage - write a @page to the backing store |
| 1202 | * @page: page cache page to write out |
| 1203 | * @wbc: writeback control structure |
| 1204 | * |
| 1205 | * This is called from the VM when it wants to have a dirty ntfs page cache |
| 1206 | * page cleaned. The VM has already locked the page and marked it clean. |
| 1207 | * |
| 1208 | * For non-resident attributes, ntfs_writepage() writes the @page by calling |
| 1209 | * the ntfs version of the generic block_write_full_page() function, |
| 1210 | * ntfs_write_block(), which in turn if necessary creates and writes the |
| 1211 | * buffers associated with the page asynchronously. |
| 1212 | * |
| 1213 | * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying |
| 1214 | * the data to the mft record (which at this stage is most likely in memory). |
| 1215 | * The mft record is then marked dirty and written out asynchronously via the |
| 1216 | * vfs inode dirty code path for the inode the mft record belongs to or via the |
| 1217 | * vm page dirty code path for the page the mft record is in. |
| 1218 | * |
| 1219 | * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page(). |
| 1220 | * |
| 1221 | * Return 0 on success and -errno on error. |
| 1222 | */ |
| 1223 | static int ntfs_writepage(struct page *page, struct writeback_control *wbc) |
| 1224 | { |
| 1225 | loff_t i_size; |
| 1226 | struct inode *vi; |
| 1227 | ntfs_inode *ni, *base_ni; |
| 1228 | char *kaddr; |
| 1229 | ntfs_attr_search_ctx *ctx; |
| 1230 | MFT_RECORD *m; |
| 1231 | u32 attr_len; |
| 1232 | int err; |
| 1233 | |
| 1234 | BUG_ON(!PageLocked(page)); |
| 1235 | |
| 1236 | vi = page->mapping->host; |
| 1237 | i_size = i_size_read(vi); |
| 1238 | |
| 1239 | /* Is the page fully outside i_size? (truncate in progress) */ |
| 1240 | if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >> |
| 1241 | PAGE_CACHE_SHIFT)) { |
| 1242 | /* |
| 1243 | * The page may have dirty, unmapped buffers. Make them |
| 1244 | * freeable here, so the page does not leak. |
| 1245 | */ |
| 1246 | block_invalidatepage(page, 0); |
| 1247 | unlock_page(page); |
| 1248 | ntfs_debug("Write outside i_size - truncated?"); |
| 1249 | return 0; |
| 1250 | } |
| 1251 | ni = NTFS_I(vi); |
| 1252 | |
| 1253 | /* NInoNonResident() == NInoIndexAllocPresent() */ |
| 1254 | if (NInoNonResident(ni)) { |
| 1255 | /* |
| 1256 | * Only unnamed $DATA attributes can be compressed, encrypted, |
| 1257 | * and/or sparse. |
| 1258 | */ |
| 1259 | if (ni->type == AT_DATA && !ni->name_len) { |
| 1260 | /* If file is encrypted, deny access, just like NT4. */ |
| 1261 | if (NInoEncrypted(ni)) { |
| 1262 | unlock_page(page); |
| 1263 | ntfs_debug("Denying write access to encrypted " |
| 1264 | "file."); |
| 1265 | return -EACCES; |
| 1266 | } |
| 1267 | /* Compressed data streams are handled in compress.c. */ |
| 1268 | if (NInoCompressed(ni)) { |
| 1269 | // TODO: Implement and replace this check with |
| 1270 | // return ntfs_write_compressed_block(page); |
| 1271 | unlock_page(page); |
| 1272 | ntfs_error(vi->i_sb, "Writing to compressed " |
| 1273 | "files is not supported yet. " |
| 1274 | "Sorry."); |
| 1275 | return -EOPNOTSUPP; |
| 1276 | } |
| 1277 | // TODO: Implement and remove this check. |
| 1278 | if (NInoSparse(ni)) { |
| 1279 | unlock_page(page); |
| 1280 | ntfs_error(vi->i_sb, "Writing to sparse files " |
| 1281 | "is not supported yet. Sorry."); |
| 1282 | return -EOPNOTSUPP; |
| 1283 | } |
| 1284 | } |
| 1285 | /* We have to zero every time due to mmap-at-end-of-file. */ |
| 1286 | if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) { |
| 1287 | /* The page straddles i_size. */ |
| 1288 | unsigned int ofs = i_size & ~PAGE_CACHE_MASK; |
| 1289 | kaddr = kmap_atomic(page, KM_USER0); |
| 1290 | memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs); |
| 1291 | flush_dcache_page(page); |
| 1292 | kunmap_atomic(kaddr, KM_USER0); |
| 1293 | } |
| 1294 | /* Handle mst protected attributes. */ |
| 1295 | if (NInoMstProtected(ni)) |
| 1296 | return ntfs_write_mst_block(page, wbc); |
| 1297 | /* Normal data stream. */ |
| 1298 | return ntfs_write_block(page, wbc); |
| 1299 | } |
| 1300 | /* |
| 1301 | * Attribute is resident, implying it is not compressed, encrypted, |
| 1302 | * sparse, or mst protected. This also means the attribute is smaller |
| 1303 | * than an mft record and hence smaller than a page, so can simply |
| 1304 | * return error on any pages with index above 0. |
| 1305 | */ |
| 1306 | BUG_ON(page_has_buffers(page)); |
| 1307 | BUG_ON(!PageUptodate(page)); |
| 1308 | if (unlikely(page->index > 0)) { |
| 1309 | ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. " |
| 1310 | "Aborting write.", page->index); |
| 1311 | BUG_ON(PageWriteback(page)); |
| 1312 | set_page_writeback(page); |
| 1313 | unlock_page(page); |
| 1314 | end_page_writeback(page); |
| 1315 | return -EIO; |
| 1316 | } |
| 1317 | if (!NInoAttr(ni)) |
| 1318 | base_ni = ni; |
| 1319 | else |
| 1320 | base_ni = ni->ext.base_ntfs_ino; |
| 1321 | /* Map, pin, and lock the mft record. */ |
| 1322 | m = map_mft_record(base_ni); |
| 1323 | if (IS_ERR(m)) { |
| 1324 | err = PTR_ERR(m); |
| 1325 | m = NULL; |
| 1326 | ctx = NULL; |
| 1327 | goto err_out; |
| 1328 | } |
| 1329 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| 1330 | if (unlikely(!ctx)) { |
| 1331 | err = -ENOMEM; |
| 1332 | goto err_out; |
| 1333 | } |
| 1334 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| 1335 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
| 1336 | if (unlikely(err)) |
| 1337 | goto err_out; |
| 1338 | /* |
| 1339 | * Keep the VM happy. This must be done otherwise the radix-tree tag |
| 1340 | * PAGECACHE_TAG_DIRTY remains set even though the page is clean. |
| 1341 | */ |
| 1342 | BUG_ON(PageWriteback(page)); |
| 1343 | set_page_writeback(page); |
| 1344 | unlock_page(page); |
| 1345 | |
| 1346 | /* |
| 1347 | * Here, we don't need to zero the out of bounds area everytime because |
| 1348 | * the below memcpy() already takes care of the mmap-at-end-of-file |
| 1349 | * requirements. If the file is converted to a non-resident one, then |
| 1350 | * the code path use is switched to the non-resident one where the |
| 1351 | * zeroing happens on each ntfs_writepage() invocation. |
| 1352 | * |
| 1353 | * The above also applies nicely when i_size is decreased. |
| 1354 | * |
| 1355 | * When i_size is increased, the memory between the old and new i_size |
| 1356 | * _must_ be zeroed (or overwritten with new data). Otherwise we will |
| 1357 | * expose data to userspace/disk which should never have been exposed. |
| 1358 | * |
| 1359 | * FIXME: Ensure that i_size increases do the zeroing/overwriting and |
| 1360 | * if we cannot guarantee that, then enable the zeroing below. If the |
| 1361 | * zeroing below is enabled, we MUST move the unlock_page() from above |
| 1362 | * to after the kunmap_atomic(), i.e. just before the |
| 1363 | * end_page_writeback(). |
| 1364 | * UPDATE: ntfs_prepare/commit_write() do the zeroing on i_size |
| 1365 | * increases for resident attributes so those are ok. |
| 1366 | * TODO: ntfs_truncate(), others? |
| 1367 | */ |
| 1368 | |
| 1369 | attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); |
| 1370 | i_size = i_size_read(VFS_I(ni)); |
| 1371 | kaddr = kmap_atomic(page, KM_USER0); |
| 1372 | if (unlikely(attr_len > i_size)) { |
| 1373 | /* Zero out of bounds area in the mft record. */ |
| 1374 | memset((u8*)ctx->attr + le16_to_cpu( |
| 1375 | ctx->attr->data.resident.value_offset) + |
| 1376 | i_size, 0, attr_len - i_size); |
| 1377 | attr_len = i_size; |
| 1378 | } |
| 1379 | /* Copy the data from the page to the mft record. */ |
| 1380 | memcpy((u8*)ctx->attr + |
| 1381 | le16_to_cpu(ctx->attr->data.resident.value_offset), |
| 1382 | kaddr, attr_len); |
| 1383 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
| 1384 | /* Zero out of bounds area in the page cache page. */ |
| 1385 | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); |
| 1386 | flush_dcache_page(page); |
| 1387 | kunmap_atomic(kaddr, KM_USER0); |
| 1388 | |
| 1389 | end_page_writeback(page); |
| 1390 | |
| 1391 | /* Mark the mft record dirty, so it gets written back. */ |
| 1392 | mark_mft_record_dirty(ctx->ntfs_ino); |
| 1393 | ntfs_attr_put_search_ctx(ctx); |
| 1394 | unmap_mft_record(base_ni); |
| 1395 | return 0; |
| 1396 | err_out: |
| 1397 | if (err == -ENOMEM) { |
| 1398 | ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying " |
| 1399 | "page so we try again later."); |
| 1400 | /* |
| 1401 | * Put the page back on mapping->dirty_pages, but leave its |
| 1402 | * buffers' dirty state as-is. |
| 1403 | */ |
| 1404 | redirty_page_for_writepage(wbc, page); |
| 1405 | err = 0; |
| 1406 | } else { |
| 1407 | ntfs_error(vi->i_sb, "Resident attribute write failed with " |
| 1408 | "error %i. Setting page error flag.", err); |
| 1409 | SetPageError(page); |
| 1410 | } |
| 1411 | unlock_page(page); |
| 1412 | if (ctx) |
| 1413 | ntfs_attr_put_search_ctx(ctx); |
| 1414 | if (m) |
| 1415 | unmap_mft_record(base_ni); |
| 1416 | return err; |
| 1417 | } |
| 1418 | |
| 1419 | /** |
| 1420 | * ntfs_prepare_nonresident_write - |
| 1421 | * |
| 1422 | */ |
| 1423 | static int ntfs_prepare_nonresident_write(struct page *page, |
| 1424 | unsigned from, unsigned to) |
| 1425 | { |
| 1426 | VCN vcn; |
| 1427 | LCN lcn; |
| 1428 | sector_t block, ablock, iblock; |
| 1429 | struct inode *vi; |
| 1430 | ntfs_inode *ni; |
| 1431 | ntfs_volume *vol; |
| 1432 | runlist_element *rl; |
| 1433 | struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; |
| 1434 | unsigned int vcn_ofs, block_start, block_end, blocksize; |
| 1435 | int err; |
| 1436 | BOOL is_retry; |
| 1437 | unsigned char blocksize_bits; |
| 1438 | |
| 1439 | vi = page->mapping->host; |
| 1440 | ni = NTFS_I(vi); |
| 1441 | vol = ni->vol; |
| 1442 | |
| 1443 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " |
| 1444 | "0x%lx, from = %u, to = %u.", ni->mft_no, ni->type, |
| 1445 | page->index, from, to); |
| 1446 | |
| 1447 | BUG_ON(!NInoNonResident(ni)); |
| 1448 | |
| 1449 | blocksize_bits = vi->i_blkbits; |
| 1450 | blocksize = 1 << blocksize_bits; |
| 1451 | |
| 1452 | /* |
| 1453 | * create_empty_buffers() will create uptodate/dirty buffers if the |
| 1454 | * page is uptodate/dirty. |
| 1455 | */ |
| 1456 | if (!page_has_buffers(page)) |
| 1457 | create_empty_buffers(page, blocksize, 0); |
| 1458 | bh = head = page_buffers(page); |
| 1459 | if (unlikely(!bh)) |
| 1460 | return -ENOMEM; |
| 1461 | |
| 1462 | /* The first block in the page. */ |
| 1463 | block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits); |
| 1464 | |
| 1465 | /* |
| 1466 | * The first out of bounds block for the allocated size. No need to |
| 1467 | * round up as allocated_size is in multiples of cluster size and the |
| 1468 | * minimum cluster size is 512 bytes, which is equal to the smallest |
| 1469 | * blocksize. |
| 1470 | */ |
| 1471 | ablock = ni->allocated_size >> blocksize_bits; |
| 1472 | |
| 1473 | /* The last (fully or partially) initialized block. */ |
| 1474 | iblock = ni->initialized_size >> blocksize_bits; |
| 1475 | |
| 1476 | /* Loop through all the buffers in the page. */ |
| 1477 | block_start = 0; |
| 1478 | rl = NULL; |
| 1479 | err = 0; |
| 1480 | do { |
| 1481 | block_end = block_start + blocksize; |
| 1482 | /* |
| 1483 | * If buffer @bh is outside the write, just mark it uptodate |
| 1484 | * if the page is uptodate and continue with the next buffer. |
| 1485 | */ |
| 1486 | if (block_end <= from || block_start >= to) { |
| 1487 | if (PageUptodate(page)) { |
| 1488 | if (!buffer_uptodate(bh)) |
| 1489 | set_buffer_uptodate(bh); |
| 1490 | } |
| 1491 | continue; |
| 1492 | } |
| 1493 | /* |
| 1494 | * @bh is at least partially being written to. |
| 1495 | * Make sure it is not marked as new. |
| 1496 | */ |
| 1497 | //if (buffer_new(bh)) |
| 1498 | // clear_buffer_new(bh); |
| 1499 | |
| 1500 | if (block >= ablock) { |
| 1501 | // TODO: block is above allocated_size, need to |
| 1502 | // allocate it. Best done in one go to accommodate not |
| 1503 | // only block but all above blocks up to and including: |
| 1504 | // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize |
| 1505 | // - 1) >> blobksize_bits. Obviously will need to round |
| 1506 | // up to next cluster boundary, too. This should be |
| 1507 | // done with a helper function, so it can be reused. |
| 1508 | ntfs_error(vol->sb, "Writing beyond allocated size " |
| 1509 | "is not supported yet. Sorry."); |
| 1510 | err = -EOPNOTSUPP; |
| 1511 | goto err_out; |
| 1512 | // Need to update ablock. |
| 1513 | // Need to set_buffer_new() on all block bhs that are |
| 1514 | // newly allocated. |
| 1515 | } |
| 1516 | /* |
| 1517 | * Now we have enough allocated size to fulfill the whole |
| 1518 | * request, i.e. block < ablock is true. |
| 1519 | */ |
| 1520 | if (unlikely((block >= iblock) && |
| 1521 | (ni->initialized_size < vi->i_size))) { |
| 1522 | /* |
| 1523 | * If this page is fully outside initialized size, zero |
| 1524 | * out all pages between the current initialized size |
| 1525 | * and the current page. Just use ntfs_readpage() to do |
| 1526 | * the zeroing transparently. |
| 1527 | */ |
| 1528 | if (block > iblock) { |
| 1529 | // TODO: |
| 1530 | // For each page do: |
| 1531 | // - read_cache_page() |
| 1532 | // Again for each page do: |
| 1533 | // - wait_on_page_locked() |
| 1534 | // - Check (PageUptodate(page) && |
| 1535 | // !PageError(page)) |
| 1536 | // Update initialized size in the attribute and |
| 1537 | // in the inode. |
| 1538 | // Again, for each page do: |
| 1539 | // __set_page_dirty_buffers(); |
| 1540 | // page_cache_release() |
| 1541 | // We don't need to wait on the writes. |
| 1542 | // Update iblock. |
| 1543 | } |
| 1544 | /* |
| 1545 | * The current page straddles initialized size. Zero |
| 1546 | * all non-uptodate buffers and set them uptodate (and |
| 1547 | * dirty?). Note, there aren't any non-uptodate buffers |
| 1548 | * if the page is uptodate. |
| 1549 | * FIXME: For an uptodate page, the buffers may need to |
| 1550 | * be written out because they were not initialized on |
| 1551 | * disk before. |
| 1552 | */ |
| 1553 | if (!PageUptodate(page)) { |
| 1554 | // TODO: |
| 1555 | // Zero any non-uptodate buffers up to i_size. |
| 1556 | // Set them uptodate and dirty. |
| 1557 | } |
| 1558 | // TODO: |
| 1559 | // Update initialized size in the attribute and in the |
| 1560 | // inode (up to i_size). |
| 1561 | // Update iblock. |
| 1562 | // FIXME: This is inefficient. Try to batch the two |
| 1563 | // size changes to happen in one go. |
| 1564 | ntfs_error(vol->sb, "Writing beyond initialized size " |
| 1565 | "is not supported yet. Sorry."); |
| 1566 | err = -EOPNOTSUPP; |
| 1567 | goto err_out; |
| 1568 | // Do NOT set_buffer_new() BUT DO clear buffer range |
| 1569 | // outside write request range. |
| 1570 | // set_buffer_uptodate() on complete buffers as well as |
| 1571 | // set_buffer_dirty(). |
| 1572 | } |
| 1573 | |
| 1574 | /* Need to map unmapped buffers. */ |
| 1575 | if (!buffer_mapped(bh)) { |
| 1576 | /* Unmapped buffer. Need to map it. */ |
| 1577 | bh->b_bdev = vol->sb->s_bdev; |
| 1578 | |
| 1579 | /* Convert block into corresponding vcn and offset. */ |
| 1580 | vcn = (VCN)block << blocksize_bits >> |
| 1581 | vol->cluster_size_bits; |
| 1582 | vcn_ofs = ((VCN)block << blocksize_bits) & |
| 1583 | vol->cluster_size_mask; |
| 1584 | |
| 1585 | is_retry = FALSE; |
| 1586 | if (!rl) { |
| 1587 | lock_retry_remap: |
| 1588 | down_read(&ni->runlist.lock); |
| 1589 | rl = ni->runlist.rl; |
| 1590 | } |
| 1591 | if (likely(rl != NULL)) { |
| 1592 | /* Seek to element containing target vcn. */ |
| 1593 | while (rl->length && rl[1].vcn <= vcn) |
| 1594 | rl++; |
| 1595 | lcn = ntfs_rl_vcn_to_lcn(rl, vcn); |
| 1596 | } else |
| 1597 | lcn = LCN_RL_NOT_MAPPED; |
| 1598 | if (unlikely(lcn < 0)) { |
| 1599 | /* |
| 1600 | * We extended the attribute allocation above. |
| 1601 | * If we hit an ENOENT here it means that the |
| 1602 | * allocation was insufficient which is a bug. |
| 1603 | */ |
| 1604 | BUG_ON(lcn == LCN_ENOENT); |
| 1605 | |
| 1606 | /* It is a hole, need to instantiate it. */ |
| 1607 | if (lcn == LCN_HOLE) { |
| 1608 | // TODO: Instantiate the hole. |
| 1609 | // clear_buffer_new(bh); |
| 1610 | // unmap_underlying_metadata(bh->b_bdev, |
| 1611 | // bh->b_blocknr); |
| 1612 | // For non-uptodate buffers, need to |
| 1613 | // zero out the region outside the |
| 1614 | // request in this bh or all bhs, |
| 1615 | // depending on what we implemented |
| 1616 | // above. |
| 1617 | // Need to flush_dcache_page(). |
| 1618 | // Or could use set_buffer_new() |
| 1619 | // instead? |
| 1620 | ntfs_error(vol->sb, "Writing into " |
| 1621 | "sparse regions is " |
| 1622 | "not supported yet. " |
| 1623 | "Sorry."); |
| 1624 | err = -EOPNOTSUPP; |
| 1625 | goto err_out; |
| 1626 | } else if (!is_retry && |
| 1627 | lcn == LCN_RL_NOT_MAPPED) { |
| 1628 | is_retry = TRUE; |
| 1629 | /* |
| 1630 | * Attempt to map runlist, dropping |
| 1631 | * lock for the duration. |
| 1632 | */ |
| 1633 | up_read(&ni->runlist.lock); |
| 1634 | err = ntfs_map_runlist(ni, vcn); |
| 1635 | if (likely(!err)) |
| 1636 | goto lock_retry_remap; |
| 1637 | rl = NULL; |
| 1638 | lcn = err; |
| 1639 | } |
| 1640 | /* |
| 1641 | * Failed to map the buffer, even after |
| 1642 | * retrying. |
| 1643 | */ |
| 1644 | bh->b_blocknr = -1; |
| 1645 | ntfs_error(vol->sb, "Failed to write to inode " |
| 1646 | "0x%lx, attribute type 0x%x, " |
| 1647 | "vcn 0x%llx, offset 0x%x " |
| 1648 | "because its location on disk " |
| 1649 | "could not be determined%s " |
| 1650 | "(error code %lli).", |
| 1651 | ni->mft_no, ni->type, |
| 1652 | (unsigned long long)vcn, |
| 1653 | vcn_ofs, is_retry ? " even " |
| 1654 | "after retrying" : "", |
| 1655 | (long long)lcn); |
| 1656 | if (!err) |
| 1657 | err = -EIO; |
| 1658 | goto err_out; |
| 1659 | } |
| 1660 | /* We now have a successful remap, i.e. lcn >= 0. */ |
| 1661 | |
| 1662 | /* Setup buffer head to correct block. */ |
| 1663 | bh->b_blocknr = ((lcn << vol->cluster_size_bits) |
| 1664 | + vcn_ofs) >> blocksize_bits; |
| 1665 | set_buffer_mapped(bh); |
| 1666 | |
| 1667 | // FIXME: Something analogous to this is needed for |
| 1668 | // each newly allocated block, i.e. BH_New. |
| 1669 | // FIXME: Might need to take this out of the |
| 1670 | // if (!buffer_mapped(bh)) {}, depending on how we |
| 1671 | // implement things during the allocated_size and |
| 1672 | // initialized_size extension code above. |
| 1673 | if (buffer_new(bh)) { |
| 1674 | clear_buffer_new(bh); |
| 1675 | unmap_underlying_metadata(bh->b_bdev, |
| 1676 | bh->b_blocknr); |
| 1677 | if (PageUptodate(page)) { |
| 1678 | set_buffer_uptodate(bh); |
| 1679 | continue; |
| 1680 | } |
| 1681 | /* |
| 1682 | * Page is _not_ uptodate, zero surrounding |
| 1683 | * region. NOTE: This is how we decide if to |
| 1684 | * zero or not! |
| 1685 | */ |
| 1686 | if (block_end > to || block_start < from) { |
| 1687 | void *kaddr; |
| 1688 | |
| 1689 | kaddr = kmap_atomic(page, KM_USER0); |
| 1690 | if (block_end > to) |
| 1691 | memset(kaddr + to, 0, |
| 1692 | block_end - to); |
| 1693 | if (block_start < from) |
| 1694 | memset(kaddr + block_start, 0, |
| 1695 | from - |
| 1696 | block_start); |
| 1697 | flush_dcache_page(page); |
| 1698 | kunmap_atomic(kaddr, KM_USER0); |
| 1699 | } |
| 1700 | continue; |
| 1701 | } |
| 1702 | } |
| 1703 | /* @bh is mapped, set it uptodate if the page is uptodate. */ |
| 1704 | if (PageUptodate(page)) { |
| 1705 | if (!buffer_uptodate(bh)) |
| 1706 | set_buffer_uptodate(bh); |
| 1707 | continue; |
| 1708 | } |
| 1709 | /* |
| 1710 | * The page is not uptodate. The buffer is mapped. If it is not |
| 1711 | * uptodate, and it is only partially being written to, we need |
| 1712 | * to read the buffer in before the write, i.e. right now. |
| 1713 | */ |
| 1714 | if (!buffer_uptodate(bh) && |
| 1715 | (block_start < from || block_end > to)) { |
| 1716 | ll_rw_block(READ, 1, &bh); |
| 1717 | *wait_bh++ = bh; |
| 1718 | } |
| 1719 | } while (block++, block_start = block_end, |
| 1720 | (bh = bh->b_this_page) != head); |
| 1721 | |
| 1722 | /* Release the lock if we took it. */ |
| 1723 | if (rl) { |
| 1724 | up_read(&ni->runlist.lock); |
| 1725 | rl = NULL; |
| 1726 | } |
| 1727 | |
| 1728 | /* If we issued read requests, let them complete. */ |
| 1729 | while (wait_bh > wait) { |
| 1730 | wait_on_buffer(*--wait_bh); |
| 1731 | if (!buffer_uptodate(*wait_bh)) |
| 1732 | return -EIO; |
| 1733 | } |
| 1734 | |
| 1735 | ntfs_debug("Done."); |
| 1736 | return 0; |
| 1737 | err_out: |
| 1738 | /* |
| 1739 | * Zero out any newly allocated blocks to avoid exposing stale data. |
| 1740 | * If BH_New is set, we know that the block was newly allocated in the |
| 1741 | * above loop. |
| 1742 | * FIXME: What about initialized_size increments? Have we done all the |
| 1743 | * required zeroing above? If not this error handling is broken, and |
| 1744 | * in particular the if (block_end <= from) check is completely bogus. |
| 1745 | */ |
| 1746 | bh = head; |
| 1747 | block_start = 0; |
| 1748 | is_retry = FALSE; |
| 1749 | do { |
| 1750 | block_end = block_start + blocksize; |
| 1751 | if (block_end <= from) |
| 1752 | continue; |
| 1753 | if (block_start >= to) |
| 1754 | break; |
| 1755 | if (buffer_new(bh)) { |
| 1756 | void *kaddr; |
| 1757 | |
| 1758 | clear_buffer_new(bh); |
| 1759 | kaddr = kmap_atomic(page, KM_USER0); |
| 1760 | memset(kaddr + block_start, 0, bh->b_size); |
| 1761 | kunmap_atomic(kaddr, KM_USER0); |
| 1762 | set_buffer_uptodate(bh); |
| 1763 | mark_buffer_dirty(bh); |
| 1764 | is_retry = TRUE; |
| 1765 | } |
| 1766 | } while (block_start = block_end, (bh = bh->b_this_page) != head); |
| 1767 | if (is_retry) |
| 1768 | flush_dcache_page(page); |
| 1769 | if (rl) |
| 1770 | up_read(&ni->runlist.lock); |
| 1771 | return err; |
| 1772 | } |
| 1773 | |
| 1774 | /** |
| 1775 | * ntfs_prepare_write - prepare a page for receiving data |
| 1776 | * |
| 1777 | * This is called from generic_file_write() with i_sem held on the inode |
| 1778 | * (@page->mapping->host). The @page is locked but not kmap()ped. The source |
| 1779 | * data has not yet been copied into the @page. |
| 1780 | * |
| 1781 | * Need to extend the attribute/fill in holes if necessary, create blocks and |
| 1782 | * make partially overwritten blocks uptodate, |
| 1783 | * |
| 1784 | * i_size is not to be modified yet. |
| 1785 | * |
| 1786 | * Return 0 on success or -errno on error. |
| 1787 | * |
| 1788 | * Should be using block_prepare_write() [support for sparse files] or |
| 1789 | * cont_prepare_write() [no support for sparse files]. Cannot do that due to |
| 1790 | * ntfs specifics but can look at them for implementation guidance. |
| 1791 | * |
| 1792 | * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is |
| 1793 | * the first byte in the page that will be written to and @to is the first byte |
| 1794 | * after the last byte that will be written to. |
| 1795 | */ |
| 1796 | static int ntfs_prepare_write(struct file *file, struct page *page, |
| 1797 | unsigned from, unsigned to) |
| 1798 | { |
| 1799 | s64 new_size; |
| 1800 | struct inode *vi = page->mapping->host; |
| 1801 | ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi); |
| 1802 | ntfs_volume *vol = ni->vol; |
| 1803 | ntfs_attr_search_ctx *ctx = NULL; |
| 1804 | MFT_RECORD *m = NULL; |
| 1805 | ATTR_RECORD *a; |
| 1806 | u8 *kaddr; |
| 1807 | u32 attr_len; |
| 1808 | int err; |
| 1809 | |
| 1810 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " |
| 1811 | "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type, |
| 1812 | page->index, from, to); |
| 1813 | BUG_ON(!PageLocked(page)); |
| 1814 | BUG_ON(from > PAGE_CACHE_SIZE); |
| 1815 | BUG_ON(to > PAGE_CACHE_SIZE); |
| 1816 | BUG_ON(from > to); |
| 1817 | BUG_ON(NInoMstProtected(ni)); |
| 1818 | /* |
| 1819 | * If a previous ntfs_truncate() failed, repeat it and abort if it |
| 1820 | * fails again. |
| 1821 | */ |
| 1822 | if (unlikely(NInoTruncateFailed(ni))) { |
| 1823 | down_write(&vi->i_alloc_sem); |
| 1824 | err = ntfs_truncate(vi); |
| 1825 | up_write(&vi->i_alloc_sem); |
| 1826 | if (err || NInoTruncateFailed(ni)) { |
| 1827 | if (!err) |
| 1828 | err = -EIO; |
| 1829 | goto err_out; |
| 1830 | } |
| 1831 | } |
| 1832 | /* If the attribute is not resident, deal with it elsewhere. */ |
| 1833 | if (NInoNonResident(ni)) { |
| 1834 | /* |
| 1835 | * Only unnamed $DATA attributes can be compressed, encrypted, |
| 1836 | * and/or sparse. |
| 1837 | */ |
| 1838 | if (ni->type == AT_DATA && !ni->name_len) { |
| 1839 | /* If file is encrypted, deny access, just like NT4. */ |
| 1840 | if (NInoEncrypted(ni)) { |
| 1841 | ntfs_debug("Denying write access to encrypted " |
| 1842 | "file."); |
| 1843 | return -EACCES; |
| 1844 | } |
| 1845 | /* Compressed data streams are handled in compress.c. */ |
| 1846 | if (NInoCompressed(ni)) { |
| 1847 | // TODO: Implement and replace this check with |
| 1848 | // return ntfs_write_compressed_block(page); |
| 1849 | ntfs_error(vi->i_sb, "Writing to compressed " |
| 1850 | "files is not supported yet. " |
| 1851 | "Sorry."); |
| 1852 | return -EOPNOTSUPP; |
| 1853 | } |
| 1854 | // TODO: Implement and remove this check. |
| 1855 | if (NInoSparse(ni)) { |
| 1856 | ntfs_error(vi->i_sb, "Writing to sparse files " |
| 1857 | "is not supported yet. Sorry."); |
| 1858 | return -EOPNOTSUPP; |
| 1859 | } |
| 1860 | } |
| 1861 | /* Normal data stream. */ |
| 1862 | return ntfs_prepare_nonresident_write(page, from, to); |
| 1863 | } |
| 1864 | /* |
| 1865 | * Attribute is resident, implying it is not compressed, encrypted, or |
| 1866 | * sparse. |
| 1867 | */ |
| 1868 | BUG_ON(page_has_buffers(page)); |
| 1869 | new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to; |
| 1870 | /* If we do not need to resize the attribute allocation we are done. */ |
| 1871 | if (new_size <= vi->i_size) |
| 1872 | goto done; |
| 1873 | |
| 1874 | // FIXME: We abort for now as this code is not safe. |
| 1875 | ntfs_error(vi->i_sb, "Changing the file size is not supported yet. " |
| 1876 | "Sorry."); |
| 1877 | return -EOPNOTSUPP; |
| 1878 | |
| 1879 | /* Map, pin, and lock the (base) mft record. */ |
| 1880 | if (!NInoAttr(ni)) |
| 1881 | base_ni = ni; |
| 1882 | else |
| 1883 | base_ni = ni->ext.base_ntfs_ino; |
| 1884 | m = map_mft_record(base_ni); |
| 1885 | if (IS_ERR(m)) { |
| 1886 | err = PTR_ERR(m); |
| 1887 | m = NULL; |
| 1888 | ctx = NULL; |
| 1889 | goto err_out; |
| 1890 | } |
| 1891 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| 1892 | if (unlikely(!ctx)) { |
| 1893 | err = -ENOMEM; |
| 1894 | goto err_out; |
| 1895 | } |
| 1896 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| 1897 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
| 1898 | if (unlikely(err)) { |
| 1899 | if (err == -ENOENT) |
| 1900 | err = -EIO; |
| 1901 | goto err_out; |
| 1902 | } |
| 1903 | m = ctx->mrec; |
| 1904 | a = ctx->attr; |
| 1905 | /* The total length of the attribute value. */ |
| 1906 | attr_len = le32_to_cpu(a->data.resident.value_length); |
| 1907 | BUG_ON(vi->i_size != attr_len); |
| 1908 | /* Check if new size is allowed in $AttrDef. */ |
| 1909 | err = ntfs_attr_size_bounds_check(vol, ni->type, new_size); |
| 1910 | if (unlikely(err)) { |
| 1911 | if (err == -ERANGE) { |
| 1912 | ntfs_error(vol->sb, "Write would cause the inode " |
| 1913 | "0x%lx to exceed the maximum size for " |
| 1914 | "its attribute type (0x%x). Aborting " |
| 1915 | "write.", vi->i_ino, |
| 1916 | le32_to_cpu(ni->type)); |
| 1917 | } else { |
| 1918 | ntfs_error(vol->sb, "Inode 0x%lx has unknown " |
| 1919 | "attribute type 0x%x. Aborting " |
| 1920 | "write.", vi->i_ino, |
| 1921 | le32_to_cpu(ni->type)); |
| 1922 | err = -EIO; |
| 1923 | } |
| 1924 | goto err_out2; |
| 1925 | } |
| 1926 | /* |
| 1927 | * Extend the attribute record to be able to store the new attribute |
| 1928 | * size. |
| 1929 | */ |
| 1930 | if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a, |
| 1931 | le16_to_cpu(a->data.resident.value_offset) + |
| 1932 | new_size)) { |
| 1933 | /* Not enough space in the mft record. */ |
| 1934 | ntfs_error(vol->sb, "Not enough space in the mft record for " |
| 1935 | "the resized attribute value. This is not " |
| 1936 | "supported yet. Aborting write."); |
| 1937 | err = -EOPNOTSUPP; |
| 1938 | goto err_out2; |
| 1939 | } |
| 1940 | /* |
| 1941 | * We have enough space in the mft record to fit the write. This |
| 1942 | * implies the attribute is smaller than the mft record and hence the |
| 1943 | * attribute must be in a single page and hence page->index must be 0. |
| 1944 | */ |
| 1945 | BUG_ON(page->index); |
| 1946 | /* |
| 1947 | * If the beginning of the write is past the old size, enlarge the |
| 1948 | * attribute value up to the beginning of the write and fill it with |
| 1949 | * zeroes. |
| 1950 | */ |
| 1951 | if (from > attr_len) { |
| 1952 | memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) + |
| 1953 | attr_len, 0, from - attr_len); |
| 1954 | a->data.resident.value_length = cpu_to_le32(from); |
| 1955 | /* Zero the corresponding area in the page as well. */ |
| 1956 | if (PageUptodate(page)) { |
| 1957 | kaddr = kmap_atomic(page, KM_USER0); |
| 1958 | memset(kaddr + attr_len, 0, from - attr_len); |
| 1959 | kunmap_atomic(kaddr, KM_USER0); |
| 1960 | flush_dcache_page(page); |
| 1961 | } |
| 1962 | } |
| 1963 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
| 1964 | mark_mft_record_dirty(ctx->ntfs_ino); |
| 1965 | ntfs_attr_put_search_ctx(ctx); |
| 1966 | unmap_mft_record(base_ni); |
| 1967 | /* |
| 1968 | * Because resident attributes are handled by memcpy() to/from the |
| 1969 | * corresponding MFT record, and because this form of i/o is byte |
| 1970 | * aligned rather than block aligned, there is no need to bring the |
| 1971 | * page uptodate here as in the non-resident case where we need to |
| 1972 | * bring the buffers straddled by the write uptodate before |
| 1973 | * generic_file_write() does the copying from userspace. |
| 1974 | * |
| 1975 | * We thus defer the uptodate bringing of the page region outside the |
| 1976 | * region written to to ntfs_commit_write(), which makes the code |
| 1977 | * simpler and saves one atomic kmap which is good. |
| 1978 | */ |
| 1979 | done: |
| 1980 | ntfs_debug("Done."); |
| 1981 | return 0; |
| 1982 | err_out: |
| 1983 | if (err == -ENOMEM) |
| 1984 | ntfs_warning(vi->i_sb, "Error allocating memory required to " |
| 1985 | "prepare the write."); |
| 1986 | else { |
| 1987 | ntfs_error(vi->i_sb, "Resident attribute prepare write failed " |
| 1988 | "with error %i.", err); |
| 1989 | NVolSetErrors(vol); |
| 1990 | make_bad_inode(vi); |
| 1991 | } |
| 1992 | err_out2: |
| 1993 | if (ctx) |
| 1994 | ntfs_attr_put_search_ctx(ctx); |
| 1995 | if (m) |
| 1996 | unmap_mft_record(base_ni); |
| 1997 | return err; |
| 1998 | } |
| 1999 | |
| 2000 | /** |
| 2001 | * ntfs_commit_nonresident_write - |
| 2002 | * |
| 2003 | */ |
| 2004 | static int ntfs_commit_nonresident_write(struct page *page, |
| 2005 | unsigned from, unsigned to) |
| 2006 | { |
| 2007 | s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to; |
| 2008 | struct inode *vi = page->mapping->host; |
| 2009 | struct buffer_head *bh, *head; |
| 2010 | unsigned int block_start, block_end, blocksize; |
| 2011 | BOOL partial; |
| 2012 | |
| 2013 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " |
| 2014 | "0x%lx, from = %u, to = %u.", vi->i_ino, |
| 2015 | NTFS_I(vi)->type, page->index, from, to); |
| 2016 | blocksize = 1 << vi->i_blkbits; |
| 2017 | |
| 2018 | // FIXME: We need a whole slew of special cases in here for compressed |
| 2019 | // files for example... |
| 2020 | // For now, we know ntfs_prepare_write() would have failed so we can't |
| 2021 | // get here in any of the cases which we have to special case, so we |
| 2022 | // are just a ripped off, unrolled generic_commit_write(). |
| 2023 | |
| 2024 | bh = head = page_buffers(page); |
| 2025 | block_start = 0; |
| 2026 | partial = FALSE; |
| 2027 | do { |
| 2028 | block_end = block_start + blocksize; |
| 2029 | if (block_end <= from || block_start >= to) { |
| 2030 | if (!buffer_uptodate(bh)) |
| 2031 | partial = TRUE; |
| 2032 | } else { |
| 2033 | set_buffer_uptodate(bh); |
| 2034 | mark_buffer_dirty(bh); |
| 2035 | } |
| 2036 | } while (block_start = block_end, (bh = bh->b_this_page) != head); |
| 2037 | /* |
| 2038 | * If this is a partial write which happened to make all buffers |
| 2039 | * uptodate then we can optimize away a bogus ->readpage() for the next |
| 2040 | * read(). Here we 'discover' whether the page went uptodate as a |
| 2041 | * result of this (potentially partial) write. |
| 2042 | */ |
| 2043 | if (!partial) |
| 2044 | SetPageUptodate(page); |
| 2045 | /* |
| 2046 | * Not convinced about this at all. See disparity comment above. For |
| 2047 | * now we know ntfs_prepare_write() would have failed in the write |
| 2048 | * exceeds i_size case, so this will never trigger which is fine. |
| 2049 | */ |
| 2050 | if (pos > vi->i_size) { |
| 2051 | ntfs_error(vi->i_sb, "Writing beyond the existing file size is " |
| 2052 | "not supported yet. Sorry."); |
| 2053 | return -EOPNOTSUPP; |
| 2054 | // vi->i_size = pos; |
| 2055 | // mark_inode_dirty(vi); |
| 2056 | } |
| 2057 | ntfs_debug("Done."); |
| 2058 | return 0; |
| 2059 | } |
| 2060 | |
| 2061 | /** |
| 2062 | * ntfs_commit_write - commit the received data |
| 2063 | * |
| 2064 | * This is called from generic_file_write() with i_sem held on the inode |
| 2065 | * (@page->mapping->host). The @page is locked but not kmap()ped. The source |
| 2066 | * data has already been copied into the @page. ntfs_prepare_write() has been |
| 2067 | * called before the data copied and it returned success so we can take the |
| 2068 | * results of various BUG checks and some error handling for granted. |
| 2069 | * |
| 2070 | * Need to mark modified blocks dirty so they get written out later when |
| 2071 | * ntfs_writepage() is invoked by the VM. |
| 2072 | * |
| 2073 | * Return 0 on success or -errno on error. |
| 2074 | * |
| 2075 | * Should be using generic_commit_write(). This marks buffers uptodate and |
| 2076 | * dirty, sets the page uptodate if all buffers in the page are uptodate, and |
| 2077 | * updates i_size if the end of io is beyond i_size. In that case, it also |
| 2078 | * marks the inode dirty. |
| 2079 | * |
| 2080 | * Cannot use generic_commit_write() due to ntfs specialities but can look at |
| 2081 | * it for implementation guidance. |
| 2082 | * |
| 2083 | * If things have gone as outlined in ntfs_prepare_write(), then we do not |
| 2084 | * need to do any page content modifications here at all, except in the write |
| 2085 | * to resident attribute case, where we need to do the uptodate bringing here |
| 2086 | * which we combine with the copying into the mft record which means we save |
| 2087 | * one atomic kmap. |
| 2088 | */ |
| 2089 | static int ntfs_commit_write(struct file *file, struct page *page, |
| 2090 | unsigned from, unsigned to) |
| 2091 | { |
| 2092 | struct inode *vi = page->mapping->host; |
| 2093 | ntfs_inode *base_ni, *ni = NTFS_I(vi); |
| 2094 | char *kaddr, *kattr; |
| 2095 | ntfs_attr_search_ctx *ctx; |
| 2096 | MFT_RECORD *m; |
| 2097 | ATTR_RECORD *a; |
| 2098 | u32 attr_len; |
| 2099 | int err; |
| 2100 | |
| 2101 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " |
| 2102 | "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type, |
| 2103 | page->index, from, to); |
| 2104 | /* If the attribute is not resident, deal with it elsewhere. */ |
| 2105 | if (NInoNonResident(ni)) { |
| 2106 | /* Only unnamed $DATA attributes can be compressed/encrypted. */ |
| 2107 | if (ni->type == AT_DATA && !ni->name_len) { |
| 2108 | /* Encrypted files need separate handling. */ |
| 2109 | if (NInoEncrypted(ni)) { |
| 2110 | // We never get here at present! |
| 2111 | BUG(); |
| 2112 | } |
| 2113 | /* Compressed data streams are handled in compress.c. */ |
| 2114 | if (NInoCompressed(ni)) { |
| 2115 | // TODO: Implement this! |
| 2116 | // return ntfs_write_compressed_block(page); |
| 2117 | // We never get here at present! |
| 2118 | BUG(); |
| 2119 | } |
| 2120 | } |
| 2121 | /* Normal data stream. */ |
| 2122 | return ntfs_commit_nonresident_write(page, from, to); |
| 2123 | } |
| 2124 | /* |
| 2125 | * Attribute is resident, implying it is not compressed, encrypted, or |
| 2126 | * sparse. |
| 2127 | */ |
| 2128 | if (!NInoAttr(ni)) |
| 2129 | base_ni = ni; |
| 2130 | else |
| 2131 | base_ni = ni->ext.base_ntfs_ino; |
| 2132 | /* Map, pin, and lock the mft record. */ |
| 2133 | m = map_mft_record(base_ni); |
| 2134 | if (IS_ERR(m)) { |
| 2135 | err = PTR_ERR(m); |
| 2136 | m = NULL; |
| 2137 | ctx = NULL; |
| 2138 | goto err_out; |
| 2139 | } |
| 2140 | ctx = ntfs_attr_get_search_ctx(base_ni, m); |
| 2141 | if (unlikely(!ctx)) { |
| 2142 | err = -ENOMEM; |
| 2143 | goto err_out; |
| 2144 | } |
| 2145 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, |
| 2146 | CASE_SENSITIVE, 0, NULL, 0, ctx); |
| 2147 | if (unlikely(err)) { |
| 2148 | if (err == -ENOENT) |
| 2149 | err = -EIO; |
| 2150 | goto err_out; |
| 2151 | } |
| 2152 | a = ctx->attr; |
| 2153 | /* The total length of the attribute value. */ |
| 2154 | attr_len = le32_to_cpu(a->data.resident.value_length); |
| 2155 | BUG_ON(from > attr_len); |
| 2156 | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); |
| 2157 | kaddr = kmap_atomic(page, KM_USER0); |
| 2158 | /* Copy the received data from the page to the mft record. */ |
| 2159 | memcpy(kattr + from, kaddr + from, to - from); |
| 2160 | /* Update the attribute length if necessary. */ |
| 2161 | if (to > attr_len) { |
| 2162 | attr_len = to; |
| 2163 | a->data.resident.value_length = cpu_to_le32(attr_len); |
| 2164 | } |
| 2165 | /* |
| 2166 | * If the page is not uptodate, bring the out of bounds area(s) |
| 2167 | * uptodate by copying data from the mft record to the page. |
| 2168 | */ |
| 2169 | if (!PageUptodate(page)) { |
| 2170 | if (from > 0) |
| 2171 | memcpy(kaddr, kattr, from); |
| 2172 | if (to < attr_len) |
| 2173 | memcpy(kaddr + to, kattr + to, attr_len - to); |
| 2174 | /* Zero the region outside the end of the attribute value. */ |
| 2175 | if (attr_len < PAGE_CACHE_SIZE) |
| 2176 | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); |
| 2177 | /* |
| 2178 | * The probability of not having done any of the above is |
| 2179 | * extremely small, so we just flush unconditionally. |
| 2180 | */ |
| 2181 | flush_dcache_page(page); |
| 2182 | SetPageUptodate(page); |
| 2183 | } |
| 2184 | kunmap_atomic(kaddr, KM_USER0); |
| 2185 | /* Update i_size if necessary. */ |
| 2186 | if (vi->i_size < attr_len) { |
| 2187 | ni->allocated_size = ni->initialized_size = attr_len; |
| 2188 | i_size_write(vi, attr_len); |
| 2189 | } |
| 2190 | /* Mark the mft record dirty, so it gets written back. */ |
| 2191 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
| 2192 | mark_mft_record_dirty(ctx->ntfs_ino); |
| 2193 | ntfs_attr_put_search_ctx(ctx); |
| 2194 | unmap_mft_record(base_ni); |
| 2195 | ntfs_debug("Done."); |
| 2196 | return 0; |
| 2197 | err_out: |
| 2198 | if (err == -ENOMEM) { |
| 2199 | ntfs_warning(vi->i_sb, "Error allocating memory required to " |
| 2200 | "commit the write."); |
| 2201 | if (PageUptodate(page)) { |
| 2202 | ntfs_warning(vi->i_sb, "Page is uptodate, setting " |
| 2203 | "dirty so the write will be retried " |
| 2204 | "later on by the VM."); |
| 2205 | /* |
| 2206 | * Put the page on mapping->dirty_pages, but leave its |
| 2207 | * buffers' dirty state as-is. |
| 2208 | */ |
| 2209 | __set_page_dirty_nobuffers(page); |
| 2210 | err = 0; |
| 2211 | } else |
| 2212 | ntfs_error(vi->i_sb, "Page is not uptodate. Written " |
| 2213 | "data has been lost."); |
| 2214 | } else { |
| 2215 | ntfs_error(vi->i_sb, "Resident attribute commit write failed " |
| 2216 | "with error %i.", err); |
| 2217 | NVolSetErrors(ni->vol); |
| 2218 | make_bad_inode(vi); |
| 2219 | } |
| 2220 | if (ctx) |
| 2221 | ntfs_attr_put_search_ctx(ctx); |
| 2222 | if (m) |
| 2223 | unmap_mft_record(base_ni); |
| 2224 | return err; |
| 2225 | } |
| 2226 | |
| 2227 | #endif /* NTFS_RW */ |
| 2228 | |
| 2229 | /** |
| 2230 | * ntfs_aops - general address space operations for inodes and attributes |
| 2231 | */ |
| 2232 | struct address_space_operations ntfs_aops = { |
| 2233 | .readpage = ntfs_readpage, /* Fill page with data. */ |
| 2234 | .sync_page = block_sync_page, /* Currently, just unplugs the |
| 2235 | disk request queue. */ |
| 2236 | #ifdef NTFS_RW |
| 2237 | .writepage = ntfs_writepage, /* Write dirty page to disk. */ |
| 2238 | .prepare_write = ntfs_prepare_write, /* Prepare page and buffers |
| 2239 | ready to receive data. */ |
| 2240 | .commit_write = ntfs_commit_write, /* Commit received data. */ |
| 2241 | #endif /* NTFS_RW */ |
| 2242 | }; |
| 2243 | |
| 2244 | /** |
| 2245 | * ntfs_mst_aops - general address space operations for mst protecteed inodes |
| 2246 | * and attributes |
| 2247 | */ |
| 2248 | struct address_space_operations ntfs_mst_aops = { |
| 2249 | .readpage = ntfs_readpage, /* Fill page with data. */ |
| 2250 | .sync_page = block_sync_page, /* Currently, just unplugs the |
| 2251 | disk request queue. */ |
| 2252 | #ifdef NTFS_RW |
| 2253 | .writepage = ntfs_writepage, /* Write dirty page to disk. */ |
| 2254 | .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty |
| 2255 | without touching the buffers |
| 2256 | belonging to the page. */ |
| 2257 | #endif /* NTFS_RW */ |
| 2258 | }; |
| 2259 | |
| 2260 | #ifdef NTFS_RW |
| 2261 | |
| 2262 | /** |
| 2263 | * mark_ntfs_record_dirty - mark an ntfs record dirty |
| 2264 | * @page: page containing the ntfs record to mark dirty |
| 2265 | * @ofs: byte offset within @page at which the ntfs record begins |
| 2266 | * |
| 2267 | * Set the buffers and the page in which the ntfs record is located dirty. |
| 2268 | * |
| 2269 | * The latter also marks the vfs inode the ntfs record belongs to dirty |
| 2270 | * (I_DIRTY_PAGES only). |
| 2271 | * |
| 2272 | * If the page does not have buffers, we create them and set them uptodate. |
| 2273 | * The page may not be locked which is why we need to handle the buffers under |
| 2274 | * the mapping->private_lock. Once the buffers are marked dirty we no longer |
| 2275 | * need the lock since try_to_free_buffers() does not free dirty buffers. |
| 2276 | */ |
| 2277 | void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) { |
| 2278 | struct address_space *mapping = page->mapping; |
| 2279 | ntfs_inode *ni = NTFS_I(mapping->host); |
| 2280 | struct buffer_head *bh, *head, *buffers_to_free = NULL; |
| 2281 | unsigned int end, bh_size, bh_ofs; |
| 2282 | |
| 2283 | BUG_ON(!PageUptodate(page)); |
| 2284 | end = ofs + ni->itype.index.block_size; |
| 2285 | bh_size = 1 << VFS_I(ni)->i_blkbits; |
| 2286 | spin_lock(&mapping->private_lock); |
| 2287 | if (unlikely(!page_has_buffers(page))) { |
| 2288 | spin_unlock(&mapping->private_lock); |
| 2289 | bh = head = alloc_page_buffers(page, bh_size, 1); |
| 2290 | spin_lock(&mapping->private_lock); |
| 2291 | if (likely(!page_has_buffers(page))) { |
| 2292 | struct buffer_head *tail; |
| 2293 | |
| 2294 | do { |
| 2295 | set_buffer_uptodate(bh); |
| 2296 | tail = bh; |
| 2297 | bh = bh->b_this_page; |
| 2298 | } while (bh); |
| 2299 | tail->b_this_page = head; |
| 2300 | attach_page_buffers(page, head); |
| 2301 | } else |
| 2302 | buffers_to_free = bh; |
| 2303 | } |
| 2304 | bh = head = page_buffers(page); |
| 2305 | do { |
| 2306 | bh_ofs = bh_offset(bh); |
| 2307 | if (bh_ofs + bh_size <= ofs) |
| 2308 | continue; |
| 2309 | if (unlikely(bh_ofs >= end)) |
| 2310 | break; |
| 2311 | set_buffer_dirty(bh); |
| 2312 | } while ((bh = bh->b_this_page) != head); |
| 2313 | spin_unlock(&mapping->private_lock); |
| 2314 | __set_page_dirty_nobuffers(page); |
| 2315 | if (unlikely(buffers_to_free)) { |
| 2316 | do { |
| 2317 | bh = buffers_to_free->b_this_page; |
| 2318 | free_buffer_head(buffers_to_free); |
| 2319 | buffers_to_free = bh; |
| 2320 | } while (buffers_to_free); |
| 2321 | } |
| 2322 | } |
| 2323 | |
| 2324 | #endif /* NTFS_RW */ |