Andrea Arcangeli | cddb8a5 | 2008-07-28 15:46:29 -0700 | [diff] [blame] | 1 | #ifndef _LINUX_MMU_NOTIFIER_H |
| 2 | #define _LINUX_MMU_NOTIFIER_H |
| 3 | |
| 4 | #include <linux/list.h> |
| 5 | #include <linux/spinlock.h> |
| 6 | #include <linux/mm_types.h> |
| 7 | |
| 8 | struct mmu_notifier; |
| 9 | struct mmu_notifier_ops; |
| 10 | |
| 11 | #ifdef CONFIG_MMU_NOTIFIER |
| 12 | |
| 13 | /* |
| 14 | * The mmu notifier_mm structure is allocated and installed in |
| 15 | * mm->mmu_notifier_mm inside the mm_take_all_locks() protected |
| 16 | * critical section and it's released only when mm_count reaches zero |
| 17 | * in mmdrop(). |
| 18 | */ |
| 19 | struct mmu_notifier_mm { |
| 20 | /* all mmu notifiers registerd in this mm are queued in this list */ |
| 21 | struct hlist_head list; |
| 22 | /* to serialize the list modifications and hlist_unhashed */ |
| 23 | spinlock_t lock; |
| 24 | }; |
| 25 | |
| 26 | struct mmu_notifier_ops { |
| 27 | /* |
| 28 | * Called either by mmu_notifier_unregister or when the mm is |
| 29 | * being destroyed by exit_mmap, always before all pages are |
| 30 | * freed. This can run concurrently with other mmu notifier |
| 31 | * methods (the ones invoked outside the mm context) and it |
| 32 | * should tear down all secondary mmu mappings and freeze the |
| 33 | * secondary mmu. If this method isn't implemented you've to |
| 34 | * be sure that nothing could possibly write to the pages |
| 35 | * through the secondary mmu by the time the last thread with |
| 36 | * tsk->mm == mm exits. |
| 37 | * |
| 38 | * As side note: the pages freed after ->release returns could |
| 39 | * be immediately reallocated by the gart at an alias physical |
| 40 | * address with a different cache model, so if ->release isn't |
| 41 | * implemented because all _software_ driven memory accesses |
| 42 | * through the secondary mmu are terminated by the time the |
| 43 | * last thread of this mm quits, you've also to be sure that |
| 44 | * speculative _hardware_ operations can't allocate dirty |
| 45 | * cachelines in the cpu that could not be snooped and made |
| 46 | * coherent with the other read and write operations happening |
| 47 | * through the gart alias address, so leading to memory |
| 48 | * corruption. |
| 49 | */ |
| 50 | void (*release)(struct mmu_notifier *mn, |
| 51 | struct mm_struct *mm); |
| 52 | |
| 53 | /* |
| 54 | * clear_flush_young is called after the VM is |
| 55 | * test-and-clearing the young/accessed bitflag in the |
| 56 | * pte. This way the VM will provide proper aging to the |
| 57 | * accesses to the page through the secondary MMUs and not |
| 58 | * only to the ones through the Linux pte. |
| 59 | */ |
| 60 | int (*clear_flush_young)(struct mmu_notifier *mn, |
| 61 | struct mm_struct *mm, |
| 62 | unsigned long address); |
| 63 | |
| 64 | /* |
| 65 | * Before this is invoked any secondary MMU is still ok to |
| 66 | * read/write to the page previously pointed to by the Linux |
| 67 | * pte because the page hasn't been freed yet and it won't be |
| 68 | * freed until this returns. If required set_page_dirty has to |
| 69 | * be called internally to this method. |
| 70 | */ |
| 71 | void (*invalidate_page)(struct mmu_notifier *mn, |
| 72 | struct mm_struct *mm, |
| 73 | unsigned long address); |
| 74 | |
| 75 | /* |
| 76 | * invalidate_range_start() and invalidate_range_end() must be |
| 77 | * paired and are called only when the mmap_sem and/or the |
| 78 | * locks protecting the reverse maps are held. The subsystem |
| 79 | * must guarantee that no additional references are taken to |
| 80 | * the pages in the range established between the call to |
| 81 | * invalidate_range_start() and the matching call to |
| 82 | * invalidate_range_end(). |
| 83 | * |
| 84 | * Invalidation of multiple concurrent ranges may be |
| 85 | * optionally permitted by the driver. Either way the |
| 86 | * establishment of sptes is forbidden in the range passed to |
| 87 | * invalidate_range_begin/end for the whole duration of the |
| 88 | * invalidate_range_begin/end critical section. |
| 89 | * |
| 90 | * invalidate_range_start() is called when all pages in the |
| 91 | * range are still mapped and have at least a refcount of one. |
| 92 | * |
| 93 | * invalidate_range_end() is called when all pages in the |
| 94 | * range have been unmapped and the pages have been freed by |
| 95 | * the VM. |
| 96 | * |
| 97 | * The VM will remove the page table entries and potentially |
| 98 | * the page between invalidate_range_start() and |
| 99 | * invalidate_range_end(). If the page must not be freed |
| 100 | * because of pending I/O or other circumstances then the |
| 101 | * invalidate_range_start() callback (or the initial mapping |
| 102 | * by the driver) must make sure that the refcount is kept |
| 103 | * elevated. |
| 104 | * |
| 105 | * If the driver increases the refcount when the pages are |
| 106 | * initially mapped into an address space then either |
| 107 | * invalidate_range_start() or invalidate_range_end() may |
| 108 | * decrease the refcount. If the refcount is decreased on |
| 109 | * invalidate_range_start() then the VM can free pages as page |
| 110 | * table entries are removed. If the refcount is only |
| 111 | * droppped on invalidate_range_end() then the driver itself |
| 112 | * will drop the last refcount but it must take care to flush |
| 113 | * any secondary tlb before doing the final free on the |
| 114 | * page. Pages will no longer be referenced by the linux |
| 115 | * address space but may still be referenced by sptes until |
| 116 | * the last refcount is dropped. |
| 117 | */ |
| 118 | void (*invalidate_range_start)(struct mmu_notifier *mn, |
| 119 | struct mm_struct *mm, |
| 120 | unsigned long start, unsigned long end); |
| 121 | void (*invalidate_range_end)(struct mmu_notifier *mn, |
| 122 | struct mm_struct *mm, |
| 123 | unsigned long start, unsigned long end); |
| 124 | }; |
| 125 | |
| 126 | /* |
| 127 | * The notifier chains are protected by mmap_sem and/or the reverse map |
| 128 | * semaphores. Notifier chains are only changed when all reverse maps and |
| 129 | * the mmap_sem locks are taken. |
| 130 | * |
| 131 | * Therefore notifier chains can only be traversed when either |
| 132 | * |
| 133 | * 1. mmap_sem is held. |
| 134 | * 2. One of the reverse map locks is held (i_mmap_lock or anon_vma->lock). |
| 135 | * 3. No other concurrent thread can access the list (release) |
| 136 | */ |
| 137 | struct mmu_notifier { |
| 138 | struct hlist_node hlist; |
| 139 | const struct mmu_notifier_ops *ops; |
| 140 | }; |
| 141 | |
| 142 | static inline int mm_has_notifiers(struct mm_struct *mm) |
| 143 | { |
| 144 | return unlikely(mm->mmu_notifier_mm); |
| 145 | } |
| 146 | |
| 147 | extern int mmu_notifier_register(struct mmu_notifier *mn, |
| 148 | struct mm_struct *mm); |
| 149 | extern int __mmu_notifier_register(struct mmu_notifier *mn, |
| 150 | struct mm_struct *mm); |
| 151 | extern void mmu_notifier_unregister(struct mmu_notifier *mn, |
| 152 | struct mm_struct *mm); |
| 153 | extern void __mmu_notifier_mm_destroy(struct mm_struct *mm); |
| 154 | extern void __mmu_notifier_release(struct mm_struct *mm); |
| 155 | extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, |
| 156 | unsigned long address); |
| 157 | extern void __mmu_notifier_invalidate_page(struct mm_struct *mm, |
| 158 | unsigned long address); |
| 159 | extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm, |
| 160 | unsigned long start, unsigned long end); |
| 161 | extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm, |
| 162 | unsigned long start, unsigned long end); |
| 163 | |
| 164 | static inline void mmu_notifier_release(struct mm_struct *mm) |
| 165 | { |
| 166 | if (mm_has_notifiers(mm)) |
| 167 | __mmu_notifier_release(mm); |
| 168 | } |
| 169 | |
| 170 | static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, |
| 171 | unsigned long address) |
| 172 | { |
| 173 | if (mm_has_notifiers(mm)) |
| 174 | return __mmu_notifier_clear_flush_young(mm, address); |
| 175 | return 0; |
| 176 | } |
| 177 | |
| 178 | static inline void mmu_notifier_invalidate_page(struct mm_struct *mm, |
| 179 | unsigned long address) |
| 180 | { |
| 181 | if (mm_has_notifiers(mm)) |
| 182 | __mmu_notifier_invalidate_page(mm, address); |
| 183 | } |
| 184 | |
| 185 | static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm, |
| 186 | unsigned long start, unsigned long end) |
| 187 | { |
| 188 | if (mm_has_notifiers(mm)) |
| 189 | __mmu_notifier_invalidate_range_start(mm, start, end); |
| 190 | } |
| 191 | |
| 192 | static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm, |
| 193 | unsigned long start, unsigned long end) |
| 194 | { |
| 195 | if (mm_has_notifiers(mm)) |
| 196 | __mmu_notifier_invalidate_range_end(mm, start, end); |
| 197 | } |
| 198 | |
| 199 | static inline void mmu_notifier_mm_init(struct mm_struct *mm) |
| 200 | { |
| 201 | mm->mmu_notifier_mm = NULL; |
| 202 | } |
| 203 | |
| 204 | static inline void mmu_notifier_mm_destroy(struct mm_struct *mm) |
| 205 | { |
| 206 | if (mm_has_notifiers(mm)) |
| 207 | __mmu_notifier_mm_destroy(mm); |
| 208 | } |
| 209 | |
| 210 | /* |
| 211 | * These two macros will sometime replace ptep_clear_flush. |
| 212 | * ptep_clear_flush is impleemnted as macro itself, so this also is |
| 213 | * implemented as a macro until ptep_clear_flush will converted to an |
| 214 | * inline function, to diminish the risk of compilation failure. The |
| 215 | * invalidate_page method over time can be moved outside the PT lock |
| 216 | * and these two macros can be later removed. |
| 217 | */ |
| 218 | #define ptep_clear_flush_notify(__vma, __address, __ptep) \ |
| 219 | ({ \ |
| 220 | pte_t __pte; \ |
| 221 | struct vm_area_struct *___vma = __vma; \ |
| 222 | unsigned long ___address = __address; \ |
| 223 | __pte = ptep_clear_flush(___vma, ___address, __ptep); \ |
| 224 | mmu_notifier_invalidate_page(___vma->vm_mm, ___address); \ |
| 225 | __pte; \ |
| 226 | }) |
| 227 | |
| 228 | #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ |
| 229 | ({ \ |
| 230 | int __young; \ |
| 231 | struct vm_area_struct *___vma = __vma; \ |
| 232 | unsigned long ___address = __address; \ |
| 233 | __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ |
| 234 | __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ |
| 235 | ___address); \ |
| 236 | __young; \ |
| 237 | }) |
| 238 | |
| 239 | #else /* CONFIG_MMU_NOTIFIER */ |
| 240 | |
| 241 | static inline void mmu_notifier_release(struct mm_struct *mm) |
| 242 | { |
| 243 | } |
| 244 | |
| 245 | static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, |
| 246 | unsigned long address) |
| 247 | { |
| 248 | return 0; |
| 249 | } |
| 250 | |
| 251 | static inline void mmu_notifier_invalidate_page(struct mm_struct *mm, |
| 252 | unsigned long address) |
| 253 | { |
| 254 | } |
| 255 | |
| 256 | static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm, |
| 257 | unsigned long start, unsigned long end) |
| 258 | { |
| 259 | } |
| 260 | |
| 261 | static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm, |
| 262 | unsigned long start, unsigned long end) |
| 263 | { |
| 264 | } |
| 265 | |
| 266 | static inline void mmu_notifier_mm_init(struct mm_struct *mm) |
| 267 | { |
| 268 | } |
| 269 | |
| 270 | static inline void mmu_notifier_mm_destroy(struct mm_struct *mm) |
| 271 | { |
| 272 | } |
| 273 | |
| 274 | #define ptep_clear_flush_young_notify ptep_clear_flush_young |
| 275 | #define ptep_clear_flush_notify ptep_clear_flush |
| 276 | |
| 277 | #endif /* CONFIG_MMU_NOTIFIER */ |
| 278 | |
| 279 | #endif /* _LINUX_MMU_NOTIFIER_H */ |