blob: 785c33cf486491afc6b2d50d568d5db884b31723 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Implementation of the policy database.
3 *
4 * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5 */
6
7/*
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 * Added conditional policy language extensions
15 *
16 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation, version 2.
21 */
22
23#include <linux/kernel.h>
24#include <linux/slab.h>
25#include <linux/string.h>
26#include <linux/errno.h>
27#include "security.h"
28
29#include "policydb.h"
30#include "conditional.h"
31#include "mls.h"
32
33#define _DEBUG_HASHES
34
35#ifdef DEBUG_HASHES
36static char *symtab_name[SYM_NUM] = {
37 "common prefixes",
38 "classes",
39 "roles",
40 "types",
41 "users",
42 "bools",
43 "levels",
44 "categories",
45};
46#endif
47
48int selinux_mls_enabled = 0;
49
50static unsigned int symtab_sizes[SYM_NUM] = {
51 2,
52 32,
53 16,
54 512,
55 128,
56 16,
57 16,
58 16,
59};
60
61struct policydb_compat_info {
62 int version;
63 int sym_num;
64 int ocon_num;
65};
66
67/* These need to be updated if SYM_NUM or OCON_NUM changes */
68static struct policydb_compat_info policydb_compat[] = {
69 {
70 .version = POLICYDB_VERSION_BASE,
71 .sym_num = SYM_NUM - 3,
72 .ocon_num = OCON_NUM - 1,
73 },
74 {
75 .version = POLICYDB_VERSION_BOOL,
76 .sym_num = SYM_NUM - 2,
77 .ocon_num = OCON_NUM - 1,
78 },
79 {
80 .version = POLICYDB_VERSION_IPV6,
81 .sym_num = SYM_NUM - 2,
82 .ocon_num = OCON_NUM,
83 },
84 {
85 .version = POLICYDB_VERSION_NLCLASS,
86 .sym_num = SYM_NUM - 2,
87 .ocon_num = OCON_NUM,
88 },
89 {
90 .version = POLICYDB_VERSION_MLS,
91 .sym_num = SYM_NUM,
92 .ocon_num = OCON_NUM,
93 },
94};
95
96static struct policydb_compat_info *policydb_lookup_compat(int version)
97{
98 int i;
99 struct policydb_compat_info *info = NULL;
100
101 for (i = 0; i < sizeof(policydb_compat)/sizeof(*info); i++) {
102 if (policydb_compat[i].version == version) {
103 info = &policydb_compat[i];
104 break;
105 }
106 }
107 return info;
108}
109
110/*
111 * Initialize the role table.
112 */
113static int roles_init(struct policydb *p)
114{
115 char *key = NULL;
116 int rc;
117 struct role_datum *role;
118
119 role = kmalloc(sizeof(*role), GFP_KERNEL);
120 if (!role) {
121 rc = -ENOMEM;
122 goto out;
123 }
124 memset(role, 0, sizeof(*role));
125 role->value = ++p->p_roles.nprim;
126 if (role->value != OBJECT_R_VAL) {
127 rc = -EINVAL;
128 goto out_free_role;
129 }
130 key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
131 if (!key) {
132 rc = -ENOMEM;
133 goto out_free_role;
134 }
135 strcpy(key, OBJECT_R);
136 rc = hashtab_insert(p->p_roles.table, key, role);
137 if (rc)
138 goto out_free_key;
139out:
140 return rc;
141
142out_free_key:
143 kfree(key);
144out_free_role:
145 kfree(role);
146 goto out;
147}
148
149/*
150 * Initialize a policy database structure.
151 */
152static int policydb_init(struct policydb *p)
153{
154 int i, rc;
155
156 memset(p, 0, sizeof(*p));
157
158 for (i = 0; i < SYM_NUM; i++) {
159 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
160 if (rc)
161 goto out_free_symtab;
162 }
163
164 rc = avtab_init(&p->te_avtab);
165 if (rc)
166 goto out_free_symtab;
167
168 rc = roles_init(p);
169 if (rc)
170 goto out_free_avtab;
171
172 rc = cond_policydb_init(p);
173 if (rc)
174 goto out_free_avtab;
175
176out:
177 return rc;
178
179out_free_avtab:
180 avtab_destroy(&p->te_avtab);
181
182out_free_symtab:
183 for (i = 0; i < SYM_NUM; i++)
184 hashtab_destroy(p->symtab[i].table);
185 goto out;
186}
187
188/*
189 * The following *_index functions are used to
190 * define the val_to_name and val_to_struct arrays
191 * in a policy database structure. The val_to_name
192 * arrays are used when converting security context
193 * structures into string representations. The
194 * val_to_struct arrays are used when the attributes
195 * of a class, role, or user are needed.
196 */
197
198static int common_index(void *key, void *datum, void *datap)
199{
200 struct policydb *p;
201 struct common_datum *comdatum;
202
203 comdatum = datum;
204 p = datap;
205 if (!comdatum->value || comdatum->value > p->p_commons.nprim)
206 return -EINVAL;
207 p->p_common_val_to_name[comdatum->value - 1] = key;
208 return 0;
209}
210
211static int class_index(void *key, void *datum, void *datap)
212{
213 struct policydb *p;
214 struct class_datum *cladatum;
215
216 cladatum = datum;
217 p = datap;
218 if (!cladatum->value || cladatum->value > p->p_classes.nprim)
219 return -EINVAL;
220 p->p_class_val_to_name[cladatum->value - 1] = key;
221 p->class_val_to_struct[cladatum->value - 1] = cladatum;
222 return 0;
223}
224
225static int role_index(void *key, void *datum, void *datap)
226{
227 struct policydb *p;
228 struct role_datum *role;
229
230 role = datum;
231 p = datap;
232 if (!role->value || role->value > p->p_roles.nprim)
233 return -EINVAL;
234 p->p_role_val_to_name[role->value - 1] = key;
235 p->role_val_to_struct[role->value - 1] = role;
236 return 0;
237}
238
239static int type_index(void *key, void *datum, void *datap)
240{
241 struct policydb *p;
242 struct type_datum *typdatum;
243
244 typdatum = datum;
245 p = datap;
246
247 if (typdatum->primary) {
248 if (!typdatum->value || typdatum->value > p->p_types.nprim)
249 return -EINVAL;
250 p->p_type_val_to_name[typdatum->value - 1] = key;
251 }
252
253 return 0;
254}
255
256static int user_index(void *key, void *datum, void *datap)
257{
258 struct policydb *p;
259 struct user_datum *usrdatum;
260
261 usrdatum = datum;
262 p = datap;
263 if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
264 return -EINVAL;
265 p->p_user_val_to_name[usrdatum->value - 1] = key;
266 p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
267 return 0;
268}
269
270static int sens_index(void *key, void *datum, void *datap)
271{
272 struct policydb *p;
273 struct level_datum *levdatum;
274
275 levdatum = datum;
276 p = datap;
277
278 if (!levdatum->isalias) {
279 if (!levdatum->level->sens ||
280 levdatum->level->sens > p->p_levels.nprim)
281 return -EINVAL;
282 p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
283 }
284
285 return 0;
286}
287
288static int cat_index(void *key, void *datum, void *datap)
289{
290 struct policydb *p;
291 struct cat_datum *catdatum;
292
293 catdatum = datum;
294 p = datap;
295
296 if (!catdatum->isalias) {
297 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
298 return -EINVAL;
299 p->p_cat_val_to_name[catdatum->value - 1] = key;
300 }
301
302 return 0;
303}
304
305static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
306{
307 common_index,
308 class_index,
309 role_index,
310 type_index,
311 user_index,
312 cond_index_bool,
313 sens_index,
314 cat_index,
315};
316
317/*
318 * Define the common val_to_name array and the class
319 * val_to_name and val_to_struct arrays in a policy
320 * database structure.
321 *
322 * Caller must clean up upon failure.
323 */
324static int policydb_index_classes(struct policydb *p)
325{
326 int rc;
327
328 p->p_common_val_to_name =
329 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
330 if (!p->p_common_val_to_name) {
331 rc = -ENOMEM;
332 goto out;
333 }
334
335 rc = hashtab_map(p->p_commons.table, common_index, p);
336 if (rc)
337 goto out;
338
339 p->class_val_to_struct =
340 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
341 if (!p->class_val_to_struct) {
342 rc = -ENOMEM;
343 goto out;
344 }
345
346 p->p_class_val_to_name =
347 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
348 if (!p->p_class_val_to_name) {
349 rc = -ENOMEM;
350 goto out;
351 }
352
353 rc = hashtab_map(p->p_classes.table, class_index, p);
354out:
355 return rc;
356}
357
358#ifdef DEBUG_HASHES
359static void symtab_hash_eval(struct symtab *s)
360{
361 int i;
362
363 for (i = 0; i < SYM_NUM; i++) {
364 struct hashtab *h = s[i].table;
365 struct hashtab_info info;
366
367 hashtab_stat(h, &info);
368 printk(KERN_INFO "%s: %d entries and %d/%d buckets used, "
369 "longest chain length %d\n", symtab_name[i], h->nel,
370 info.slots_used, h->size, info.max_chain_len);
371 }
372}
373#endif
374
375/*
376 * Define the other val_to_name and val_to_struct arrays
377 * in a policy database structure.
378 *
379 * Caller must clean up on failure.
380 */
381static int policydb_index_others(struct policydb *p)
382{
383 int i, rc = 0;
384
385 printk(KERN_INFO "security: %d users, %d roles, %d types, %d bools",
386 p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
387 if (selinux_mls_enabled)
388 printk(", %d sens, %d cats", p->p_levels.nprim,
389 p->p_cats.nprim);
390 printk("\n");
391
392 printk(KERN_INFO "security: %d classes, %d rules\n",
393 p->p_classes.nprim, p->te_avtab.nel);
394
395#ifdef DEBUG_HASHES
396 avtab_hash_eval(&p->te_avtab, "rules");
397 symtab_hash_eval(p->symtab);
398#endif
399
400 p->role_val_to_struct =
401 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
402 GFP_KERNEL);
403 if (!p->role_val_to_struct) {
404 rc = -ENOMEM;
405 goto out;
406 }
407
408 p->user_val_to_struct =
409 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
410 GFP_KERNEL);
411 if (!p->user_val_to_struct) {
412 rc = -ENOMEM;
413 goto out;
414 }
415
416 if (cond_init_bool_indexes(p)) {
417 rc = -ENOMEM;
418 goto out;
419 }
420
421 for (i = SYM_ROLES; i < SYM_NUM; i++) {
422 p->sym_val_to_name[i] =
423 kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
424 if (!p->sym_val_to_name[i]) {
425 rc = -ENOMEM;
426 goto out;
427 }
428 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
429 if (rc)
430 goto out;
431 }
432
433out:
434 return rc;
435}
436
437/*
438 * The following *_destroy functions are used to
439 * free any memory allocated for each kind of
440 * symbol data in the policy database.
441 */
442
443static int perm_destroy(void *key, void *datum, void *p)
444{
445 kfree(key);
446 kfree(datum);
447 return 0;
448}
449
450static int common_destroy(void *key, void *datum, void *p)
451{
452 struct common_datum *comdatum;
453
454 kfree(key);
455 comdatum = datum;
456 hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
457 hashtab_destroy(comdatum->permissions.table);
458 kfree(datum);
459 return 0;
460}
461
462static int class_destroy(void *key, void *datum, void *p)
463{
464 struct class_datum *cladatum;
465 struct constraint_node *constraint, *ctemp;
466 struct constraint_expr *e, *etmp;
467
468 kfree(key);
469 cladatum = datum;
470 hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
471 hashtab_destroy(cladatum->permissions.table);
472 constraint = cladatum->constraints;
473 while (constraint) {
474 e = constraint->expr;
475 while (e) {
476 ebitmap_destroy(&e->names);
477 etmp = e;
478 e = e->next;
479 kfree(etmp);
480 }
481 ctemp = constraint;
482 constraint = constraint->next;
483 kfree(ctemp);
484 }
485
486 constraint = cladatum->validatetrans;
487 while (constraint) {
488 e = constraint->expr;
489 while (e) {
490 ebitmap_destroy(&e->names);
491 etmp = e;
492 e = e->next;
493 kfree(etmp);
494 }
495 ctemp = constraint;
496 constraint = constraint->next;
497 kfree(ctemp);
498 }
499
500 kfree(cladatum->comkey);
501 kfree(datum);
502 return 0;
503}
504
505static int role_destroy(void *key, void *datum, void *p)
506{
507 struct role_datum *role;
508
509 kfree(key);
510 role = datum;
511 ebitmap_destroy(&role->dominates);
512 ebitmap_destroy(&role->types);
513 kfree(datum);
514 return 0;
515}
516
517static int type_destroy(void *key, void *datum, void *p)
518{
519 kfree(key);
520 kfree(datum);
521 return 0;
522}
523
524static int user_destroy(void *key, void *datum, void *p)
525{
526 struct user_datum *usrdatum;
527
528 kfree(key);
529 usrdatum = datum;
530 ebitmap_destroy(&usrdatum->roles);
531 ebitmap_destroy(&usrdatum->range.level[0].cat);
532 ebitmap_destroy(&usrdatum->range.level[1].cat);
533 ebitmap_destroy(&usrdatum->dfltlevel.cat);
534 kfree(datum);
535 return 0;
536}
537
538static int sens_destroy(void *key, void *datum, void *p)
539{
540 struct level_datum *levdatum;
541
542 kfree(key);
543 levdatum = datum;
544 ebitmap_destroy(&levdatum->level->cat);
545 kfree(levdatum->level);
546 kfree(datum);
547 return 0;
548}
549
550static int cat_destroy(void *key, void *datum, void *p)
551{
552 kfree(key);
553 kfree(datum);
554 return 0;
555}
556
557static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
558{
559 common_destroy,
560 class_destroy,
561 role_destroy,
562 type_destroy,
563 user_destroy,
564 cond_destroy_bool,
565 sens_destroy,
566 cat_destroy,
567};
568
569static void ocontext_destroy(struct ocontext *c, int i)
570{
571 context_destroy(&c->context[0]);
572 context_destroy(&c->context[1]);
573 if (i == OCON_ISID || i == OCON_FS ||
574 i == OCON_NETIF || i == OCON_FSUSE)
575 kfree(c->u.name);
576 kfree(c);
577}
578
579/*
580 * Free any memory allocated by a policy database structure.
581 */
582void policydb_destroy(struct policydb *p)
583{
584 struct ocontext *c, *ctmp;
585 struct genfs *g, *gtmp;
586 int i;
587
588 for (i = 0; i < SYM_NUM; i++) {
589 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
590 hashtab_destroy(p->symtab[i].table);
591 }
592
Jesper Juhl9a5f04b2005-06-25 14:58:51 -0700593 for (i = 0; i < SYM_NUM; i++)
594 kfree(p->sym_val_to_name[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700595
Jesper Juhl9a5f04b2005-06-25 14:58:51 -0700596 kfree(p->class_val_to_struct);
597 kfree(p->role_val_to_struct);
598 kfree(p->user_val_to_struct);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700599
600 avtab_destroy(&p->te_avtab);
601
602 for (i = 0; i < OCON_NUM; i++) {
603 c = p->ocontexts[i];
604 while (c) {
605 ctmp = c;
606 c = c->next;
607 ocontext_destroy(ctmp,i);
608 }
609 }
610
611 g = p->genfs;
612 while (g) {
613 kfree(g->fstype);
614 c = g->head;
615 while (c) {
616 ctmp = c;
617 c = c->next;
618 ocontext_destroy(ctmp,OCON_FSUSE);
619 }
620 gtmp = g;
621 g = g->next;
622 kfree(gtmp);
623 }
624
625 cond_policydb_destroy(p);
626
627 return;
628}
629
630/*
631 * Load the initial SIDs specified in a policy database
632 * structure into a SID table.
633 */
634int policydb_load_isids(struct policydb *p, struct sidtab *s)
635{
636 struct ocontext *head, *c;
637 int rc;
638
639 rc = sidtab_init(s);
640 if (rc) {
641 printk(KERN_ERR "security: out of memory on SID table init\n");
642 goto out;
643 }
644
645 head = p->ocontexts[OCON_ISID];
646 for (c = head; c; c = c->next) {
647 if (!c->context[0].user) {
648 printk(KERN_ERR "security: SID %s was never "
649 "defined.\n", c->u.name);
650 rc = -EINVAL;
651 goto out;
652 }
653 if (sidtab_insert(s, c->sid[0], &c->context[0])) {
654 printk(KERN_ERR "security: unable to load initial "
655 "SID %s.\n", c->u.name);
656 rc = -EINVAL;
657 goto out;
658 }
659 }
660out:
661 return rc;
662}
663
664/*
665 * Return 1 if the fields in the security context
666 * structure `c' are valid. Return 0 otherwise.
667 */
668int policydb_context_isvalid(struct policydb *p, struct context *c)
669{
670 struct role_datum *role;
671 struct user_datum *usrdatum;
672
673 if (!c->role || c->role > p->p_roles.nprim)
674 return 0;
675
676 if (!c->user || c->user > p->p_users.nprim)
677 return 0;
678
679 if (!c->type || c->type > p->p_types.nprim)
680 return 0;
681
682 if (c->role != OBJECT_R_VAL) {
683 /*
684 * Role must be authorized for the type.
685 */
686 role = p->role_val_to_struct[c->role - 1];
687 if (!ebitmap_get_bit(&role->types,
688 c->type - 1))
689 /* role may not be associated with type */
690 return 0;
691
692 /*
693 * User must be authorized for the role.
694 */
695 usrdatum = p->user_val_to_struct[c->user - 1];
696 if (!usrdatum)
697 return 0;
698
699 if (!ebitmap_get_bit(&usrdatum->roles,
700 c->role - 1))
701 /* user may not be associated with role */
702 return 0;
703 }
704
705 if (!mls_context_isvalid(p, c))
706 return 0;
707
708 return 1;
709}
710
711/*
712 * Read a MLS range structure from a policydb binary
713 * representation file.
714 */
715static int mls_read_range_helper(struct mls_range *r, void *fp)
716{
717 u32 buf[2], items;
718 int rc;
719
720 rc = next_entry(buf, fp, sizeof(u32));
721 if (rc < 0)
722 goto out;
723
724 items = le32_to_cpu(buf[0]);
725 if (items > ARRAY_SIZE(buf)) {
726 printk(KERN_ERR "security: mls: range overflow\n");
727 rc = -EINVAL;
728 goto out;
729 }
730 rc = next_entry(buf, fp, sizeof(u32) * items);
731 if (rc < 0) {
732 printk(KERN_ERR "security: mls: truncated range\n");
733 goto out;
734 }
735 r->level[0].sens = le32_to_cpu(buf[0]);
736 if (items > 1)
737 r->level[1].sens = le32_to_cpu(buf[1]);
738 else
739 r->level[1].sens = r->level[0].sens;
740
741 rc = ebitmap_read(&r->level[0].cat, fp);
742 if (rc) {
743 printk(KERN_ERR "security: mls: error reading low "
744 "categories\n");
745 goto out;
746 }
747 if (items > 1) {
748 rc = ebitmap_read(&r->level[1].cat, fp);
749 if (rc) {
750 printk(KERN_ERR "security: mls: error reading high "
751 "categories\n");
752 goto bad_high;
753 }
754 } else {
755 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
756 if (rc) {
757 printk(KERN_ERR "security: mls: out of memory\n");
758 goto bad_high;
759 }
760 }
761
762 rc = 0;
763out:
764 return rc;
765bad_high:
766 ebitmap_destroy(&r->level[0].cat);
767 goto out;
768}
769
770/*
771 * Read and validate a security context structure
772 * from a policydb binary representation file.
773 */
774static int context_read_and_validate(struct context *c,
775 struct policydb *p,
776 void *fp)
777{
778 u32 buf[3];
779 int rc;
780
781 rc = next_entry(buf, fp, sizeof buf);
782 if (rc < 0) {
783 printk(KERN_ERR "security: context truncated\n");
784 goto out;
785 }
786 c->user = le32_to_cpu(buf[0]);
787 c->role = le32_to_cpu(buf[1]);
788 c->type = le32_to_cpu(buf[2]);
789 if (p->policyvers >= POLICYDB_VERSION_MLS) {
790 if (mls_read_range_helper(&c->range, fp)) {
791 printk(KERN_ERR "security: error reading MLS range of "
792 "context\n");
793 rc = -EINVAL;
794 goto out;
795 }
796 }
797
798 if (!policydb_context_isvalid(p, c)) {
799 printk(KERN_ERR "security: invalid security context\n");
800 context_destroy(c);
801 rc = -EINVAL;
802 }
803out:
804 return rc;
805}
806
807/*
808 * The following *_read functions are used to
809 * read the symbol data from a policy database
810 * binary representation file.
811 */
812
813static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
814{
815 char *key = NULL;
816 struct perm_datum *perdatum;
817 int rc;
818 u32 buf[2], len;
819
820 perdatum = kmalloc(sizeof(*perdatum), GFP_KERNEL);
821 if (!perdatum) {
822 rc = -ENOMEM;
823 goto out;
824 }
825 memset(perdatum, 0, sizeof(*perdatum));
826
827 rc = next_entry(buf, fp, sizeof buf);
828 if (rc < 0)
829 goto bad;
830
831 len = le32_to_cpu(buf[0]);
832 perdatum->value = le32_to_cpu(buf[1]);
833
834 key = kmalloc(len + 1,GFP_KERNEL);
835 if (!key) {
836 rc = -ENOMEM;
837 goto bad;
838 }
839 rc = next_entry(key, fp, len);
840 if (rc < 0)
841 goto bad;
842 key[len] = 0;
843
844 rc = hashtab_insert(h, key, perdatum);
845 if (rc)
846 goto bad;
847out:
848 return rc;
849bad:
850 perm_destroy(key, perdatum, NULL);
851 goto out;
852}
853
854static int common_read(struct policydb *p, struct hashtab *h, void *fp)
855{
856 char *key = NULL;
857 struct common_datum *comdatum;
858 u32 buf[4], len, nel;
859 int i, rc;
860
861 comdatum = kmalloc(sizeof(*comdatum), GFP_KERNEL);
862 if (!comdatum) {
863 rc = -ENOMEM;
864 goto out;
865 }
866 memset(comdatum, 0, sizeof(*comdatum));
867
868 rc = next_entry(buf, fp, sizeof buf);
869 if (rc < 0)
870 goto bad;
871
872 len = le32_to_cpu(buf[0]);
873 comdatum->value = le32_to_cpu(buf[1]);
874
875 rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
876 if (rc)
877 goto bad;
878 comdatum->permissions.nprim = le32_to_cpu(buf[2]);
879 nel = le32_to_cpu(buf[3]);
880
881 key = kmalloc(len + 1,GFP_KERNEL);
882 if (!key) {
883 rc = -ENOMEM;
884 goto bad;
885 }
886 rc = next_entry(key, fp, len);
887 if (rc < 0)
888 goto bad;
889 key[len] = 0;
890
891 for (i = 0; i < nel; i++) {
892 rc = perm_read(p, comdatum->permissions.table, fp);
893 if (rc)
894 goto bad;
895 }
896
897 rc = hashtab_insert(h, key, comdatum);
898 if (rc)
899 goto bad;
900out:
901 return rc;
902bad:
903 common_destroy(key, comdatum, NULL);
904 goto out;
905}
906
907static int read_cons_helper(struct constraint_node **nodep, int ncons,
908 int allowxtarget, void *fp)
909{
910 struct constraint_node *c, *lc;
911 struct constraint_expr *e, *le;
912 u32 buf[3], nexpr;
913 int rc, i, j, depth;
914
915 lc = NULL;
916 for (i = 0; i < ncons; i++) {
917 c = kmalloc(sizeof(*c), GFP_KERNEL);
918 if (!c)
919 return -ENOMEM;
920 memset(c, 0, sizeof(*c));
921
922 if (lc) {
923 lc->next = c;
924 } else {
925 *nodep = c;
926 }
927
928 rc = next_entry(buf, fp, (sizeof(u32) * 2));
929 if (rc < 0)
930 return rc;
931 c->permissions = le32_to_cpu(buf[0]);
932 nexpr = le32_to_cpu(buf[1]);
933 le = NULL;
934 depth = -1;
935 for (j = 0; j < nexpr; j++) {
936 e = kmalloc(sizeof(*e), GFP_KERNEL);
937 if (!e)
938 return -ENOMEM;
939 memset(e, 0, sizeof(*e));
940
941 if (le) {
942 le->next = e;
943 } else {
944 c->expr = e;
945 }
946
947 rc = next_entry(buf, fp, (sizeof(u32) * 3));
948 if (rc < 0)
949 return rc;
950 e->expr_type = le32_to_cpu(buf[0]);
951 e->attr = le32_to_cpu(buf[1]);
952 e->op = le32_to_cpu(buf[2]);
953
954 switch (e->expr_type) {
955 case CEXPR_NOT:
956 if (depth < 0)
957 return -EINVAL;
958 break;
959 case CEXPR_AND:
960 case CEXPR_OR:
961 if (depth < 1)
962 return -EINVAL;
963 depth--;
964 break;
965 case CEXPR_ATTR:
966 if (depth == (CEXPR_MAXDEPTH - 1))
967 return -EINVAL;
968 depth++;
969 break;
970 case CEXPR_NAMES:
971 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
972 return -EINVAL;
973 if (depth == (CEXPR_MAXDEPTH - 1))
974 return -EINVAL;
975 depth++;
976 if (ebitmap_read(&e->names, fp))
977 return -EINVAL;
978 break;
979 default:
980 return -EINVAL;
981 }
982 le = e;
983 }
984 if (depth != 0)
985 return -EINVAL;
986 lc = c;
987 }
988
989 return 0;
990}
991
992static int class_read(struct policydb *p, struct hashtab *h, void *fp)
993{
994 char *key = NULL;
995 struct class_datum *cladatum;
996 u32 buf[6], len, len2, ncons, nel;
997 int i, rc;
998
999 cladatum = kmalloc(sizeof(*cladatum), GFP_KERNEL);
1000 if (!cladatum) {
1001 rc = -ENOMEM;
1002 goto out;
1003 }
1004 memset(cladatum, 0, sizeof(*cladatum));
1005
1006 rc = next_entry(buf, fp, sizeof(u32)*6);
1007 if (rc < 0)
1008 goto bad;
1009
1010 len = le32_to_cpu(buf[0]);
1011 len2 = le32_to_cpu(buf[1]);
1012 cladatum->value = le32_to_cpu(buf[2]);
1013
1014 rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1015 if (rc)
1016 goto bad;
1017 cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1018 nel = le32_to_cpu(buf[4]);
1019
1020 ncons = le32_to_cpu(buf[5]);
1021
1022 key = kmalloc(len + 1,GFP_KERNEL);
1023 if (!key) {
1024 rc = -ENOMEM;
1025 goto bad;
1026 }
1027 rc = next_entry(key, fp, len);
1028 if (rc < 0)
1029 goto bad;
1030 key[len] = 0;
1031
1032 if (len2) {
1033 cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1034 if (!cladatum->comkey) {
1035 rc = -ENOMEM;
1036 goto bad;
1037 }
1038 rc = next_entry(cladatum->comkey, fp, len2);
1039 if (rc < 0)
1040 goto bad;
1041 cladatum->comkey[len2] = 0;
1042
1043 cladatum->comdatum = hashtab_search(p->p_commons.table,
1044 cladatum->comkey);
1045 if (!cladatum->comdatum) {
1046 printk(KERN_ERR "security: unknown common %s\n",
1047 cladatum->comkey);
1048 rc = -EINVAL;
1049 goto bad;
1050 }
1051 }
1052 for (i = 0; i < nel; i++) {
1053 rc = perm_read(p, cladatum->permissions.table, fp);
1054 if (rc)
1055 goto bad;
1056 }
1057
1058 rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1059 if (rc)
1060 goto bad;
1061
1062 if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1063 /* grab the validatetrans rules */
1064 rc = next_entry(buf, fp, sizeof(u32));
1065 if (rc < 0)
1066 goto bad;
1067 ncons = le32_to_cpu(buf[0]);
1068 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1069 if (rc)
1070 goto bad;
1071 }
1072
1073 rc = hashtab_insert(h, key, cladatum);
1074 if (rc)
1075 goto bad;
1076
1077 rc = 0;
1078out:
1079 return rc;
1080bad:
1081 class_destroy(key, cladatum, NULL);
1082 goto out;
1083}
1084
1085static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1086{
1087 char *key = NULL;
1088 struct role_datum *role;
1089 int rc;
1090 u32 buf[2], len;
1091
1092 role = kmalloc(sizeof(*role), GFP_KERNEL);
1093 if (!role) {
1094 rc = -ENOMEM;
1095 goto out;
1096 }
1097 memset(role, 0, sizeof(*role));
1098
1099 rc = next_entry(buf, fp, sizeof buf);
1100 if (rc < 0)
1101 goto bad;
1102
1103 len = le32_to_cpu(buf[0]);
1104 role->value = le32_to_cpu(buf[1]);
1105
1106 key = kmalloc(len + 1,GFP_KERNEL);
1107 if (!key) {
1108 rc = -ENOMEM;
1109 goto bad;
1110 }
1111 rc = next_entry(key, fp, len);
1112 if (rc < 0)
1113 goto bad;
1114 key[len] = 0;
1115
1116 rc = ebitmap_read(&role->dominates, fp);
1117 if (rc)
1118 goto bad;
1119
1120 rc = ebitmap_read(&role->types, fp);
1121 if (rc)
1122 goto bad;
1123
1124 if (strcmp(key, OBJECT_R) == 0) {
1125 if (role->value != OBJECT_R_VAL) {
1126 printk(KERN_ERR "Role %s has wrong value %d\n",
1127 OBJECT_R, role->value);
1128 rc = -EINVAL;
1129 goto bad;
1130 }
1131 rc = 0;
1132 goto bad;
1133 }
1134
1135 rc = hashtab_insert(h, key, role);
1136 if (rc)
1137 goto bad;
1138out:
1139 return rc;
1140bad:
1141 role_destroy(key, role, NULL);
1142 goto out;
1143}
1144
1145static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1146{
1147 char *key = NULL;
1148 struct type_datum *typdatum;
1149 int rc;
1150 u32 buf[3], len;
1151
1152 typdatum = kmalloc(sizeof(*typdatum),GFP_KERNEL);
1153 if (!typdatum) {
1154 rc = -ENOMEM;
1155 return rc;
1156 }
1157 memset(typdatum, 0, sizeof(*typdatum));
1158
1159 rc = next_entry(buf, fp, sizeof buf);
1160 if (rc < 0)
1161 goto bad;
1162
1163 len = le32_to_cpu(buf[0]);
1164 typdatum->value = le32_to_cpu(buf[1]);
1165 typdatum->primary = le32_to_cpu(buf[2]);
1166
1167 key = kmalloc(len + 1,GFP_KERNEL);
1168 if (!key) {
1169 rc = -ENOMEM;
1170 goto bad;
1171 }
1172 rc = next_entry(key, fp, len);
1173 if (rc < 0)
1174 goto bad;
1175 key[len] = 0;
1176
1177 rc = hashtab_insert(h, key, typdatum);
1178 if (rc)
1179 goto bad;
1180out:
1181 return rc;
1182bad:
1183 type_destroy(key, typdatum, NULL);
1184 goto out;
1185}
1186
1187
1188/*
1189 * Read a MLS level structure from a policydb binary
1190 * representation file.
1191 */
1192static int mls_read_level(struct mls_level *lp, void *fp)
1193{
1194 u32 buf[1];
1195 int rc;
1196
1197 memset(lp, 0, sizeof(*lp));
1198
1199 rc = next_entry(buf, fp, sizeof buf);
1200 if (rc < 0) {
1201 printk(KERN_ERR "security: mls: truncated level\n");
1202 goto bad;
1203 }
1204 lp->sens = le32_to_cpu(buf[0]);
1205
1206 if (ebitmap_read(&lp->cat, fp)) {
1207 printk(KERN_ERR "security: mls: error reading level "
1208 "categories\n");
1209 goto bad;
1210 }
1211 return 0;
1212
1213bad:
1214 return -EINVAL;
1215}
1216
1217static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1218{
1219 char *key = NULL;
1220 struct user_datum *usrdatum;
1221 int rc;
1222 u32 buf[2], len;
1223
1224 usrdatum = kmalloc(sizeof(*usrdatum), GFP_KERNEL);
1225 if (!usrdatum) {
1226 rc = -ENOMEM;
1227 goto out;
1228 }
1229 memset(usrdatum, 0, sizeof(*usrdatum));
1230
1231 rc = next_entry(buf, fp, sizeof buf);
1232 if (rc < 0)
1233 goto bad;
1234
1235 len = le32_to_cpu(buf[0]);
1236 usrdatum->value = le32_to_cpu(buf[1]);
1237
1238 key = kmalloc(len + 1,GFP_KERNEL);
1239 if (!key) {
1240 rc = -ENOMEM;
1241 goto bad;
1242 }
1243 rc = next_entry(key, fp, len);
1244 if (rc < 0)
1245 goto bad;
1246 key[len] = 0;
1247
1248 rc = ebitmap_read(&usrdatum->roles, fp);
1249 if (rc)
1250 goto bad;
1251
1252 if (p->policyvers >= POLICYDB_VERSION_MLS) {
1253 rc = mls_read_range_helper(&usrdatum->range, fp);
1254 if (rc)
1255 goto bad;
1256 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1257 if (rc)
1258 goto bad;
1259 }
1260
1261 rc = hashtab_insert(h, key, usrdatum);
1262 if (rc)
1263 goto bad;
1264out:
1265 return rc;
1266bad:
1267 user_destroy(key, usrdatum, NULL);
1268 goto out;
1269}
1270
1271static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1272{
1273 char *key = NULL;
1274 struct level_datum *levdatum;
1275 int rc;
1276 u32 buf[2], len;
1277
1278 levdatum = kmalloc(sizeof(*levdatum), GFP_ATOMIC);
1279 if (!levdatum) {
1280 rc = -ENOMEM;
1281 goto out;
1282 }
1283 memset(levdatum, 0, sizeof(*levdatum));
1284
1285 rc = next_entry(buf, fp, sizeof buf);
1286 if (rc < 0)
1287 goto bad;
1288
1289 len = le32_to_cpu(buf[0]);
1290 levdatum->isalias = le32_to_cpu(buf[1]);
1291
1292 key = kmalloc(len + 1,GFP_ATOMIC);
1293 if (!key) {
1294 rc = -ENOMEM;
1295 goto bad;
1296 }
1297 rc = next_entry(key, fp, len);
1298 if (rc < 0)
1299 goto bad;
1300 key[len] = 0;
1301
1302 levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1303 if (!levdatum->level) {
1304 rc = -ENOMEM;
1305 goto bad;
1306 }
1307 if (mls_read_level(levdatum->level, fp)) {
1308 rc = -EINVAL;
1309 goto bad;
1310 }
1311
1312 rc = hashtab_insert(h, key, levdatum);
1313 if (rc)
1314 goto bad;
1315out:
1316 return rc;
1317bad:
1318 sens_destroy(key, levdatum, NULL);
1319 goto out;
1320}
1321
1322static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1323{
1324 char *key = NULL;
1325 struct cat_datum *catdatum;
1326 int rc;
1327 u32 buf[3], len;
1328
1329 catdatum = kmalloc(sizeof(*catdatum), GFP_ATOMIC);
1330 if (!catdatum) {
1331 rc = -ENOMEM;
1332 goto out;
1333 }
1334 memset(catdatum, 0, sizeof(*catdatum));
1335
1336 rc = next_entry(buf, fp, sizeof buf);
1337 if (rc < 0)
1338 goto bad;
1339
1340 len = le32_to_cpu(buf[0]);
1341 catdatum->value = le32_to_cpu(buf[1]);
1342 catdatum->isalias = le32_to_cpu(buf[2]);
1343
1344 key = kmalloc(len + 1,GFP_ATOMIC);
1345 if (!key) {
1346 rc = -ENOMEM;
1347 goto bad;
1348 }
1349 rc = next_entry(key, fp, len);
1350 if (rc < 0)
1351 goto bad;
1352 key[len] = 0;
1353
1354 rc = hashtab_insert(h, key, catdatum);
1355 if (rc)
1356 goto bad;
1357out:
1358 return rc;
1359
1360bad:
1361 cat_destroy(key, catdatum, NULL);
1362 goto out;
1363}
1364
1365static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1366{
1367 common_read,
1368 class_read,
1369 role_read,
1370 type_read,
1371 user_read,
1372 cond_read_bool,
1373 sens_read,
1374 cat_read,
1375};
1376
1377extern int ss_initialized;
1378
1379/*
1380 * Read the configuration data from a policy database binary
1381 * representation file into a policy database structure.
1382 */
1383int policydb_read(struct policydb *p, void *fp)
1384{
1385 struct role_allow *ra, *lra;
1386 struct role_trans *tr, *ltr;
1387 struct ocontext *l, *c, *newc;
1388 struct genfs *genfs_p, *genfs, *newgenfs;
1389 int i, j, rc;
1390 u32 buf[8], len, len2, config, nprim, nel, nel2;
1391 char *policydb_str;
1392 struct policydb_compat_info *info;
1393 struct range_trans *rt, *lrt;
1394
1395 config = 0;
1396
1397 rc = policydb_init(p);
1398 if (rc)
1399 goto out;
1400
1401 /* Read the magic number and string length. */
1402 rc = next_entry(buf, fp, sizeof(u32)* 2);
1403 if (rc < 0)
1404 goto bad;
1405
1406 for (i = 0; i < 2; i++)
1407 buf[i] = le32_to_cpu(buf[i]);
1408
1409 if (buf[0] != POLICYDB_MAGIC) {
1410 printk(KERN_ERR "security: policydb magic number 0x%x does "
1411 "not match expected magic number 0x%x\n",
1412 buf[0], POLICYDB_MAGIC);
1413 goto bad;
1414 }
1415
1416 len = buf[1];
1417 if (len != strlen(POLICYDB_STRING)) {
1418 printk(KERN_ERR "security: policydb string length %d does not "
1419 "match expected length %Zu\n",
1420 len, strlen(POLICYDB_STRING));
1421 goto bad;
1422 }
1423 policydb_str = kmalloc(len + 1,GFP_KERNEL);
1424 if (!policydb_str) {
1425 printk(KERN_ERR "security: unable to allocate memory for policydb "
1426 "string of length %d\n", len);
1427 rc = -ENOMEM;
1428 goto bad;
1429 }
1430 rc = next_entry(policydb_str, fp, len);
1431 if (rc < 0) {
1432 printk(KERN_ERR "security: truncated policydb string identifier\n");
1433 kfree(policydb_str);
1434 goto bad;
1435 }
1436 policydb_str[len] = 0;
1437 if (strcmp(policydb_str, POLICYDB_STRING)) {
1438 printk(KERN_ERR "security: policydb string %s does not match "
1439 "my string %s\n", policydb_str, POLICYDB_STRING);
1440 kfree(policydb_str);
1441 goto bad;
1442 }
1443 /* Done with policydb_str. */
1444 kfree(policydb_str);
1445 policydb_str = NULL;
1446
1447 /* Read the version, config, and table sizes. */
1448 rc = next_entry(buf, fp, sizeof(u32)*4);
1449 if (rc < 0)
1450 goto bad;
1451 for (i = 0; i < 4; i++)
1452 buf[i] = le32_to_cpu(buf[i]);
1453
1454 p->policyvers = buf[0];
1455 if (p->policyvers < POLICYDB_VERSION_MIN ||
1456 p->policyvers > POLICYDB_VERSION_MAX) {
1457 printk(KERN_ERR "security: policydb version %d does not match "
1458 "my version range %d-%d\n",
1459 buf[0], POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1460 goto bad;
1461 }
1462
1463 if ((buf[1] & POLICYDB_CONFIG_MLS)) {
1464 if (ss_initialized && !selinux_mls_enabled) {
1465 printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1466 "policies\n");
1467 goto bad;
1468 }
1469 selinux_mls_enabled = 1;
1470 config |= POLICYDB_CONFIG_MLS;
1471
1472 if (p->policyvers < POLICYDB_VERSION_MLS) {
1473 printk(KERN_ERR "security policydb version %d (MLS) "
1474 "not backwards compatible\n", p->policyvers);
1475 goto bad;
1476 }
1477 } else {
1478 if (ss_initialized && selinux_mls_enabled) {
1479 printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1480 "policies\n");
1481 goto bad;
1482 }
1483 }
1484
1485 info = policydb_lookup_compat(p->policyvers);
1486 if (!info) {
1487 printk(KERN_ERR "security: unable to find policy compat info "
1488 "for version %d\n", p->policyvers);
1489 goto bad;
1490 }
1491
1492 if (buf[2] != info->sym_num || buf[3] != info->ocon_num) {
1493 printk(KERN_ERR "security: policydb table sizes (%d,%d) do "
1494 "not match mine (%d,%d)\n", buf[2], buf[3],
1495 info->sym_num, info->ocon_num);
1496 goto bad;
1497 }
1498
1499 for (i = 0; i < info->sym_num; i++) {
1500 rc = next_entry(buf, fp, sizeof(u32)*2);
1501 if (rc < 0)
1502 goto bad;
1503 nprim = le32_to_cpu(buf[0]);
1504 nel = le32_to_cpu(buf[1]);
1505 for (j = 0; j < nel; j++) {
1506 rc = read_f[i](p, p->symtab[i].table, fp);
1507 if (rc)
1508 goto bad;
1509 }
1510
1511 p->symtab[i].nprim = nprim;
1512 }
1513
1514 rc = avtab_read(&p->te_avtab, fp, config);
1515 if (rc)
1516 goto bad;
1517
1518 if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1519 rc = cond_read_list(p, fp);
1520 if (rc)
1521 goto bad;
1522 }
1523
1524 rc = next_entry(buf, fp, sizeof(u32));
1525 if (rc < 0)
1526 goto bad;
1527 nel = le32_to_cpu(buf[0]);
1528 ltr = NULL;
1529 for (i = 0; i < nel; i++) {
1530 tr = kmalloc(sizeof(*tr), GFP_KERNEL);
1531 if (!tr) {
1532 rc = -ENOMEM;
1533 goto bad;
1534 }
1535 memset(tr, 0, sizeof(*tr));
1536 if (ltr) {
1537 ltr->next = tr;
1538 } else {
1539 p->role_tr = tr;
1540 }
1541 rc = next_entry(buf, fp, sizeof(u32)*3);
1542 if (rc < 0)
1543 goto bad;
1544 tr->role = le32_to_cpu(buf[0]);
1545 tr->type = le32_to_cpu(buf[1]);
1546 tr->new_role = le32_to_cpu(buf[2]);
1547 ltr = tr;
1548 }
1549
1550 rc = next_entry(buf, fp, sizeof(u32));
1551 if (rc < 0)
1552 goto bad;
1553 nel = le32_to_cpu(buf[0]);
1554 lra = NULL;
1555 for (i = 0; i < nel; i++) {
1556 ra = kmalloc(sizeof(*ra), GFP_KERNEL);
1557 if (!ra) {
1558 rc = -ENOMEM;
1559 goto bad;
1560 }
1561 memset(ra, 0, sizeof(*ra));
1562 if (lra) {
1563 lra->next = ra;
1564 } else {
1565 p->role_allow = ra;
1566 }
1567 rc = next_entry(buf, fp, sizeof(u32)*2);
1568 if (rc < 0)
1569 goto bad;
1570 ra->role = le32_to_cpu(buf[0]);
1571 ra->new_role = le32_to_cpu(buf[1]);
1572 lra = ra;
1573 }
1574
1575 rc = policydb_index_classes(p);
1576 if (rc)
1577 goto bad;
1578
1579 rc = policydb_index_others(p);
1580 if (rc)
1581 goto bad;
1582
1583 for (i = 0; i < info->ocon_num; i++) {
1584 rc = next_entry(buf, fp, sizeof(u32));
1585 if (rc < 0)
1586 goto bad;
1587 nel = le32_to_cpu(buf[0]);
1588 l = NULL;
1589 for (j = 0; j < nel; j++) {
1590 c = kmalloc(sizeof(*c), GFP_KERNEL);
1591 if (!c) {
1592 rc = -ENOMEM;
1593 goto bad;
1594 }
1595 memset(c, 0, sizeof(*c));
1596 if (l) {
1597 l->next = c;
1598 } else {
1599 p->ocontexts[i] = c;
1600 }
1601 l = c;
1602 rc = -EINVAL;
1603 switch (i) {
1604 case OCON_ISID:
1605 rc = next_entry(buf, fp, sizeof(u32));
1606 if (rc < 0)
1607 goto bad;
1608 c->sid[0] = le32_to_cpu(buf[0]);
1609 rc = context_read_and_validate(&c->context[0], p, fp);
1610 if (rc)
1611 goto bad;
1612 break;
1613 case OCON_FS:
1614 case OCON_NETIF:
1615 rc = next_entry(buf, fp, sizeof(u32));
1616 if (rc < 0)
1617 goto bad;
1618 len = le32_to_cpu(buf[0]);
1619 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1620 if (!c->u.name) {
1621 rc = -ENOMEM;
1622 goto bad;
1623 }
1624 rc = next_entry(c->u.name, fp, len);
1625 if (rc < 0)
1626 goto bad;
1627 c->u.name[len] = 0;
1628 rc = context_read_and_validate(&c->context[0], p, fp);
1629 if (rc)
1630 goto bad;
1631 rc = context_read_and_validate(&c->context[1], p, fp);
1632 if (rc)
1633 goto bad;
1634 break;
1635 case OCON_PORT:
1636 rc = next_entry(buf, fp, sizeof(u32)*3);
1637 if (rc < 0)
1638 goto bad;
1639 c->u.port.protocol = le32_to_cpu(buf[0]);
1640 c->u.port.low_port = le32_to_cpu(buf[1]);
1641 c->u.port.high_port = le32_to_cpu(buf[2]);
1642 rc = context_read_and_validate(&c->context[0], p, fp);
1643 if (rc)
1644 goto bad;
1645 break;
1646 case OCON_NODE:
1647 rc = next_entry(buf, fp, sizeof(u32)* 2);
1648 if (rc < 0)
1649 goto bad;
1650 c->u.node.addr = le32_to_cpu(buf[0]);
1651 c->u.node.mask = le32_to_cpu(buf[1]);
1652 rc = context_read_and_validate(&c->context[0], p, fp);
1653 if (rc)
1654 goto bad;
1655 break;
1656 case OCON_FSUSE:
1657 rc = next_entry(buf, fp, sizeof(u32)*2);
1658 if (rc < 0)
1659 goto bad;
1660 c->v.behavior = le32_to_cpu(buf[0]);
1661 if (c->v.behavior > SECURITY_FS_USE_NONE)
1662 goto bad;
1663 len = le32_to_cpu(buf[1]);
1664 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1665 if (!c->u.name) {
1666 rc = -ENOMEM;
1667 goto bad;
1668 }
1669 rc = next_entry(c->u.name, fp, len);
1670 if (rc < 0)
1671 goto bad;
1672 c->u.name[len] = 0;
1673 rc = context_read_and_validate(&c->context[0], p, fp);
1674 if (rc)
1675 goto bad;
1676 break;
1677 case OCON_NODE6: {
1678 int k;
1679
1680 rc = next_entry(buf, fp, sizeof(u32) * 8);
1681 if (rc < 0)
1682 goto bad;
1683 for (k = 0; k < 4; k++)
1684 c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1685 for (k = 0; k < 4; k++)
1686 c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1687 if (context_read_and_validate(&c->context[0], p, fp))
1688 goto bad;
1689 break;
1690 }
1691 }
1692 }
1693 }
1694
1695 rc = next_entry(buf, fp, sizeof(u32));
1696 if (rc < 0)
1697 goto bad;
1698 nel = le32_to_cpu(buf[0]);
1699 genfs_p = NULL;
1700 rc = -EINVAL;
1701 for (i = 0; i < nel; i++) {
1702 rc = next_entry(buf, fp, sizeof(u32));
1703 if (rc < 0)
1704 goto bad;
1705 len = le32_to_cpu(buf[0]);
1706 newgenfs = kmalloc(sizeof(*newgenfs), GFP_KERNEL);
1707 if (!newgenfs) {
1708 rc = -ENOMEM;
1709 goto bad;
1710 }
1711 memset(newgenfs, 0, sizeof(*newgenfs));
1712
1713 newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1714 if (!newgenfs->fstype) {
1715 rc = -ENOMEM;
1716 kfree(newgenfs);
1717 goto bad;
1718 }
1719 rc = next_entry(newgenfs->fstype, fp, len);
1720 if (rc < 0) {
1721 kfree(newgenfs->fstype);
1722 kfree(newgenfs);
1723 goto bad;
1724 }
1725 newgenfs->fstype[len] = 0;
1726 for (genfs_p = NULL, genfs = p->genfs; genfs;
1727 genfs_p = genfs, genfs = genfs->next) {
1728 if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1729 printk(KERN_ERR "security: dup genfs "
1730 "fstype %s\n", newgenfs->fstype);
1731 kfree(newgenfs->fstype);
1732 kfree(newgenfs);
1733 goto bad;
1734 }
1735 if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1736 break;
1737 }
1738 newgenfs->next = genfs;
1739 if (genfs_p)
1740 genfs_p->next = newgenfs;
1741 else
1742 p->genfs = newgenfs;
1743 rc = next_entry(buf, fp, sizeof(u32));
1744 if (rc < 0)
1745 goto bad;
1746 nel2 = le32_to_cpu(buf[0]);
1747 for (j = 0; j < nel2; j++) {
1748 rc = next_entry(buf, fp, sizeof(u32));
1749 if (rc < 0)
1750 goto bad;
1751 len = le32_to_cpu(buf[0]);
1752
1753 newc = kmalloc(sizeof(*newc), GFP_KERNEL);
1754 if (!newc) {
1755 rc = -ENOMEM;
1756 goto bad;
1757 }
1758 memset(newc, 0, sizeof(*newc));
1759
1760 newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1761 if (!newc->u.name) {
1762 rc = -ENOMEM;
1763 goto bad_newc;
1764 }
1765 rc = next_entry(newc->u.name, fp, len);
1766 if (rc < 0)
1767 goto bad_newc;
1768 newc->u.name[len] = 0;
1769 rc = next_entry(buf, fp, sizeof(u32));
1770 if (rc < 0)
1771 goto bad_newc;
1772 newc->v.sclass = le32_to_cpu(buf[0]);
1773 if (context_read_and_validate(&newc->context[0], p, fp))
1774 goto bad_newc;
1775 for (l = NULL, c = newgenfs->head; c;
1776 l = c, c = c->next) {
1777 if (!strcmp(newc->u.name, c->u.name) &&
1778 (!c->v.sclass || !newc->v.sclass ||
1779 newc->v.sclass == c->v.sclass)) {
1780 printk(KERN_ERR "security: dup genfs "
1781 "entry (%s,%s)\n",
1782 newgenfs->fstype, c->u.name);
1783 goto bad_newc;
1784 }
1785 len = strlen(newc->u.name);
1786 len2 = strlen(c->u.name);
1787 if (len > len2)
1788 break;
1789 }
1790
1791 newc->next = c;
1792 if (l)
1793 l->next = newc;
1794 else
1795 newgenfs->head = newc;
1796 }
1797 }
1798
1799 if (p->policyvers >= POLICYDB_VERSION_MLS) {
1800 rc = next_entry(buf, fp, sizeof(u32));
1801 if (rc < 0)
1802 goto bad;
1803 nel = le32_to_cpu(buf[0]);
1804 lrt = NULL;
1805 for (i = 0; i < nel; i++) {
1806 rt = kmalloc(sizeof(*rt), GFP_KERNEL);
1807 if (!rt) {
1808 rc = -ENOMEM;
1809 goto bad;
1810 }
1811 memset(rt, 0, sizeof(*rt));
1812 if (lrt)
1813 lrt->next = rt;
1814 else
1815 p->range_tr = rt;
1816 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1817 if (rc < 0)
1818 goto bad;
1819 rt->dom = le32_to_cpu(buf[0]);
1820 rt->type = le32_to_cpu(buf[1]);
1821 rc = mls_read_range_helper(&rt->range, fp);
1822 if (rc)
1823 goto bad;
1824 lrt = rt;
1825 }
1826 }
1827
1828 rc = 0;
1829out:
1830 return rc;
1831bad_newc:
1832 ocontext_destroy(newc,OCON_FSUSE);
1833bad:
1834 if (!rc)
1835 rc = -EINVAL;
1836 policydb_destroy(p);
1837 goto out;
1838}