blob: 86d8da0cbd027262024277ea1ba7fe14164f7d4f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 */
11
12#include <linux/config.h>
13#include <linux/module.h>
14#include <asm/uaccess.h>
15#include <asm/system.h>
16#include <linux/bitops.h>
17#include <linux/types.h>
18#include <linux/kernel.h>
19#include <linux/jiffies.h>
20#include <linux/string.h>
21#include <linux/mm.h>
22#include <linux/socket.h>
23#include <linux/sockios.h>
24#include <linux/in.h>
25#include <linux/errno.h>
26#include <linux/interrupt.h>
27#include <linux/if_ether.h>
28#include <linux/inet.h>
29#include <linux/netdevice.h>
30#include <linux/etherdevice.h>
31#include <linux/notifier.h>
32#include <linux/init.h>
33#include <net/ip.h>
34#include <linux/ipv6.h>
35#include <net/route.h>
36#include <linux/skbuff.h>
37#include <net/sock.h>
38#include <net/pkt_sched.h>
39
40
41/* Stochastic Fairness Queuing algorithm.
42 =======================================
43
44 Source:
45 Paul E. McKenney "Stochastic Fairness Queuing",
46 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
47
48 Paul E. McKenney "Stochastic Fairness Queuing",
49 "Interworking: Research and Experience", v.2, 1991, p.113-131.
50
51
52 See also:
53 M. Shreedhar and George Varghese "Efficient Fair
54 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
55
56
57 This is not the thing that is usually called (W)FQ nowadays.
58 It does not use any timestamp mechanism, but instead
59 processes queues in round-robin order.
60
61 ADVANTAGE:
62
63 - It is very cheap. Both CPU and memory requirements are minimal.
64
65 DRAWBACKS:
66
67 - "Stochastic" -> It is not 100% fair.
68 When hash collisions occur, several flows are considered as one.
69
70 - "Round-robin" -> It introduces larger delays than virtual clock
71 based schemes, and should not be used for isolating interactive
72 traffic from non-interactive. It means, that this scheduler
73 should be used as leaf of CBQ or P3, which put interactive traffic
74 to higher priority band.
75
76 We still need true WFQ for top level CSZ, but using WFQ
77 for the best effort traffic is absolutely pointless:
78 SFQ is superior for this purpose.
79
80 IMPLEMENTATION:
81 This implementation limits maximal queue length to 128;
82 maximal mtu to 2^15-1; number of hash buckets to 1024.
83 The only goal of this restrictions was that all data
84 fit into one 4K page :-). Struct sfq_sched_data is
85 organized in anti-cache manner: all the data for a bucket
86 are scattered over different locations. This is not good,
87 but it allowed me to put it into 4K.
88
89 It is easy to increase these values, but not in flight. */
90
91#define SFQ_DEPTH 128
92#define SFQ_HASH_DIVISOR 1024
93
94/* This type should contain at least SFQ_DEPTH*2 values */
95typedef unsigned char sfq_index;
96
97struct sfq_head
98{
99 sfq_index next;
100 sfq_index prev;
101};
102
103struct sfq_sched_data
104{
105/* Parameters */
106 int perturb_period;
107 unsigned quantum; /* Allotment per round: MUST BE >= MTU */
108 int limit;
109
110/* Variables */
111 struct timer_list perturb_timer;
112 int perturbation;
113 sfq_index tail; /* Index of current slot in round */
114 sfq_index max_depth; /* Maximal depth */
115
116 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
117 sfq_index next[SFQ_DEPTH]; /* Active slots link */
118 short allot[SFQ_DEPTH]; /* Current allotment per slot */
119 unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */
120 struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */
121 struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */
122};
123
124static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
125{
126 int pert = q->perturbation;
127
128 /* Have we any rotation primitives? If not, WHY? */
129 h ^= (h1<<pert) ^ (h1>>(0x1F - pert));
130 h ^= h>>10;
131 return h & 0x3FF;
132}
133
134static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
135{
136 u32 h, h2;
137
138 switch (skb->protocol) {
139 case __constant_htons(ETH_P_IP):
140 {
141 struct iphdr *iph = skb->nh.iph;
142 h = iph->daddr;
143 h2 = iph->saddr^iph->protocol;
144 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
145 (iph->protocol == IPPROTO_TCP ||
146 iph->protocol == IPPROTO_UDP ||
Patrick McHardyae82af52006-01-17 13:01:06 -0800147 iph->protocol == IPPROTO_SCTP ||
148 iph->protocol == IPPROTO_DCCP ||
Linus Torvalds1da177e2005-04-16 15:20:36 -0700149 iph->protocol == IPPROTO_ESP))
150 h2 ^= *(((u32*)iph) + iph->ihl);
151 break;
152 }
153 case __constant_htons(ETH_P_IPV6):
154 {
155 struct ipv6hdr *iph = skb->nh.ipv6h;
156 h = iph->daddr.s6_addr32[3];
157 h2 = iph->saddr.s6_addr32[3]^iph->nexthdr;
158 if (iph->nexthdr == IPPROTO_TCP ||
159 iph->nexthdr == IPPROTO_UDP ||
Patrick McHardyae82af52006-01-17 13:01:06 -0800160 iph->nexthdr == IPPROTO_SCTP ||
161 iph->nexthdr == IPPROTO_DCCP ||
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162 iph->nexthdr == IPPROTO_ESP)
163 h2 ^= *(u32*)&iph[1];
164 break;
165 }
166 default:
167 h = (u32)(unsigned long)skb->dst^skb->protocol;
168 h2 = (u32)(unsigned long)skb->sk;
169 }
170 return sfq_fold_hash(q, h, h2);
171}
172
173static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
174{
175 sfq_index p, n;
176 int d = q->qs[x].qlen + SFQ_DEPTH;
177
178 p = d;
179 n = q->dep[d].next;
180 q->dep[x].next = n;
181 q->dep[x].prev = p;
182 q->dep[p].next = q->dep[n].prev = x;
183}
184
185static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
186{
187 sfq_index p, n;
188
189 n = q->dep[x].next;
190 p = q->dep[x].prev;
191 q->dep[p].next = n;
192 q->dep[n].prev = p;
193
194 if (n == p && q->max_depth == q->qs[x].qlen + 1)
195 q->max_depth--;
196
197 sfq_link(q, x);
198}
199
200static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
201{
202 sfq_index p, n;
203 int d;
204
205 n = q->dep[x].next;
206 p = q->dep[x].prev;
207 q->dep[p].next = n;
208 q->dep[n].prev = p;
209 d = q->qs[x].qlen;
210 if (q->max_depth < d)
211 q->max_depth = d;
212
213 sfq_link(q, x);
214}
215
216static unsigned int sfq_drop(struct Qdisc *sch)
217{
218 struct sfq_sched_data *q = qdisc_priv(sch);
219 sfq_index d = q->max_depth;
220 struct sk_buff *skb;
221 unsigned int len;
222
223 /* Queue is full! Find the longest slot and
224 drop a packet from it */
225
226 if (d > 1) {
227 sfq_index x = q->dep[d+SFQ_DEPTH].next;
228 skb = q->qs[x].prev;
229 len = skb->len;
230 __skb_unlink(skb, &q->qs[x]);
231 kfree_skb(skb);
232 sfq_dec(q, x);
233 sch->q.qlen--;
234 sch->qstats.drops++;
235 return len;
236 }
237
238 if (d == 1) {
239 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
240 d = q->next[q->tail];
241 q->next[q->tail] = q->next[d];
242 q->allot[q->next[d]] += q->quantum;
243 skb = q->qs[d].prev;
244 len = skb->len;
245 __skb_unlink(skb, &q->qs[d]);
246 kfree_skb(skb);
247 sfq_dec(q, d);
248 sch->q.qlen--;
249 q->ht[q->hash[d]] = SFQ_DEPTH;
250 sch->qstats.drops++;
251 return len;
252 }
253
254 return 0;
255}
256
257static int
258sfq_enqueue(struct sk_buff *skb, struct Qdisc* sch)
259{
260 struct sfq_sched_data *q = qdisc_priv(sch);
261 unsigned hash = sfq_hash(q, skb);
262 sfq_index x;
263
264 x = q->ht[hash];
265 if (x == SFQ_DEPTH) {
266 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
267 q->hash[x] = hash;
268 }
269 __skb_queue_tail(&q->qs[x], skb);
270 sfq_inc(q, x);
271 if (q->qs[x].qlen == 1) { /* The flow is new */
272 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
273 q->tail = x;
274 q->next[x] = x;
275 q->allot[x] = q->quantum;
276 } else {
277 q->next[x] = q->next[q->tail];
278 q->next[q->tail] = x;
279 q->tail = x;
280 }
281 }
282 if (++sch->q.qlen < q->limit-1) {
283 sch->bstats.bytes += skb->len;
284 sch->bstats.packets++;
285 return 0;
286 }
287
288 sfq_drop(sch);
289 return NET_XMIT_CN;
290}
291
292static int
293sfq_requeue(struct sk_buff *skb, struct Qdisc* sch)
294{
295 struct sfq_sched_data *q = qdisc_priv(sch);
296 unsigned hash = sfq_hash(q, skb);
297 sfq_index x;
298
299 x = q->ht[hash];
300 if (x == SFQ_DEPTH) {
301 q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
302 q->hash[x] = hash;
303 }
304 __skb_queue_head(&q->qs[x], skb);
305 sfq_inc(q, x);
306 if (q->qs[x].qlen == 1) { /* The flow is new */
307 if (q->tail == SFQ_DEPTH) { /* It is the first flow */
308 q->tail = x;
309 q->next[x] = x;
310 q->allot[x] = q->quantum;
311 } else {
312 q->next[x] = q->next[q->tail];
313 q->next[q->tail] = x;
314 q->tail = x;
315 }
316 }
317 if (++sch->q.qlen < q->limit - 1) {
318 sch->qstats.requeues++;
319 return 0;
320 }
321
322 sch->qstats.drops++;
323 sfq_drop(sch);
324 return NET_XMIT_CN;
325}
326
327
328
329
330static struct sk_buff *
331sfq_dequeue(struct Qdisc* sch)
332{
333 struct sfq_sched_data *q = qdisc_priv(sch);
334 struct sk_buff *skb;
335 sfq_index a, old_a;
336
337 /* No active slots */
338 if (q->tail == SFQ_DEPTH)
339 return NULL;
340
341 a = old_a = q->next[q->tail];
342
343 /* Grab packet */
344 skb = __skb_dequeue(&q->qs[a]);
345 sfq_dec(q, a);
346 sch->q.qlen--;
347
348 /* Is the slot empty? */
349 if (q->qs[a].qlen == 0) {
350 q->ht[q->hash[a]] = SFQ_DEPTH;
351 a = q->next[a];
352 if (a == old_a) {
353 q->tail = SFQ_DEPTH;
354 return skb;
355 }
356 q->next[q->tail] = a;
357 q->allot[a] += q->quantum;
358 } else if ((q->allot[a] -= skb->len) <= 0) {
359 q->tail = a;
360 a = q->next[a];
361 q->allot[a] += q->quantum;
362 }
363 return skb;
364}
365
366static void
367sfq_reset(struct Qdisc* sch)
368{
369 struct sk_buff *skb;
370
371 while ((skb = sfq_dequeue(sch)) != NULL)
372 kfree_skb(skb);
373}
374
375static void sfq_perturbation(unsigned long arg)
376{
377 struct Qdisc *sch = (struct Qdisc*)arg;
378 struct sfq_sched_data *q = qdisc_priv(sch);
379
380 q->perturbation = net_random()&0x1F;
381
382 if (q->perturb_period) {
383 q->perturb_timer.expires = jiffies + q->perturb_period;
384 add_timer(&q->perturb_timer);
385 }
386}
387
388static int sfq_change(struct Qdisc *sch, struct rtattr *opt)
389{
390 struct sfq_sched_data *q = qdisc_priv(sch);
391 struct tc_sfq_qopt *ctl = RTA_DATA(opt);
392
393 if (opt->rta_len < RTA_LENGTH(sizeof(*ctl)))
394 return -EINVAL;
395
396 sch_tree_lock(sch);
397 q->quantum = ctl->quantum ? : psched_mtu(sch->dev);
398 q->perturb_period = ctl->perturb_period*HZ;
399 if (ctl->limit)
400 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH);
401
402 while (sch->q.qlen >= q->limit-1)
403 sfq_drop(sch);
404
405 del_timer(&q->perturb_timer);
406 if (q->perturb_period) {
407 q->perturb_timer.expires = jiffies + q->perturb_period;
408 add_timer(&q->perturb_timer);
409 }
410 sch_tree_unlock(sch);
411 return 0;
412}
413
414static int sfq_init(struct Qdisc *sch, struct rtattr *opt)
415{
416 struct sfq_sched_data *q = qdisc_priv(sch);
417 int i;
418
419 init_timer(&q->perturb_timer);
420 q->perturb_timer.data = (unsigned long)sch;
421 q->perturb_timer.function = sfq_perturbation;
422
423 for (i=0; i<SFQ_HASH_DIVISOR; i++)
424 q->ht[i] = SFQ_DEPTH;
425 for (i=0; i<SFQ_DEPTH; i++) {
426 skb_queue_head_init(&q->qs[i]);
427 q->dep[i+SFQ_DEPTH].next = i+SFQ_DEPTH;
428 q->dep[i+SFQ_DEPTH].prev = i+SFQ_DEPTH;
429 }
430 q->limit = SFQ_DEPTH;
431 q->max_depth = 0;
432 q->tail = SFQ_DEPTH;
433 if (opt == NULL) {
434 q->quantum = psched_mtu(sch->dev);
435 q->perturb_period = 0;
436 } else {
437 int err = sfq_change(sch, opt);
438 if (err)
439 return err;
440 }
441 for (i=0; i<SFQ_DEPTH; i++)
442 sfq_link(q, i);
443 return 0;
444}
445
446static void sfq_destroy(struct Qdisc *sch)
447{
448 struct sfq_sched_data *q = qdisc_priv(sch);
449 del_timer(&q->perturb_timer);
450}
451
452static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
453{
454 struct sfq_sched_data *q = qdisc_priv(sch);
455 unsigned char *b = skb->tail;
456 struct tc_sfq_qopt opt;
457
458 opt.quantum = q->quantum;
459 opt.perturb_period = q->perturb_period/HZ;
460
461 opt.limit = q->limit;
462 opt.divisor = SFQ_HASH_DIVISOR;
463 opt.flows = q->limit;
464
465 RTA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
466
467 return skb->len;
468
469rtattr_failure:
470 skb_trim(skb, b - skb->data);
471 return -1;
472}
473
474static struct Qdisc_ops sfq_qdisc_ops = {
475 .next = NULL,
476 .cl_ops = NULL,
477 .id = "sfq",
478 .priv_size = sizeof(struct sfq_sched_data),
479 .enqueue = sfq_enqueue,
480 .dequeue = sfq_dequeue,
481 .requeue = sfq_requeue,
482 .drop = sfq_drop,
483 .init = sfq_init,
484 .reset = sfq_reset,
485 .destroy = sfq_destroy,
486 .change = NULL,
487 .dump = sfq_dump,
488 .owner = THIS_MODULE,
489};
490
491static int __init sfq_module_init(void)
492{
493 return register_qdisc(&sfq_qdisc_ops);
494}
495static void __exit sfq_module_exit(void)
496{
497 unregister_qdisc(&sfq_qdisc_ops);
498}
499module_init(sfq_module_init)
500module_exit(sfq_module_exit)
501MODULE_LICENSE("GPL");