blob: 2706e2adffab2df85da09f8884f68f38d5b9a747 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5/**
6 ** old_item_num
7 ** old_entry_num
8 ** set_entry_sizes
9 ** create_virtual_node
10 ** check_left
11 ** check_right
12 ** directory_part_size
13 ** get_num_ver
14 ** set_parameters
15 ** is_leaf_removable
16 ** are_leaves_removable
17 ** get_empty_nodes
18 ** get_lfree
19 ** get_rfree
20 ** is_left_neighbor_in_cache
21 ** decrement_key
22 ** get_far_parent
23 ** get_parents
24 ** can_node_be_removed
25 ** ip_check_balance
26 ** dc_check_balance_internal
27 ** dc_check_balance_leaf
28 ** dc_check_balance
29 ** check_balance
30 ** get_direct_parent
31 ** get_neighbors
32 ** fix_nodes
33 **
34 **
35 **/
36
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include <linux/config.h>
38#include <linux/time.h>
39#include <linux/string.h>
40#include <linux/reiserfs_fs.h>
41#include <linux/buffer_head.h>
42
Linus Torvalds1da177e2005-04-16 15:20:36 -070043/* To make any changes in the tree we find a node, that contains item
44 to be changed/deleted or position in the node we insert a new item
45 to. We call this node S. To do balancing we need to decide what we
46 will shift to left/right neighbor, or to a new node, where new item
47 will be etc. To make this analysis simpler we build virtual
48 node. Virtual node is an array of items, that will replace items of
49 node S. (For instance if we are going to delete an item, virtual
50 node does not contain it). Virtual node keeps information about
51 item sizes and types, mergeability of first and last items, sizes
52 of all entries in directory item. We use this array of items when
53 calculating what we can shift to neighbors and how many nodes we
54 have to have if we do not any shiftings, if we shift to left/right
55 neighbor or to both. */
56
Linus Torvalds1da177e2005-04-16 15:20:36 -070057/* taking item number in virtual node, returns number of item, that it has in source buffer */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -070058static inline int old_item_num(int new_num, int affected_item_num, int mode)
Linus Torvalds1da177e2005-04-16 15:20:36 -070059{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -070060 if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
61 return new_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -070062
Linus Torvaldsbd4c6252005-07-12 20:21:28 -070063 if (mode == M_INSERT) {
Linus Torvalds1da177e2005-04-16 15:20:36 -070064
Linus Torvaldsbd4c6252005-07-12 20:21:28 -070065 RFALSE(new_num == 0,
66 "vs-8005: for INSERT mode and item number of inserted item");
Linus Torvalds1da177e2005-04-16 15:20:36 -070067
Linus Torvaldsbd4c6252005-07-12 20:21:28 -070068 return new_num - 1;
69 }
Linus Torvalds1da177e2005-04-16 15:20:36 -070070
Linus Torvaldsbd4c6252005-07-12 20:21:28 -070071 RFALSE(mode != M_DELETE,
72 "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
73 mode);
74 /* delete mode */
75 return new_num + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -070076}
77
Linus Torvaldsbd4c6252005-07-12 20:21:28 -070078static void create_virtual_node(struct tree_balance *tb, int h)
Linus Torvalds1da177e2005-04-16 15:20:36 -070079{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -070080 struct item_head *ih;
81 struct virtual_node *vn = tb->tb_vn;
82 int new_num;
83 struct buffer_head *Sh; /* this comes from tb->S[h] */
Linus Torvalds1da177e2005-04-16 15:20:36 -070084
Linus Torvaldsbd4c6252005-07-12 20:21:28 -070085 Sh = PATH_H_PBUFFER(tb->tb_path, h);
Linus Torvalds1da177e2005-04-16 15:20:36 -070086
Linus Torvaldsbd4c6252005-07-12 20:21:28 -070087 /* size of changed node */
88 vn->vn_size =
89 MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
Linus Torvalds1da177e2005-04-16 15:20:36 -070090
Linus Torvaldsbd4c6252005-07-12 20:21:28 -070091 /* for internal nodes array if virtual items is not created */
92 if (h) {
93 vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
94 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -070095 }
Linus Torvalds1da177e2005-04-16 15:20:36 -070096
Linus Torvaldsbd4c6252005-07-12 20:21:28 -070097 /* number of items in virtual node */
98 vn->vn_nr_item =
99 B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
100 ((vn->vn_mode == M_DELETE) ? 1 : 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700101
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700102 /* first virtual item */
103 vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
104 memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
105 vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
106
107 /* first item in the node */
108 ih = B_N_PITEM_HEAD(Sh, 0);
109
110 /* define the mergeability for 0-th item (if it is not being deleted) */
111 if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
112 && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
113 vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
114
115 /* go through all items those remain in the virtual node (except for the new (inserted) one) */
116 for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
117 int j;
118 struct virtual_item *vi = vn->vn_vi + new_num;
119 int is_affected =
120 ((new_num != vn->vn_affected_item_num) ? 0 : 1);
121
122 if (is_affected && vn->vn_mode == M_INSERT)
123 continue;
124
125 /* get item number in source node */
126 j = old_item_num(new_num, vn->vn_affected_item_num,
127 vn->vn_mode);
128
129 vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
130 vi->vi_ih = ih + j;
131 vi->vi_item = B_I_PITEM(Sh, ih + j);
132 vi->vi_uarea = vn->vn_free_ptr;
133
134 // FIXME: there is no check, that item operation did not
135 // consume too much memory
136 vn->vn_free_ptr +=
137 op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
138 if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
139 reiserfs_panic(tb->tb_sb,
140 "vs-8030: create_virtual_node: "
141 "virtual node space consumed");
142
143 if (!is_affected)
144 /* this is not being changed */
145 continue;
146
147 if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
148 vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
149 vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted
150 }
151 }
152
153 /* virtual inserted item is not defined yet */
154 if (vn->vn_mode == M_INSERT) {
155 struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
156
157 RFALSE(vn->vn_ins_ih == 0,
158 "vs-8040: item header of inserted item is not specified");
159 vi->vi_item_len = tb->insert_size[0];
160 vi->vi_ih = vn->vn_ins_ih;
161 vi->vi_item = vn->vn_data;
162 vi->vi_uarea = vn->vn_free_ptr;
163
164 op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
165 tb->insert_size[0]);
166 }
167
168 /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
169 if (tb->CFR[0]) {
170 struct reiserfs_key *key;
171
172 key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
173 if (op_is_left_mergeable(key, Sh->b_size)
174 && (vn->vn_mode != M_DELETE
175 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
176 vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
177 VI_TYPE_RIGHT_MERGEABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178
179#ifdef CONFIG_REISERFS_CHECK
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700180 if (op_is_left_mergeable(key, Sh->b_size) &&
181 !(vn->vn_mode != M_DELETE
182 || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
183 /* we delete last item and it could be merged with right neighbor's first item */
184 if (!
185 (B_NR_ITEMS(Sh) == 1
186 && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
187 && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
188 /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
189 print_block(Sh, 0, -1, -1);
190 reiserfs_panic(tb->tb_sb,
191 "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c",
192 key, vn->vn_affected_item_num,
193 vn->vn_mode, M_DELETE);
194 } else
195 /* we can delete directory item, that has only one directory entry in it */
196 ;
197 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700198#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700200 }
201}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700202
203/* using virtual node check, how many items can be shifted to left
204 neighbor */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700205static void check_left(struct tree_balance *tb, int h, int cur_free)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700206{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700207 int i;
208 struct virtual_node *vn = tb->tb_vn;
209 struct virtual_item *vi;
210 int d_size, ih_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700211
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700212 RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700213
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700214 /* internal level */
215 if (h > 0) {
216 tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
217 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700218 }
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700219
220 /* leaf level */
221
222 if (!cur_free || !vn->vn_nr_item) {
223 /* no free space or nothing to move */
224 tb->lnum[h] = 0;
225 tb->lbytes = -1;
226 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227 }
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700228
229 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
230 "vs-8055: parent does not exist or invalid");
231
232 vi = vn->vn_vi;
233 if ((unsigned int)cur_free >=
234 (vn->vn_size -
235 ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
236 /* all contents of S[0] fits into L[0] */
237
238 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
239 "vs-8055: invalid mode or balance condition failed");
240
241 tb->lnum[0] = vn->vn_nr_item;
242 tb->lbytes = -1;
243 return;
244 }
245
246 d_size = 0, ih_size = IH_SIZE;
247
248 /* first item may be merge with last item in left neighbor */
249 if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
250 d_size = -((int)IH_SIZE), ih_size = 0;
251
252 tb->lnum[0] = 0;
253 for (i = 0; i < vn->vn_nr_item;
254 i++, ih_size = IH_SIZE, d_size = 0, vi++) {
255 d_size += vi->vi_item_len;
256 if (cur_free >= d_size) {
257 /* the item can be shifted entirely */
258 cur_free -= d_size;
259 tb->lnum[0]++;
260 continue;
261 }
262
263 /* the item cannot be shifted entirely, try to split it */
264 /* check whether L[0] can hold ih and at least one byte of the item body */
265 if (cur_free <= ih_size) {
266 /* cannot shift even a part of the current item */
267 tb->lbytes = -1;
268 return;
269 }
270 cur_free -= ih_size;
271
272 tb->lbytes = op_check_left(vi, cur_free, 0, 0);
273 if (tb->lbytes != -1)
274 /* count partially shifted item */
275 tb->lnum[0]++;
276
277 break;
278 }
279
280 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700281}
282
Linus Torvalds1da177e2005-04-16 15:20:36 -0700283/* using virtual node check, how many items can be shifted to right
284 neighbor */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700285static void check_right(struct tree_balance *tb, int h, int cur_free)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700286{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700287 int i;
288 struct virtual_node *vn = tb->tb_vn;
289 struct virtual_item *vi;
290 int d_size, ih_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700291
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700292 RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700293
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700294 /* internal level */
295 if (h > 0) {
296 tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
297 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700298 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700299
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700300 /* leaf level */
301
302 if (!cur_free || !vn->vn_nr_item) {
303 /* no free space */
304 tb->rnum[h] = 0;
305 tb->rbytes = -1;
306 return;
307 }
308
309 RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
310 "vs-8075: parent does not exist or invalid");
311
312 vi = vn->vn_vi + vn->vn_nr_item - 1;
313 if ((unsigned int)cur_free >=
314 (vn->vn_size -
315 ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
316 /* all contents of S[0] fits into R[0] */
317
318 RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
319 "vs-8080: invalid mode or balance condition failed");
320
321 tb->rnum[h] = vn->vn_nr_item;
322 tb->rbytes = -1;
323 return;
324 }
325
326 d_size = 0, ih_size = IH_SIZE;
327
328 /* last item may be merge with first item in right neighbor */
329 if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
330 d_size = -(int)IH_SIZE, ih_size = 0;
331
332 tb->rnum[0] = 0;
333 for (i = vn->vn_nr_item - 1; i >= 0;
334 i--, d_size = 0, ih_size = IH_SIZE, vi--) {
335 d_size += vi->vi_item_len;
336 if (cur_free >= d_size) {
337 /* the item can be shifted entirely */
338 cur_free -= d_size;
339 tb->rnum[0]++;
340 continue;
341 }
342
343 /* check whether R[0] can hold ih and at least one byte of the item body */
344 if (cur_free <= ih_size) { /* cannot shift even a part of the current item */
345 tb->rbytes = -1;
346 return;
347 }
348
349 /* R[0] can hold the header of the item and at least one byte of its body */
350 cur_free -= ih_size; /* cur_free is still > 0 */
351
352 tb->rbytes = op_check_right(vi, cur_free);
353 if (tb->rbytes != -1)
354 /* count partially shifted item */
355 tb->rnum[0]++;
356
357 break;
358 }
359
360 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700361}
362
Linus Torvalds1da177e2005-04-16 15:20:36 -0700363/*
364 * from - number of items, which are shifted to left neighbor entirely
365 * to - number of item, which are shifted to right neighbor entirely
366 * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
367 * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700368static int get_num_ver(int mode, struct tree_balance *tb, int h,
369 int from, int from_bytes,
370 int to, int to_bytes, short *snum012, int flow)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700371{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700372 int i;
373 int cur_free;
374 // int bytes;
375 int units;
376 struct virtual_node *vn = tb->tb_vn;
377 // struct virtual_item * vi;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700378
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700379 int total_node_size, max_node_size, current_item_size;
380 int needed_nodes;
381 int start_item, /* position of item we start filling node from */
382 end_item, /* position of item we finish filling node by */
383 start_bytes, /* number of first bytes (entries for directory) of start_item-th item
384 we do not include into node that is being filled */
385 end_bytes; /* number of last bytes (entries for directory) of end_item-th item
386 we do node include into node that is being filled */
387 int split_item_positions[2]; /* these are positions in virtual item of
388 items, that are split between S[0] and
389 S1new and S1new and S2new */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700391 split_item_positions[0] = -1;
392 split_item_positions[1] = -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700394 /* We only create additional nodes if we are in insert or paste mode
395 or we are in replace mode at the internal level. If h is 0 and
396 the mode is M_REPLACE then in fix_nodes we change the mode to
397 paste or insert before we get here in the code. */
398 RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
399 "vs-8100: insert_size < 0 in overflow");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700400
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700401 max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700403 /* snum012 [0-2] - number of items, that lay
404 to S[0], first new node and second new node */
405 snum012[3] = -1; /* s1bytes */
406 snum012[4] = -1; /* s2bytes */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700407
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700408 /* internal level */
409 if (h > 0) {
410 i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
411 if (i == max_node_size)
412 return 1;
413 return (i / max_node_size + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700414 }
415
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700416 /* leaf level */
417 needed_nodes = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700418 total_node_size = 0;
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700419 cur_free = max_node_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700420
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700421 // start from 'from'-th item
422 start_item = from;
423 // skip its first 'start_bytes' units
424 start_bytes = ((from_bytes != -1) ? from_bytes : 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700426 // last included item is the 'end_item'-th one
427 end_item = vn->vn_nr_item - to - 1;
428 // do not count last 'end_bytes' units of 'end_item'-th item
429 end_bytes = (to_bytes != -1) ? to_bytes : 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700430
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700431 /* go through all item beginning from the start_item-th item and ending by
432 the end_item-th item. Do not count first 'start_bytes' units of
433 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700435 for (i = start_item; i <= end_item; i++) {
436 struct virtual_item *vi = vn->vn_vi + i;
437 int skip_from_end = ((i == end_item) ? end_bytes : 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700438
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700439 RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
440
441 /* get size of current item */
442 current_item_size = vi->vi_item_len;
443
444 /* do not take in calculation head part (from_bytes) of from-th item */
445 current_item_size -=
446 op_part_size(vi, 0 /*from start */ , start_bytes);
447
448 /* do not take in calculation tail part of last item */
449 current_item_size -=
450 op_part_size(vi, 1 /*from end */ , skip_from_end);
451
452 /* if item fits into current node entierly */
453 if (total_node_size + current_item_size <= max_node_size) {
454 snum012[needed_nodes - 1]++;
455 total_node_size += current_item_size;
456 start_bytes = 0;
457 continue;
458 }
459
460 if (current_item_size > max_node_size) {
461 /* virtual item length is longer, than max size of item in
462 a node. It is impossible for direct item */
463 RFALSE(is_direct_le_ih(vi->vi_ih),
464 "vs-8110: "
465 "direct item length is %d. It can not be longer than %d",
466 current_item_size, max_node_size);
467 /* we will try to split it */
468 flow = 1;
469 }
470
471 if (!flow) {
472 /* as we do not split items, take new node and continue */
473 needed_nodes++;
474 i--;
475 total_node_size = 0;
476 continue;
477 }
478 // calculate number of item units which fit into node being
479 // filled
480 {
481 int free_space;
482
483 free_space = max_node_size - total_node_size - IH_SIZE;
484 units =
485 op_check_left(vi, free_space, start_bytes,
486 skip_from_end);
487 if (units == -1) {
488 /* nothing fits into current node, take new node and continue */
489 needed_nodes++, i--, total_node_size = 0;
490 continue;
491 }
492 }
493
494 /* something fits into the current node */
495 //if (snum012[3] != -1 || needed_nodes != 1)
496 // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
497 //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
498 start_bytes += units;
499 snum012[needed_nodes - 1 + 3] = units;
500
501 if (needed_nodes > 2)
502 reiserfs_warning(tb->tb_sb, "vs-8111: get_num_ver: "
503 "split_item_position is out of boundary");
504 snum012[needed_nodes - 1]++;
505 split_item_positions[needed_nodes - 1] = i;
506 needed_nodes++;
507 /* continue from the same item with start_bytes != -1 */
508 start_item = i;
509 i--;
510 total_node_size = 0;
511 }
512
513 // sum012[4] (if it is not -1) contains number of units of which
514 // are to be in S1new, snum012[3] - to be in S0. They are supposed
515 // to be S1bytes and S2bytes correspondingly, so recalculate
516 if (snum012[4] > 0) {
517 int split_item_num;
518 int bytes_to_r, bytes_to_l;
519 int bytes_to_S1new;
520
521 split_item_num = split_item_positions[1];
522 bytes_to_l =
523 ((from == split_item_num
524 && from_bytes != -1) ? from_bytes : 0);
525 bytes_to_r =
526 ((end_item == split_item_num
527 && end_bytes != -1) ? end_bytes : 0);
528 bytes_to_S1new =
529 ((split_item_positions[0] ==
530 split_item_positions[1]) ? snum012[3] : 0);
531
532 // s2bytes
533 snum012[4] =
534 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
535 bytes_to_r - bytes_to_l - bytes_to_S1new;
536
537 if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
538 vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
539 reiserfs_warning(tb->tb_sb, "vs-8115: get_num_ver: not "
540 "directory or indirect item");
541 }
542
543 /* now we know S2bytes, calculate S1bytes */
544 if (snum012[3] > 0) {
545 int split_item_num;
546 int bytes_to_r, bytes_to_l;
547 int bytes_to_S2new;
548
549 split_item_num = split_item_positions[0];
550 bytes_to_l =
551 ((from == split_item_num
552 && from_bytes != -1) ? from_bytes : 0);
553 bytes_to_r =
554 ((end_item == split_item_num
555 && end_bytes != -1) ? end_bytes : 0);
556 bytes_to_S2new =
557 ((split_item_positions[0] == split_item_positions[1]
558 && snum012[4] != -1) ? snum012[4] : 0);
559
560 // s1bytes
561 snum012[3] =
562 op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
563 bytes_to_r - bytes_to_l - bytes_to_S2new;
564 }
565
566 return needed_nodes;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700567}
568
Linus Torvalds1da177e2005-04-16 15:20:36 -0700569#ifdef CONFIG_REISERFS_CHECK
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700570extern struct tree_balance *cur_tb;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700571#endif
572
Linus Torvalds1da177e2005-04-16 15:20:36 -0700573/* Set parameters for balancing.
574 * Performs write of results of analysis of balancing into structure tb,
575 * where it will later be used by the functions that actually do the balancing.
576 * Parameters:
577 * tb tree_balance structure;
578 * h current level of the node;
579 * lnum number of items from S[h] that must be shifted to L[h];
580 * rnum number of items from S[h] that must be shifted to R[h];
581 * blk_num number of blocks that S[h] will be splitted into;
582 * s012 number of items that fall into splitted nodes.
583 * lbytes number of bytes which flow to the left neighbor from the item that is not
584 * not shifted entirely
585 * rbytes number of bytes which flow to the right neighbor from the item that is not
586 * not shifted entirely
587 * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array)
588 */
589
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700590static void set_parameters(struct tree_balance *tb, int h, int lnum,
591 int rnum, int blk_num, short *s012, int lb, int rb)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700592{
593
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700594 tb->lnum[h] = lnum;
595 tb->rnum[h] = rnum;
596 tb->blknum[h] = blk_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700597
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700598 if (h == 0) { /* only for leaf level */
599 if (s012 != NULL) {
600 tb->s0num = *s012++,
601 tb->s1num = *s012++, tb->s2num = *s012++;
602 tb->s1bytes = *s012++;
603 tb->s2bytes = *s012;
604 }
605 tb->lbytes = lb;
606 tb->rbytes = rb;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700607 }
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700608 PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
609 PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700610
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700611 PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
612 PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700613}
614
Linus Torvalds1da177e2005-04-16 15:20:36 -0700615/* check, does node disappear if we shift tb->lnum[0] items to left
616 neighbor and tb->rnum[0] to the right one. */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700617static int is_leaf_removable(struct tree_balance *tb)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700618{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700619 struct virtual_node *vn = tb->tb_vn;
620 int to_left, to_right;
621 int size;
622 int remain_items;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700624 /* number of items, that will be shifted to left (right) neighbor
625 entirely */
626 to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
627 to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
628 remain_items = vn->vn_nr_item;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700629
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700630 /* how many items remain in S[0] after shiftings to neighbors */
631 remain_items -= (to_left + to_right);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700633 if (remain_items < 1) {
634 /* all content of node can be shifted to neighbors */
635 set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
636 NULL, -1, -1);
637 return 1;
638 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700640 if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
641 /* S[0] is not removable */
642 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700643
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700644 /* check, whether we can divide 1 remaining item between neighbors */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700645
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700646 /* get size of remaining item (in item units) */
647 size = op_unit_num(&(vn->vn_vi[to_left]));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700649 if (tb->lbytes + tb->rbytes >= size) {
650 set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
651 tb->lbytes, -1);
652 return 1;
653 }
654
655 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700656}
657
Linus Torvalds1da177e2005-04-16 15:20:36 -0700658/* check whether L, S, R can be joined in one node */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700659static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700660{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700661 struct virtual_node *vn = tb->tb_vn;
662 int ih_size;
663 struct buffer_head *S0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700665 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700666
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700667 ih_size = 0;
668 if (vn->vn_nr_item) {
669 if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
670 ih_size += IH_SIZE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700671
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700672 if (vn->vn_vi[vn->vn_nr_item - 1].
673 vi_type & VI_TYPE_RIGHT_MERGEABLE)
674 ih_size += IH_SIZE;
675 } else {
676 /* there was only one item and it will be deleted */
677 struct item_head *ih;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700679 RFALSE(B_NR_ITEMS(S0) != 1,
680 "vs-8125: item number must be 1: it is %d",
681 B_NR_ITEMS(S0));
682
683 ih = B_N_PITEM_HEAD(S0, 0);
684 if (tb->CFR[0]
685 && !comp_short_le_keys(&(ih->ih_key),
686 B_N_PDELIM_KEY(tb->CFR[0],
687 tb->rkey[0])))
688 if (is_direntry_le_ih(ih)) {
689 /* Directory must be in correct state here: that is
690 somewhere at the left side should exist first directory
691 item. But the item being deleted can not be that first
692 one because its right neighbor is item of the same
693 directory. (But first item always gets deleted in last
694 turn). So, neighbors of deleted item can be merged, so
695 we can save ih_size */
696 ih_size = IH_SIZE;
697
698 /* we might check that left neighbor exists and is of the
699 same directory */
700 RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
701 "vs-8130: first directory item can not be removed until directory is not empty");
702 }
703
704 }
705
706 if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
707 set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
708 PROC_INFO_INC(tb->tb_sb, leaves_removable);
709 return 1;
710 }
711 return 0;
712
Linus Torvalds1da177e2005-04-16 15:20:36 -0700713}
714
Linus Torvalds1da177e2005-04-16 15:20:36 -0700715/* when we do not split item, lnum and rnum are numbers of entire items */
716#define SET_PAR_SHIFT_LEFT \
717if (h)\
718{\
719 int to_l;\
720 \
721 to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
722 (MAX_NR_KEY(Sh) + 1 - lpar);\
723 \
724 set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
725}\
726else \
727{\
728 if (lset==LEFT_SHIFT_FLOW)\
729 set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
730 tb->lbytes, -1);\
731 else\
732 set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
733 -1, -1);\
734}
735
Linus Torvalds1da177e2005-04-16 15:20:36 -0700736#define SET_PAR_SHIFT_RIGHT \
737if (h)\
738{\
739 int to_r;\
740 \
741 to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
742 \
743 set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
744}\
745else \
746{\
747 if (rset==RIGHT_SHIFT_FLOW)\
748 set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
749 -1, tb->rbytes);\
750 else\
751 set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
752 -1, -1);\
753}
754
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700755static void free_buffers_in_tb(struct tree_balance *p_s_tb)
756{
757 int n_counter;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700758
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700759 decrement_counters_in_path(p_s_tb->tb_path);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700760
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700761 for (n_counter = 0; n_counter < MAX_HEIGHT; n_counter++) {
762 decrement_bcount(p_s_tb->L[n_counter]);
763 p_s_tb->L[n_counter] = NULL;
764 decrement_bcount(p_s_tb->R[n_counter]);
765 p_s_tb->R[n_counter] = NULL;
766 decrement_bcount(p_s_tb->FL[n_counter]);
767 p_s_tb->FL[n_counter] = NULL;
768 decrement_bcount(p_s_tb->FR[n_counter]);
769 p_s_tb->FR[n_counter] = NULL;
770 decrement_bcount(p_s_tb->CFL[n_counter]);
771 p_s_tb->CFL[n_counter] = NULL;
772 decrement_bcount(p_s_tb->CFR[n_counter]);
773 p_s_tb->CFR[n_counter] = NULL;
774 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700775}
776
Linus Torvalds1da177e2005-04-16 15:20:36 -0700777/* Get new buffers for storing new nodes that are created while balancing.
778 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
779 * CARRY_ON - schedule didn't occur while the function worked;
780 * NO_DISK_SPACE - no disk space.
781 */
782/* The function is NOT SCHEDULE-SAFE! */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700783static int get_empty_nodes(struct tree_balance *p_s_tb, int n_h)
784{
785 struct buffer_head *p_s_new_bh,
786 *p_s_Sh = PATH_H_PBUFFER(p_s_tb->tb_path, n_h);
787 b_blocknr_t *p_n_blocknr, a_n_blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
788 int n_counter, n_number_of_freeblk, n_amount_needed, /* number of needed empty blocks */
789 n_retval = CARRY_ON;
790 struct super_block *p_s_sb = p_s_tb->tb_sb;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700791
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700792 /* number_of_freeblk is the number of empty blocks which have been
793 acquired for use by the balancing algorithm minus the number of
794 empty blocks used in the previous levels of the analysis,
795 number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
796 after empty blocks are acquired, and the balancing analysis is
797 then restarted, amount_needed is the number needed by this level
798 (n_h) of the balancing analysis.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700799
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700800 Note that for systems with many processes writing, it would be
801 more layout optimal to calculate the total number needed by all
802 levels and then to run reiserfs_new_blocks to get all of them at once. */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700803
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700804 /* Initiate number_of_freeblk to the amount acquired prior to the restart of
805 the analysis or 0 if not restarted, then subtract the amount needed
806 by all of the levels of the tree below n_h. */
807 /* blknum includes S[n_h], so we subtract 1 in this calculation */
808 for (n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum;
809 n_counter < n_h; n_counter++)
810 n_number_of_freeblk -=
811 (p_s_tb->blknum[n_counter]) ? (p_s_tb->blknum[n_counter] -
812 1) : 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700813
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700814 /* Allocate missing empty blocks. */
815 /* if p_s_Sh == 0 then we are getting a new root */
816 n_amount_needed = (p_s_Sh) ? (p_s_tb->blknum[n_h] - 1) : 1;
817 /* Amount_needed = the amount that we need more than the amount that we have. */
818 if (n_amount_needed > n_number_of_freeblk)
819 n_amount_needed -= n_number_of_freeblk;
820 else /* If we have enough already then there is nothing to do. */
821 return CARRY_ON;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700822
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700823 /* No need to check quota - is not allocated for blocks used for formatted nodes */
824 if (reiserfs_new_form_blocknrs(p_s_tb, a_n_blocknrs,
825 n_amount_needed) == NO_DISK_SPACE)
826 return NO_DISK_SPACE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700827
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700828 /* for each blocknumber we just got, get a buffer and stick it on FEB */
829 for (p_n_blocknr = a_n_blocknrs, n_counter = 0;
830 n_counter < n_amount_needed; p_n_blocknr++, n_counter++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700831
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700832 RFALSE(!*p_n_blocknr,
833 "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700834
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700835 p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr);
836 RFALSE(buffer_dirty(p_s_new_bh) ||
837 buffer_journaled(p_s_new_bh) ||
838 buffer_journal_dirty(p_s_new_bh),
839 "PAP-8140: journlaled or dirty buffer %b for the new block",
840 p_s_new_bh);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700841
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700842 /* Put empty buffers into the array. */
843 RFALSE(p_s_tb->FEB[p_s_tb->cur_blknum],
844 "PAP-8141: busy slot for new buffer");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700845
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700846 set_buffer_journal_new(p_s_new_bh);
847 p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh;
848 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700849
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700850 if (n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB(p_s_tb))
851 n_retval = REPEAT_SEARCH;
852
853 return n_retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700854}
855
Linus Torvalds1da177e2005-04-16 15:20:36 -0700856/* Get free space of the left neighbor, which is stored in the parent
857 * node of the left neighbor. */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700858static int get_lfree(struct tree_balance *tb, int h)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700860 struct buffer_head *l, *f;
861 int order;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700862
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700863 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0)
864 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700865
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700866 if (f == l)
867 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
868 else {
869 order = B_NR_ITEMS(l);
870 f = l;
871 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700872
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700873 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700874}
875
Linus Torvalds1da177e2005-04-16 15:20:36 -0700876/* Get free space of the right neighbor,
877 * which is stored in the parent node of the right neighbor.
878 */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700879static int get_rfree(struct tree_balance *tb, int h)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700880{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700881 struct buffer_head *r, *f;
882 int order;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700883
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700884 if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0)
885 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700886
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700887 if (f == r)
888 order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
889 else {
890 order = 0;
891 f = r;
892 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700893
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700894 return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700895
896}
897
Linus Torvalds1da177e2005-04-16 15:20:36 -0700898/* Check whether left neighbor is in memory. */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700899static int is_left_neighbor_in_cache(struct tree_balance *p_s_tb, int n_h)
900{
901 struct buffer_head *p_s_father, *left;
902 struct super_block *p_s_sb = p_s_tb->tb_sb;
903 b_blocknr_t n_left_neighbor_blocknr;
904 int n_left_neighbor_position;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700905
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700906 if (!p_s_tb->FL[n_h]) /* Father of the left neighbor does not exist. */
907 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700908
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700909 /* Calculate father of the node to be balanced. */
910 p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700911
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700912 RFALSE(!p_s_father ||
913 !B_IS_IN_TREE(p_s_father) ||
914 !B_IS_IN_TREE(p_s_tb->FL[n_h]) ||
915 !buffer_uptodate(p_s_father) ||
916 !buffer_uptodate(p_s_tb->FL[n_h]),
917 "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
918 p_s_father, p_s_tb->FL[n_h]);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700919
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700920 /* Get position of the pointer to the left neighbor into the left father. */
921 n_left_neighbor_position = (p_s_father == p_s_tb->FL[n_h]) ?
922 p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->FL[n_h]);
923 /* Get left neighbor block number. */
924 n_left_neighbor_blocknr =
925 B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position);
926 /* Look for the left neighbor in the cache. */
927 if ((left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700928
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700929 RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
930 "vs-8170: left neighbor (%b %z) is not in the tree",
931 left, left);
932 put_bh(left);
933 return 1;
934 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700935
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700936 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700937}
938
Linus Torvalds1da177e2005-04-16 15:20:36 -0700939#define LEFT_PARENTS 'l'
940#define RIGHT_PARENTS 'r'
941
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700942static void decrement_key(struct cpu_key *p_s_key)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700943{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700944 // call item specific function for this key
945 item_ops[cpu_key_k_type(p_s_key)]->decrement_key(p_s_key);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946}
947
Linus Torvalds1da177e2005-04-16 15:20:36 -0700948/* Calculate far left/right parent of the left/right neighbor of the current node, that
949 * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
950 * Calculate left/right common parent of the current node and L[h]/R[h].
951 * Calculate left/right delimiting key position.
952 * Returns: PATH_INCORRECT - path in the tree is not correct;
953 SCHEDULE_OCCURRED - schedule occurred while the function worked;
954 * CARRY_ON - schedule didn't occur while the function worked;
955 */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700956static int get_far_parent(struct tree_balance *p_s_tb,
957 int n_h,
958 struct buffer_head **pp_s_father,
959 struct buffer_head **pp_s_com_father, char c_lr_par)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700961 struct buffer_head *p_s_parent;
962 INITIALIZE_PATH(s_path_to_neighbor_father);
963 struct path *p_s_path = p_s_tb->tb_path;
964 struct cpu_key s_lr_father_key;
965 int n_counter,
966 n_position = INT_MAX,
967 n_first_last_position = 0,
968 n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700969
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700970 /* Starting from F[n_h] go upwards in the tree, and look for the common
971 ancestor of F[n_h], and its neighbor l/r, that should be obtained. */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700973 n_counter = n_path_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700974
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700975 RFALSE(n_counter < FIRST_PATH_ELEMENT_OFFSET,
976 "PAP-8180: invalid path length");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700977
Linus Torvaldsbd4c6252005-07-12 20:21:28 -0700978 for (; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter--) {
979 /* Check whether parent of the current buffer in the path is really parent in the tree. */
980 if (!B_IS_IN_TREE
981 (p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)))
982 return REPEAT_SEARCH;
983 /* Check whether position in the parent is correct. */
984 if ((n_position =
985 PATH_OFFSET_POSITION(p_s_path,
986 n_counter - 1)) >
987 B_NR_ITEMS(p_s_parent))
988 return REPEAT_SEARCH;
989 /* Check whether parent at the path really points to the child. */
990 if (B_N_CHILD_NUM(p_s_parent, n_position) !=
991 PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr)
992 return REPEAT_SEARCH;
993 /* Return delimiting key if position in the parent is not equal to first/last one. */
994 if (c_lr_par == RIGHT_PARENTS)
995 n_first_last_position = B_NR_ITEMS(p_s_parent);
996 if (n_position != n_first_last_position) {
997 *pp_s_com_father = p_s_parent;
998 get_bh(*pp_s_com_father);
999 /*(*pp_s_com_father = p_s_parent)->b_count++; */
1000 break;
1001 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001002 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001003
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001004 /* if we are in the root of the tree, then there is no common father */
1005 if (n_counter == FIRST_PATH_ELEMENT_OFFSET) {
1006 /* Check whether first buffer in the path is the root of the tree. */
1007 if (PATH_OFFSET_PBUFFER
1008 (p_s_tb->tb_path,
1009 FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1010 SB_ROOT_BLOCK(p_s_tb->tb_sb)) {
1011 *pp_s_father = *pp_s_com_father = NULL;
1012 return CARRY_ON;
1013 }
1014 return REPEAT_SEARCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001015 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001017 RFALSE(B_LEVEL(*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL,
1018 "PAP-8185: (%b %z) level too small",
1019 *pp_s_com_father, *pp_s_com_father);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001020
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001021 /* Check whether the common parent is locked. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001022
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001023 if (buffer_locked(*pp_s_com_father)) {
1024 __wait_on_buffer(*pp_s_com_father);
1025 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1026 decrement_bcount(*pp_s_com_father);
1027 return REPEAT_SEARCH;
1028 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001031 /* So, we got common parent of the current node and its left/right neighbor.
1032 Now we are geting the parent of the left/right neighbor. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001033
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001034 /* Form key to get parent of the left/right neighbor. */
1035 le_key2cpu_key(&s_lr_father_key,
1036 B_N_PDELIM_KEY(*pp_s_com_father,
1037 (c_lr_par ==
1038 LEFT_PARENTS) ? (p_s_tb->lkey[n_h - 1] =
1039 n_position -
1040 1) : (p_s_tb->rkey[n_h -
1041 1] =
1042 n_position)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001043
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001044 if (c_lr_par == LEFT_PARENTS)
1045 decrement_key(&s_lr_father_key);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001046
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001047 if (search_by_key
1048 (p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1049 n_h + 1) == IO_ERROR)
1050 // path is released
1051 return IO_ERROR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001052
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001053 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1054 decrement_counters_in_path(&s_path_to_neighbor_father);
1055 decrement_bcount(*pp_s_com_father);
1056 return REPEAT_SEARCH;
1057 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001058
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001059 *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1060
1061 RFALSE(B_LEVEL(*pp_s_father) != n_h + 1,
1062 "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father);
1063 RFALSE(s_path_to_neighbor_father.path_length <
1064 FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1065
1066 s_path_to_neighbor_father.path_length--;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067 decrement_counters_in_path(&s_path_to_neighbor_father);
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001068 return CARRY_ON;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001069}
1070
Linus Torvalds1da177e2005-04-16 15:20:36 -07001071/* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of
1072 * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset],
1073 * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset].
1074 * Calculate numbers of left and right delimiting keys position: lkey[n_path_offset], rkey[n_path_offset].
1075 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1076 * CARRY_ON - schedule didn't occur while the function worked;
1077 */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001078static int get_parents(struct tree_balance *p_s_tb, int n_h)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001079{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001080 struct path *p_s_path = p_s_tb->tb_path;
1081 int n_position,
1082 n_ret_value,
1083 n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
1084 struct buffer_head *p_s_curf, *p_s_curcf;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001085
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001086 /* Current node is the root of the tree or will be root of the tree */
1087 if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1088 /* The root can not have parents.
1089 Release nodes which previously were obtained as parents of the current node neighbors. */
1090 decrement_bcount(p_s_tb->FL[n_h]);
1091 decrement_bcount(p_s_tb->CFL[n_h]);
1092 decrement_bcount(p_s_tb->FR[n_h]);
1093 decrement_bcount(p_s_tb->CFR[n_h]);
1094 p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] =
1095 p_s_tb->CFR[n_h] = NULL;
1096 return CARRY_ON;
1097 }
1098
1099 /* Get parent FL[n_path_offset] of L[n_path_offset]. */
1100 if ((n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1))) {
1101 /* Current node is not the first child of its parent. */
1102 /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */
1103 p_s_curf = p_s_curcf =
1104 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1105 get_bh(p_s_curf);
1106 get_bh(p_s_curf);
1107 p_s_tb->lkey[n_h] = n_position - 1;
1108 } else {
1109 /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node.
1110 Calculate current common parent of L[n_path_offset] and the current node. Note that
1111 CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset].
1112 Calculate lkey[n_path_offset]. */
1113 if ((n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf,
1114 &p_s_curcf,
1115 LEFT_PARENTS)) != CARRY_ON)
1116 return n_ret_value;
1117 }
1118
Linus Torvalds1da177e2005-04-16 15:20:36 -07001119 decrement_bcount(p_s_tb->FL[n_h]);
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001120 p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121 decrement_bcount(p_s_tb->CFL[n_h]);
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001122 p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001123
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001124 RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) ||
1125 (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)),
1126 "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001127
1128/* Get parent FR[n_h] of R[n_h]. */
1129
1130/* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001131 if (n_position == B_NR_ITEMS(PATH_H_PBUFFER(p_s_path, n_h + 1))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001132/* Calculate current parent of R[n_h], which is the right neighbor of F[n_h].
1133 Calculate current common parent of R[n_h] and current node. Note that CFR[n_h]
1134 not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001135 if ((n_ret_value =
1136 get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf,
1137 RIGHT_PARENTS)) != CARRY_ON)
1138 return n_ret_value;
1139 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140/* Current node is not the last child of its parent F[n_h]. */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001141 /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */
1142 p_s_curf = p_s_curcf =
1143 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1);
1144 get_bh(p_s_curf);
1145 get_bh(p_s_curf);
1146 p_s_tb->rkey[n_h] = n_position;
1147 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001148
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001149 decrement_bcount(p_s_tb->FR[n_h]);
1150 p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001151
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001152 decrement_bcount(p_s_tb->CFR[n_h]);
1153 p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001154
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001155 RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) ||
1156 (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)),
1157 "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf);
1158
1159 return CARRY_ON;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001160}
1161
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162/* it is possible to remove node as result of shiftings to
1163 neighbors even when we insert or paste item. */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001164static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1165 struct tree_balance *tb, int h)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001166{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001167 struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1168 int levbytes = tb->insert_size[h];
1169 struct item_head *ih;
1170 struct reiserfs_key *r_key = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001171
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001172 ih = B_N_PITEM_HEAD(Sh, 0);
1173 if (tb->CFR[h])
1174 r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
1175
1176 if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1177 /* shifting may merge items which might save space */
1178 -
1179 ((!h
1180 && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
1181 -
1182 ((!h && r_key
1183 && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1184 + ((h) ? KEY_SIZE : 0)) {
1185 /* node can not be removed */
1186 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1187 if (!h)
1188 tb->s0num =
1189 B_NR_ITEMS(Sh) +
1190 ((mode == M_INSERT) ? 1 : 0);
1191 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1192 return NO_BALANCING_NEEDED;
1193 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001194 }
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001195 PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1196 return !NO_BALANCING_NEEDED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001197}
1198
Linus Torvalds1da177e2005-04-16 15:20:36 -07001199/* Check whether current node S[h] is balanced when increasing its size by
1200 * Inserting or Pasting.
1201 * Calculate parameters for balancing for current level h.
1202 * Parameters:
1203 * tb tree_balance structure;
1204 * h current level of the node;
1205 * inum item number in S[h];
1206 * mode i - insert, p - paste;
1207 * Returns: 1 - schedule occurred;
1208 * 0 - balancing for higher levels needed;
1209 * -1 - no balancing for higher levels needed;
1210 * -2 - no disk space.
1211 */
1212/* ip means Inserting or Pasting */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001213static int ip_check_balance(struct tree_balance *tb, int h)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001214{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001215 struct virtual_node *vn = tb->tb_vn;
1216 int levbytes, /* Number of bytes that must be inserted into (value
1217 is negative if bytes are deleted) buffer which
1218 contains node being balanced. The mnemonic is
1219 that the attempted change in node space used level
1220 is levbytes bytes. */
1221 n_ret_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001222
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001223 int lfree, sfree, rfree /* free space in L, S and R */ ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001224
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001225 /* nver is short for number of vertixes, and lnver is the number if
1226 we shift to the left, rnver is the number if we shift to the
1227 right, and lrnver is the number if we shift in both directions.
1228 The goal is to minimize first the number of vertixes, and second,
1229 the number of vertixes whose contents are changed by shifting,
1230 and third the number of uncached vertixes whose contents are
1231 changed by shifting and must be read from disk. */
1232 int nver, lnver, rnver, lrnver;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001233
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001234 /* used at leaf level only, S0 = S[0] is the node being balanced,
1235 sInum [ I = 0,1,2 ] is the number of items that will
1236 remain in node SI after balancing. S1 and S2 are new
1237 nodes that might be created. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001238
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001239 /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters.
1240 where 4th parameter is s1bytes and 5th - s2bytes
Linus Torvalds1da177e2005-04-16 15:20:36 -07001241 */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001242 short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases
1243 0,1 - do not shift and do not shift but bottle
1244 2 - shift only whole item to left
1245 3 - shift to left and bottle as much as possible
1246 4,5 - shift to right (whole items and as much as possible
1247 6,7 - shift to both directions (whole items and as much as possible)
1248 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001249
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001250 /* Sh is the node whose balance is currently being checked */
1251 struct buffer_head *Sh;
1252
1253 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1254 levbytes = tb->insert_size[h];
1255
1256 /* Calculate balance parameters for creating new root. */
1257 if (!Sh) {
1258 if (!h)
1259 reiserfs_panic(tb->tb_sb,
1260 "vs-8210: ip_check_balance: S[0] can not be 0");
1261 switch (n_ret_value = get_empty_nodes(tb, h)) {
1262 case CARRY_ON:
1263 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1264 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1265
1266 case NO_DISK_SPACE:
1267 case REPEAT_SEARCH:
1268 return n_ret_value;
1269 default:
1270 reiserfs_panic(tb->tb_sb,
1271 "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes");
1272 }
1273 }
1274
1275 if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */
1276 return n_ret_value;
1277
1278 sfree = B_FREE_SPACE(Sh);
1279
1280 /* get free space of neighbors */
1281 rfree = get_rfree(tb, h);
1282 lfree = get_lfree(tb, h);
1283
1284 if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1285 NO_BALANCING_NEEDED)
1286 /* and new item fits into node S[h] without any shifting */
1287 return NO_BALANCING_NEEDED;
1288
1289 create_virtual_node(tb, h);
1290
1291 /*
1292 determine maximal number of items we can shift to the left neighbor (in tb structure)
1293 and the maximal number of bytes that can flow to the left neighbor
1294 from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
1295 */
1296 check_left(tb, h, lfree);
1297
1298 /*
1299 determine maximal number of items we can shift to the right neighbor (in tb structure)
1300 and the maximal number of bytes that can flow to the right neighbor
1301 from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
1302 */
1303 check_right(tb, h, rfree);
1304
1305 /* all contents of internal node S[h] can be moved into its
1306 neighbors, S[h] will be removed after balancing */
1307 if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1308 int to_r;
1309
1310 /* Since we are working on internal nodes, and our internal
1311 nodes have fixed size entries, then we can balance by the
1312 number of items rather than the space they consume. In this
1313 routine we set the left node equal to the right node,
1314 allowing a difference of less than or equal to 1 child
1315 pointer. */
1316 to_r =
1317 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1318 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1319 tb->rnum[h]);
1320 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1321 -1, -1);
1322 return CARRY_ON;
1323 }
1324
1325 /* this checks balance condition, that any two neighboring nodes can not fit in one node */
1326 RFALSE(h &&
1327 (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1328 tb->rnum[h] >= vn->vn_nr_item + 1),
1329 "vs-8220: tree is not balanced on internal level");
1330 RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1331 (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1332 "vs-8225: tree is not balanced on leaf level");
1333
1334 /* all contents of S[0] can be moved into its neighbors
1335 S[0] will be removed after balancing. */
1336 if (!h && is_leaf_removable(tb))
1337 return CARRY_ON;
1338
1339 /* why do we perform this check here rather than earlier??
1340 Answer: we can win 1 node in some cases above. Moreover we
1341 checked it above, when we checked, that S[0] is not removable
1342 in principle */
1343 if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
1344 if (!h)
1345 tb->s0num = vn->vn_nr_item;
1346 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1347 return NO_BALANCING_NEEDED;
1348 }
1349
1350 {
1351 int lpar, rpar, nset, lset, rset, lrset;
1352 /*
1353 * regular overflowing of the node
1354 */
1355
1356 /* get_num_ver works in 2 modes (FLOW & NO_FLOW)
1357 lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
1358 nset, lset, rset, lrset - shows, whether flowing items give better packing
1359 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360#define FLOW 1
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001361#define NO_FLOW 0 /* do not any splitting */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001362
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001363 /* we choose one the following */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001364#define NOTHING_SHIFT_NO_FLOW 0
1365#define NOTHING_SHIFT_FLOW 5
1366#define LEFT_SHIFT_NO_FLOW 10
1367#define LEFT_SHIFT_FLOW 15
1368#define RIGHT_SHIFT_NO_FLOW 20
1369#define RIGHT_SHIFT_FLOW 25
1370#define LR_SHIFT_NO_FLOW 30
1371#define LR_SHIFT_FLOW 35
1372
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001373 lpar = tb->lnum[h];
1374 rpar = tb->rnum[h];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001375
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001376 /* calculate number of blocks S[h] must be split into when
1377 nothing is shifted to the neighbors,
1378 as well as number of items in each part of the split node (s012 numbers),
1379 and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
1380 nset = NOTHING_SHIFT_NO_FLOW;
1381 nver = get_num_ver(vn->vn_mode, tb, h,
1382 0, -1, h ? vn->vn_nr_item : 0, -1,
1383 snum012, NO_FLOW);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001384
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001385 if (!h) {
1386 int nver1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001388 /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
1389 nver1 = get_num_ver(vn->vn_mode, tb, h,
1390 0, -1, 0, -1,
1391 snum012 + NOTHING_SHIFT_FLOW, FLOW);
1392 if (nver > nver1)
1393 nset = NOTHING_SHIFT_FLOW, nver = nver1;
1394 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001395
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001396 /* calculate number of blocks S[h] must be split into when
1397 l_shift_num first items and l_shift_bytes of the right most
1398 liquid item to be shifted are shifted to the left neighbor,
1399 as well as number of items in each part of the splitted node (s012 numbers),
1400 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1401 */
1402 lset = LEFT_SHIFT_NO_FLOW;
1403 lnver = get_num_ver(vn->vn_mode, tb, h,
1404 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1405 -1, h ? vn->vn_nr_item : 0, -1,
1406 snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1407 if (!h) {
1408 int lnver1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001409
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001410 lnver1 = get_num_ver(vn->vn_mode, tb, h,
1411 lpar -
1412 ((tb->lbytes != -1) ? 1 : 0),
1413 tb->lbytes, 0, -1,
1414 snum012 + LEFT_SHIFT_FLOW, FLOW);
1415 if (lnver > lnver1)
1416 lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1417 }
1418
1419 /* calculate number of blocks S[h] must be split into when
1420 r_shift_num first items and r_shift_bytes of the left most
1421 liquid item to be shifted are shifted to the right neighbor,
1422 as well as number of items in each part of the splitted node (s012 numbers),
1423 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1424 */
1425 rset = RIGHT_SHIFT_NO_FLOW;
1426 rnver = get_num_ver(vn->vn_mode, tb, h,
1427 0, -1,
1428 h ? (vn->vn_nr_item - rpar) : (rpar -
1429 ((tb->
1430 rbytes !=
1431 -1) ? 1 :
1432 0)), -1,
1433 snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1434 if (!h) {
1435 int rnver1;
1436
1437 rnver1 = get_num_ver(vn->vn_mode, tb, h,
1438 0, -1,
1439 (rpar -
1440 ((tb->rbytes != -1) ? 1 : 0)),
1441 tb->rbytes,
1442 snum012 + RIGHT_SHIFT_FLOW, FLOW);
1443
1444 if (rnver > rnver1)
1445 rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1446 }
1447
1448 /* calculate number of blocks S[h] must be split into when
1449 items are shifted in both directions,
1450 as well as number of items in each part of the splitted node (s012 numbers),
1451 and number of bytes (s1bytes) of the shared drop which flow to S1 if any
1452 */
1453 lrset = LR_SHIFT_NO_FLOW;
1454 lrnver = get_num_ver(vn->vn_mode, tb, h,
1455 lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1456 -1,
1457 h ? (vn->vn_nr_item - rpar) : (rpar -
1458 ((tb->
1459 rbytes !=
1460 -1) ? 1 :
1461 0)), -1,
1462 snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1463 if (!h) {
1464 int lrnver1;
1465
1466 lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1467 lpar -
1468 ((tb->lbytes != -1) ? 1 : 0),
1469 tb->lbytes,
1470 (rpar -
1471 ((tb->rbytes != -1) ? 1 : 0)),
1472 tb->rbytes,
1473 snum012 + LR_SHIFT_FLOW, FLOW);
1474 if (lrnver > lrnver1)
1475 lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1476 }
1477
1478 /* Our general shifting strategy is:
1479 1) to minimized number of new nodes;
1480 2) to minimized number of neighbors involved in shifting;
1481 3) to minimized number of disk reads; */
1482
1483 /* we can win TWO or ONE nodes by shifting in both directions */
1484 if (lrnver < lnver && lrnver < rnver) {
1485 RFALSE(h &&
1486 (tb->lnum[h] != 1 ||
1487 tb->rnum[h] != 1 ||
1488 lrnver != 1 || rnver != 2 || lnver != 2
1489 || h != 1), "vs-8230: bad h");
1490 if (lrset == LR_SHIFT_FLOW)
1491 set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1492 lrnver, snum012 + lrset,
1493 tb->lbytes, tb->rbytes);
1494 else
1495 set_parameters(tb, h,
1496 tb->lnum[h] -
1497 ((tb->lbytes == -1) ? 0 : 1),
1498 tb->rnum[h] -
1499 ((tb->rbytes == -1) ? 0 : 1),
1500 lrnver, snum012 + lrset, -1, -1);
1501
1502 return CARRY_ON;
1503 }
1504
1505 /* if shifting doesn't lead to better packing then don't shift */
1506 if (nver == lrnver) {
1507 set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1508 -1);
1509 return CARRY_ON;
1510 }
1511
1512 /* now we know that for better packing shifting in only one
1513 direction either to the left or to the right is required */
1514
1515 /* if shifting to the left is better than shifting to the right */
1516 if (lnver < rnver) {
1517 SET_PAR_SHIFT_LEFT;
1518 return CARRY_ON;
1519 }
1520
1521 /* if shifting to the right is better than shifting to the left */
1522 if (lnver > rnver) {
1523 SET_PAR_SHIFT_RIGHT;
1524 return CARRY_ON;
1525 }
1526
1527 /* now shifting in either direction gives the same number
1528 of nodes and we can make use of the cached neighbors */
1529 if (is_left_neighbor_in_cache(tb, h)) {
1530 SET_PAR_SHIFT_LEFT;
1531 return CARRY_ON;
1532 }
1533
1534 /* shift to the right independently on whether the right neighbor in cache or not */
1535 SET_PAR_SHIFT_RIGHT;
1536 return CARRY_ON;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001537 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001538}
1539
Linus Torvalds1da177e2005-04-16 15:20:36 -07001540/* Check whether current node S[h] is balanced when Decreasing its size by
1541 * Deleting or Cutting for INTERNAL node of S+tree.
1542 * Calculate parameters for balancing for current level h.
1543 * Parameters:
1544 * tb tree_balance structure;
1545 * h current level of the node;
1546 * inum item number in S[h];
1547 * mode i - insert, p - paste;
1548 * Returns: 1 - schedule occurred;
1549 * 0 - balancing for higher levels needed;
1550 * -1 - no balancing for higher levels needed;
1551 * -2 - no disk space.
1552 *
1553 * Note: Items of internal nodes have fixed size, so the balance condition for
1554 * the internal part of S+tree is as for the B-trees.
1555 */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001556static int dc_check_balance_internal(struct tree_balance *tb, int h)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001557{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001558 struct virtual_node *vn = tb->tb_vn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001559
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001560 /* Sh is the node whose balance is currently being checked,
1561 and Fh is its father. */
1562 struct buffer_head *Sh, *Fh;
1563 int maxsize, n_ret_value;
1564 int lfree, rfree /* free space in L and R */ ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001565
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001566 Sh = PATH_H_PBUFFER(tb->tb_path, h);
1567 Fh = PATH_H_PPARENT(tb->tb_path, h);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001568
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001569 maxsize = MAX_CHILD_SIZE(Sh);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001570
1571/* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
1572/* new_nr_item = number of items node would have if operation is */
1573/* performed without balancing (new_nr_item); */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001574 create_virtual_node(tb, h);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001575
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001576 if (!Fh) { /* S[h] is the root. */
1577 if (vn->vn_nr_item > 0) {
1578 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1579 return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
1580 }
1581 /* new_nr_item == 0.
1582 * Current root will be deleted resulting in
1583 * decrementing the tree height. */
1584 set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1585 return CARRY_ON;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001586 }
1587
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001588 if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)
1589 return n_ret_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001590
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001591 /* get free space of neighbors */
1592 rfree = get_rfree(tb, h);
1593 lfree = get_lfree(tb, h);
1594
1595 /* determine maximal number of items we can fit into neighbors */
1596 check_left(tb, h, lfree);
1597 check_right(tb, h, rfree);
1598
1599 if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid.
1600 * In this case we balance only if it leads to better packing. */
1601 if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors,
1602 * which is impossible with greater values of new_nr_item. */
1603 if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1604 /* All contents of S[h] can be moved to L[h]. */
1605 int n;
1606 int order_L;
1607
1608 order_L =
1609 ((n =
1610 PATH_H_B_ITEM_ORDER(tb->tb_path,
1611 h)) ==
1612 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1613 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1614 (DC_SIZE + KEY_SIZE);
1615 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1616 -1);
1617 return CARRY_ON;
1618 }
1619
1620 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1621 /* All contents of S[h] can be moved to R[h]. */
1622 int n;
1623 int order_R;
1624
1625 order_R =
1626 ((n =
1627 PATH_H_B_ITEM_ORDER(tb->tb_path,
1628 h)) ==
1629 B_NR_ITEMS(Fh)) ? 0 : n + 1;
1630 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1631 (DC_SIZE + KEY_SIZE);
1632 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1633 -1);
1634 return CARRY_ON;
1635 }
1636 }
1637
1638 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1639 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1640 int to_r;
1641
1642 to_r =
1643 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1644 tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1645 (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1646 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1647 0, NULL, -1, -1);
1648 return CARRY_ON;
1649 }
1650
1651 /* Balancing does not lead to better packing. */
1652 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1653 return NO_BALANCING_NEEDED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001654 }
1655
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001656 /* Current node contain insufficient number of items. Balancing is required. */
1657 /* Check whether we can merge S[h] with left neighbor. */
1658 if (tb->lnum[h] >= vn->vn_nr_item + 1)
1659 if (is_left_neighbor_in_cache(tb, h)
1660 || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1661 int n;
1662 int order_L;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001663
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001664 order_L =
1665 ((n =
1666 PATH_H_B_ITEM_ORDER(tb->tb_path,
1667 h)) ==
1668 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1669 n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1670 KEY_SIZE);
1671 set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1672 return CARRY_ON;
1673 }
1674
1675 /* Check whether we can merge S[h] with right neighbor. */
1676 if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1677 int n;
1678 int order_R;
1679
1680 order_R =
1681 ((n =
1682 PATH_H_B_ITEM_ORDER(tb->tb_path,
1683 h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1684 n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1685 KEY_SIZE);
1686 set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1687 return CARRY_ON;
1688 }
1689
1690 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1691 if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1692 int to_r;
1693
1694 to_r =
1695 ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1696 vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1697 tb->rnum[h]);
1698 set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1699 -1, -1);
1700 return CARRY_ON;
1701 }
1702
1703 /* For internal nodes try to borrow item from a neighbor */
1704 RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1705
1706 /* Borrow one or two items from caching neighbor */
1707 if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1708 int from_l;
1709
1710 from_l =
1711 (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1712 1) / 2 - (vn->vn_nr_item + 1);
1713 set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1714 return CARRY_ON;
1715 }
1716
1717 set_parameters(tb, h, 0,
1718 -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1719 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001720 return CARRY_ON;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001721}
1722
Linus Torvalds1da177e2005-04-16 15:20:36 -07001723/* Check whether current node S[h] is balanced when Decreasing its size by
1724 * Deleting or Truncating for LEAF node of S+tree.
1725 * Calculate parameters for balancing for current level h.
1726 * Parameters:
1727 * tb tree_balance structure;
1728 * h current level of the node;
1729 * inum item number in S[h];
1730 * mode i - insert, p - paste;
1731 * Returns: 1 - schedule occurred;
1732 * 0 - balancing for higher levels needed;
1733 * -1 - no balancing for higher levels needed;
1734 * -2 - no disk space.
1735 */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001736static int dc_check_balance_leaf(struct tree_balance *tb, int h)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001737{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001738 struct virtual_node *vn = tb->tb_vn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001739
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001740 /* Number of bytes that must be deleted from
1741 (value is negative if bytes are deleted) buffer which
1742 contains node being balanced. The mnemonic is that the
1743 attempted change in node space used level is levbytes bytes. */
1744 int levbytes;
1745 /* the maximal item size */
1746 int maxsize, n_ret_value;
1747 /* S0 is the node whose balance is currently being checked,
1748 and F0 is its father. */
1749 struct buffer_head *S0, *F0;
1750 int lfree, rfree /* free space in L and R */ ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001751
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001752 S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1753 F0 = PATH_H_PPARENT(tb->tb_path, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001754
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001755 levbytes = tb->insert_size[h];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001756
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001757 maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001758
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001759 if (!F0) { /* S[0] is the root now. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001760
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001761 RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1762 "vs-8240: attempt to create empty buffer tree");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001763
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001764 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1765 return NO_BALANCING_NEEDED;
1766 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001767
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001768 if ((n_ret_value = get_parents(tb, h)) != CARRY_ON)
1769 return n_ret_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001771 /* get free space of neighbors */
1772 rfree = get_rfree(tb, h);
1773 lfree = get_lfree(tb, h);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001775 create_virtual_node(tb, h);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001776
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001777 /* if 3 leaves can be merge to one, set parameters and return */
1778 if (are_leaves_removable(tb, lfree, rfree))
1779 return CARRY_ON;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001781 /* determine maximal number of items we can shift to the left/right neighbor
1782 and the maximal number of bytes that can flow to the left/right neighbor
1783 from the left/right most liquid item that cannot be shifted from S[0] entirely
1784 */
1785 check_left(tb, h, lfree);
1786 check_right(tb, h, rfree);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001787
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001788 /* check whether we can merge S with left neighbor. */
1789 if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1790 if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */
1791 !tb->FR[h]) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001792
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001793 RFALSE(!tb->FL[h],
1794 "vs-8245: dc_check_balance_leaf: FL[h] must exist");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001796 /* set parameter to merge S[0] with its left neighbor */
1797 set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1798 return CARRY_ON;
1799 }
1800
1801 /* check whether we can merge S[0] with right neighbor. */
1802 if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
1803 set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
1804 return CARRY_ON;
1805 }
1806
1807 /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
1808 if (is_leaf_removable(tb))
1809 return CARRY_ON;
1810
1811 /* Balancing is not required. */
1812 tb->s0num = vn->vn_nr_item;
1813 set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1814 return NO_BALANCING_NEEDED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001815}
1816
Linus Torvalds1da177e2005-04-16 15:20:36 -07001817/* Check whether current node S[h] is balanced when Decreasing its size by
1818 * Deleting or Cutting.
1819 * Calculate parameters for balancing for current level h.
1820 * Parameters:
1821 * tb tree_balance structure;
1822 * h current level of the node;
1823 * inum item number in S[h];
1824 * mode d - delete, c - cut.
1825 * Returns: 1 - schedule occurred;
1826 * 0 - balancing for higher levels needed;
1827 * -1 - no balancing for higher levels needed;
1828 * -2 - no disk space.
1829 */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001830static int dc_check_balance(struct tree_balance *tb, int h)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001831{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001832 RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
1833 "vs-8250: S is not initialized");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001834
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001835 if (h)
1836 return dc_check_balance_internal(tb, h);
1837 else
1838 return dc_check_balance_leaf(tb, h);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001839}
1840
Linus Torvalds1da177e2005-04-16 15:20:36 -07001841/* Check whether current node S[h] is balanced.
1842 * Calculate parameters for balancing for current level h.
1843 * Parameters:
1844 *
1845 * tb tree_balance structure:
1846 *
1847 * tb is a large structure that must be read about in the header file
1848 * at the same time as this procedure if the reader is to successfully
1849 * understand this procedure
1850 *
1851 * h current level of the node;
1852 * inum item number in S[h];
1853 * mode i - insert, p - paste, d - delete, c - cut.
1854 * Returns: 1 - schedule occurred;
1855 * 0 - balancing for higher levels needed;
1856 * -1 - no balancing for higher levels needed;
1857 * -2 - no disk space.
1858 */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001859static int check_balance(int mode,
1860 struct tree_balance *tb,
1861 int h,
1862 int inum,
1863 int pos_in_item,
1864 struct item_head *ins_ih, const void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001865{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001866 struct virtual_node *vn;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001867
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001868 vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
1869 vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
1870 vn->vn_mode = mode;
1871 vn->vn_affected_item_num = inum;
1872 vn->vn_pos_in_item = pos_in_item;
1873 vn->vn_ins_ih = ins_ih;
1874 vn->vn_data = data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001875
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001876 RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
1877 "vs-8255: ins_ih can not be 0 in insert mode");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001878
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001879 if (tb->insert_size[h] > 0)
1880 /* Calculate balance parameters when size of node is increasing. */
1881 return ip_check_balance(tb, h);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001882
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001883 /* Calculate balance parameters when size of node is decreasing. */
1884 return dc_check_balance(tb, h);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001885}
1886
Linus Torvalds1da177e2005-04-16 15:20:36 -07001887/* Check whether parent at the path is the really parent of the current node.*/
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001888static int get_direct_parent(struct tree_balance *p_s_tb, int n_h)
1889{
1890 struct buffer_head *p_s_bh;
1891 struct path *p_s_path = p_s_tb->tb_path;
1892 int n_position,
1893 n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001894
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001895 /* We are in the root or in the new root. */
1896 if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1897
1898 RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
1899 "PAP-8260: invalid offset in the path");
1900
1901 if (PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->
1902 b_blocknr == SB_ROOT_BLOCK(p_s_tb->tb_sb)) {
1903 /* Root is not changed. */
1904 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL;
1905 PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0;
1906 return CARRY_ON;
1907 }
1908 return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001909 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001910
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001911 if (!B_IS_IN_TREE
1912 (p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)))
1913 return REPEAT_SEARCH; /* Parent in the path is not in the tree. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001914
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001915 if ((n_position =
1916 PATH_OFFSET_POSITION(p_s_path,
1917 n_path_offset - 1)) > B_NR_ITEMS(p_s_bh))
1918 return REPEAT_SEARCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001919
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001920 if (B_N_CHILD_NUM(p_s_bh, n_position) !=
1921 PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr)
1922 /* Parent in the path is not parent of the current node in the tree. */
1923 return REPEAT_SEARCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001924
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001925 if (buffer_locked(p_s_bh)) {
1926 __wait_on_buffer(p_s_bh);
1927 if (FILESYSTEM_CHANGED_TB(p_s_tb))
1928 return REPEAT_SEARCH;
1929 }
1930
1931 return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001932}
1933
Linus Torvalds1da177e2005-04-16 15:20:36 -07001934/* Using lnum[n_h] and rnum[n_h] we should determine what neighbors
1935 * of S[n_h] we
1936 * need in order to balance S[n_h], and get them if necessary.
1937 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
1938 * CARRY_ON - schedule didn't occur while the function worked;
1939 */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001940static int get_neighbors(struct tree_balance *p_s_tb, int n_h)
1941{
1942 int n_child_position,
1943 n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1);
1944 unsigned long n_son_number;
1945 struct super_block *p_s_sb = p_s_tb->tb_sb;
1946 struct buffer_head *p_s_bh;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001947
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001948 PROC_INFO_INC(p_s_sb, get_neighbors[n_h]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001949
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001950 if (p_s_tb->lnum[n_h]) {
1951 /* We need left neighbor to balance S[n_h]. */
1952 PROC_INFO_INC(p_s_sb, need_l_neighbor[n_h]);
1953 p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001954
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001955 RFALSE(p_s_bh == p_s_tb->FL[n_h] &&
1956 !PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset),
1957 "PAP-8270: invalid position in the parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001958
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001959 n_child_position =
1960 (p_s_bh ==
1961 p_s_tb->FL[n_h]) ? p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->
1962 FL[n_h]);
1963 n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position);
1964 p_s_bh = sb_bread(p_s_sb, n_son_number);
1965 if (!p_s_bh)
1966 return IO_ERROR;
1967 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
1968 decrement_bcount(p_s_bh);
1969 PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]);
1970 return REPEAT_SEARCH;
1971 }
1972
1973 RFALSE(!B_IS_IN_TREE(p_s_tb->FL[n_h]) ||
1974 n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) ||
1975 B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) !=
1976 p_s_bh->b_blocknr, "PAP-8275: invalid parent");
1977 RFALSE(!B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child");
1978 RFALSE(!n_h &&
1979 B_FREE_SPACE(p_s_bh) !=
1980 MAX_CHILD_SIZE(p_s_bh) -
1981 dc_size(B_N_CHILD(p_s_tb->FL[0], n_child_position)),
1982 "PAP-8290: invalid child size of left neighbor");
1983
1984 decrement_bcount(p_s_tb->L[n_h]);
1985 p_s_tb->L[n_h] = p_s_bh;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001986 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001987
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001988 if (p_s_tb->rnum[n_h]) { /* We need right neighbor to balance S[n_path_offset]. */
1989 PROC_INFO_INC(p_s_sb, need_r_neighbor[n_h]);
1990 p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001991
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001992 RFALSE(p_s_bh == p_s_tb->FR[n_h] &&
1993 PATH_OFFSET_POSITION(p_s_tb->tb_path,
1994 n_path_offset) >=
1995 B_NR_ITEMS(p_s_bh),
1996 "PAP-8295: invalid position in the parent");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001997
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07001998 n_child_position =
1999 (p_s_bh == p_s_tb->FR[n_h]) ? p_s_tb->rkey[n_h] + 1 : 0;
2000 n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position);
2001 p_s_bh = sb_bread(p_s_sb, n_son_number);
2002 if (!p_s_bh)
2003 return IO_ERROR;
2004 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2005 decrement_bcount(p_s_bh);
2006 PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]);
2007 return REPEAT_SEARCH;
2008 }
2009 decrement_bcount(p_s_tb->R[n_h]);
2010 p_s_tb->R[n_h] = p_s_bh;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002011
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002012 RFALSE(!n_h
2013 && B_FREE_SPACE(p_s_bh) !=
2014 MAX_CHILD_SIZE(p_s_bh) -
2015 dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)),
2016 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2017 B_FREE_SPACE(p_s_bh), MAX_CHILD_SIZE(p_s_bh),
2018 dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)));
2019
Linus Torvalds1da177e2005-04-16 15:20:36 -07002020 }
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002021 return CARRY_ON;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002022}
2023
2024#ifdef CONFIG_REISERFS_CHECK
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002025void *reiserfs_kmalloc(size_t size, int flags, struct super_block *s)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002026{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002027 void *vp;
2028 static size_t malloced;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002029
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002030 vp = kmalloc(size, flags);
2031 if (vp) {
2032 REISERFS_SB(s)->s_kmallocs += size;
2033 if (REISERFS_SB(s)->s_kmallocs > malloced + 200000) {
2034 reiserfs_warning(s,
2035 "vs-8301: reiserfs_kmalloc: allocated memory %d",
2036 REISERFS_SB(s)->s_kmallocs);
2037 malloced = REISERFS_SB(s)->s_kmallocs;
2038 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002039 }
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002040 return vp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002041}
2042
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002043void reiserfs_kfree(const void *vp, size_t size, struct super_block *s)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002044{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002045 kfree(vp);
2046
2047 REISERFS_SB(s)->s_kmallocs -= size;
2048 if (REISERFS_SB(s)->s_kmallocs < 0)
2049 reiserfs_warning(s,
2050 "vs-8302: reiserfs_kfree: allocated memory %d",
2051 REISERFS_SB(s)->s_kmallocs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002052
2053}
2054#endif
2055
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002056static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002057{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002058 int max_num_of_items;
2059 int max_num_of_entries;
2060 unsigned long blocksize = sb->s_blocksize;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061
2062#define MIN_NAME_LEN 1
2063
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002064 max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2065 max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2066 (DEH_SIZE + MIN_NAME_LEN);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002067
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002068 return sizeof(struct virtual_node) +
2069 max(max_num_of_items * sizeof(struct virtual_item),
2070 sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2071 (max_num_of_entries - 1) * sizeof(__u16));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002072}
2073
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074/* maybe we should fail balancing we are going to perform when kmalloc
2075 fails several times. But now it will loop until kmalloc gets
2076 required memory */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002077static int get_mem_for_virtual_node(struct tree_balance *tb)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002078{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002079 int check_fs = 0;
2080 int size;
2081 char *buf;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002082
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002083 size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002084
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002085 if (size > tb->vn_buf_size) {
2086 /* we have to allocate more memory for virtual node */
2087 if (tb->vn_buf) {
2088 /* free memory allocated before */
2089 reiserfs_kfree(tb->vn_buf, tb->vn_buf_size, tb->tb_sb);
2090 /* this is not needed if kfree is atomic */
2091 check_fs = 1;
2092 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002093
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002094 /* virtual node requires now more memory */
2095 tb->vn_buf_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002096
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002097 /* get memory for virtual item */
2098 buf =
2099 reiserfs_kmalloc(size, GFP_ATOMIC | __GFP_NOWARN,
2100 tb->tb_sb);
2101 if (!buf) {
2102 /* getting memory with GFP_KERNEL priority may involve
2103 balancing now (due to indirect_to_direct conversion on
2104 dcache shrinking). So, release path and collected
2105 resources here */
2106 free_buffers_in_tb(tb);
2107 buf = reiserfs_kmalloc(size, GFP_NOFS, tb->tb_sb);
2108 if (!buf) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002109#ifdef CONFIG_REISERFS_CHECK
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002110 reiserfs_warning(tb->tb_sb,
2111 "vs-8345: get_mem_for_virtual_node: "
2112 "kmalloc failed. reiserfs kmalloced %d bytes",
2113 REISERFS_SB(tb->tb_sb)->
2114 s_kmallocs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002115#endif
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002116 tb->vn_buf_size = 0;
2117 }
2118 tb->vn_buf = buf;
2119 schedule();
2120 return REPEAT_SEARCH;
2121 }
2122
2123 tb->vn_buf = buf;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002124 }
2125
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002126 if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2127 return REPEAT_SEARCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002128
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002129 return CARRY_ON;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002130}
2131
Linus Torvalds1da177e2005-04-16 15:20:36 -07002132#ifdef CONFIG_REISERFS_CHECK
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002133static void tb_buffer_sanity_check(struct super_block *p_s_sb,
2134 struct buffer_head *p_s_bh,
2135 const char *descr, int level)
2136{
2137 if (p_s_bh) {
2138 if (atomic_read(&(p_s_bh->b_count)) <= 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002139
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002140 reiserfs_panic(p_s_sb,
2141 "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n",
2142 descr, level, p_s_bh);
2143 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002144
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002145 if (!buffer_uptodate(p_s_bh)) {
2146 reiserfs_panic(p_s_sb,
2147 "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n",
2148 descr, level, p_s_bh);
2149 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002150
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002151 if (!B_IS_IN_TREE(p_s_bh)) {
2152 reiserfs_panic(p_s_sb,
2153 "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n",
2154 descr, level, p_s_bh);
2155 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002156
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002157 if (p_s_bh->b_bdev != p_s_sb->s_bdev) {
2158 reiserfs_panic(p_s_sb,
2159 "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n",
2160 descr, level, p_s_bh);
2161 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002162
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002163 if (p_s_bh->b_size != p_s_sb->s_blocksize) {
2164 reiserfs_panic(p_s_sb,
2165 "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n",
2166 descr, level, p_s_bh);
2167 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002168
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002169 if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) {
2170 reiserfs_panic(p_s_sb,
2171 "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n",
2172 descr, level, p_s_bh);
2173 }
2174 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002175}
2176#else
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002177static void tb_buffer_sanity_check(struct super_block *p_s_sb,
2178 struct buffer_head *p_s_bh,
2179 const char *descr, int level)
2180{;
2181}
Linus Torvalds1da177e2005-04-16 15:20:36 -07002182#endif
2183
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002184static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002185{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002186 return reiserfs_prepare_for_journal(s, bh, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002187}
2188
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002189static int wait_tb_buffers_until_unlocked(struct tree_balance *p_s_tb)
2190{
2191 struct buffer_head *locked;
2192#ifdef CONFIG_REISERFS_CHECK
2193 int repeat_counter = 0;
2194#endif
2195 int i;
2196
2197 do {
2198
2199 locked = NULL;
2200
2201 for (i = p_s_tb->tb_path->path_length;
2202 !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2203 if (PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) {
2204 /* if I understand correctly, we can only be sure the last buffer
2205 ** in the path is in the tree --clm
2206 */
2207#ifdef CONFIG_REISERFS_CHECK
2208 if (PATH_PLAST_BUFFER(p_s_tb->tb_path) ==
2209 PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) {
2210 tb_buffer_sanity_check(p_s_tb->tb_sb,
2211 PATH_OFFSET_PBUFFER
2212 (p_s_tb->tb_path,
2213 i), "S",
2214 p_s_tb->tb_path->
2215 path_length - i);
2216 }
2217#endif
2218 if (!clear_all_dirty_bits(p_s_tb->tb_sb,
2219 PATH_OFFSET_PBUFFER
2220 (p_s_tb->tb_path,
2221 i))) {
2222 locked =
2223 PATH_OFFSET_PBUFFER(p_s_tb->tb_path,
2224 i);
2225 }
2226 }
2227 }
2228
2229 for (i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i];
2230 i++) {
2231
2232 if (p_s_tb->lnum[i]) {
2233
2234 if (p_s_tb->L[i]) {
2235 tb_buffer_sanity_check(p_s_tb->tb_sb,
2236 p_s_tb->L[i],
2237 "L", i);
2238 if (!clear_all_dirty_bits
2239 (p_s_tb->tb_sb, p_s_tb->L[i]))
2240 locked = p_s_tb->L[i];
2241 }
2242
2243 if (!locked && p_s_tb->FL[i]) {
2244 tb_buffer_sanity_check(p_s_tb->tb_sb,
2245 p_s_tb->FL[i],
2246 "FL", i);
2247 if (!clear_all_dirty_bits
2248 (p_s_tb->tb_sb, p_s_tb->FL[i]))
2249 locked = p_s_tb->FL[i];
2250 }
2251
2252 if (!locked && p_s_tb->CFL[i]) {
2253 tb_buffer_sanity_check(p_s_tb->tb_sb,
2254 p_s_tb->CFL[i],
2255 "CFL", i);
2256 if (!clear_all_dirty_bits
2257 (p_s_tb->tb_sb, p_s_tb->CFL[i]))
2258 locked = p_s_tb->CFL[i];
2259 }
2260
2261 }
2262
2263 if (!locked && (p_s_tb->rnum[i])) {
2264
2265 if (p_s_tb->R[i]) {
2266 tb_buffer_sanity_check(p_s_tb->tb_sb,
2267 p_s_tb->R[i],
2268 "R", i);
2269 if (!clear_all_dirty_bits
2270 (p_s_tb->tb_sb, p_s_tb->R[i]))
2271 locked = p_s_tb->R[i];
2272 }
2273
2274 if (!locked && p_s_tb->FR[i]) {
2275 tb_buffer_sanity_check(p_s_tb->tb_sb,
2276 p_s_tb->FR[i],
2277 "FR", i);
2278 if (!clear_all_dirty_bits
2279 (p_s_tb->tb_sb, p_s_tb->FR[i]))
2280 locked = p_s_tb->FR[i];
2281 }
2282
2283 if (!locked && p_s_tb->CFR[i]) {
2284 tb_buffer_sanity_check(p_s_tb->tb_sb,
2285 p_s_tb->CFR[i],
2286 "CFR", i);
2287 if (!clear_all_dirty_bits
2288 (p_s_tb->tb_sb, p_s_tb->CFR[i]))
2289 locked = p_s_tb->CFR[i];
2290 }
2291 }
2292 }
2293 /* as far as I can tell, this is not required. The FEB list seems
2294 ** to be full of newly allocated nodes, which will never be locked,
2295 ** dirty, or anything else.
2296 ** To be safe, I'm putting in the checks and waits in. For the moment,
2297 ** they are needed to keep the code in journal.c from complaining
2298 ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well.
2299 ** --clm
2300 */
2301 for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2302 if (p_s_tb->FEB[i]) {
2303 if (!clear_all_dirty_bits
2304 (p_s_tb->tb_sb, p_s_tb->FEB[i]))
2305 locked = p_s_tb->FEB[i];
2306 }
2307 }
2308
2309 if (locked) {
2310#ifdef CONFIG_REISERFS_CHECK
2311 repeat_counter++;
2312 if ((repeat_counter % 10000) == 0) {
2313 reiserfs_warning(p_s_tb->tb_sb,
2314 "wait_tb_buffers_until_released(): too many "
2315 "iterations waiting for buffer to unlock "
2316 "(%b)", locked);
2317
2318 /* Don't loop forever. Try to recover from possible error. */
2319
2320 return (FILESYSTEM_CHANGED_TB(p_s_tb)) ?
2321 REPEAT_SEARCH : CARRY_ON;
2322 }
2323#endif
2324 __wait_on_buffer(locked);
2325 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2326 return REPEAT_SEARCH;
2327 }
2328 }
2329
2330 } while (locked);
2331
2332 return CARRY_ON;
2333}
Linus Torvalds1da177e2005-04-16 15:20:36 -07002334
2335/* Prepare for balancing, that is
2336 * get all necessary parents, and neighbors;
2337 * analyze what and where should be moved;
2338 * get sufficient number of new nodes;
2339 * Balancing will start only after all resources will be collected at a time.
2340 *
2341 * When ported to SMP kernels, only at the last moment after all needed nodes
2342 * are collected in cache, will the resources be locked using the usual
2343 * textbook ordered lock acquisition algorithms. Note that ensuring that
2344 * this code neither write locks what it does not need to write lock nor locks out of order
2345 * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans
2346 *
2347 * fix is meant in the sense of render unchanging
2348 *
2349 * Latency might be improved by first gathering a list of what buffers are needed
2350 * and then getting as many of them in parallel as possible? -Hans
2351 *
2352 * Parameters:
2353 * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2354 * tb tree_balance structure;
2355 * inum item number in S[h];
2356 * pos_in_item - comment this if you can
2357 * ins_ih & ins_sd are used when inserting
2358 * Returns: 1 - schedule occurred while the function worked;
2359 * 0 - schedule didn't occur while the function worked;
2360 * -1 - if no_disk_space
2361 */
2362
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002363int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, struct item_head *p_s_ins_ih, // item head of item being inserted
2364 const void *data // inserted item or data to be pasted
2365 )
2366{
2367 int n_ret_value, n_h, n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path);
2368 int n_pos_in_item;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002369
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002370 /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
2371 ** during wait_tb_buffers_run
2372 */
2373 int wait_tb_buffers_run = 0;
2374 struct buffer_head *p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002375
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002376 ++REISERFS_SB(p_s_tb->tb_sb)->s_fix_nodes;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002378 n_pos_in_item = p_s_tb->tb_path->pos_in_item;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002379
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002380 p_s_tb->fs_gen = get_generation(p_s_tb->tb_sb);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002381
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002382 /* we prepare and log the super here so it will already be in the
2383 ** transaction when do_balance needs to change it.
2384 ** This way do_balance won't have to schedule when trying to prepare
2385 ** the super for logging
2386 */
2387 reiserfs_prepare_for_journal(p_s_tb->tb_sb,
2388 SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1);
2389 journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb,
2390 SB_BUFFER_WITH_SB(p_s_tb->tb_sb));
2391 if (FILESYSTEM_CHANGED_TB(p_s_tb))
2392 return REPEAT_SEARCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002393
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002394 /* if it possible in indirect_to_direct conversion */
2395 if (buffer_locked(p_s_tbS0)) {
2396 __wait_on_buffer(p_s_tbS0);
2397 if (FILESYSTEM_CHANGED_TB(p_s_tb))
2398 return REPEAT_SEARCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002399 }
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002400#ifdef CONFIG_REISERFS_CHECK
2401 if (cur_tb) {
2402 print_cur_tb("fix_nodes");
2403 reiserfs_panic(p_s_tb->tb_sb,
2404 "PAP-8305: fix_nodes: there is pending do_balance");
2405 }
2406
2407 if (!buffer_uptodate(p_s_tbS0) || !B_IS_IN_TREE(p_s_tbS0)) {
2408 reiserfs_panic(p_s_tb->tb_sb,
2409 "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate "
2410 "at the beginning of fix_nodes or not in tree (mode %c)",
2411 p_s_tbS0, p_s_tbS0, n_op_mode);
2412 }
2413
2414 /* Check parameters. */
2415 switch (n_op_mode) {
2416 case M_INSERT:
2417 if (n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0))
2418 reiserfs_panic(p_s_tb->tb_sb,
2419 "PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert",
2420 n_item_num, B_NR_ITEMS(p_s_tbS0));
2421 break;
2422 case M_PASTE:
2423 case M_DELETE:
2424 case M_CUT:
2425 if (n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0)) {
2426 print_block(p_s_tbS0, 0, -1, -1);
2427 reiserfs_panic(p_s_tb->tb_sb,
2428 "PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n",
2429 n_item_num, n_op_mode,
2430 p_s_tb->insert_size[0]);
2431 }
2432 break;
2433 default:
2434 reiserfs_panic(p_s_tb->tb_sb,
2435 "PAP-8340: fix_nodes: Incorrect mode of operation");
2436 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002437#endif
2438
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002439 if (get_mem_for_virtual_node(p_s_tb) == REPEAT_SEARCH)
2440 // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
2441 return REPEAT_SEARCH;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002442
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002443 /* Starting from the leaf level; for all levels n_h of the tree. */
2444 for (n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++) {
2445 if ((n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON) {
2446 goto repeat;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002447 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002448
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002449 if ((n_ret_value =
2450 check_balance(n_op_mode, p_s_tb, n_h, n_item_num,
2451 n_pos_in_item, p_s_ins_ih,
2452 data)) != CARRY_ON) {
2453 if (n_ret_value == NO_BALANCING_NEEDED) {
2454 /* No balancing for higher levels needed. */
2455 if ((n_ret_value =
2456 get_neighbors(p_s_tb, n_h)) != CARRY_ON) {
2457 goto repeat;
2458 }
2459 if (n_h != MAX_HEIGHT - 1)
2460 p_s_tb->insert_size[n_h + 1] = 0;
2461 /* ok, analysis and resource gathering are complete */
2462 break;
2463 }
2464 goto repeat;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002465 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002466
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002467 if ((n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON) {
2468 goto repeat;
2469 }
2470
2471 if ((n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON) {
2472 goto repeat; /* No disk space, or schedule occurred and
2473 analysis may be invalid and needs to be redone. */
2474 }
2475
2476 if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h)) {
2477 /* We have a positive insert size but no nodes exist on this
2478 level, this means that we are creating a new root. */
2479
2480 RFALSE(p_s_tb->blknum[n_h] != 1,
2481 "PAP-8350: creating new empty root");
2482
2483 if (n_h < MAX_HEIGHT - 1)
2484 p_s_tb->insert_size[n_h + 1] = 0;
2485 } else if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1)) {
2486 if (p_s_tb->blknum[n_h] > 1) {
2487 /* The tree needs to be grown, so this node S[n_h]
2488 which is the root node is split into two nodes,
2489 and a new node (S[n_h+1]) will be created to
2490 become the root node. */
2491
2492 RFALSE(n_h == MAX_HEIGHT - 1,
2493 "PAP-8355: attempt to create too high of a tree");
2494
2495 p_s_tb->insert_size[n_h + 1] =
2496 (DC_SIZE +
2497 KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) +
2498 DC_SIZE;
2499 } else if (n_h < MAX_HEIGHT - 1)
2500 p_s_tb->insert_size[n_h + 1] = 0;
2501 } else
2502 p_s_tb->insert_size[n_h + 1] =
2503 (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1);
2504 }
2505
2506 if ((n_ret_value = wait_tb_buffers_until_unlocked(p_s_tb)) == CARRY_ON) {
2507 if (FILESYSTEM_CHANGED_TB(p_s_tb)) {
2508 wait_tb_buffers_run = 1;
2509 n_ret_value = REPEAT_SEARCH;
2510 goto repeat;
2511 } else {
2512 return CARRY_ON;
2513 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002514 } else {
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002515 wait_tb_buffers_run = 1;
2516 goto repeat;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002517 }
2518
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002519 repeat:
2520 // fix_nodes was unable to perform its calculation due to
2521 // filesystem got changed under us, lack of free disk space or i/o
2522 // failure. If the first is the case - the search will be
2523 // repeated. For now - free all resources acquired so far except
2524 // for the new allocated nodes
2525 {
2526 int i;
2527
2528 /* Release path buffers. */
2529 if (wait_tb_buffers_run) {
2530 pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path);
2531 } else {
2532 pathrelse(p_s_tb->tb_path);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533 }
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002534 /* brelse all resources collected for balancing */
2535 for (i = 0; i < MAX_HEIGHT; i++) {
2536 if (wait_tb_buffers_run) {
2537 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2538 p_s_tb->L[i]);
2539 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2540 p_s_tb->R[i]);
2541 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2542 p_s_tb->FL[i]);
2543 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2544 p_s_tb->FR[i]);
2545 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2546 p_s_tb->
2547 CFL[i]);
2548 reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,
2549 p_s_tb->
2550 CFR[i]);
2551 }
2552
2553 brelse(p_s_tb->L[i]);
2554 p_s_tb->L[i] = NULL;
2555 brelse(p_s_tb->R[i]);
2556 p_s_tb->R[i] = NULL;
2557 brelse(p_s_tb->FL[i]);
2558 p_s_tb->FL[i] = NULL;
2559 brelse(p_s_tb->FR[i]);
2560 p_s_tb->FR[i] = NULL;
2561 brelse(p_s_tb->CFL[i]);
2562 p_s_tb->CFL[i] = NULL;
2563 brelse(p_s_tb->CFR[i]);
2564 p_s_tb->CFR[i] = NULL;
2565 }
2566
2567 if (wait_tb_buffers_run) {
2568 for (i = 0; i < MAX_FEB_SIZE; i++) {
2569 if (p_s_tb->FEB[i]) {
2570 reiserfs_restore_prepared_buffer
2571 (p_s_tb->tb_sb, p_s_tb->FEB[i]);
2572 }
2573 }
2574 }
2575 return n_ret_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002576 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002577
2578}
2579
Linus Torvalds1da177e2005-04-16 15:20:36 -07002580/* Anatoly will probably forgive me renaming p_s_tb to tb. I just
2581 wanted to make lines shorter */
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002582void unfix_nodes(struct tree_balance *tb)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002583{
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002584 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002585
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002586 /* Release path buffers. */
2587 pathrelse_and_restore(tb->tb_sb, tb->tb_path);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002588
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002589 /* brelse all resources collected for balancing */
2590 for (i = 0; i < MAX_HEIGHT; i++) {
2591 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2592 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2593 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2594 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2595 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2596 reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002597
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002598 brelse(tb->L[i]);
2599 brelse(tb->R[i]);
2600 brelse(tb->FL[i]);
2601 brelse(tb->FR[i]);
2602 brelse(tb->CFL[i]);
2603 brelse(tb->CFR[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002604 }
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002605
2606 /* deal with list of allocated (used and unused) nodes */
2607 for (i = 0; i < MAX_FEB_SIZE; i++) {
2608 if (tb->FEB[i]) {
2609 b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2610 /* de-allocated block which was not used by balancing and
2611 bforget about buffer for it */
2612 brelse(tb->FEB[i]);
2613 reiserfs_free_block(tb->transaction_handle, NULL,
2614 blocknr, 0);
2615 }
2616 if (tb->used[i]) {
2617 /* release used as new nodes including a new root */
2618 brelse(tb->used[i]);
2619 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002620 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002621
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002622 if (tb->vn_buf)
2623 reiserfs_kfree(tb->vn_buf, tb->vn_buf_size, tb->tb_sb);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002624
Linus Torvaldsbd4c6252005-07-12 20:21:28 -07002625}