Michael Albaugh | ab0fb2e | 2008-04-16 21:09:31 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved. |
| 3 | * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. |
| 4 | * |
| 5 | * This software is available to you under a choice of one of two |
| 6 | * licenses. You may choose to be licensed under the terms of the GNU |
| 7 | * General Public License (GPL) Version 2, available from the file |
| 8 | * COPYING in the main directory of this source tree, or the |
| 9 | * OpenIB.org BSD license below: |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or |
| 12 | * without modification, are permitted provided that the following |
| 13 | * conditions are met: |
| 14 | * |
| 15 | * - Redistributions of source code must retain the above |
| 16 | * copyright notice, this list of conditions and the following |
| 17 | * disclaimer. |
| 18 | * |
| 19 | * - Redistributions in binary form must reproduce the above |
| 20 | * copyright notice, this list of conditions and the following |
| 21 | * disclaimer in the documentation and/or other materials |
| 22 | * provided with the distribution. |
| 23 | * |
| 24 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 25 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 26 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 27 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 28 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 29 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 30 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 31 | * SOFTWARE. |
| 32 | */ |
| 33 | /* |
| 34 | * This file contains all of the code that is specific to the SerDes |
| 35 | * on the InfiniPath 7220 chip. |
| 36 | */ |
| 37 | |
| 38 | #include <linux/pci.h> |
| 39 | #include <linux/delay.h> |
| 40 | |
| 41 | #include "ipath_kernel.h" |
| 42 | #include "ipath_registers.h" |
| 43 | #include "ipath_7220.h" |
| 44 | |
| 45 | /* |
| 46 | * The IBSerDesMappTable is a memory that holds values to be stored in |
| 47 | * various SerDes registers by IBC. It is not part of the normal kregs |
| 48 | * map and is used in exactly one place, hence the #define below. |
| 49 | */ |
| 50 | #define KR_IBSerDesMappTable (0x94000 / (sizeof(uint64_t))) |
| 51 | |
| 52 | /* |
| 53 | * Below used for sdnum parameter, selecting one of the two sections |
| 54 | * used for PCIe, or the single SerDes used for IB. |
| 55 | */ |
| 56 | #define PCIE_SERDES0 0 |
| 57 | #define PCIE_SERDES1 1 |
| 58 | |
| 59 | /* |
| 60 | * The EPB requires addressing in a particular form. EPB_LOC() is intended |
| 61 | * to make #definitions a little more readable. |
| 62 | */ |
| 63 | #define EPB_ADDR_SHF 8 |
| 64 | #define EPB_LOC(chn, elt, reg) \ |
| 65 | (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \ |
| 66 | EPB_ADDR_SHF) |
| 67 | #define EPB_IB_QUAD0_CS_SHF (25) |
| 68 | #define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF) |
| 69 | #define EPB_IB_UC_CS_SHF (26) |
| 70 | #define EPB_PCIE_UC_CS_SHF (27) |
| 71 | #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8)) |
| 72 | |
| 73 | /* Forward declarations. */ |
| 74 | static int ipath_sd7220_reg_mod(struct ipath_devdata *dd, int sdnum, u32 loc, |
| 75 | u32 data, u32 mask); |
| 76 | static int ibsd_mod_allchnls(struct ipath_devdata *dd, int loc, int val, |
| 77 | int mask); |
| 78 | static int ipath_sd_trimdone_poll(struct ipath_devdata *dd); |
| 79 | static void ipath_sd_trimdone_monitor(struct ipath_devdata *dd, |
| 80 | const char *where); |
| 81 | static int ipath_sd_setvals(struct ipath_devdata *dd); |
| 82 | static int ipath_sd_early(struct ipath_devdata *dd); |
| 83 | static int ipath_sd_dactrim(struct ipath_devdata *dd); |
| 84 | /* Set the registers that IBC may muck with to their default "preset" values */ |
| 85 | int ipath_sd7220_presets(struct ipath_devdata *dd); |
| 86 | static int ipath_internal_presets(struct ipath_devdata *dd); |
| 87 | /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */ |
| 88 | static int ipath_sd_trimself(struct ipath_devdata *dd, int val); |
| 89 | static int epb_access(struct ipath_devdata *dd, int sdnum, int claim); |
| 90 | |
| 91 | void ipath_set_relock_poll(struct ipath_devdata *dd, int ibup); |
| 92 | |
| 93 | /* |
| 94 | * Below keeps track of whether the "once per power-on" initialization has |
| 95 | * been done, because uC code Version 1.32.17 or higher allows the uC to |
| 96 | * be reset at will, and Automatic Equalization may require it. So the |
| 97 | * state of the reset "pin", as reflected in was_reset parameter to |
| 98 | * ipath_sd7220_init() is no longer valid. Instead, we check for the |
| 99 | * actual uC code having been loaded. |
| 100 | */ |
| 101 | static int ipath_ibsd_ucode_loaded(struct ipath_devdata *dd) |
| 102 | { |
| 103 | if (!dd->serdes_first_init_done && (ipath_sd7220_ib_vfy(dd) > 0)) |
| 104 | dd->serdes_first_init_done = 1; |
| 105 | return dd->serdes_first_init_done; |
| 106 | } |
| 107 | |
| 108 | /* repeat #define for local use. "Real" #define is in ipath_iba7220.c */ |
| 109 | #define INFINIPATH_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL |
| 110 | #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF)) |
| 111 | #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF)) |
| 112 | #define UC_PAR_CLR_D 8 |
| 113 | #define UC_PAR_CLR_M 0xC |
| 114 | #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS) |
| 115 | #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27) |
| 116 | |
| 117 | void ipath_sd7220_clr_ibpar(struct ipath_devdata *dd) |
| 118 | { |
| 119 | int ret; |
| 120 | |
| 121 | /* clear, then re-enable parity errs */ |
| 122 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, |
| 123 | UC_PAR_CLR_D, UC_PAR_CLR_M); |
| 124 | if (ret < 0) { |
| 125 | ipath_dev_err(dd, "Failed clearing IBSerDes Parity err\n"); |
| 126 | goto bail; |
| 127 | } |
| 128 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0, |
| 129 | UC_PAR_CLR_M); |
| 130 | |
| 131 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); |
| 132 | udelay(4); |
| 133 | ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear, |
| 134 | INFINIPATH_HWE_IB_UC_MEMORYPARITYERR); |
| 135 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); |
| 136 | bail: |
| 137 | return; |
| 138 | } |
| 139 | |
| 140 | /* |
| 141 | * After a reset or other unusual event, the epb interface may need |
| 142 | * to be re-synchronized, between the host and the uC. |
| 143 | * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected) |
| 144 | */ |
| 145 | #define IBSD_RESYNC_TRIES 3 |
| 146 | #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS) |
| 147 | #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS) |
| 148 | |
| 149 | static int ipath_resync_ibepb(struct ipath_devdata *dd) |
| 150 | { |
| 151 | int ret, pat, tries, chn; |
| 152 | u32 loc; |
| 153 | |
| 154 | ret = -1; |
| 155 | chn = 0; |
| 156 | for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) { |
| 157 | loc = IB_PGUDP(chn); |
| 158 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); |
| 159 | if (ret < 0) { |
| 160 | ipath_dev_err(dd, "Failed read in resync\n"); |
| 161 | continue; |
| 162 | } |
| 163 | if (ret != 0xF0 && ret != 0x55 && tries == 0) |
| 164 | ipath_dev_err(dd, "unexpected pattern in resync\n"); |
| 165 | pat = ret ^ 0xA5; /* alternate F0 and 55 */ |
| 166 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF); |
| 167 | if (ret < 0) { |
| 168 | ipath_dev_err(dd, "Failed write in resync\n"); |
| 169 | continue; |
| 170 | } |
| 171 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); |
| 172 | if (ret < 0) { |
| 173 | ipath_dev_err(dd, "Failed re-read in resync\n"); |
| 174 | continue; |
| 175 | } |
| 176 | if (ret != pat) { |
| 177 | ipath_dev_err(dd, "Failed compare1 in resync\n"); |
| 178 | continue; |
| 179 | } |
| 180 | loc = IB_CMUDONE(chn); |
| 181 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0); |
| 182 | if (ret < 0) { |
| 183 | ipath_dev_err(dd, "Failed CMUDONE rd in resync\n"); |
| 184 | continue; |
| 185 | } |
| 186 | if ((ret & 0x70) != ((chn << 4) | 0x40)) { |
| 187 | ipath_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n", |
| 188 | ret, chn); |
| 189 | continue; |
| 190 | } |
| 191 | if (++chn == 4) |
| 192 | break; /* Success */ |
| 193 | } |
| 194 | ipath_cdbg(VERBOSE, "Resync in %d tries\n", tries); |
| 195 | return (ret > 0) ? 0 : ret; |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * Localize the stuff that should be done to change IB uC reset |
| 200 | * returns <0 for errors. |
| 201 | */ |
| 202 | static int ipath_ibsd_reset(struct ipath_devdata *dd, int assert_rst) |
| 203 | { |
| 204 | u64 rst_val; |
| 205 | int ret = 0; |
| 206 | unsigned long flags; |
| 207 | |
| 208 | rst_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibserdesctrl); |
| 209 | if (assert_rst) { |
| 210 | /* |
| 211 | * Vendor recommends "interrupting" uC before reset, to |
| 212 | * minimize possible glitches. |
| 213 | */ |
| 214 | spin_lock_irqsave(&dd->ipath_sdepb_lock, flags); |
| 215 | epb_access(dd, IB_7220_SERDES, 1); |
| 216 | rst_val |= 1ULL; |
| 217 | /* Squelch possible parity error from _asserting_ reset */ |
| 218 | ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask, |
| 219 | dd->ipath_hwerrmask & |
| 220 | ~INFINIPATH_HWE_IB_UC_MEMORYPARITYERR); |
| 221 | ipath_write_kreg(dd, dd->ipath_kregs->kr_ibserdesctrl, rst_val); |
| 222 | /* flush write, delay to ensure it took effect */ |
| 223 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); |
| 224 | udelay(2); |
| 225 | /* once it's reset, can remove interrupt */ |
| 226 | epb_access(dd, IB_7220_SERDES, -1); |
| 227 | spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags); |
| 228 | } else { |
| 229 | /* |
| 230 | * Before we de-assert reset, we need to deal with |
| 231 | * possible glitch on the Parity-error line. |
| 232 | * Suppress it around the reset, both in chip-level |
| 233 | * hwerrmask and in IB uC control reg. uC will allow |
| 234 | * it again during startup. |
| 235 | */ |
| 236 | u64 val; |
| 237 | rst_val &= ~(1ULL); |
| 238 | ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask, |
| 239 | dd->ipath_hwerrmask & |
| 240 | ~INFINIPATH_HWE_IB_UC_MEMORYPARITYERR); |
| 241 | |
| 242 | ret = ipath_resync_ibepb(dd); |
| 243 | if (ret < 0) |
| 244 | ipath_dev_err(dd, "unable to re-sync IB EPB\n"); |
| 245 | |
| 246 | /* set uC control regs to suppress parity errs */ |
| 247 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1); |
| 248 | if (ret < 0) |
| 249 | goto bail; |
| 250 | /* IB uC code past Version 1.32.17 allow suppression of wdog */ |
| 251 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, |
| 252 | 0x80); |
| 253 | if (ret < 0) { |
| 254 | ipath_dev_err(dd, "Failed to set WDOG disable\n"); |
| 255 | goto bail; |
| 256 | } |
| 257 | ipath_write_kreg(dd, dd->ipath_kregs->kr_ibserdesctrl, rst_val); |
| 258 | /* flush write, delay for startup */ |
| 259 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); |
| 260 | udelay(1); |
| 261 | /* clear, then re-enable parity errs */ |
| 262 | ipath_sd7220_clr_ibpar(dd); |
| 263 | val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_hwerrstatus); |
| 264 | if (val & INFINIPATH_HWE_IB_UC_MEMORYPARITYERR) { |
| 265 | ipath_dev_err(dd, "IBUC Parity still set after RST\n"); |
| 266 | dd->ipath_hwerrmask &= |
| 267 | ~INFINIPATH_HWE_IB_UC_MEMORYPARITYERR; |
| 268 | } |
| 269 | ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrmask, |
| 270 | dd->ipath_hwerrmask); |
| 271 | } |
| 272 | |
| 273 | bail: |
| 274 | return ret; |
| 275 | } |
| 276 | |
| 277 | static void ipath_sd_trimdone_monitor(struct ipath_devdata *dd, |
| 278 | const char *where) |
| 279 | { |
| 280 | int ret, chn, baduns; |
| 281 | u64 val; |
| 282 | |
| 283 | if (!where) |
| 284 | where = "?"; |
| 285 | |
| 286 | /* give time for reset to settle out in EPB */ |
| 287 | udelay(2); |
| 288 | |
| 289 | ret = ipath_resync_ibepb(dd); |
| 290 | if (ret < 0) |
| 291 | ipath_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where); |
| 292 | |
| 293 | /* Do "sacrificial read" to get EPB in sane state after reset */ |
| 294 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0); |
| 295 | if (ret < 0) |
| 296 | ipath_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where); |
| 297 | |
| 298 | /* Check/show "summary" Trim-done bit in IBCStatus */ |
| 299 | val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); |
| 300 | if (val & (1ULL << 11)) |
| 301 | ipath_cdbg(VERBOSE, "IBCS TRIMDONE set (%s)\n", where); |
| 302 | else |
| 303 | ipath_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where); |
| 304 | |
| 305 | udelay(2); |
| 306 | |
| 307 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80); |
| 308 | if (ret < 0) |
| 309 | ipath_dev_err(dd, "Failed Dummy RMW, (%s)\n", where); |
| 310 | udelay(10); |
| 311 | |
| 312 | baduns = 0; |
| 313 | |
| 314 | for (chn = 3; chn >= 0; --chn) { |
| 315 | /* Read CTRL reg for each channel to check TRIMDONE */ |
| 316 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, |
| 317 | IB_CTRL2(chn), 0, 0); |
| 318 | if (ret < 0) |
| 319 | ipath_dev_err(dd, "Failed checking TRIMDONE, chn %d" |
| 320 | " (%s)\n", chn, where); |
| 321 | |
| 322 | if (!(ret & 0x10)) { |
| 323 | int probe; |
| 324 | baduns |= (1 << chn); |
| 325 | ipath_dev_err(dd, "TRIMDONE cleared on chn %d (%02X)." |
| 326 | " (%s)\n", chn, ret, where); |
| 327 | probe = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, |
| 328 | IB_PGUDP(0), 0, 0); |
| 329 | ipath_dev_err(dd, "probe is %d (%02X)\n", |
| 330 | probe, probe); |
| 331 | probe = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, |
| 332 | IB_CTRL2(chn), 0, 0); |
| 333 | ipath_dev_err(dd, "re-read: %d (%02X)\n", |
| 334 | probe, probe); |
| 335 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, |
| 336 | IB_CTRL2(chn), 0x10, 0x10); |
| 337 | if (ret < 0) |
| 338 | ipath_dev_err(dd, |
| 339 | "Err on TRIMDONE rewrite1\n"); |
| 340 | } |
| 341 | } |
| 342 | for (chn = 3; chn >= 0; --chn) { |
| 343 | /* Read CTRL reg for each channel to check TRIMDONE */ |
| 344 | if (baduns & (1 << chn)) { |
| 345 | ipath_dev_err(dd, |
| 346 | "Reseting TRIMDONE on chn %d (%s)\n", |
| 347 | chn, where); |
| 348 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, |
| 349 | IB_CTRL2(chn), 0x10, 0x10); |
| 350 | if (ret < 0) |
| 351 | ipath_dev_err(dd, "Failed re-setting " |
| 352 | "TRIMDONE, chn %d (%s)\n", |
| 353 | chn, where); |
| 354 | } |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | /* |
| 359 | * Below is portion of IBA7220-specific bringup_serdes() that actually |
| 360 | * deals with registers and memory within the SerDes itself. |
| 361 | * Post IB uC code version 1.32.17, was_reset being 1 is not really |
| 362 | * informative, so we double-check. |
| 363 | */ |
| 364 | int ipath_sd7220_init(struct ipath_devdata *dd, int was_reset) |
| 365 | { |
| 366 | int ret = 1; /* default to failure */ |
| 367 | int first_reset; |
| 368 | int val_stat; |
| 369 | |
| 370 | if (!was_reset) { |
| 371 | /* entered with reset not asserted, we need to do it */ |
| 372 | ipath_ibsd_reset(dd, 1); |
| 373 | ipath_sd_trimdone_monitor(dd, "Driver-reload"); |
| 374 | } |
| 375 | |
| 376 | /* Substitute our deduced value for was_reset */ |
| 377 | ret = ipath_ibsd_ucode_loaded(dd); |
| 378 | if (ret < 0) { |
| 379 | ret = 1; |
| 380 | goto done; |
| 381 | } |
| 382 | first_reset = !ret; /* First reset if IBSD uCode not yet loaded */ |
| 383 | |
| 384 | /* |
| 385 | * Alter some regs per vendor latest doc, reset-defaults |
| 386 | * are not right for IB. |
| 387 | */ |
| 388 | ret = ipath_sd_early(dd); |
| 389 | if (ret < 0) { |
| 390 | ipath_dev_err(dd, "Failed to set IB SERDES early defaults\n"); |
| 391 | ret = 1; |
| 392 | goto done; |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * Set DAC manual trim IB. |
| 397 | * We only do this once after chip has been reset (usually |
| 398 | * same as once per system boot). |
| 399 | */ |
| 400 | if (first_reset) { |
| 401 | ret = ipath_sd_dactrim(dd); |
| 402 | if (ret < 0) { |
| 403 | ipath_dev_err(dd, "Failed IB SERDES DAC trim\n"); |
| 404 | ret = 1; |
| 405 | goto done; |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * Set various registers (DDS and RXEQ) that will be |
| 411 | * controlled by IBC (in 1.2 mode) to reasonable preset values |
| 412 | * Calling the "internal" version avoids the "check for needed" |
| 413 | * and "trimdone monitor" that might be counter-productive. |
| 414 | */ |
| 415 | ret = ipath_internal_presets(dd); |
| 416 | if (ret < 0) { |
| 417 | ipath_dev_err(dd, "Failed to set IB SERDES presets\n"); |
| 418 | ret = 1; |
| 419 | goto done; |
| 420 | } |
| 421 | ret = ipath_sd_trimself(dd, 0x80); |
| 422 | if (ret < 0) { |
| 423 | ipath_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n"); |
| 424 | ret = 1; |
| 425 | goto done; |
| 426 | } |
| 427 | |
| 428 | /* Load image, then try to verify */ |
| 429 | ret = 0; /* Assume success */ |
| 430 | if (first_reset) { |
| 431 | int vfy; |
| 432 | int trim_done; |
| 433 | ipath_dbg("SerDes uC was reset, reloading PRAM\n"); |
| 434 | ret = ipath_sd7220_ib_load(dd); |
| 435 | if (ret < 0) { |
| 436 | ipath_dev_err(dd, "Failed to load IB SERDES image\n"); |
| 437 | ret = 1; |
| 438 | goto done; |
| 439 | } |
| 440 | |
| 441 | /* Loaded image, try to verify */ |
| 442 | vfy = ipath_sd7220_ib_vfy(dd); |
| 443 | if (vfy != ret) { |
| 444 | ipath_dev_err(dd, "SERDES PRAM VFY failed\n"); |
| 445 | ret = 1; |
| 446 | goto done; |
| 447 | } |
| 448 | /* |
| 449 | * Loaded and verified. Almost good... |
| 450 | * hold "success" in ret |
| 451 | */ |
| 452 | ret = 0; |
| 453 | |
| 454 | /* |
| 455 | * Prev steps all worked, continue bringup |
| 456 | * De-assert RESET to uC, only in first reset, to allow |
| 457 | * trimming. |
| 458 | * |
| 459 | * Since our default setup sets START_EQ1 to |
| 460 | * PRESET, we need to clear that for this very first run. |
| 461 | */ |
| 462 | ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38); |
| 463 | if (ret < 0) { |
| 464 | ipath_dev_err(dd, "Failed clearing START_EQ1\n"); |
| 465 | ret = 1; |
| 466 | goto done; |
| 467 | } |
| 468 | |
| 469 | ipath_ibsd_reset(dd, 0); |
| 470 | /* |
| 471 | * If this is not the first reset, trimdone should be set |
| 472 | * already. |
| 473 | */ |
| 474 | trim_done = ipath_sd_trimdone_poll(dd); |
| 475 | /* |
| 476 | * Whether or not trimdone succeeded, we need to put the |
| 477 | * uC back into reset to avoid a possible fight with the |
| 478 | * IBC state-machine. |
| 479 | */ |
| 480 | ipath_ibsd_reset(dd, 1); |
| 481 | |
| 482 | if (!trim_done) { |
| 483 | ipath_dev_err(dd, "No TRIMDONE seen\n"); |
| 484 | ret = 1; |
| 485 | goto done; |
| 486 | } |
| 487 | |
| 488 | ipath_sd_trimdone_monitor(dd, "First-reset"); |
| 489 | /* Remember so we do not re-do the load, dactrim, etc. */ |
| 490 | dd->serdes_first_init_done = 1; |
| 491 | } |
| 492 | /* |
| 493 | * Setup for channel training and load values for |
| 494 | * RxEq and DDS in tables used by IBC in IB1.2 mode |
| 495 | */ |
| 496 | |
| 497 | val_stat = ipath_sd_setvals(dd); |
| 498 | if (val_stat < 0) |
| 499 | ret = 1; |
| 500 | done: |
| 501 | /* start relock timer regardless, but start at 1 second */ |
| 502 | ipath_set_relock_poll(dd, -1); |
| 503 | return ret; |
| 504 | } |
| 505 | |
| 506 | #define EPB_ACC_REQ 1 |
| 507 | #define EPB_ACC_GNT 0x100 |
| 508 | #define EPB_DATA_MASK 0xFF |
| 509 | #define EPB_RD (1ULL << 24) |
| 510 | #define EPB_TRANS_RDY (1ULL << 31) |
| 511 | #define EPB_TRANS_ERR (1ULL << 30) |
| 512 | #define EPB_TRANS_TRIES 5 |
| 513 | |
| 514 | /* |
| 515 | * query, claim, release ownership of the EPB (External Parallel Bus) |
| 516 | * for a specified SERDES. |
| 517 | * the "claim" parameter is >0 to claim, <0 to release, 0 to query. |
| 518 | * Returns <0 for errors, >0 if we had ownership, else 0. |
| 519 | */ |
| 520 | static int epb_access(struct ipath_devdata *dd, int sdnum, int claim) |
| 521 | { |
| 522 | u16 acc; |
| 523 | u64 accval; |
| 524 | int owned = 0; |
| 525 | u64 oct_sel = 0; |
| 526 | |
| 527 | switch (sdnum) { |
| 528 | case IB_7220_SERDES : |
| 529 | /* |
| 530 | * The IB SERDES "ownership" is fairly simple. A single each |
| 531 | * request/grant. |
| 532 | */ |
| 533 | acc = dd->ipath_kregs->kr_ib_epbacc; |
| 534 | break; |
| 535 | case PCIE_SERDES0 : |
| 536 | case PCIE_SERDES1 : |
| 537 | /* PCIe SERDES has two "octants", need to select which */ |
| 538 | acc = dd->ipath_kregs->kr_pcie_epbacc; |
| 539 | oct_sel = (2 << (sdnum - PCIE_SERDES0)); |
| 540 | break; |
| 541 | default : |
| 542 | return 0; |
| 543 | } |
| 544 | |
| 545 | /* Make sure any outstanding transaction was seen */ |
| 546 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); |
| 547 | udelay(15); |
| 548 | |
| 549 | accval = ipath_read_kreg32(dd, acc); |
| 550 | |
| 551 | owned = !!(accval & EPB_ACC_GNT); |
| 552 | if (claim < 0) { |
| 553 | /* Need to release */ |
| 554 | u64 pollval; |
| 555 | /* |
| 556 | * The only writeable bits are the request and CS. |
| 557 | * Both should be clear |
| 558 | */ |
| 559 | u64 newval = 0; |
| 560 | ipath_write_kreg(dd, acc, newval); |
| 561 | /* First read after write is not trustworthy */ |
| 562 | pollval = ipath_read_kreg32(dd, acc); |
| 563 | udelay(5); |
| 564 | pollval = ipath_read_kreg32(dd, acc); |
| 565 | if (pollval & EPB_ACC_GNT) |
| 566 | owned = -1; |
| 567 | } else if (claim > 0) { |
| 568 | /* Need to claim */ |
| 569 | u64 pollval; |
| 570 | u64 newval = EPB_ACC_REQ | oct_sel; |
| 571 | ipath_write_kreg(dd, acc, newval); |
| 572 | /* First read after write is not trustworthy */ |
| 573 | pollval = ipath_read_kreg32(dd, acc); |
| 574 | udelay(5); |
| 575 | pollval = ipath_read_kreg32(dd, acc); |
| 576 | if (!(pollval & EPB_ACC_GNT)) |
| 577 | owned = -1; |
| 578 | } |
| 579 | return owned; |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | * Lemma to deal with race condition of write..read to epb regs |
| 584 | */ |
| 585 | static int epb_trans(struct ipath_devdata *dd, u16 reg, u64 i_val, u64 *o_vp) |
| 586 | { |
| 587 | int tries; |
| 588 | u64 transval; |
| 589 | |
| 590 | |
| 591 | ipath_write_kreg(dd, reg, i_val); |
| 592 | /* Throw away first read, as RDY bit may be stale */ |
| 593 | transval = ipath_read_kreg64(dd, reg); |
| 594 | |
| 595 | for (tries = EPB_TRANS_TRIES; tries; --tries) { |
| 596 | transval = ipath_read_kreg32(dd, reg); |
| 597 | if (transval & EPB_TRANS_RDY) |
| 598 | break; |
| 599 | udelay(5); |
| 600 | } |
| 601 | if (transval & EPB_TRANS_ERR) |
| 602 | return -1; |
| 603 | if (tries > 0 && o_vp) |
| 604 | *o_vp = transval; |
| 605 | return tries; |
| 606 | } |
| 607 | |
| 608 | /** |
| 609 | * |
| 610 | * ipath_sd7220_reg_mod - modify SERDES register |
| 611 | * @dd: the infinipath device |
| 612 | * @sdnum: which SERDES to access |
| 613 | * @loc: location - channel, element, register, as packed by EPB_LOC() macro. |
| 614 | * @wd: Write Data - value to set in register |
| 615 | * @mask: ones where data should be spliced into reg. |
| 616 | * |
| 617 | * Basic register read/modify/write, with un-needed acesses elided. That is, |
| 618 | * a mask of zero will prevent write, while a mask of 0xFF will prevent read. |
| 619 | * returns current (presumed, if a write was done) contents of selected |
| 620 | * register, or <0 if errors. |
| 621 | */ |
| 622 | static int ipath_sd7220_reg_mod(struct ipath_devdata *dd, int sdnum, u32 loc, |
| 623 | u32 wd, u32 mask) |
| 624 | { |
| 625 | u16 trans; |
| 626 | u64 transval; |
| 627 | int owned; |
| 628 | int tries, ret; |
| 629 | unsigned long flags; |
| 630 | |
| 631 | switch (sdnum) { |
| 632 | case IB_7220_SERDES : |
| 633 | trans = dd->ipath_kregs->kr_ib_epbtrans; |
| 634 | break; |
| 635 | case PCIE_SERDES0 : |
| 636 | case PCIE_SERDES1 : |
| 637 | trans = dd->ipath_kregs->kr_pcie_epbtrans; |
| 638 | break; |
| 639 | default : |
| 640 | return -1; |
| 641 | } |
| 642 | |
| 643 | /* |
| 644 | * All access is locked in software (vs other host threads) and |
| 645 | * hardware (vs uC access). |
| 646 | */ |
| 647 | spin_lock_irqsave(&dd->ipath_sdepb_lock, flags); |
| 648 | |
| 649 | owned = epb_access(dd, sdnum, 1); |
| 650 | if (owned < 0) { |
| 651 | spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags); |
| 652 | return -1; |
| 653 | } |
| 654 | ret = 0; |
| 655 | for (tries = EPB_TRANS_TRIES; tries; --tries) { |
| 656 | transval = ipath_read_kreg32(dd, trans); |
| 657 | if (transval & EPB_TRANS_RDY) |
| 658 | break; |
| 659 | udelay(5); |
| 660 | } |
| 661 | |
| 662 | if (tries > 0) { |
| 663 | tries = 1; /* to make read-skip work */ |
| 664 | if (mask != 0xFF) { |
| 665 | /* |
| 666 | * Not a pure write, so need to read. |
| 667 | * loc encodes chip-select as well as address |
| 668 | */ |
| 669 | transval = loc | EPB_RD; |
| 670 | tries = epb_trans(dd, trans, transval, &transval); |
| 671 | } |
| 672 | if (tries > 0 && mask != 0) { |
| 673 | /* |
| 674 | * Not a pure read, so need to write. |
| 675 | */ |
| 676 | wd = (wd & mask) | (transval & ~mask); |
| 677 | transval = loc | (wd & EPB_DATA_MASK); |
| 678 | tries = epb_trans(dd, trans, transval, &transval); |
| 679 | } |
| 680 | } |
| 681 | /* else, failed to see ready, what error-handling? */ |
| 682 | |
| 683 | /* |
| 684 | * Release bus. Failure is an error. |
| 685 | */ |
| 686 | if (epb_access(dd, sdnum, -1) < 0) |
| 687 | ret = -1; |
| 688 | else |
| 689 | ret = transval & EPB_DATA_MASK; |
| 690 | |
| 691 | spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags); |
| 692 | if (tries <= 0) |
| 693 | ret = -1; |
| 694 | return ret; |
| 695 | } |
| 696 | |
| 697 | #define EPB_ROM_R (2) |
| 698 | #define EPB_ROM_W (1) |
| 699 | /* |
| 700 | * Below, all uC-related, use appropriate UC_CS, depending |
| 701 | * on which SerDes is used. |
| 702 | */ |
| 703 | #define EPB_UC_CTL EPB_LOC(6, 0, 0) |
| 704 | #define EPB_MADDRL EPB_LOC(6, 0, 2) |
| 705 | #define EPB_MADDRH EPB_LOC(6, 0, 3) |
| 706 | #define EPB_ROMDATA EPB_LOC(6, 0, 4) |
| 707 | #define EPB_RAMDATA EPB_LOC(6, 0, 5) |
| 708 | |
| 709 | /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */ |
| 710 | static int ipath_sd7220_ram_xfer(struct ipath_devdata *dd, int sdnum, u32 loc, |
| 711 | u8 *buf, int cnt, int rd_notwr) |
| 712 | { |
| 713 | u16 trans; |
| 714 | u64 transval; |
| 715 | u64 csbit; |
| 716 | int owned; |
| 717 | int tries; |
| 718 | int sofar; |
| 719 | int addr; |
| 720 | int ret; |
| 721 | unsigned long flags; |
| 722 | const char *op; |
| 723 | |
| 724 | /* Pick appropriate transaction reg and "Chip select" for this serdes */ |
| 725 | switch (sdnum) { |
| 726 | case IB_7220_SERDES : |
| 727 | csbit = 1ULL << EPB_IB_UC_CS_SHF; |
| 728 | trans = dd->ipath_kregs->kr_ib_epbtrans; |
| 729 | break; |
| 730 | case PCIE_SERDES0 : |
| 731 | case PCIE_SERDES1 : |
| 732 | /* PCIe SERDES has uC "chip select" in different bit, too */ |
| 733 | csbit = 1ULL << EPB_PCIE_UC_CS_SHF; |
| 734 | trans = dd->ipath_kregs->kr_pcie_epbtrans; |
| 735 | break; |
| 736 | default : |
| 737 | return -1; |
| 738 | } |
| 739 | |
| 740 | op = rd_notwr ? "Rd" : "Wr"; |
| 741 | spin_lock_irqsave(&dd->ipath_sdepb_lock, flags); |
| 742 | |
| 743 | owned = epb_access(dd, sdnum, 1); |
| 744 | if (owned < 0) { |
| 745 | spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags); |
| 746 | ipath_dbg("Could not get %s access to %s EPB: %X, loc %X\n", |
| 747 | op, (sdnum == IB_7220_SERDES) ? "IB" : "PCIe", |
| 748 | owned, loc); |
| 749 | return -1; |
| 750 | } |
| 751 | |
| 752 | /* |
| 753 | * In future code, we may need to distinguish several address ranges, |
| 754 | * and select various memories based on this. For now, just trim |
| 755 | * "loc" (location including address and memory select) to |
| 756 | * "addr" (address within memory). we will only support PRAM |
| 757 | * The memory is 8KB. |
| 758 | */ |
| 759 | addr = loc & 0x1FFF; |
| 760 | for (tries = EPB_TRANS_TRIES; tries; --tries) { |
| 761 | transval = ipath_read_kreg32(dd, trans); |
| 762 | if (transval & EPB_TRANS_RDY) |
| 763 | break; |
| 764 | udelay(5); |
| 765 | } |
| 766 | |
| 767 | sofar = 0; |
| 768 | if (tries <= 0) |
| 769 | ipath_dbg("No initial RDY on EPB access request\n"); |
| 770 | else { |
| 771 | /* |
| 772 | * Every "memory" access is doubly-indirect. |
| 773 | * We set two bytes of address, then read/write |
| 774 | * one or mores bytes of data. |
| 775 | */ |
| 776 | |
| 777 | /* First, we set control to "Read" or "Write" */ |
| 778 | transval = csbit | EPB_UC_CTL | |
| 779 | (rd_notwr ? EPB_ROM_R : EPB_ROM_W); |
| 780 | tries = epb_trans(dd, trans, transval, &transval); |
| 781 | if (tries <= 0) |
| 782 | ipath_dbg("No EPB response to uC %s cmd\n", op); |
| 783 | while (tries > 0 && sofar < cnt) { |
| 784 | if (!sofar) { |
| 785 | /* Only set address at start of chunk */ |
| 786 | int addrbyte = (addr + sofar) >> 8; |
| 787 | transval = csbit | EPB_MADDRH | addrbyte; |
| 788 | tries = epb_trans(dd, trans, transval, |
| 789 | &transval); |
| 790 | if (tries <= 0) { |
| 791 | ipath_dbg("No EPB response ADDRH\n"); |
| 792 | break; |
| 793 | } |
| 794 | addrbyte = (addr + sofar) & 0xFF; |
| 795 | transval = csbit | EPB_MADDRL | addrbyte; |
| 796 | tries = epb_trans(dd, trans, transval, |
| 797 | &transval); |
| 798 | if (tries <= 0) { |
| 799 | ipath_dbg("No EPB response ADDRL\n"); |
| 800 | break; |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | if (rd_notwr) |
| 805 | transval = csbit | EPB_ROMDATA | EPB_RD; |
| 806 | else |
| 807 | transval = csbit | EPB_ROMDATA | buf[sofar]; |
| 808 | tries = epb_trans(dd, trans, transval, &transval); |
| 809 | if (tries <= 0) { |
| 810 | ipath_dbg("No EPB response DATA\n"); |
| 811 | break; |
| 812 | } |
| 813 | if (rd_notwr) |
| 814 | buf[sofar] = transval & EPB_DATA_MASK; |
| 815 | ++sofar; |
| 816 | } |
| 817 | /* Finally, clear control-bit for Read or Write */ |
| 818 | transval = csbit | EPB_UC_CTL; |
| 819 | tries = epb_trans(dd, trans, transval, &transval); |
| 820 | if (tries <= 0) |
| 821 | ipath_dbg("No EPB response to drop of uC %s cmd\n", op); |
| 822 | } |
| 823 | |
| 824 | ret = sofar; |
| 825 | /* Release bus. Failure is an error */ |
| 826 | if (epb_access(dd, sdnum, -1) < 0) |
| 827 | ret = -1; |
| 828 | |
| 829 | spin_unlock_irqrestore(&dd->ipath_sdepb_lock, flags); |
| 830 | if (tries <= 0) { |
| 831 | ipath_dbg("SERDES PRAM %s failed after %d bytes\n", op, sofar); |
| 832 | ret = -1; |
| 833 | } |
| 834 | return ret; |
| 835 | } |
| 836 | |
| 837 | #define PROG_CHUNK 64 |
| 838 | |
| 839 | int ipath_sd7220_prog_ld(struct ipath_devdata *dd, int sdnum, |
| 840 | u8 *img, int len, int offset) |
| 841 | { |
| 842 | int cnt, sofar, req; |
| 843 | |
| 844 | sofar = 0; |
| 845 | while (sofar < len) { |
| 846 | req = len - sofar; |
| 847 | if (req > PROG_CHUNK) |
| 848 | req = PROG_CHUNK; |
| 849 | cnt = ipath_sd7220_ram_xfer(dd, sdnum, offset + sofar, |
| 850 | img + sofar, req, 0); |
| 851 | if (cnt < req) { |
| 852 | sofar = -1; |
| 853 | break; |
| 854 | } |
| 855 | sofar += req; |
| 856 | } |
| 857 | return sofar; |
| 858 | } |
| 859 | |
| 860 | #define VFY_CHUNK 64 |
| 861 | #define SD_PRAM_ERROR_LIMIT 42 |
| 862 | |
| 863 | int ipath_sd7220_prog_vfy(struct ipath_devdata *dd, int sdnum, |
| 864 | const u8 *img, int len, int offset) |
| 865 | { |
| 866 | int cnt, sofar, req, idx, errors; |
| 867 | unsigned char readback[VFY_CHUNK]; |
| 868 | |
| 869 | errors = 0; |
| 870 | sofar = 0; |
| 871 | while (sofar < len) { |
| 872 | req = len - sofar; |
| 873 | if (req > VFY_CHUNK) |
| 874 | req = VFY_CHUNK; |
| 875 | cnt = ipath_sd7220_ram_xfer(dd, sdnum, sofar + offset, |
| 876 | readback, req, 1); |
| 877 | if (cnt < req) { |
| 878 | /* failed in read itself */ |
| 879 | sofar = -1; |
| 880 | break; |
| 881 | } |
| 882 | for (idx = 0; idx < cnt; ++idx) { |
| 883 | if (readback[idx] != img[idx+sofar]) |
| 884 | ++errors; |
| 885 | } |
| 886 | sofar += cnt; |
| 887 | } |
| 888 | return errors ? -errors : sofar; |
| 889 | } |
| 890 | |
| 891 | /* IRQ not set up at this point in init, so we poll. */ |
| 892 | #define IB_SERDES_TRIM_DONE (1ULL << 11) |
| 893 | #define TRIM_TMO (30) |
| 894 | |
| 895 | static int ipath_sd_trimdone_poll(struct ipath_devdata *dd) |
| 896 | { |
| 897 | int trim_tmo, ret; |
| 898 | uint64_t val; |
| 899 | |
| 900 | /* |
| 901 | * Default to failure, so IBC will not start |
| 902 | * without IB_SERDES_TRIM_DONE. |
| 903 | */ |
| 904 | ret = 0; |
| 905 | for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) { |
| 906 | val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); |
| 907 | if (val & IB_SERDES_TRIM_DONE) { |
| 908 | ipath_cdbg(VERBOSE, "TRIMDONE after %d\n", trim_tmo); |
| 909 | ret = 1; |
| 910 | break; |
| 911 | } |
| 912 | msleep(10); |
| 913 | } |
| 914 | if (trim_tmo >= TRIM_TMO) { |
| 915 | ipath_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo); |
| 916 | ret = 0; |
| 917 | } |
| 918 | return ret; |
| 919 | } |
| 920 | |
| 921 | #define TX_FAST_ELT (9) |
| 922 | |
| 923 | /* |
| 924 | * Set the "negotiation" values for SERDES. These are used by the IB1.2 |
| 925 | * link negotiation. Macros below are attempt to keep the values a |
| 926 | * little more human-editable. |
| 927 | * First, values related to Drive De-emphasis Settings. |
| 928 | */ |
| 929 | |
| 930 | #define NUM_DDS_REGS 6 |
| 931 | #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */ |
| 932 | |
| 933 | #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \ |
| 934 | { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \ |
| 935 | (main_d << 3) | 4 | (ipre_d >> 2), \ |
| 936 | (main_s << 3) | 4 | (ipre_s >> 2), \ |
| 937 | ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \ |
| 938 | ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } } |
| 939 | |
| 940 | static struct dds_init { |
| 941 | uint8_t reg_vals[NUM_DDS_REGS]; |
| 942 | } dds_init_vals[] = { |
| 943 | /* DDR(FDR) SDR(HDR) */ |
| 944 | /* Vendor recommends below for 3m cable */ |
| 945 | #define DDS_3M 0 |
| 946 | DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0), |
| 947 | DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1), |
| 948 | DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0), |
| 949 | DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0), |
| 950 | DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0), |
| 951 | DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0), |
| 952 | DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0), |
| 953 | DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0), |
| 954 | DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0), |
| 955 | DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0), |
| 956 | DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0), |
| 957 | DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0), |
| 958 | DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0), |
| 959 | /* Vendor recommends below for 1m cable */ |
| 960 | #define DDS_1M 13 |
| 961 | DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0), |
| 962 | DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0), |
| 963 | DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0) |
| 964 | }; |
| 965 | |
| 966 | /* |
| 967 | * Next, values related to Receive Equalization. |
| 968 | * In comments, FDR (Full) is IB DDR, HDR (Half) is IB SDR |
| 969 | */ |
| 970 | /* Hardware packs an element number and register address thus: */ |
| 971 | #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4)) |
| 972 | #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \ |
| 973 | {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} } |
| 974 | |
| 975 | #define RXEQ_VAL_ALL(elt, adr, val) \ |
| 976 | {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} } |
| 977 | |
| 978 | #define RXEQ_SDR_DFELTH 0 |
| 979 | #define RXEQ_SDR_TLTH 0 |
| 980 | #define RXEQ_SDR_G1CNT_Z1CNT 0x11 |
| 981 | #define RXEQ_SDR_ZCNT 23 |
| 982 | |
| 983 | static struct rxeq_init { |
| 984 | u16 rdesc; /* in form used in SerDesDDSRXEQ */ |
| 985 | u8 rdata[4]; |
| 986 | } rxeq_init_vals[] = { |
| 987 | /* Set Rcv Eq. to Preset node */ |
| 988 | RXEQ_VAL_ALL(7, 0x27, 0x10), |
| 989 | /* Set DFELTHFDR/HDR thresholds */ |
| 990 | RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR */ |
| 991 | RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */ |
| 992 | /* Set TLTHFDR/HDR theshold */ |
| 993 | RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR */ |
| 994 | RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR */ |
| 995 | /* Set Preamp setting 2 (ZFR/ZCNT) */ |
| 996 | RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR */ |
| 997 | RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR */ |
| 998 | /* Set Preamp DC gain and Setting 1 (GFR/GHR) */ |
| 999 | RXEQ_VAL(7, 0x1E, 0x10, 0x10, 0x10, 0x10), /* FDR */ |
| 1000 | RXEQ_VAL(7, 0x1F, 0x10, 0x10, 0x10, 0x10), /* HDR */ |
| 1001 | /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */ |
| 1002 | RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */ |
| 1003 | RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */ |
| 1004 | }; |
| 1005 | |
| 1006 | /* There are 17 values from vendor, but IBC only accesses the first 16 */ |
| 1007 | #define DDS_ROWS (16) |
| 1008 | #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals) |
| 1009 | |
| 1010 | static int ipath_sd_setvals(struct ipath_devdata *dd) |
| 1011 | { |
| 1012 | int idx, midx; |
| 1013 | int min_idx; /* Minimum index for this portion of table */ |
| 1014 | uint32_t dds_reg_map; |
| 1015 | u64 __iomem *taddr, *iaddr; |
| 1016 | uint64_t data; |
| 1017 | uint64_t sdctl; |
| 1018 | |
| 1019 | taddr = dd->ipath_kregbase + KR_IBSerDesMappTable; |
| 1020 | iaddr = dd->ipath_kregbase + dd->ipath_kregs->kr_ib_ddsrxeq; |
| 1021 | |
| 1022 | /* |
| 1023 | * Init the DDS section of the table. |
| 1024 | * Each "row" of the table provokes NUM_DDS_REG writes, to the |
| 1025 | * registers indicated in DDS_REG_MAP. |
| 1026 | */ |
| 1027 | sdctl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibserdesctrl); |
| 1028 | sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8); |
| 1029 | sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13); |
| 1030 | ipath_write_kreg(dd, dd->ipath_kregs->kr_ibserdesctrl, sdctl); |
| 1031 | |
| 1032 | /* |
| 1033 | * Iterate down table within loop for each register to store. |
| 1034 | */ |
| 1035 | dds_reg_map = DDS_REG_MAP; |
| 1036 | for (idx = 0; idx < NUM_DDS_REGS; ++idx) { |
| 1037 | data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT; |
| 1038 | writeq(data, iaddr + idx); |
| 1039 | mmiowb(); |
| 1040 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); |
| 1041 | dds_reg_map >>= 4; |
| 1042 | for (midx = 0; midx < DDS_ROWS; ++midx) { |
| 1043 | u64 __iomem *daddr = taddr + ((midx << 4) + idx); |
| 1044 | data = dds_init_vals[midx].reg_vals[idx]; |
| 1045 | writeq(data, daddr); |
| 1046 | mmiowb(); |
| 1047 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); |
| 1048 | } /* End inner for (vals for this reg, each row) */ |
| 1049 | } /* end outer for (regs to be stored) */ |
| 1050 | |
| 1051 | /* |
| 1052 | * Init the RXEQ section of the table. As explained above the table |
| 1053 | * rxeq_init_vals[], this runs in a different order, as the pattern |
| 1054 | * of register references is more complex, but there are only |
| 1055 | * four "data" values per register. |
| 1056 | */ |
| 1057 | min_idx = idx; /* RXEQ indices pick up where DDS left off */ |
| 1058 | taddr += 0x100; /* RXEQ data is in second half of table */ |
| 1059 | /* Iterate through RXEQ register addresses */ |
| 1060 | for (idx = 0; idx < RXEQ_ROWS; ++idx) { |
| 1061 | int didx; /* "destination" */ |
| 1062 | int vidx; |
| 1063 | |
| 1064 | /* didx is offset by min_idx to address RXEQ range of regs */ |
| 1065 | didx = idx + min_idx; |
| 1066 | /* Store the next RXEQ register address */ |
| 1067 | writeq(rxeq_init_vals[idx].rdesc, iaddr + didx); |
| 1068 | mmiowb(); |
| 1069 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); |
| 1070 | /* Iterate through RXEQ values */ |
| 1071 | for (vidx = 0; vidx < 4; vidx++) { |
| 1072 | data = rxeq_init_vals[idx].rdata[vidx]; |
| 1073 | writeq(data, taddr + (vidx << 6) + idx); |
| 1074 | mmiowb(); |
| 1075 | ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); |
| 1076 | } |
| 1077 | } /* end outer for (Reg-writes for RXEQ) */ |
| 1078 | return 0; |
| 1079 | } |
| 1080 | |
| 1081 | #define CMUCTRL5 EPB_LOC(7, 0, 0x15) |
| 1082 | #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0) |
| 1083 | #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5) |
| 1084 | #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6) |
| 1085 | #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8) |
| 1086 | #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28) |
| 1087 | |
| 1088 | static int ibsd_sto_noisy(struct ipath_devdata *dd, int loc, int val, int mask) |
| 1089 | { |
| 1090 | int ret = -1; |
| 1091 | int sloc; /* shifted loc, for messages */ |
| 1092 | |
| 1093 | loc |= (1U << EPB_IB_QUAD0_CS_SHF); |
| 1094 | sloc = loc >> EPB_ADDR_SHF; |
| 1095 | |
| 1096 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, mask); |
| 1097 | if (ret < 0) |
| 1098 | ipath_dev_err(dd, "Write failed: elt %d," |
| 1099 | " addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n", |
| 1100 | (sloc & 0xF), (sloc >> 9) & 0x3f, (sloc >> 4) & 7, |
| 1101 | val & 0xFF, mask & 0xFF); |
| 1102 | return ret; |
| 1103 | } |
| 1104 | |
| 1105 | /* |
| 1106 | * Repeat a "store" across all channels of the IB SerDes. |
| 1107 | * Although nominally it inherits the "read value" of the last |
| 1108 | * channel it modified, the only really useful return is <0 for |
| 1109 | * failure, >= 0 for success. The parameter 'loc' is assumed to |
| 1110 | * be the location for the channel-0 copy of the register to |
| 1111 | * be modified. |
| 1112 | */ |
| 1113 | static int ibsd_mod_allchnls(struct ipath_devdata *dd, int loc, int val, |
| 1114 | int mask) |
| 1115 | { |
| 1116 | int ret = -1; |
| 1117 | int chnl; |
| 1118 | |
| 1119 | if (loc & EPB_GLOBAL_WR) { |
| 1120 | /* |
| 1121 | * Our caller has assured us that we can set all four |
| 1122 | * channels at once. Trust that. If mask is not 0xFF, |
| 1123 | * we will read the _specified_ channel for our starting |
| 1124 | * value. |
| 1125 | */ |
| 1126 | loc |= (1U << EPB_IB_QUAD0_CS_SHF); |
| 1127 | chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7; |
| 1128 | if (mask != 0xFF) { |
| 1129 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, |
| 1130 | loc & ~EPB_GLOBAL_WR, 0, 0); |
| 1131 | if (ret < 0) { |
| 1132 | int sloc = loc >> EPB_ADDR_SHF; |
| 1133 | ipath_dev_err(dd, "pre-read failed: elt %d," |
| 1134 | " addr 0x%X, chnl %d\n", (sloc & 0xF), |
| 1135 | (sloc >> 9) & 0x3f, chnl); |
| 1136 | return ret; |
| 1137 | } |
| 1138 | val = (ret & ~mask) | (val & mask); |
| 1139 | } |
| 1140 | loc &= ~(7 << (4+EPB_ADDR_SHF)); |
| 1141 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF); |
| 1142 | if (ret < 0) { |
| 1143 | int sloc = loc >> EPB_ADDR_SHF; |
| 1144 | ipath_dev_err(dd, "Global WR failed: elt %d," |
| 1145 | " addr 0x%X, val %02X\n", |
| 1146 | (sloc & 0xF), (sloc >> 9) & 0x3f, val); |
| 1147 | } |
| 1148 | return ret; |
| 1149 | } |
| 1150 | /* Clear "channel" and set CS so we can simply iterate */ |
| 1151 | loc &= ~(7 << (4+EPB_ADDR_SHF)); |
| 1152 | loc |= (1U << EPB_IB_QUAD0_CS_SHF); |
| 1153 | for (chnl = 0; chnl < 4; ++chnl) { |
| 1154 | int cloc; |
| 1155 | cloc = loc | (chnl << (4+EPB_ADDR_SHF)); |
| 1156 | ret = ipath_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask); |
| 1157 | if (ret < 0) { |
| 1158 | int sloc = loc >> EPB_ADDR_SHF; |
| 1159 | ipath_dev_err(dd, "Write failed: elt %d," |
| 1160 | " addr 0x%X, chnl %d, val 0x%02X," |
| 1161 | " mask 0x%02X\n", |
| 1162 | (sloc & 0xF), (sloc >> 9) & 0x3f, chnl, |
| 1163 | val & 0xFF, mask & 0xFF); |
| 1164 | break; |
| 1165 | } |
| 1166 | } |
| 1167 | return ret; |
| 1168 | } |
| 1169 | |
| 1170 | /* |
| 1171 | * Set the Tx values normally modified by IBC in IB1.2 mode to default |
| 1172 | * values, as gotten from first row of init table. |
| 1173 | */ |
| 1174 | static int set_dds_vals(struct ipath_devdata *dd, struct dds_init *ddi) |
| 1175 | { |
| 1176 | int ret; |
| 1177 | int idx, reg, data; |
| 1178 | uint32_t regmap; |
| 1179 | |
| 1180 | regmap = DDS_REG_MAP; |
| 1181 | for (idx = 0; idx < NUM_DDS_REGS; ++idx) { |
| 1182 | reg = (regmap & 0xF); |
| 1183 | regmap >>= 4; |
| 1184 | data = ddi->reg_vals[idx]; |
| 1185 | /* Vendor says RMW not needed for these regs, use 0xFF mask */ |
| 1186 | ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF); |
| 1187 | if (ret < 0) |
| 1188 | break; |
| 1189 | } |
| 1190 | return ret; |
| 1191 | } |
| 1192 | |
| 1193 | /* |
| 1194 | * Set the Rx values normally modified by IBC in IB1.2 mode to default |
| 1195 | * values, as gotten from selected column of init table. |
| 1196 | */ |
| 1197 | static int set_rxeq_vals(struct ipath_devdata *dd, int vsel) |
| 1198 | { |
| 1199 | int ret; |
| 1200 | int ridx; |
| 1201 | int cnt = ARRAY_SIZE(rxeq_init_vals); |
| 1202 | |
| 1203 | for (ridx = 0; ridx < cnt; ++ridx) { |
| 1204 | int elt, reg, val, loc; |
| 1205 | elt = rxeq_init_vals[ridx].rdesc & 0xF; |
| 1206 | reg = rxeq_init_vals[ridx].rdesc >> 4; |
| 1207 | loc = EPB_LOC(0, elt, reg); |
| 1208 | val = rxeq_init_vals[ridx].rdata[vsel]; |
| 1209 | /* mask of 0xFF, because hardware does full-byte store. */ |
| 1210 | ret = ibsd_mod_allchnls(dd, loc, val, 0xFF); |
| 1211 | if (ret < 0) |
| 1212 | break; |
| 1213 | } |
| 1214 | return ret; |
| 1215 | } |
| 1216 | |
| 1217 | /* |
| 1218 | * Set the default values (row 0) for DDR Driver Demphasis. |
| 1219 | * we do this initially and whenever we turn off IB-1.2 |
| 1220 | * The "default" values for Rx equalization are also stored to |
| 1221 | * SerDes registers. Formerly (and still default), we used set 2. |
| 1222 | * For experimenting with cables and link-partners, we allow changing |
| 1223 | * that via a module parameter. |
| 1224 | */ |
| 1225 | static unsigned ipath_rxeq_set = 2; |
| 1226 | module_param_named(rxeq_default_set, ipath_rxeq_set, uint, |
| 1227 | S_IWUSR | S_IRUGO); |
| 1228 | MODULE_PARM_DESC(rxeq_default_set, |
| 1229 | "Which set [0..3] of Rx Equalization values is default"); |
| 1230 | |
| 1231 | static int ipath_internal_presets(struct ipath_devdata *dd) |
| 1232 | { |
| 1233 | int ret = 0; |
| 1234 | |
| 1235 | ret = set_dds_vals(dd, dds_init_vals + DDS_3M); |
| 1236 | |
| 1237 | if (ret < 0) |
| 1238 | ipath_dev_err(dd, "Failed to set default DDS values\n"); |
| 1239 | ret = set_rxeq_vals(dd, ipath_rxeq_set & 3); |
| 1240 | if (ret < 0) |
| 1241 | ipath_dev_err(dd, "Failed to set default RXEQ values\n"); |
| 1242 | return ret; |
| 1243 | } |
| 1244 | |
| 1245 | int ipath_sd7220_presets(struct ipath_devdata *dd) |
| 1246 | { |
| 1247 | int ret = 0; |
| 1248 | |
| 1249 | if (!dd->ipath_presets_needed) |
| 1250 | return ret; |
| 1251 | dd->ipath_presets_needed = 0; |
| 1252 | /* Assert uC reset, so we don't clash with it. */ |
| 1253 | ipath_ibsd_reset(dd, 1); |
| 1254 | udelay(2); |
| 1255 | ipath_sd_trimdone_monitor(dd, "link-down"); |
| 1256 | |
| 1257 | ret = ipath_internal_presets(dd); |
| 1258 | return ret; |
| 1259 | } |
| 1260 | |
| 1261 | static int ipath_sd_trimself(struct ipath_devdata *dd, int val) |
| 1262 | { |
| 1263 | return ibsd_sto_noisy(dd, CMUCTRL5, val, 0xFF); |
| 1264 | } |
| 1265 | |
| 1266 | static int ipath_sd_early(struct ipath_devdata *dd) |
| 1267 | { |
| 1268 | int ret = -1; /* Default failed */ |
| 1269 | int chnl; |
| 1270 | |
| 1271 | for (chnl = 0; chnl < 4; ++chnl) { |
| 1272 | ret = ibsd_sto_noisy(dd, RXHSCTRL0(chnl), 0xD4, 0xFF); |
| 1273 | if (ret < 0) |
| 1274 | goto bail; |
| 1275 | } |
| 1276 | for (chnl = 0; chnl < 4; ++chnl) { |
| 1277 | ret = ibsd_sto_noisy(dd, VCDL_DAC2(chnl), 0x2D, 0xFF); |
| 1278 | if (ret < 0) |
| 1279 | goto bail; |
| 1280 | } |
| 1281 | /* more fine-tuning of what will be default */ |
| 1282 | for (chnl = 0; chnl < 4; ++chnl) { |
| 1283 | ret = ibsd_sto_noisy(dd, VCDL_CTRL2(chnl), 3, 0xF); |
| 1284 | if (ret < 0) |
| 1285 | goto bail; |
| 1286 | } |
| 1287 | for (chnl = 0; chnl < 4; ++chnl) { |
| 1288 | ret = ibsd_sto_noisy(dd, START_EQ1(chnl), 0x10, 0xFF); |
| 1289 | if (ret < 0) |
| 1290 | goto bail; |
| 1291 | } |
| 1292 | for (chnl = 0; chnl < 4; ++chnl) { |
| 1293 | ret = ibsd_sto_noisy(dd, START_EQ2(chnl), 0x30, 0xFF); |
| 1294 | if (ret < 0) |
| 1295 | goto bail; |
| 1296 | } |
| 1297 | bail: |
| 1298 | return ret; |
| 1299 | } |
| 1300 | |
| 1301 | #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E) |
| 1302 | #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6) |
| 1303 | #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF) |
| 1304 | |
| 1305 | static int ipath_sd_dactrim(struct ipath_devdata *dd) |
| 1306 | { |
| 1307 | int ret = -1; /* Default failed */ |
| 1308 | int chnl; |
| 1309 | |
| 1310 | for (chnl = 0; chnl < 4; ++chnl) { |
| 1311 | ret = ibsd_sto_noisy(dd, BACTRL(chnl), 0x40, 0xFF); |
| 1312 | if (ret < 0) |
| 1313 | goto bail; |
| 1314 | } |
| 1315 | for (chnl = 0; chnl < 4; ++chnl) { |
| 1316 | ret = ibsd_sto_noisy(dd, LDOUTCTRL1(chnl), 0x04, 0xFF); |
| 1317 | if (ret < 0) |
| 1318 | goto bail; |
| 1319 | } |
| 1320 | for (chnl = 0; chnl < 4; ++chnl) { |
| 1321 | ret = ibsd_sto_noisy(dd, RXHSSTATUS(chnl), 0x04, 0xFF); |
| 1322 | if (ret < 0) |
| 1323 | goto bail; |
| 1324 | } |
| 1325 | /* |
| 1326 | * delay for max possible number of steps, with slop. |
| 1327 | * Each step is about 4usec. |
| 1328 | */ |
| 1329 | udelay(415); |
| 1330 | for (chnl = 0; chnl < 4; ++chnl) { |
| 1331 | ret = ibsd_sto_noisy(dd, LDOUTCTRL1(chnl), 0x00, 0xFF); |
| 1332 | if (ret < 0) |
| 1333 | goto bail; |
| 1334 | } |
| 1335 | bail: |
| 1336 | return ret; |
| 1337 | } |
| 1338 | |
| 1339 | #define RELOCK_FIRST_MS 3 |
| 1340 | #define RXLSPPM(chan) EPB_LOC(chan, 0, 2) |
| 1341 | void ipath_toggle_rclkrls(struct ipath_devdata *dd) |
| 1342 | { |
| 1343 | int loc = RXLSPPM(0) | EPB_GLOBAL_WR; |
| 1344 | int ret; |
| 1345 | |
| 1346 | ret = ibsd_mod_allchnls(dd, loc, 0, 0x80); |
| 1347 | if (ret < 0) |
| 1348 | ipath_dev_err(dd, "RCLKRLS failed to clear D7\n"); |
| 1349 | else { |
| 1350 | udelay(1); |
| 1351 | ibsd_mod_allchnls(dd, loc, 0x80, 0x80); |
| 1352 | } |
| 1353 | /* And again for good measure */ |
| 1354 | udelay(1); |
| 1355 | ret = ibsd_mod_allchnls(dd, loc, 0, 0x80); |
| 1356 | if (ret < 0) |
| 1357 | ipath_dev_err(dd, "RCLKRLS failed to clear D7\n"); |
| 1358 | else { |
| 1359 | udelay(1); |
| 1360 | ibsd_mod_allchnls(dd, loc, 0x80, 0x80); |
| 1361 | } |
| 1362 | /* Now reset xgxs and IBC to complete the recovery */ |
| 1363 | dd->ipath_f_xgxs_reset(dd); |
| 1364 | } |
| 1365 | |
| 1366 | /* |
| 1367 | * Shut down the timer that polls for relock occasions, if needed |
| 1368 | * this is "hooked" from ipath_7220_quiet_serdes(), which is called |
| 1369 | * just before ipath_shutdown_device() in ipath_driver.c shuts down all |
| 1370 | * the other timers |
| 1371 | */ |
| 1372 | void ipath_shutdown_relock_poll(struct ipath_devdata *dd) |
| 1373 | { |
| 1374 | struct ipath_relock *irp = &dd->ipath_relock_singleton; |
| 1375 | if (atomic_read(&irp->ipath_relock_timer_active)) { |
| 1376 | del_timer_sync(&irp->ipath_relock_timer); |
| 1377 | atomic_set(&irp->ipath_relock_timer_active, 0); |
| 1378 | } |
| 1379 | } |
| 1380 | |
| 1381 | static unsigned ipath_relock_by_timer = 1; |
| 1382 | module_param_named(relock_by_timer, ipath_relock_by_timer, uint, |
| 1383 | S_IWUSR | S_IRUGO); |
| 1384 | MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up"); |
| 1385 | |
| 1386 | static void ipath_run_relock(unsigned long opaque) |
| 1387 | { |
| 1388 | struct ipath_devdata *dd = (struct ipath_devdata *)opaque; |
| 1389 | struct ipath_relock *irp = &dd->ipath_relock_singleton; |
| 1390 | u64 val, ltstate; |
| 1391 | |
| 1392 | if (!(dd->ipath_flags & IPATH_INITTED)) { |
| 1393 | /* Not yet up, just reenable the timer for later */ |
| 1394 | irp->ipath_relock_interval = HZ; |
| 1395 | mod_timer(&irp->ipath_relock_timer, jiffies + HZ); |
| 1396 | return; |
| 1397 | } |
| 1398 | |
| 1399 | /* |
| 1400 | * Check link-training state for "stuck" state. |
| 1401 | * if found, try relock and schedule another try at |
| 1402 | * exponentially growing delay, maxed at one second. |
| 1403 | * if not stuck, our work is done. |
| 1404 | */ |
| 1405 | val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); |
| 1406 | ltstate = ipath_ib_linktrstate(dd, val); |
| 1407 | |
| 1408 | if (ltstate <= INFINIPATH_IBCS_LT_STATE_CFGWAITRMT |
| 1409 | && ltstate != INFINIPATH_IBCS_LT_STATE_LINKUP) { |
| 1410 | int timeoff; |
| 1411 | /* Not up yet. Try again, if allowed by module-param */ |
| 1412 | if (ipath_relock_by_timer) { |
| 1413 | if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG) |
| 1414 | ipath_cdbg(VERBOSE, "Skip RELOCK in AUTONEG\n"); |
| 1415 | else if (!(dd->ipath_flags & IPATH_IB_LINK_DISABLED)) { |
| 1416 | ipath_cdbg(VERBOSE, "RELOCK\n"); |
| 1417 | ipath_toggle_rclkrls(dd); |
| 1418 | } |
| 1419 | } |
| 1420 | /* re-set timer for next check */ |
| 1421 | timeoff = irp->ipath_relock_interval << 1; |
| 1422 | if (timeoff > HZ) |
| 1423 | timeoff = HZ; |
| 1424 | irp->ipath_relock_interval = timeoff; |
| 1425 | |
| 1426 | mod_timer(&irp->ipath_relock_timer, jiffies + timeoff); |
| 1427 | } else { |
| 1428 | /* Up, so no more need to check so often */ |
| 1429 | mod_timer(&irp->ipath_relock_timer, jiffies + HZ); |
| 1430 | } |
| 1431 | } |
| 1432 | |
| 1433 | void ipath_set_relock_poll(struct ipath_devdata *dd, int ibup) |
| 1434 | { |
| 1435 | struct ipath_relock *irp = &dd->ipath_relock_singleton; |
| 1436 | |
| 1437 | if (ibup > 0) { |
| 1438 | /* we are now up, so relax timer to 1 second interval */ |
| 1439 | if (atomic_read(&irp->ipath_relock_timer_active)) |
| 1440 | mod_timer(&irp->ipath_relock_timer, jiffies + HZ); |
| 1441 | } else { |
| 1442 | /* Transition to down, (re-)set timer to short interval. */ |
| 1443 | int timeout; |
| 1444 | timeout = (HZ * ((ibup == -1) ? 1000 : RELOCK_FIRST_MS))/1000; |
| 1445 | if (timeout == 0) |
| 1446 | timeout = 1; |
| 1447 | /* If timer has not yet been started, do so. */ |
| 1448 | if (atomic_inc_return(&irp->ipath_relock_timer_active) == 1) { |
| 1449 | init_timer(&irp->ipath_relock_timer); |
| 1450 | irp->ipath_relock_timer.function = ipath_run_relock; |
| 1451 | irp->ipath_relock_timer.data = (unsigned long) dd; |
| 1452 | irp->ipath_relock_interval = timeout; |
| 1453 | irp->ipath_relock_timer.expires = jiffies + timeout; |
| 1454 | add_timer(&irp->ipath_relock_timer); |
| 1455 | } else { |
| 1456 | irp->ipath_relock_interval = timeout; |
| 1457 | mod_timer(&irp->ipath_relock_timer, jiffies + timeout); |
| 1458 | atomic_dec(&irp->ipath_relock_timer_active); |
| 1459 | } |
| 1460 | } |
| 1461 | } |
| 1462 | |