blob: daa9d4220331b06e68b9100caad9c5e98065a48f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * HP i8042 SDC + MSM-58321 BBRTC driver.
3 *
4 * Copyright (c) 2001 Brian S. Julin
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * Alternatively, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL").
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 *
29 * References:
30 * System Device Controller Microprocessor Firmware Theory of Operation
31 * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
32 * efirtc.c by Stephane Eranian/Hewlett Packard
33 *
34 */
35
36#include <linux/hp_sdc.h>
37#include <linux/errno.h>
Arnd Bergmann986f8b82008-05-20 19:15:58 +020038#include <linux/smp_lock.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include <linux/types.h>
40#include <linux/init.h>
41#include <linux/module.h>
42#include <linux/time.h>
43#include <linux/miscdevice.h>
44#include <linux/proc_fs.h>
45#include <linux/poll.h>
46#include <linux/rtc.h>
Matthew Wilcox0f17e4c2008-07-24 08:30:48 -040047#include <linux/semaphore.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070048
49MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
50MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
51MODULE_LICENSE("Dual BSD/GPL");
52
53#define RTC_VERSION "1.10d"
54
55static unsigned long epoch = 2000;
56
57static struct semaphore i8042tregs;
58
59static hp_sdc_irqhook hp_sdc_rtc_isr;
60
61static struct fasync_struct *hp_sdc_rtc_async_queue;
62
63static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
64
Al Viro6ce6b3a2006-10-14 16:52:36 +010065static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
Linus Torvalds1da177e2005-04-16 15:20:36 -070066 size_t count, loff_t *ppos);
67
68static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
69 unsigned int cmd, unsigned long arg);
70
71static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
72
73static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
74static int hp_sdc_rtc_release(struct inode *inode, struct file *file);
75static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
76
77static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
78 int count, int *eof, void *data);
79
80static void hp_sdc_rtc_isr (int irq, void *dev_id,
81 uint8_t status, uint8_t data)
82{
83 return;
84}
85
86static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
87{
88 struct semaphore tsem;
89 hp_sdc_transaction t;
90 uint8_t tseq[91];
91 int i;
92
93 i = 0;
94 while (i < 91) {
95 tseq[i++] = HP_SDC_ACT_DATAREG |
96 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
97 tseq[i++] = 0x01; /* write i8042[0x70] */
98 tseq[i] = i / 7; /* BBRTC reg address */
99 i++;
100 tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */
101 tseq[i++] = 2; /* expect 1 stat/dat pair back. */
102 i++; i++; /* buffer for stat/dat pair */
103 }
104 tseq[84] |= HP_SDC_ACT_SEMAPHORE;
105 t.endidx = 91;
106 t.seq = tseq;
107 t.act.semaphore = &tsem;
108 init_MUTEX_LOCKED(&tsem);
109
110 if (hp_sdc_enqueue_transaction(&t)) return -1;
111
112 down_interruptible(&tsem); /* Put ourselves to sleep for results. */
113
114 /* Check for nonpresence of BBRTC */
115 if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
116 tseq[55] | tseq[62] | tseq[34] | tseq[41] |
117 tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f))
118 return -1;
119
120 memset(rtctm, 0, sizeof(struct rtc_time));
121 rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
122 rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
123 rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
124 rtctm->tm_wday = (tseq[48] & 0x0f);
125 rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
126 rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
127 rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10;
128
129 return 0;
130}
131
132static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
133{
134 struct rtc_time tm, tm_last;
135 int i = 0;
136
137 /* MSM-58321 has no read latch, so must read twice and compare. */
138
139 if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
140 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
141
142 while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
143 if (i++ > 4) return -1;
144 memcpy(&tm_last, &tm, sizeof(struct rtc_time));
145 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
146 }
147
148 memcpy(rtctm, &tm, sizeof(struct rtc_time));
149
150 return 0;
151}
152
153
154static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
155{
156 hp_sdc_transaction t;
157 uint8_t tseq[26] = {
158 HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
159 0,
160 HP_SDC_CMD_READ_T1, 2, 0, 0,
161 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
162 HP_SDC_CMD_READ_T2, 2, 0, 0,
163 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
164 HP_SDC_CMD_READ_T3, 2, 0, 0,
165 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
166 HP_SDC_CMD_READ_T4, 2, 0, 0,
167 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
168 HP_SDC_CMD_READ_T5, 2, 0, 0
169 };
170
171 t.endidx = numreg * 5;
172
173 tseq[1] = loadcmd;
174 tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
175
176 t.seq = tseq;
177 t.act.semaphore = &i8042tregs;
178
179 down_interruptible(&i8042tregs); /* Sleep if output regs in use. */
180
181 if (hp_sdc_enqueue_transaction(&t)) return -1;
182
183 down_interruptible(&i8042tregs); /* Sleep until results come back. */
184 up(&i8042tregs);
185
186 return (tseq[5] |
187 ((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) |
188 ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
189}
190
191
192/* Read the i8042 real-time clock */
193static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
194 int64_t raw;
195 uint32_t tenms;
196 unsigned int days;
197
198 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
199 if (raw < 0) return -1;
200
201 tenms = (uint32_t)raw & 0xffffff;
202 days = (unsigned int)(raw >> 24) & 0xffff;
203
204 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
205 res->tv_sec = (time_t)(tenms / 100) + days * 86400;
206
207 return 0;
208}
209
210
211/* Read the i8042 fast handshake timer */
212static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
213 uint64_t raw;
214 unsigned int tenms;
215
216 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
217 if (raw < 0) return -1;
218
219 tenms = (unsigned int)raw & 0xffff;
220
221 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
222 res->tv_sec = (time_t)(tenms / 100);
223
224 return 0;
225}
226
227
228/* Read the i8042 match timer (a.k.a. alarm) */
229static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
230 int64_t raw;
231 uint32_t tenms;
232
233 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
234 if (raw < 0) return -1;
235
236 tenms = (uint32_t)raw & 0xffffff;
237
238 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
239 res->tv_sec = (time_t)(tenms / 100);
240
241 return 0;
242}
243
244
245/* Read the i8042 delay timer */
246static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
247 int64_t raw;
248 uint32_t tenms;
249
250 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
251 if (raw < 0) return -1;
252
253 tenms = (uint32_t)raw & 0xffffff;
254
255 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
256 res->tv_sec = (time_t)(tenms / 100);
257
258 return 0;
259}
260
261
262/* Read the i8042 cycle timer (a.k.a. periodic) */
263static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
264 int64_t raw;
265 uint32_t tenms;
266
267 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
268 if (raw < 0) return -1;
269
270 tenms = (uint32_t)raw & 0xffffff;
271
272 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
273 res->tv_sec = (time_t)(tenms / 100);
274
275 return 0;
276}
277
278
279/* Set the i8042 real-time clock */
280static int hp_sdc_rtc_set_rt (struct timeval *setto)
281{
282 uint32_t tenms;
283 unsigned int days;
284 hp_sdc_transaction t;
285 uint8_t tseq[11] = {
286 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
287 HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
288 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
289 HP_SDC_CMD_SET_RTD, 2, 0, 0
290 };
291
292 t.endidx = 10;
293
294 if (0xffff < setto->tv_sec / 86400) return -1;
295 days = setto->tv_sec / 86400;
296 if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
297 days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
298 if (days > 0xffff) return -1;
299
300 if (0xffffff < setto->tv_sec) return -1;
301 tenms = setto->tv_sec * 100;
302 if (0xffffff < setto->tv_usec / 10000) return -1;
303 tenms += setto->tv_usec / 10000;
304 if (tenms > 0xffffff) return -1;
305
306 tseq[3] = (uint8_t)(tenms & 0xff);
307 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
308 tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
309
310 tseq[9] = (uint8_t)(days & 0xff);
311 tseq[10] = (uint8_t)((days >> 8) & 0xff);
312
313 t.seq = tseq;
314
315 if (hp_sdc_enqueue_transaction(&t)) return -1;
316 return 0;
317}
318
319/* Set the i8042 fast handshake timer */
320static int hp_sdc_rtc_set_fhs (struct timeval *setto)
321{
322 uint32_t tenms;
323 hp_sdc_transaction t;
324 uint8_t tseq[5] = {
325 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
326 HP_SDC_CMD_SET_FHS, 2, 0, 0
327 };
328
329 t.endidx = 4;
330
331 if (0xffff < setto->tv_sec) return -1;
332 tenms = setto->tv_sec * 100;
333 if (0xffff < setto->tv_usec / 10000) return -1;
334 tenms += setto->tv_usec / 10000;
335 if (tenms > 0xffff) return -1;
336
337 tseq[3] = (uint8_t)(tenms & 0xff);
338 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
339
340 t.seq = tseq;
341
342 if (hp_sdc_enqueue_transaction(&t)) return -1;
343 return 0;
344}
345
346
347/* Set the i8042 match timer (a.k.a. alarm) */
348#define hp_sdc_rtc_set_mt (setto) \
349 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
350
351/* Set the i8042 delay timer */
352#define hp_sdc_rtc_set_dt (setto) \
353 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
354
355/* Set the i8042 cycle timer (a.k.a. periodic) */
356#define hp_sdc_rtc_set_ct (setto) \
357 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
358
359/* Set one of the i8042 3-byte wide timers */
360static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
361{
362 uint32_t tenms;
363 hp_sdc_transaction t;
364 uint8_t tseq[6] = {
365 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
366 0, 3, 0, 0, 0
367 };
368
369 t.endidx = 6;
370
371 if (0xffffff < setto->tv_sec) return -1;
372 tenms = setto->tv_sec * 100;
373 if (0xffffff < setto->tv_usec / 10000) return -1;
374 tenms += setto->tv_usec / 10000;
375 if (tenms > 0xffffff) return -1;
376
377 tseq[1] = setcmd;
378 tseq[3] = (uint8_t)(tenms & 0xff);
379 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
380 tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
381
382 t.seq = tseq;
383
384 if (hp_sdc_enqueue_transaction(&t)) {
385 return -1;
386 }
387 return 0;
388}
389
Al Viro6ce6b3a2006-10-14 16:52:36 +0100390static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700391 size_t count, loff_t *ppos) {
392 ssize_t retval;
393
394 if (count < sizeof(unsigned long))
395 return -EINVAL;
396
Al Viro6ce6b3a2006-10-14 16:52:36 +0100397 retval = put_user(68, (unsigned long __user *)buf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398 return retval;
399}
400
401static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
402{
403 unsigned long l;
404
405 l = 0;
406 if (l != 0)
407 return POLLIN | POLLRDNORM;
408 return 0;
409}
410
411static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
412{
Arnd Bergmann986f8b82008-05-20 19:15:58 +0200413 cycle_kernel_lock();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700414 return 0;
415}
416
417static int hp_sdc_rtc_release(struct inode *inode, struct file *file)
418{
419 /* Turn off interrupts? */
420
421 if (file->f_flags & FASYNC) {
422 hp_sdc_rtc_fasync (-1, file, 0);
423 }
424
425 return 0;
426}
427
428static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
429{
430 return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
431}
432
433static int hp_sdc_rtc_proc_output (char *buf)
434{
435#define YN(bit) ("no")
436#define NY(bit) ("yes")
437 char *p;
438 struct rtc_time tm;
439 struct timeval tv;
440
441 memset(&tm, 0, sizeof(struct rtc_time));
442
443 p = buf;
444
445 if (hp_sdc_rtc_read_bbrtc(&tm)) {
446 p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
447 } else {
448 p += sprintf(p,
449 "rtc_time\t: %02d:%02d:%02d\n"
450 "rtc_date\t: %04d-%02d-%02d\n"
451 "rtc_epoch\t: %04lu\n",
452 tm.tm_hour, tm.tm_min, tm.tm_sec,
453 tm.tm_year + 1900, tm.tm_mon + 1,
454 tm.tm_mday, epoch);
455 }
456
457 if (hp_sdc_rtc_read_rt(&tv)) {
458 p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
459 } else {
460 p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n",
461 tv.tv_sec, tv.tv_usec/1000);
462 }
463
464 if (hp_sdc_rtc_read_fhs(&tv)) {
465 p += sprintf(p, "handshake\t: READ FAILED!\n");
466 } else {
467 p += sprintf(p, "handshake\t: %ld.%02d seconds\n",
468 tv.tv_sec, tv.tv_usec/1000);
469 }
470
471 if (hp_sdc_rtc_read_mt(&tv)) {
472 p += sprintf(p, "alarm\t\t: READ FAILED!\n");
473 } else {
474 p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n",
475 tv.tv_sec, tv.tv_usec/1000);
476 }
477
478 if (hp_sdc_rtc_read_dt(&tv)) {
479 p += sprintf(p, "delay\t\t: READ FAILED!\n");
480 } else {
481 p += sprintf(p, "delay\t\t: %ld.%02d seconds\n",
482 tv.tv_sec, tv.tv_usec/1000);
483 }
484
485 if (hp_sdc_rtc_read_ct(&tv)) {
486 p += sprintf(p, "periodic\t: READ FAILED!\n");
487 } else {
488 p += sprintf(p, "periodic\t: %ld.%02d seconds\n",
489 tv.tv_sec, tv.tv_usec/1000);
490 }
491
492 p += sprintf(p,
493 "DST_enable\t: %s\n"
494 "BCD\t\t: %s\n"
495 "24hr\t\t: %s\n"
496 "square_wave\t: %s\n"
497 "alarm_IRQ\t: %s\n"
498 "update_IRQ\t: %s\n"
499 "periodic_IRQ\t: %s\n"
500 "periodic_freq\t: %ld\n"
501 "batt_status\t: %s\n",
502 YN(RTC_DST_EN),
503 NY(RTC_DM_BINARY),
504 YN(RTC_24H),
505 YN(RTC_SQWE),
506 YN(RTC_AIE),
507 YN(RTC_UIE),
508 YN(RTC_PIE),
509 1UL,
510 1 ? "okay" : "dead");
511
512 return p - buf;
513#undef YN
514#undef NY
515}
516
517static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
518 int count, int *eof, void *data)
519{
520 int len = hp_sdc_rtc_proc_output (page);
521 if (len <= off+count) *eof = 1;
522 *start = page + off;
523 len -= off;
524 if (len>count) len = count;
525 if (len<0) len = 0;
526 return len;
527}
528
529static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
530 unsigned int cmd, unsigned long arg)
531{
532#if 1
533 return -EINVAL;
534#else
535
536 struct rtc_time wtime;
537 struct timeval ttime;
538 int use_wtime = 0;
539
540 /* This needs major work. */
541
542 switch (cmd) {
543
544 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
545 case RTC_AIE_ON: /* Allow alarm interrupts. */
546 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
547 case RTC_PIE_ON: /* Allow periodic ints */
548 case RTC_UIE_ON: /* Allow ints for RTC updates. */
549 case RTC_UIE_OFF: /* Allow ints for RTC updates. */
550 {
551 /* We cannot mask individual user timers and we
552 cannot tell them apart when they occur, so it
553 would be disingenuous to succeed these IOCTLs */
554 return -EINVAL;
555 }
556 case RTC_ALM_READ: /* Read the present alarm time */
557 {
558 if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
559 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
560
561 wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600;
562 wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60;
563 wtime.tm_sec = ttime.tv_sec;
564
565 break;
566 }
567 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
568 {
569 return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
570 }
571 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
572 {
573 /*
574 * The max we can do is 100Hz.
575 */
576
577 if ((arg < 1) || (arg > 100)) return -EINVAL;
578 ttime.tv_sec = 0;
579 ttime.tv_usec = 1000000 / arg;
580 if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
581 hp_sdc_rtc_freq = arg;
582 return 0;
583 }
584 case RTC_ALM_SET: /* Store a time into the alarm */
585 {
586 /*
587 * This expects a struct hp_sdc_rtc_time. Writing 0xff means
588 * "don't care" or "match all" for PC timers. The HP SDC
589 * does not support that perk, but it could be emulated fairly
590 * easily. Only the tm_hour, tm_min and tm_sec are used.
591 * We could do it with 10ms accuracy with the HP SDC, if the
592 * rtc interface left us a way to do that.
593 */
594 struct hp_sdc_rtc_time alm_tm;
595
596 if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
597 sizeof(struct hp_sdc_rtc_time)))
598 return -EFAULT;
599
600 if (alm_tm.tm_hour > 23) return -EINVAL;
601 if (alm_tm.tm_min > 59) return -EINVAL;
602 if (alm_tm.tm_sec > 59) return -EINVAL;
603
604 ttime.sec = alm_tm.tm_hour * 3600 +
605 alm_tm.tm_min * 60 + alm_tm.tm_sec;
606 ttime.usec = 0;
607 if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
608 return 0;
609 }
610 case RTC_RD_TIME: /* Read the time/date from RTC */
611 {
612 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
613 break;
614 }
615 case RTC_SET_TIME: /* Set the RTC */
616 {
617 struct rtc_time hp_sdc_rtc_tm;
618 unsigned char mon, day, hrs, min, sec, leap_yr;
619 unsigned int yrs;
620
621 if (!capable(CAP_SYS_TIME))
622 return -EACCES;
623 if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
624 sizeof(struct rtc_time)))
625 return -EFAULT;
626
627 yrs = hp_sdc_rtc_tm.tm_year + 1900;
628 mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
629 day = hp_sdc_rtc_tm.tm_mday;
630 hrs = hp_sdc_rtc_tm.tm_hour;
631 min = hp_sdc_rtc_tm.tm_min;
632 sec = hp_sdc_rtc_tm.tm_sec;
633
634 if (yrs < 1970)
635 return -EINVAL;
636
637 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
638
639 if ((mon > 12) || (day == 0))
640 return -EINVAL;
641 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
642 return -EINVAL;
643 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
644 return -EINVAL;
645
646 if ((yrs -= eH) > 255) /* They are unsigned */
647 return -EINVAL;
648
649
650 return 0;
651 }
652 case RTC_EPOCH_READ: /* Read the epoch. */
653 {
654 return put_user (epoch, (unsigned long *)arg);
655 }
656 case RTC_EPOCH_SET: /* Set the epoch. */
657 {
658 /*
659 * There were no RTC clocks before 1900.
660 */
661 if (arg < 1900)
662 return -EINVAL;
663 if (!capable(CAP_SYS_TIME))
664 return -EACCES;
665
666 epoch = arg;
667 return 0;
668 }
669 default:
670 return -EINVAL;
671 }
672 return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
673#endif
674}
675
Arjan van de Ven2b8693c2007-02-12 00:55:32 -0800676static const struct file_operations hp_sdc_rtc_fops = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700677 .owner = THIS_MODULE,
Marcelo Tosatti70c00ba2006-01-08 01:00:29 -0800678 .llseek = no_llseek,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700679 .read = hp_sdc_rtc_read,
680 .poll = hp_sdc_rtc_poll,
681 .ioctl = hp_sdc_rtc_ioctl,
682 .open = hp_sdc_rtc_open,
683 .release = hp_sdc_rtc_release,
684 .fasync = hp_sdc_rtc_fasync,
685};
686
687static struct miscdevice hp_sdc_rtc_dev = {
688 .minor = RTC_MINOR,
689 .name = "rtc_HIL",
690 .fops = &hp_sdc_rtc_fops
691};
692
693static int __init hp_sdc_rtc_init(void)
694{
695 int ret;
696
Geert Uytterhoeveneb986302008-05-18 20:47:17 +0200697#ifdef __mc68000__
698 if (!MACH_IS_HP300)
699 return -ENODEV;
700#endif
701
Linus Torvalds1da177e2005-04-16 15:20:36 -0700702 init_MUTEX(&i8042tregs);
703
704 if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
705 return ret;
Neil Horman5d469ec2006-12-06 20:37:08 -0800706 if (misc_register(&hp_sdc_rtc_dev) != 0)
707 printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
708
Al Viro6ce6b3a2006-10-14 16:52:36 +0100709 create_proc_read_entry ("driver/rtc", 0, NULL,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710 hp_sdc_rtc_read_proc, NULL);
711
712 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
713 "(RTC v " RTC_VERSION ")\n");
714
715 return 0;
716}
717
718static void __exit hp_sdc_rtc_exit(void)
719{
720 remove_proc_entry ("driver/rtc", NULL);
721 misc_deregister(&hp_sdc_rtc_dev);
722 hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
723 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
724}
725
726module_init(hp_sdc_rtc_init);
727module_exit(hp_sdc_rtc_exit);