blob: 972211671c9aa4ef8eecba2c21551bc334690c8e [file] [log] [blame]
Paul Mundta23ba432007-11-28 20:19:38 +09001#ifndef __ASM_SH_PGTABLE_64_H
2#define __ASM_SH_PGTABLE_64_H
Paul Mundt249cfea2007-11-19 18:26:19 +09003
4/*
Paul Mundta23ba432007-11-28 20:19:38 +09005 * include/asm-sh/pgtable_64.h
Paul Mundt249cfea2007-11-19 18:26:19 +09006 *
Paul Mundta23ba432007-11-28 20:19:38 +09007 * This file contains the functions and defines necessary to modify and use
8 * the SuperH page table tree.
Paul Mundt249cfea2007-11-19 18:26:19 +09009 *
10 * Copyright (C) 2000, 2001 Paolo Alberelli
11 * Copyright (C) 2003, 2004 Paul Mundt
12 * Copyright (C) 2003, 2004 Richard Curnow
13 *
Paul Mundta23ba432007-11-28 20:19:38 +090014 * This file is subject to the terms and conditions of the GNU General Public
15 * License. See the file "COPYING" in the main directory of this archive
16 * for more details.
Paul Mundt249cfea2007-11-19 18:26:19 +090017 */
Paul Mundt249cfea2007-11-19 18:26:19 +090018#include <linux/threads.h>
19#include <asm/processor.h>
20#include <asm/page.h>
21
22/*
23 * Error outputs.
24 */
25#define pte_ERROR(e) \
26 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
27#define pgd_ERROR(e) \
28 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
29
30/*
31 * Table setting routines. Used within arch/mm only.
32 */
33#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
34
35static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
36{
37 unsigned long long x = ((unsigned long long) pteval.pte_low);
38 unsigned long long *xp = (unsigned long long *) pteptr;
39 /*
40 * Sign-extend based on NPHYS.
41 */
42 *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
43}
44#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
45
46static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep)
47{
48 pmd_val(*pmdp) = (unsigned long) ptep;
49}
50
51/*
52 * PGD defines. Top level.
53 */
54
55/* To find an entry in a generic PGD. */
56#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
57#define __pgd_offset(address) pgd_index(address)
58#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
59
60/* To find an entry in a kernel PGD. */
61#define pgd_offset_k(address) pgd_offset(&init_mm, address)
62
63/*
64 * PMD level access routines. Same notes as above.
65 */
66#define _PMD_EMPTY 0x0
67/* Either the PMD is empty or present, it's not paged out */
68#define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT)
69#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
70#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY)
71#define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
72
73#define pmd_page_vaddr(pmd_entry) \
74 ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK))
75
76#define pmd_page(pmd) \
77 (virt_to_page(pmd_val(pmd)))
78
79/* PMD to PTE dereferencing */
80#define pte_index(address) \
81 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
82
83#define pte_offset_kernel(dir, addr) \
84 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr)))
85
86#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
87#define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr)
88#define pte_unmap(pte) do { } while (0)
89#define pte_unmap_nested(pte) do { } while (0)
90
91#ifndef __ASSEMBLY__
92#define IOBASE_VADDR 0xff000000
93#define IOBASE_END 0xffffffff
94
95/*
96 * PTEL coherent flags.
97 * See Chapter 17 ST50 CPU Core Volume 1, Architecture.
98 */
99/* The bits that are required in the SH-5 TLB are placed in the h/w-defined
100 positions, to avoid expensive bit shuffling on every refill. The remaining
101 bits are used for s/w purposes and masked out on each refill.
102
103 Note, the PTE slots are used to hold data of type swp_entry_t when a page is
104 swapped out. Only the _PAGE_PRESENT flag is significant when the page is
105 swapped out, and it must be placed so that it doesn't overlap either the
106 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type
107 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This
108 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit
109 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
110 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */
111#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */
112#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
113#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */
114#define _PAGE_PRESENT 0x004 /* software: page referenced */
115#define _PAGE_FILE 0x004 /* software: only when !present */
116#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */
117#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */
118#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */
119#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */
120#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */
121#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */
122#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */
123#define _PAGE_DIRTY 0x400 /* software: page accessed in write */
124#define _PAGE_ACCESSED 0x800 /* software: page referenced */
125
126/* Mask which drops software flags */
127#define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL
128
129/*
130 * HugeTLB support
131 */
132#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
133#define _PAGE_SZHUGE (_PAGE_SIZE0)
134#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB)
135#define _PAGE_SZHUGE (_PAGE_SIZE1)
136#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB)
137#define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1)
138#endif
139
140/*
141 * Default flags for a Kernel page.
142 * This is fundametally also SHARED because the main use of this define
143 * (other than for PGD/PMD entries) is for the VMALLOC pool which is
144 * contextless.
145 *
146 * _PAGE_EXECUTE is required for modules
147 *
148 */
149#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
150 _PAGE_EXECUTE | \
151 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
152 _PAGE_SHARED)
153
154/* Default flags for a User page */
155#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER)
156
157#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
158
159/*
160 * We have full permissions (Read/Write/Execute/Shared).
161 */
162#define _PAGE_COMMON (_PAGE_PRESENT | _PAGE_USER | \
163 _PAGE_CACHABLE | _PAGE_ACCESSED)
164
165#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
166#define PAGE_SHARED __pgprot(_PAGE_COMMON | _PAGE_READ | _PAGE_WRITE | \
167 _PAGE_SHARED)
168#define PAGE_EXECREAD __pgprot(_PAGE_COMMON | _PAGE_READ | _PAGE_EXECUTE)
169
170/*
171 * We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
172 * protection mode for the stack.
173 */
174#define PAGE_COPY PAGE_EXECREAD
175
176#define PAGE_READONLY __pgprot(_PAGE_COMMON | _PAGE_READ)
177#define PAGE_WRITEONLY __pgprot(_PAGE_COMMON | _PAGE_WRITE)
178#define PAGE_RWX __pgprot(_PAGE_COMMON | _PAGE_READ | \
179 _PAGE_WRITE | _PAGE_EXECUTE)
180#define PAGE_KERNEL __pgprot(_KERNPG_TABLE)
181
182/* Make it a device mapping for maximum safety (e.g. for mapping device
183 registers into user-space via /dev/map). */
184#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
185#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE)
186
187/*
188 * Handling allocation failures during page table setup.
189 */
190extern void __handle_bad_pmd_kernel(pmd_t * pmd);
191#define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x)
192
193/*
194 * PTE level access routines.
195 *
196 * Note1:
197 * It's the tree walk leaf. This is physical address to be stored.
198 *
199 * Note 2:
200 * Regarding the choice of _PTE_EMPTY:
201
202 We must choose a bit pattern that cannot be valid, whether or not the page
203 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped
204 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
205 left for us to select. If we force bit[7]==0 when swapped out, we could use
206 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if
207 we force bit[7]==1 when swapped out, we can use all zeroes to indicate
208 empty. This is convenient, because the page tables get cleared to zero
209 when they are allocated.
210
211 */
212#define _PTE_EMPTY 0x0
213#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
214#define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY)))
215#define pte_none(x) (pte_val(x) == _PTE_EMPTY)
216
217/*
218 * Some definitions to translate between mem_map, PTEs, and page
219 * addresses:
220 */
221
222/*
223 * Given a PTE, return the index of the mem_map[] entry corresponding
224 * to the page frame the PTE. Get the absolute physical address, make
225 * a relative physical address and translate it to an index.
226 */
227#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \
228 __MEMORY_START) >> PAGE_SHIFT)
229
230/*
231 * Given a PTE, return the "struct page *".
232 */
233#define pte_page(x) (mem_map + pte_pagenr(x))
234
235/*
236 * Return number of (down rounded) MB corresponding to x pages.
237 */
238#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
239
240
241/*
242 * The following have defined behavior only work if pte_present() is true.
243 */
244static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
245static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
246static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
247static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; }
248
249static inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
250static inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
251static inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
252static inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
253static inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
254static inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
255static inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; }
256
257
258/*
259 * Conversion functions: convert a page and protection to a page entry.
260 *
261 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
262 */
263#define mk_pte(page,pgprot) \
264({ \
265 pte_t __pte; \
266 \
267 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \
268 __MEMORY_START | pgprot_val((pgprot)))); \
269 __pte; \
270})
271
272/*
273 * This takes a (absolute) physical page address that is used
274 * by the remapping functions
275 */
276#define mk_pte_phys(physpage, pgprot) \
277({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
278
279static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
280{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
281
282/* Encode and decode a swap entry */
283#define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c))
284#define __swp_offset(x) ((x).val >> 8)
285#define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) })
286#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
287#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
288
289/* Encode and decode a nonlinear file mapping entry */
290#define PTE_FILE_MAX_BITS 29
291#define pte_to_pgoff(pte) (pte_val(pte))
292#define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE })
293
294#endif /* !__ASSEMBLY__ */
295
296#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
297#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
298
Paul Mundta23ba432007-11-28 20:19:38 +0900299#endif /* __ASM_SH_PGTABLE_64_H */