Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Fast Ethernet Controller (FCC) driver for Motorola MPC8260. |
| 3 | * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net) |
| 4 | * |
| 5 | * This version of the driver is a combination of the 8xx fec and |
| 6 | * 8260 SCC Ethernet drivers. This version has some additional |
| 7 | * configuration options, which should probably be moved out of |
| 8 | * here. This driver currently works for the EST SBC8260, |
| 9 | * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others. |
| 10 | * |
| 11 | * Right now, I am very watseful with the buffers. I allocate memory |
| 12 | * pages and then divide them into 2K frame buffers. This way I know I |
| 13 | * have buffers large enough to hold one frame within one buffer descriptor. |
| 14 | * Once I get this working, I will use 64 or 128 byte CPM buffers, which |
| 15 | * will be much more memory efficient and will easily handle lots of |
| 16 | * small packets. Since this is a cache coherent processor and CPM, |
| 17 | * I could also preallocate SKB's and use them directly on the interface. |
| 18 | * |
| 19 | * 2004-12 Leo Li (leoli@freescale.com) |
| 20 | * - Rework the FCC clock configuration part, make it easier to configure. |
| 21 | * |
| 22 | */ |
| 23 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 24 | #include <linux/kernel.h> |
| 25 | #include <linux/sched.h> |
| 26 | #include <linux/string.h> |
| 27 | #include <linux/ptrace.h> |
| 28 | #include <linux/errno.h> |
| 29 | #include <linux/ioport.h> |
| 30 | #include <linux/slab.h> |
| 31 | #include <linux/interrupt.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 32 | #include <linux/init.h> |
| 33 | #include <linux/delay.h> |
| 34 | #include <linux/netdevice.h> |
| 35 | #include <linux/etherdevice.h> |
| 36 | #include <linux/skbuff.h> |
| 37 | #include <linux/spinlock.h> |
| 38 | #include <linux/mii.h> |
| 39 | #include <linux/workqueue.h> |
| 40 | #include <linux/bitops.h> |
| 41 | |
| 42 | #include <asm/immap_cpm2.h> |
| 43 | #include <asm/pgtable.h> |
| 44 | #include <asm/mpc8260.h> |
| 45 | #include <asm/irq.h> |
| 46 | #include <asm/uaccess.h> |
| 47 | #include <asm/signal.h> |
| 48 | |
| 49 | /* We can't use the PHY interrupt if we aren't using MDIO. */ |
| 50 | #if !defined(CONFIG_USE_MDIO) |
| 51 | #undef PHY_INTERRUPT |
| 52 | #endif |
| 53 | |
| 54 | /* If we have a PHY interrupt, we will advertise both full-duplex and half- |
| 55 | * duplex capabilities. If we don't have a PHY interrupt, then we will only |
| 56 | * advertise half-duplex capabilities. |
| 57 | */ |
| 58 | #define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \ |
| 59 | ADVERTISE_CSMA) |
| 60 | #define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \ |
| 61 | MII_ADVERTISE_HALF) |
| 62 | #ifdef PHY_INTERRUPT |
| 63 | #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL |
| 64 | #else |
| 65 | #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF |
| 66 | #endif |
| 67 | #include <asm/cpm2.h> |
| 68 | |
| 69 | /* The transmitter timeout |
| 70 | */ |
| 71 | #define TX_TIMEOUT (2*HZ) |
| 72 | |
| 73 | #ifdef CONFIG_USE_MDIO |
| 74 | /* Forward declarations of some structures to support different PHYs */ |
| 75 | |
| 76 | typedef struct { |
| 77 | uint mii_data; |
| 78 | void (*funct)(uint mii_reg, struct net_device *dev); |
| 79 | } phy_cmd_t; |
| 80 | |
| 81 | typedef struct { |
| 82 | uint id; |
| 83 | char *name; |
| 84 | |
| 85 | const phy_cmd_t *config; |
| 86 | const phy_cmd_t *startup; |
| 87 | const phy_cmd_t *ack_int; |
| 88 | const phy_cmd_t *shutdown; |
| 89 | } phy_info_t; |
| 90 | |
| 91 | /* values for phy_status */ |
| 92 | |
| 93 | #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ |
| 94 | #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ |
| 95 | #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ |
| 96 | #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ |
| 97 | #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ |
| 98 | #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ |
| 99 | #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ |
| 100 | |
| 101 | #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ |
| 102 | #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ |
| 103 | #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ |
| 104 | #define PHY_STAT_SPMASK 0xf000 /* mask for speed */ |
| 105 | #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ |
| 106 | #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ |
| 107 | #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ |
| 108 | #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ |
| 109 | #endif /* CONFIG_USE_MDIO */ |
| 110 | |
| 111 | /* The number of Tx and Rx buffers. These are allocated from the page |
| 112 | * pool. The code may assume these are power of two, so it is best |
| 113 | * to keep them that size. |
| 114 | * We don't need to allocate pages for the transmitter. We just use |
| 115 | * the skbuffer directly. |
| 116 | */ |
| 117 | #define FCC_ENET_RX_PAGES 16 |
| 118 | #define FCC_ENET_RX_FRSIZE 2048 |
| 119 | #define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE) |
| 120 | #define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES) |
| 121 | #define TX_RING_SIZE 16 /* Must be power of two */ |
| 122 | #define TX_RING_MOD_MASK 15 /* for this to work */ |
| 123 | |
| 124 | /* The FCC stores dest/src/type, data, and checksum for receive packets. |
| 125 | * size includes support for VLAN |
| 126 | */ |
| 127 | #define PKT_MAXBUF_SIZE 1522 |
| 128 | #define PKT_MINBUF_SIZE 64 |
| 129 | |
| 130 | /* Maximum input DMA size. Must be a should(?) be a multiple of 4. |
| 131 | * size includes support for VLAN |
| 132 | */ |
| 133 | #define PKT_MAXDMA_SIZE 1524 |
| 134 | |
| 135 | /* Maximum input buffer size. Must be a multiple of 32. |
| 136 | */ |
| 137 | #define PKT_MAXBLR_SIZE 1536 |
| 138 | |
| 139 | static int fcc_enet_open(struct net_device *dev); |
| 140 | static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); |
| 141 | static int fcc_enet_rx(struct net_device *dev); |
Al Viro | 39e3eb7 | 2006-10-09 12:48:42 +0100 | [diff] [blame] | 142 | static irqreturn_t fcc_enet_interrupt(int irq, void *dev_id); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 143 | static int fcc_enet_close(struct net_device *dev); |
| 144 | static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev); |
| 145 | /* static void set_multicast_list(struct net_device *dev); */ |
| 146 | static void fcc_restart(struct net_device *dev, int duplex); |
| 147 | static void fcc_stop(struct net_device *dev); |
| 148 | static int fcc_enet_set_mac_address(struct net_device *dev, void *addr); |
| 149 | |
| 150 | /* These will be configurable for the FCC choice. |
| 151 | * Multiple ports can be configured. There is little choice among the |
| 152 | * I/O pins to the PHY, except the clocks. We will need some board |
| 153 | * dependent clock selection. |
| 154 | * Why in the hell did I put these inside #ifdef's? I dunno, maybe to |
| 155 | * help show what pins are used for each device. |
| 156 | */ |
| 157 | |
| 158 | /* Since the CLK setting changes greatly from board to board, I changed |
| 159 | * it to a easy way. You just need to specify which CLK number to use. |
| 160 | * Note that only limited choices can be make on each port. |
| 161 | */ |
| 162 | |
| 163 | /* FCC1 Clock Source Configuration. There are board specific. |
| 164 | Can only choose from CLK9-12 */ |
| 165 | #ifdef CONFIG_SBC82xx |
| 166 | #define F1_RXCLK 9 |
| 167 | #define F1_TXCLK 10 |
| 168 | #elif defined(CONFIG_ADS8272) |
| 169 | #define F1_RXCLK 11 |
| 170 | #define F1_TXCLK 10 |
| 171 | #else |
| 172 | #define F1_RXCLK 12 |
| 173 | #define F1_TXCLK 11 |
| 174 | #endif |
| 175 | |
| 176 | /* FCC2 Clock Source Configuration. There are board specific. |
| 177 | Can only choose from CLK13-16 */ |
| 178 | #ifdef CONFIG_ADS8272 |
| 179 | #define F2_RXCLK 15 |
| 180 | #define F2_TXCLK 16 |
| 181 | #else |
| 182 | #define F2_RXCLK 13 |
| 183 | #define F2_TXCLK 14 |
| 184 | #endif |
| 185 | |
| 186 | /* FCC3 Clock Source Configuration. There are board specific. |
| 187 | Can only choose from CLK13-16 */ |
| 188 | #define F3_RXCLK 15 |
| 189 | #define F3_TXCLK 16 |
| 190 | |
| 191 | /* Automatically generates register configurations */ |
| 192 | #define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */ |
| 193 | |
| 194 | #define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */ |
| 195 | #define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */ |
| 196 | #define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */ |
| 197 | #define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */ |
| 198 | #define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */ |
| 199 | #define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */ |
| 200 | |
| 201 | #define PC_F1RXCLK PC_CLK(F1_RXCLK) |
| 202 | #define PC_F1TXCLK PC_CLK(F1_TXCLK) |
| 203 | #define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK)) |
| 204 | #define CMX1_CLK_MASK ((uint)0xff000000) |
| 205 | |
| 206 | #define PC_F2RXCLK PC_CLK(F2_RXCLK) |
| 207 | #define PC_F2TXCLK PC_CLK(F2_TXCLK) |
| 208 | #define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK)) |
| 209 | #define CMX2_CLK_MASK ((uint)0x00ff0000) |
| 210 | |
| 211 | #define PC_F3RXCLK PC_CLK(F3_RXCLK) |
| 212 | #define PC_F3TXCLK PC_CLK(F3_TXCLK) |
| 213 | #define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK)) |
| 214 | #define CMX3_CLK_MASK ((uint)0x0000ff00) |
| 215 | |
| 216 | |
| 217 | /* I/O Pin assignment for FCC1. I don't yet know the best way to do this, |
| 218 | * but there is little variation among the choices. |
| 219 | */ |
| 220 | #define PA1_COL ((uint)0x00000001) |
| 221 | #define PA1_CRS ((uint)0x00000002) |
| 222 | #define PA1_TXER ((uint)0x00000004) |
| 223 | #define PA1_TXEN ((uint)0x00000008) |
| 224 | #define PA1_RXDV ((uint)0x00000010) |
| 225 | #define PA1_RXER ((uint)0x00000020) |
| 226 | #define PA1_TXDAT ((uint)0x00003c00) |
| 227 | #define PA1_RXDAT ((uint)0x0003c000) |
| 228 | #define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT) |
| 229 | #define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \ |
| 230 | PA1_RXDV | PA1_RXER) |
| 231 | #define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV) |
| 232 | #define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER) |
| 233 | |
| 234 | |
| 235 | /* I/O Pin assignment for FCC2. I don't yet know the best way to do this, |
| 236 | * but there is little variation among the choices. |
| 237 | */ |
| 238 | #define PB2_TXER ((uint)0x00000001) |
| 239 | #define PB2_RXDV ((uint)0x00000002) |
| 240 | #define PB2_TXEN ((uint)0x00000004) |
| 241 | #define PB2_RXER ((uint)0x00000008) |
| 242 | #define PB2_COL ((uint)0x00000010) |
| 243 | #define PB2_CRS ((uint)0x00000020) |
| 244 | #define PB2_TXDAT ((uint)0x000003c0) |
| 245 | #define PB2_RXDAT ((uint)0x00003c00) |
| 246 | #define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \ |
| 247 | PB2_RXER | PB2_RXDV | PB2_TXER) |
| 248 | #define PB2_PSORB_BIN (PB2_TXEN) |
| 249 | #define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV) |
| 250 | #define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER) |
| 251 | |
| 252 | |
| 253 | /* I/O Pin assignment for FCC3. I don't yet know the best way to do this, |
| 254 | * but there is little variation among the choices. |
| 255 | */ |
| 256 | #define PB3_RXDV ((uint)0x00004000) |
| 257 | #define PB3_RXER ((uint)0x00008000) |
| 258 | #define PB3_TXER ((uint)0x00010000) |
| 259 | #define PB3_TXEN ((uint)0x00020000) |
| 260 | #define PB3_COL ((uint)0x00040000) |
| 261 | #define PB3_CRS ((uint)0x00080000) |
| 262 | #ifndef CONFIG_RPX8260 |
| 263 | #define PB3_TXDAT ((uint)0x0f000000) |
| 264 | #define PC3_TXDAT ((uint)0x00000000) |
| 265 | #else |
| 266 | #define PB3_TXDAT ((uint)0x0f000000) |
| 267 | #define PC3_TXDAT 0 |
| 268 | #endif |
| 269 | #define PB3_RXDAT ((uint)0x00f00000) |
| 270 | #define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \ |
| 271 | PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN) |
| 272 | #define PB3_PSORB_BIN (0) |
| 273 | #define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV) |
| 274 | #define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER) |
| 275 | |
| 276 | #define PC3_PSORC_BOUT (PC3_TXDAT) |
| 277 | #define PC3_PSORC_BIN (0) |
| 278 | #define PC3_DIRC_BOUT (0) |
| 279 | #define PC3_DIRC_BIN (PC3_TXDAT) |
| 280 | |
| 281 | |
| 282 | /* MII status/control serial interface. |
| 283 | */ |
| 284 | #if defined(CONFIG_RPX8260) |
| 285 | /* The EP8260 doesn't use Port C for MDIO */ |
| 286 | #define PC_MDIO ((uint)0x00000000) |
| 287 | #define PC_MDCK ((uint)0x00000000) |
| 288 | #elif defined(CONFIG_TQM8260) |
| 289 | /* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */ |
| 290 | #define PC_MDIO ((uint)0x00000002) |
| 291 | #define PC_MDCK ((uint)0x00000001) |
| 292 | #elif defined(CONFIG_ADS8272) |
| 293 | #define PC_MDIO ((uint)0x00002000) |
| 294 | #define PC_MDCK ((uint)0x00001000) |
| 295 | #elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260) || defined(CONFIG_PQ2FADS) |
| 296 | #define PC_MDIO ((uint)0x00400000) |
| 297 | #define PC_MDCK ((uint)0x00200000) |
| 298 | #else |
| 299 | #define PC_MDIO ((uint)0x00000004) |
| 300 | #define PC_MDCK ((uint)0x00000020) |
| 301 | #endif |
| 302 | |
| 303 | #if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK)) |
| 304 | #error "Must define PC_MDIO and PC_MDCK if using MDIO" |
| 305 | #endif |
| 306 | |
| 307 | /* PHY addresses */ |
| 308 | /* default to dynamic config of phy addresses */ |
| 309 | #define FCC1_PHY_ADDR 0 |
| 310 | #ifdef CONFIG_PQ2FADS |
| 311 | #define FCC2_PHY_ADDR 0 |
| 312 | #else |
| 313 | #define FCC2_PHY_ADDR 2 |
| 314 | #endif |
| 315 | #define FCC3_PHY_ADDR 3 |
| 316 | |
| 317 | /* A table of information for supporting FCCs. This does two things. |
| 318 | * First, we know how many FCCs we have and they are always externally |
| 319 | * numbered from zero. Second, it holds control register and I/O |
| 320 | * information that could be different among board designs. |
| 321 | */ |
| 322 | typedef struct fcc_info { |
| 323 | uint fc_fccnum; |
| 324 | uint fc_phyaddr; |
| 325 | uint fc_cpmblock; |
| 326 | uint fc_cpmpage; |
| 327 | uint fc_proff; |
| 328 | uint fc_interrupt; |
| 329 | uint fc_trxclocks; |
| 330 | uint fc_clockroute; |
| 331 | uint fc_clockmask; |
| 332 | uint fc_mdio; |
| 333 | uint fc_mdck; |
| 334 | } fcc_info_t; |
| 335 | |
| 336 | static fcc_info_t fcc_ports[] = { |
| 337 | #ifdef CONFIG_FCC1_ENET |
| 338 | { 0, FCC1_PHY_ADDR, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1, |
| 339 | (PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK, |
| 340 | PC_MDIO, PC_MDCK }, |
| 341 | #endif |
| 342 | #ifdef CONFIG_FCC2_ENET |
| 343 | { 1, FCC2_PHY_ADDR, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2, |
| 344 | (PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK, |
| 345 | PC_MDIO, PC_MDCK }, |
| 346 | #endif |
| 347 | #ifdef CONFIG_FCC3_ENET |
| 348 | { 2, FCC3_PHY_ADDR, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3, |
| 349 | (PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK, |
| 350 | PC_MDIO, PC_MDCK }, |
| 351 | #endif |
| 352 | }; |
| 353 | |
| 354 | /* The FCC buffer descriptors track the ring buffers. The rx_bd_base and |
| 355 | * tx_bd_base always point to the base of the buffer descriptors. The |
| 356 | * cur_rx and cur_tx point to the currently available buffer. |
| 357 | * The dirty_tx tracks the current buffer that is being sent by the |
| 358 | * controller. The cur_tx and dirty_tx are equal under both completely |
| 359 | * empty and completely full conditions. The empty/ready indicator in |
| 360 | * the buffer descriptor determines the actual condition. |
| 361 | */ |
| 362 | struct fcc_enet_private { |
| 363 | /* The saved address of a sent-in-place packet/buffer, for skfree(). */ |
| 364 | struct sk_buff* tx_skbuff[TX_RING_SIZE]; |
| 365 | ushort skb_cur; |
| 366 | ushort skb_dirty; |
| 367 | |
| 368 | /* CPM dual port RAM relative addresses. |
| 369 | */ |
| 370 | cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ |
| 371 | cbd_t *tx_bd_base; |
| 372 | cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ |
| 373 | cbd_t *dirty_tx; /* The ring entries to be free()ed. */ |
| 374 | volatile fcc_t *fccp; |
| 375 | volatile fcc_enet_t *ep; |
| 376 | struct net_device_stats stats; |
| 377 | uint tx_free; |
| 378 | spinlock_t lock; |
| 379 | |
| 380 | #ifdef CONFIG_USE_MDIO |
| 381 | uint phy_id; |
| 382 | uint phy_id_done; |
| 383 | uint phy_status; |
| 384 | phy_info_t *phy; |
| 385 | struct work_struct phy_relink; |
| 386 | struct work_struct phy_display_config; |
David Howells | 6d5aefb | 2006-12-05 19:36:26 +0000 | [diff] [blame] | 387 | struct net_device *dev; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 388 | |
| 389 | uint sequence_done; |
| 390 | |
| 391 | uint phy_addr; |
| 392 | #endif /* CONFIG_USE_MDIO */ |
| 393 | |
| 394 | int link; |
| 395 | int old_link; |
| 396 | int full_duplex; |
| 397 | |
| 398 | fcc_info_t *fip; |
| 399 | }; |
| 400 | |
| 401 | static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep, |
| 402 | volatile cpm2_map_t *immap); |
| 403 | static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev); |
| 404 | static void init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io, |
| 405 | volatile cpm2_map_t *immap); |
| 406 | static void init_fcc_param(fcc_info_t *fip, struct net_device *dev, |
| 407 | volatile cpm2_map_t *immap); |
| 408 | |
| 409 | #ifdef CONFIG_USE_MDIO |
| 410 | static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *)); |
| 411 | static uint mii_send_receive(fcc_info_t *fip, uint cmd); |
| 412 | static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c); |
| 413 | |
| 414 | /* Make MII read/write commands for the FCC. |
| 415 | */ |
| 416 | #define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18)) |
| 417 | #define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \ |
| 418 | ((VAL) & 0xffff)) |
| 419 | #define mk_mii_end 0 |
| 420 | #endif /* CONFIG_USE_MDIO */ |
| 421 | |
| 422 | |
| 423 | static int |
| 424 | fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 425 | { |
| 426 | struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv; |
| 427 | volatile cbd_t *bdp; |
| 428 | |
| 429 | /* Fill in a Tx ring entry */ |
| 430 | bdp = cep->cur_tx; |
| 431 | |
| 432 | #ifndef final_version |
| 433 | if (!cep->tx_free || (bdp->cbd_sc & BD_ENET_TX_READY)) { |
| 434 | /* Ooops. All transmit buffers are full. Bail out. |
| 435 | * This should not happen, since the tx queue should be stopped. |
| 436 | */ |
| 437 | printk("%s: tx queue full!.\n", dev->name); |
| 438 | return 1; |
| 439 | } |
| 440 | #endif |
| 441 | |
| 442 | /* Clear all of the status flags. */ |
| 443 | bdp->cbd_sc &= ~BD_ENET_TX_STATS; |
| 444 | |
| 445 | /* If the frame is short, tell CPM to pad it. */ |
| 446 | if (skb->len <= ETH_ZLEN) |
| 447 | bdp->cbd_sc |= BD_ENET_TX_PAD; |
| 448 | else |
| 449 | bdp->cbd_sc &= ~BD_ENET_TX_PAD; |
| 450 | |
| 451 | /* Set buffer length and buffer pointer. */ |
| 452 | bdp->cbd_datlen = skb->len; |
| 453 | bdp->cbd_bufaddr = __pa(skb->data); |
| 454 | |
| 455 | spin_lock_irq(&cep->lock); |
| 456 | |
| 457 | /* Save skb pointer. */ |
| 458 | cep->tx_skbuff[cep->skb_cur] = skb; |
| 459 | |
| 460 | cep->stats.tx_bytes += skb->len; |
| 461 | cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK; |
| 462 | |
| 463 | /* Send it on its way. Tell CPM its ready, interrupt when done, |
| 464 | * its the last BD of the frame, and to put the CRC on the end. |
| 465 | */ |
| 466 | bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); |
| 467 | |
| 468 | #if 0 |
| 469 | /* Errata says don't do this. */ |
| 470 | cep->fccp->fcc_ftodr = 0x8000; |
| 471 | #endif |
| 472 | dev->trans_start = jiffies; |
| 473 | |
| 474 | /* If this was the last BD in the ring, start at the beginning again. */ |
| 475 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) |
| 476 | bdp = cep->tx_bd_base; |
| 477 | else |
| 478 | bdp++; |
| 479 | |
| 480 | if (!--cep->tx_free) |
| 481 | netif_stop_queue(dev); |
| 482 | |
| 483 | cep->cur_tx = (cbd_t *)bdp; |
| 484 | |
| 485 | spin_unlock_irq(&cep->lock); |
| 486 | |
| 487 | return 0; |
| 488 | } |
| 489 | |
| 490 | |
| 491 | static void |
| 492 | fcc_enet_timeout(struct net_device *dev) |
| 493 | { |
| 494 | struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv; |
| 495 | |
| 496 | printk("%s: transmit timed out.\n", dev->name); |
| 497 | cep->stats.tx_errors++; |
| 498 | #ifndef final_version |
| 499 | { |
| 500 | int i; |
| 501 | cbd_t *bdp; |
| 502 | printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n", |
| 503 | cep->cur_tx, cep->tx_free, |
| 504 | cep->cur_rx); |
| 505 | bdp = cep->tx_bd_base; |
| 506 | printk(" Tx @base %p :\n", bdp); |
| 507 | for (i = 0 ; i < TX_RING_SIZE; i++, bdp++) |
| 508 | printk("%04x %04x %08x\n", |
| 509 | bdp->cbd_sc, |
| 510 | bdp->cbd_datlen, |
| 511 | bdp->cbd_bufaddr); |
| 512 | bdp = cep->rx_bd_base; |
| 513 | printk(" Rx @base %p :\n", bdp); |
| 514 | for (i = 0 ; i < RX_RING_SIZE; i++, bdp++) |
| 515 | printk("%04x %04x %08x\n", |
| 516 | bdp->cbd_sc, |
| 517 | bdp->cbd_datlen, |
| 518 | bdp->cbd_bufaddr); |
| 519 | } |
| 520 | #endif |
| 521 | if (cep->tx_free) |
| 522 | netif_wake_queue(dev); |
| 523 | } |
| 524 | |
| 525 | /* The interrupt handler. */ |
| 526 | static irqreturn_t |
Al Viro | 39e3eb7 | 2006-10-09 12:48:42 +0100 | [diff] [blame] | 527 | fcc_enet_interrupt(int irq, void * dev_id) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 528 | { |
| 529 | struct net_device *dev = dev_id; |
| 530 | volatile struct fcc_enet_private *cep; |
| 531 | volatile cbd_t *bdp; |
| 532 | ushort int_events; |
| 533 | int must_restart; |
| 534 | |
| 535 | cep = (struct fcc_enet_private *)dev->priv; |
| 536 | |
| 537 | /* Get the interrupt events that caused us to be here. |
| 538 | */ |
| 539 | int_events = cep->fccp->fcc_fcce; |
| 540 | cep->fccp->fcc_fcce = (int_events & cep->fccp->fcc_fccm); |
| 541 | must_restart = 0; |
| 542 | |
| 543 | #ifdef PHY_INTERRUPT |
| 544 | /* We have to be careful here to make sure that we aren't |
| 545 | * interrupted by a PHY interrupt. |
| 546 | */ |
| 547 | disable_irq_nosync(PHY_INTERRUPT); |
| 548 | #endif |
| 549 | |
| 550 | /* Handle receive event in its own function. |
| 551 | */ |
| 552 | if (int_events & FCC_ENET_RXF) |
| 553 | fcc_enet_rx(dev_id); |
| 554 | |
| 555 | /* Check for a transmit error. The manual is a little unclear |
| 556 | * about this, so the debug code until I get it figured out. It |
| 557 | * appears that if TXE is set, then TXB is not set. However, |
| 558 | * if carrier sense is lost during frame transmission, the TXE |
| 559 | * bit is set, "and continues the buffer transmission normally." |
| 560 | * I don't know if "normally" implies TXB is set when the buffer |
| 561 | * descriptor is closed.....trial and error :-). |
| 562 | */ |
| 563 | |
| 564 | /* Transmit OK, or non-fatal error. Update the buffer descriptors. |
| 565 | */ |
| 566 | if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) { |
| 567 | spin_lock(&cep->lock); |
| 568 | bdp = cep->dirty_tx; |
| 569 | while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) { |
| 570 | if (cep->tx_free == TX_RING_SIZE) |
| 571 | break; |
| 572 | |
| 573 | if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ |
| 574 | cep->stats.tx_heartbeat_errors++; |
| 575 | if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ |
| 576 | cep->stats.tx_window_errors++; |
| 577 | if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ |
| 578 | cep->stats.tx_aborted_errors++; |
| 579 | if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ |
| 580 | cep->stats.tx_fifo_errors++; |
| 581 | if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ |
| 582 | cep->stats.tx_carrier_errors++; |
| 583 | |
| 584 | |
| 585 | /* No heartbeat or Lost carrier are not really bad errors. |
| 586 | * The others require a restart transmit command. |
| 587 | */ |
| 588 | if (bdp->cbd_sc & |
| 589 | (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { |
| 590 | must_restart = 1; |
| 591 | cep->stats.tx_errors++; |
| 592 | } |
| 593 | |
| 594 | cep->stats.tx_packets++; |
| 595 | |
| 596 | /* Deferred means some collisions occurred during transmit, |
| 597 | * but we eventually sent the packet OK. |
| 598 | */ |
| 599 | if (bdp->cbd_sc & BD_ENET_TX_DEF) |
| 600 | cep->stats.collisions++; |
| 601 | |
| 602 | /* Free the sk buffer associated with this last transmit. */ |
| 603 | dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]); |
| 604 | cep->tx_skbuff[cep->skb_dirty] = NULL; |
| 605 | cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK; |
| 606 | |
| 607 | /* Update pointer to next buffer descriptor to be transmitted. */ |
| 608 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) |
| 609 | bdp = cep->tx_bd_base; |
| 610 | else |
| 611 | bdp++; |
| 612 | |
| 613 | /* I don't know if we can be held off from processing these |
| 614 | * interrupts for more than one frame time. I really hope |
| 615 | * not. In such a case, we would now want to check the |
| 616 | * currently available BD (cur_tx) and determine if any |
| 617 | * buffers between the dirty_tx and cur_tx have also been |
| 618 | * sent. We would want to process anything in between that |
| 619 | * does not have BD_ENET_TX_READY set. |
| 620 | */ |
| 621 | |
| 622 | /* Since we have freed up a buffer, the ring is no longer |
| 623 | * full. |
| 624 | */ |
| 625 | if (!cep->tx_free++) { |
| 626 | if (netif_queue_stopped(dev)) { |
| 627 | netif_wake_queue(dev); |
| 628 | } |
| 629 | } |
| 630 | |
| 631 | cep->dirty_tx = (cbd_t *)bdp; |
| 632 | } |
| 633 | |
| 634 | if (must_restart) { |
| 635 | volatile cpm_cpm2_t *cp; |
| 636 | |
| 637 | /* Some transmit errors cause the transmitter to shut |
| 638 | * down. We now issue a restart transmit. Since the |
| 639 | * errors close the BD and update the pointers, the restart |
| 640 | * _should_ pick up without having to reset any of our |
| 641 | * pointers either. Also, To workaround 8260 device erratum |
| 642 | * CPM37, we must disable and then re-enable the transmitter |
| 643 | * following a Late Collision, Underrun, or Retry Limit error. |
| 644 | */ |
| 645 | cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT; |
| 646 | udelay(10); /* wait a few microseconds just on principle */ |
| 647 | cep->fccp->fcc_gfmr |= FCC_GFMR_ENT; |
| 648 | |
| 649 | cp = cpmp; |
| 650 | cp->cp_cpcr = |
| 651 | mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock, |
| 652 | 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG; |
| 653 | while (cp->cp_cpcr & CPM_CR_FLG); |
| 654 | } |
| 655 | spin_unlock(&cep->lock); |
| 656 | } |
| 657 | |
| 658 | /* Check for receive busy, i.e. packets coming but no place to |
| 659 | * put them. |
| 660 | */ |
| 661 | if (int_events & FCC_ENET_BSY) { |
| 662 | cep->fccp->fcc_fcce = FCC_ENET_BSY; |
| 663 | cep->stats.rx_dropped++; |
| 664 | } |
| 665 | |
| 666 | #ifdef PHY_INTERRUPT |
| 667 | enable_irq(PHY_INTERRUPT); |
| 668 | #endif |
| 669 | return IRQ_HANDLED; |
| 670 | } |
| 671 | |
| 672 | /* During a receive, the cur_rx points to the current incoming buffer. |
| 673 | * When we update through the ring, if the next incoming buffer has |
| 674 | * not been given to the system, we just set the empty indicator, |
| 675 | * effectively tossing the packet. |
| 676 | */ |
| 677 | static int |
| 678 | fcc_enet_rx(struct net_device *dev) |
| 679 | { |
| 680 | struct fcc_enet_private *cep; |
| 681 | volatile cbd_t *bdp; |
| 682 | struct sk_buff *skb; |
| 683 | ushort pkt_len; |
| 684 | |
| 685 | cep = (struct fcc_enet_private *)dev->priv; |
| 686 | |
| 687 | /* First, grab all of the stats for the incoming packet. |
| 688 | * These get messed up if we get called due to a busy condition. |
| 689 | */ |
| 690 | bdp = cep->cur_rx; |
| 691 | |
| 692 | for (;;) { |
| 693 | if (bdp->cbd_sc & BD_ENET_RX_EMPTY) |
| 694 | break; |
| 695 | |
| 696 | #ifndef final_version |
| 697 | /* Since we have allocated space to hold a complete frame, both |
| 698 | * the first and last indicators should be set. |
| 699 | */ |
| 700 | if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) != |
| 701 | (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) |
| 702 | printk("CPM ENET: rcv is not first+last\n"); |
| 703 | #endif |
| 704 | |
| 705 | /* Frame too long or too short. */ |
| 706 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) |
| 707 | cep->stats.rx_length_errors++; |
| 708 | if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ |
| 709 | cep->stats.rx_frame_errors++; |
| 710 | if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ |
| 711 | cep->stats.rx_crc_errors++; |
| 712 | if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ |
| 713 | cep->stats.rx_crc_errors++; |
| 714 | if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late Collision */ |
| 715 | cep->stats.rx_frame_errors++; |
| 716 | |
| 717 | if (!(bdp->cbd_sc & |
| 718 | (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR |
| 719 | | BD_ENET_RX_OV | BD_ENET_RX_CL))) |
| 720 | { |
| 721 | /* Process the incoming frame. */ |
| 722 | cep->stats.rx_packets++; |
| 723 | |
| 724 | /* Remove the FCS from the packet length. */ |
| 725 | pkt_len = bdp->cbd_datlen - 4; |
| 726 | cep->stats.rx_bytes += pkt_len; |
| 727 | |
| 728 | /* This does 16 byte alignment, much more than we need. */ |
| 729 | skb = dev_alloc_skb(pkt_len); |
| 730 | |
| 731 | if (skb == NULL) { |
| 732 | printk("%s: Memory squeeze, dropping packet.\n", dev->name); |
| 733 | cep->stats.rx_dropped++; |
| 734 | } |
| 735 | else { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 736 | skb_put(skb,pkt_len); /* Make room */ |
David S. Miller | 8c7b7fa | 2007-07-10 22:08:12 -0700 | [diff] [blame] | 737 | skb_copy_to_linear_data(skb, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 738 | (unsigned char *)__va(bdp->cbd_bufaddr), |
David S. Miller | 8c7b7fa | 2007-07-10 22:08:12 -0700 | [diff] [blame] | 739 | pkt_len); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 740 | skb->protocol=eth_type_trans(skb,dev); |
| 741 | netif_rx(skb); |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | /* Clear the status flags for this buffer. */ |
| 746 | bdp->cbd_sc &= ~BD_ENET_RX_STATS; |
| 747 | |
| 748 | /* Mark the buffer empty. */ |
| 749 | bdp->cbd_sc |= BD_ENET_RX_EMPTY; |
| 750 | |
| 751 | /* Update BD pointer to next entry. */ |
| 752 | if (bdp->cbd_sc & BD_ENET_RX_WRAP) |
| 753 | bdp = cep->rx_bd_base; |
| 754 | else |
| 755 | bdp++; |
| 756 | |
| 757 | } |
| 758 | cep->cur_rx = (cbd_t *)bdp; |
| 759 | |
| 760 | return 0; |
| 761 | } |
| 762 | |
| 763 | static int |
| 764 | fcc_enet_close(struct net_device *dev) |
| 765 | { |
| 766 | #ifdef CONFIG_USE_MDIO |
| 767 | struct fcc_enet_private *fep = dev->priv; |
| 768 | #endif |
| 769 | |
| 770 | netif_stop_queue(dev); |
| 771 | fcc_stop(dev); |
| 772 | #ifdef CONFIG_USE_MDIO |
| 773 | if (fep->phy) |
| 774 | mii_do_cmd(dev, fep->phy->shutdown); |
| 775 | #endif |
| 776 | |
| 777 | return 0; |
| 778 | } |
| 779 | |
| 780 | static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev) |
| 781 | { |
| 782 | struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv; |
| 783 | |
| 784 | return &cep->stats; |
| 785 | } |
| 786 | |
| 787 | #ifdef CONFIG_USE_MDIO |
| 788 | |
| 789 | /* NOTE: Most of the following comes from the FEC driver for 860. The |
| 790 | * overall structure of MII code has been retained (as it's proved stable |
| 791 | * and well-tested), but actual transfer requests are processed "at once" |
| 792 | * instead of being queued (there's no interrupt-driven MII transfer |
| 793 | * mechanism, one has to toggle the data/clock bits manually). |
| 794 | */ |
| 795 | static int |
| 796 | mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) |
| 797 | { |
| 798 | struct fcc_enet_private *fep; |
| 799 | int retval, tmp; |
| 800 | |
| 801 | /* Add PHY address to register command. */ |
| 802 | fep = dev->priv; |
| 803 | regval |= fep->phy_addr << 23; |
| 804 | |
| 805 | retval = 0; |
| 806 | |
| 807 | tmp = mii_send_receive(fep->fip, regval); |
| 808 | if (func) |
| 809 | func(tmp, dev); |
| 810 | |
| 811 | return retval; |
| 812 | } |
| 813 | |
| 814 | static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) |
| 815 | { |
| 816 | int k; |
| 817 | |
| 818 | if(!c) |
| 819 | return; |
| 820 | |
| 821 | for(k = 0; (c+k)->mii_data != mk_mii_end; k++) |
| 822 | mii_queue(dev, (c+k)->mii_data, (c+k)->funct); |
| 823 | } |
| 824 | |
| 825 | static void mii_parse_sr(uint mii_reg, struct net_device *dev) |
| 826 | { |
| 827 | volatile struct fcc_enet_private *fep = dev->priv; |
| 828 | uint s = fep->phy_status; |
| 829 | |
| 830 | s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); |
| 831 | |
| 832 | if (mii_reg & BMSR_LSTATUS) |
| 833 | s |= PHY_STAT_LINK; |
| 834 | if (mii_reg & BMSR_RFAULT) |
| 835 | s |= PHY_STAT_FAULT; |
| 836 | if (mii_reg & BMSR_ANEGCOMPLETE) |
| 837 | s |= PHY_STAT_ANC; |
| 838 | |
| 839 | fep->phy_status = s; |
| 840 | } |
| 841 | |
| 842 | static void mii_parse_cr(uint mii_reg, struct net_device *dev) |
| 843 | { |
| 844 | volatile struct fcc_enet_private *fep = dev->priv; |
| 845 | uint s = fep->phy_status; |
| 846 | |
| 847 | s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP); |
| 848 | |
| 849 | if (mii_reg & BMCR_ANENABLE) |
| 850 | s |= PHY_CONF_ANE; |
| 851 | if (mii_reg & BMCR_LOOPBACK) |
| 852 | s |= PHY_CONF_LOOP; |
| 853 | |
| 854 | fep->phy_status = s; |
| 855 | } |
| 856 | |
| 857 | static void mii_parse_anar(uint mii_reg, struct net_device *dev) |
| 858 | { |
| 859 | volatile struct fcc_enet_private *fep = dev->priv; |
| 860 | uint s = fep->phy_status; |
| 861 | |
| 862 | s &= ~(PHY_CONF_SPMASK); |
| 863 | |
| 864 | if (mii_reg & ADVERTISE_10HALF) |
| 865 | s |= PHY_CONF_10HDX; |
| 866 | if (mii_reg & ADVERTISE_10FULL) |
| 867 | s |= PHY_CONF_10FDX; |
| 868 | if (mii_reg & ADVERTISE_100HALF) |
| 869 | s |= PHY_CONF_100HDX; |
| 870 | if (mii_reg & ADVERTISE_100FULL) |
| 871 | s |= PHY_CONF_100FDX; |
| 872 | |
| 873 | fep->phy_status = s; |
| 874 | } |
| 875 | |
| 876 | /* ------------------------------------------------------------------------- */ |
| 877 | /* Generic PHY support. Should work for all PHYs, but does not support link |
| 878 | * change interrupts. |
| 879 | */ |
| 880 | #ifdef CONFIG_FCC_GENERIC_PHY |
| 881 | |
| 882 | static phy_info_t phy_info_generic = { |
| 883 | 0x00000000, /* 0-->match any PHY */ |
| 884 | "GENERIC", |
| 885 | |
| 886 | (const phy_cmd_t []) { /* config */ |
| 887 | /* advertise only half-duplex capabilities */ |
| 888 | { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_HALF), |
| 889 | mii_parse_anar }, |
| 890 | |
| 891 | /* enable auto-negotiation */ |
| 892 | { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr }, |
| 893 | { mk_mii_end, } |
| 894 | }, |
| 895 | (const phy_cmd_t []) { /* startup */ |
| 896 | /* restart auto-negotiation */ |
| 897 | { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART), |
| 898 | NULL }, |
| 899 | { mk_mii_end, } |
| 900 | }, |
| 901 | (const phy_cmd_t []) { /* ack_int */ |
| 902 | /* We don't actually use the ack_int table with a generic |
| 903 | * PHY, but putting a reference to mii_parse_sr here keeps |
| 904 | * us from getting a compiler warning about unused static |
| 905 | * functions in the case where we only compile in generic |
| 906 | * PHY support. |
| 907 | */ |
| 908 | { mk_mii_read(MII_BMSR), mii_parse_sr }, |
| 909 | { mk_mii_end, } |
| 910 | }, |
| 911 | (const phy_cmd_t []) { /* shutdown */ |
| 912 | { mk_mii_end, } |
| 913 | }, |
| 914 | }; |
| 915 | #endif /* ifdef CONFIG_FCC_GENERIC_PHY */ |
| 916 | |
| 917 | /* ------------------------------------------------------------------------- */ |
| 918 | /* The Level one LXT970 is used by many boards */ |
| 919 | |
| 920 | #ifdef CONFIG_FCC_LXT970 |
| 921 | |
| 922 | #define MII_LXT970_MIRROR 16 /* Mirror register */ |
| 923 | #define MII_LXT970_IER 17 /* Interrupt Enable Register */ |
| 924 | #define MII_LXT970_ISR 18 /* Interrupt Status Register */ |
| 925 | #define MII_LXT970_CONFIG 19 /* Configuration Register */ |
| 926 | #define MII_LXT970_CSR 20 /* Chip Status Register */ |
| 927 | |
| 928 | static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) |
| 929 | { |
| 930 | volatile struct fcc_enet_private *fep = dev->priv; |
| 931 | uint s = fep->phy_status; |
| 932 | |
| 933 | s &= ~(PHY_STAT_SPMASK); |
| 934 | |
| 935 | if (mii_reg & 0x0800) { |
| 936 | if (mii_reg & 0x1000) |
| 937 | s |= PHY_STAT_100FDX; |
| 938 | else |
| 939 | s |= PHY_STAT_100HDX; |
| 940 | } else { |
| 941 | if (mii_reg & 0x1000) |
| 942 | s |= PHY_STAT_10FDX; |
| 943 | else |
| 944 | s |= PHY_STAT_10HDX; |
| 945 | } |
| 946 | |
| 947 | fep->phy_status = s; |
| 948 | } |
| 949 | |
| 950 | static phy_info_t phy_info_lxt970 = { |
| 951 | 0x07810000, |
| 952 | "LXT970", |
| 953 | |
| 954 | (const phy_cmd_t []) { /* config */ |
| 955 | #if 0 |
| 956 | // { mk_mii_write(MII_ADVERTISE, 0x0021), NULL }, |
| 957 | |
| 958 | /* Set default operation of 100-TX....for some reason |
| 959 | * some of these bits are set on power up, which is wrong. |
| 960 | */ |
| 961 | { mk_mii_write(MII_LXT970_CONFIG, 0), NULL }, |
| 962 | #endif |
| 963 | { mk_mii_read(MII_BMCR), mii_parse_cr }, |
| 964 | { mk_mii_read(MII_ADVERTISE), mii_parse_anar }, |
| 965 | { mk_mii_end, } |
| 966 | }, |
| 967 | (const phy_cmd_t []) { /* startup - enable interrupts */ |
| 968 | { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, |
| 969 | { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */ |
| 970 | { mk_mii_end, } |
| 971 | }, |
| 972 | (const phy_cmd_t []) { /* ack_int */ |
| 973 | /* read SR and ISR to acknowledge */ |
| 974 | |
| 975 | { mk_mii_read(MII_BMSR), mii_parse_sr }, |
| 976 | { mk_mii_read(MII_LXT970_ISR), NULL }, |
| 977 | |
| 978 | /* find out the current status */ |
| 979 | |
| 980 | { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, |
| 981 | { mk_mii_end, } |
| 982 | }, |
| 983 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| 984 | { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, |
| 985 | { mk_mii_end, } |
| 986 | }, |
| 987 | }; |
| 988 | |
| 989 | #endif /* CONFIG_FEC_LXT970 */ |
| 990 | |
| 991 | /* ------------------------------------------------------------------------- */ |
| 992 | /* The Level one LXT971 is used on some of my custom boards */ |
| 993 | |
| 994 | #ifdef CONFIG_FCC_LXT971 |
| 995 | |
| 996 | /* register definitions for the 971 */ |
| 997 | |
| 998 | #define MII_LXT971_PCR 16 /* Port Control Register */ |
| 999 | #define MII_LXT971_SR2 17 /* Status Register 2 */ |
| 1000 | #define MII_LXT971_IER 18 /* Interrupt Enable Register */ |
| 1001 | #define MII_LXT971_ISR 19 /* Interrupt Status Register */ |
| 1002 | #define MII_LXT971_LCR 20 /* LED Control Register */ |
| 1003 | #define MII_LXT971_TCR 30 /* Transmit Control Register */ |
| 1004 | |
| 1005 | /* |
| 1006 | * I had some nice ideas of running the MDIO faster... |
| 1007 | * The 971 should support 8MHz and I tried it, but things acted really |
| 1008 | * weird, so 2.5 MHz ought to be enough for anyone... |
| 1009 | */ |
| 1010 | |
| 1011 | static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) |
| 1012 | { |
| 1013 | volatile struct fcc_enet_private *fep = dev->priv; |
| 1014 | uint s = fep->phy_status; |
| 1015 | |
| 1016 | s &= ~(PHY_STAT_SPMASK); |
| 1017 | |
| 1018 | if (mii_reg & 0x4000) { |
| 1019 | if (mii_reg & 0x0200) |
| 1020 | s |= PHY_STAT_100FDX; |
| 1021 | else |
| 1022 | s |= PHY_STAT_100HDX; |
| 1023 | } else { |
| 1024 | if (mii_reg & 0x0200) |
| 1025 | s |= PHY_STAT_10FDX; |
| 1026 | else |
| 1027 | s |= PHY_STAT_10HDX; |
| 1028 | } |
| 1029 | if (mii_reg & 0x0008) |
| 1030 | s |= PHY_STAT_FAULT; |
| 1031 | |
| 1032 | fep->phy_status = s; |
| 1033 | } |
| 1034 | |
| 1035 | static phy_info_t phy_info_lxt971 = { |
| 1036 | 0x0001378e, |
| 1037 | "LXT971", |
| 1038 | |
| 1039 | (const phy_cmd_t []) { /* config */ |
| 1040 | /* configure link capabilities to advertise */ |
| 1041 | { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_DEFAULT), |
| 1042 | mii_parse_anar }, |
| 1043 | |
| 1044 | /* enable auto-negotiation */ |
| 1045 | { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr }, |
| 1046 | { mk_mii_end, } |
| 1047 | }, |
| 1048 | (const phy_cmd_t []) { /* startup - enable interrupts */ |
| 1049 | { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, |
| 1050 | |
| 1051 | /* restart auto-negotiation */ |
| 1052 | { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART), |
| 1053 | NULL }, |
| 1054 | { mk_mii_end, } |
| 1055 | }, |
| 1056 | (const phy_cmd_t []) { /* ack_int */ |
| 1057 | /* find out the current status */ |
| 1058 | { mk_mii_read(MII_BMSR), NULL }, |
| 1059 | { mk_mii_read(MII_BMSR), mii_parse_sr }, |
| 1060 | { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, |
| 1061 | |
| 1062 | /* we only need to read ISR to acknowledge */ |
| 1063 | { mk_mii_read(MII_LXT971_ISR), NULL }, |
| 1064 | { mk_mii_end, } |
| 1065 | }, |
| 1066 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| 1067 | { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, |
| 1068 | { mk_mii_end, } |
| 1069 | }, |
| 1070 | }; |
| 1071 | |
| 1072 | #endif /* CONFIG_FCC_LXT971 */ |
| 1073 | |
| 1074 | /* ------------------------------------------------------------------------- */ |
| 1075 | /* The Quality Semiconductor QS6612 is used on the RPX CLLF */ |
| 1076 | |
| 1077 | #ifdef CONFIG_FCC_QS6612 |
| 1078 | |
| 1079 | /* register definitions */ |
| 1080 | |
| 1081 | #define MII_QS6612_MCR 17 /* Mode Control Register */ |
| 1082 | #define MII_QS6612_FTR 27 /* Factory Test Register */ |
| 1083 | #define MII_QS6612_MCO 28 /* Misc. Control Register */ |
| 1084 | #define MII_QS6612_ISR 29 /* Interrupt Source Register */ |
| 1085 | #define MII_QS6612_IMR 30 /* Interrupt Mask Register */ |
| 1086 | #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ |
| 1087 | |
| 1088 | static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) |
| 1089 | { |
| 1090 | volatile struct fcc_enet_private *fep = dev->priv; |
| 1091 | uint s = fep->phy_status; |
| 1092 | |
| 1093 | s &= ~(PHY_STAT_SPMASK); |
| 1094 | |
| 1095 | switch((mii_reg >> 2) & 7) { |
| 1096 | case 1: s |= PHY_STAT_10HDX; break; |
| 1097 | case 2: s |= PHY_STAT_100HDX; break; |
| 1098 | case 5: s |= PHY_STAT_10FDX; break; |
| 1099 | case 6: s |= PHY_STAT_100FDX; break; |
| 1100 | } |
| 1101 | |
| 1102 | fep->phy_status = s; |
| 1103 | } |
| 1104 | |
| 1105 | static phy_info_t phy_info_qs6612 = { |
| 1106 | 0x00181440, |
| 1107 | "QS6612", |
| 1108 | |
| 1109 | (const phy_cmd_t []) { /* config */ |
| 1110 | // { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */ |
| 1111 | |
| 1112 | /* The PHY powers up isolated on the RPX, |
| 1113 | * so send a command to allow operation. |
| 1114 | */ |
| 1115 | |
| 1116 | { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, |
| 1117 | |
| 1118 | /* parse cr and anar to get some info */ |
| 1119 | |
| 1120 | { mk_mii_read(MII_BMCR), mii_parse_cr }, |
| 1121 | { mk_mii_read(MII_ADVERTISE), mii_parse_anar }, |
| 1122 | { mk_mii_end, } |
| 1123 | }, |
| 1124 | (const phy_cmd_t []) { /* startup - enable interrupts */ |
| 1125 | { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, |
| 1126 | { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */ |
| 1127 | { mk_mii_end, } |
| 1128 | }, |
| 1129 | (const phy_cmd_t []) { /* ack_int */ |
| 1130 | |
| 1131 | /* we need to read ISR, SR and ANER to acknowledge */ |
| 1132 | |
| 1133 | { mk_mii_read(MII_QS6612_ISR), NULL }, |
| 1134 | { mk_mii_read(MII_BMSR), mii_parse_sr }, |
| 1135 | { mk_mii_read(MII_EXPANSION), NULL }, |
| 1136 | |
| 1137 | /* read pcr to get info */ |
| 1138 | |
| 1139 | { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, |
| 1140 | { mk_mii_end, } |
| 1141 | }, |
| 1142 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| 1143 | { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, |
| 1144 | { mk_mii_end, } |
| 1145 | }, |
| 1146 | }; |
| 1147 | |
| 1148 | |
| 1149 | #endif /* CONFIG_FEC_QS6612 */ |
| 1150 | |
| 1151 | |
| 1152 | /* ------------------------------------------------------------------------- */ |
| 1153 | /* The Davicom DM9131 is used on the HYMOD board */ |
| 1154 | |
| 1155 | #ifdef CONFIG_FCC_DM9131 |
| 1156 | |
| 1157 | /* register definitions */ |
| 1158 | |
| 1159 | #define MII_DM9131_ACR 16 /* Aux. Config Register */ |
| 1160 | #define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */ |
| 1161 | #define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */ |
| 1162 | #define MII_DM9131_INTR 21 /* Interrupt Register */ |
| 1163 | #define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */ |
| 1164 | #define MII_DM9131_DISCR 23 /* Disconnect Counter Register */ |
| 1165 | |
| 1166 | static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev) |
| 1167 | { |
| 1168 | volatile struct fcc_enet_private *fep = dev->priv; |
| 1169 | uint s = fep->phy_status; |
| 1170 | |
| 1171 | s &= ~(PHY_STAT_SPMASK); |
| 1172 | |
| 1173 | switch ((mii_reg >> 12) & 0xf) { |
| 1174 | case 1: s |= PHY_STAT_10HDX; break; |
| 1175 | case 2: s |= PHY_STAT_10FDX; break; |
| 1176 | case 4: s |= PHY_STAT_100HDX; break; |
| 1177 | case 8: s |= PHY_STAT_100FDX; break; |
| 1178 | } |
| 1179 | |
| 1180 | fep->phy_status = s; |
| 1181 | } |
| 1182 | |
| 1183 | static phy_info_t phy_info_dm9131 = { |
| 1184 | 0x00181b80, |
| 1185 | "DM9131", |
| 1186 | |
| 1187 | (const phy_cmd_t []) { /* config */ |
| 1188 | /* parse cr and anar to get some info */ |
| 1189 | { mk_mii_read(MII_BMCR), mii_parse_cr }, |
| 1190 | { mk_mii_read(MII_ADVERTISE), mii_parse_anar }, |
| 1191 | { mk_mii_end, } |
| 1192 | }, |
| 1193 | (const phy_cmd_t []) { /* startup - enable interrupts */ |
| 1194 | { mk_mii_write(MII_DM9131_INTR, 0x0002), NULL }, |
| 1195 | { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */ |
| 1196 | { mk_mii_end, } |
| 1197 | }, |
| 1198 | (const phy_cmd_t []) { /* ack_int */ |
| 1199 | |
| 1200 | /* we need to read INTR, SR and ANER to acknowledge */ |
| 1201 | |
| 1202 | { mk_mii_read(MII_DM9131_INTR), NULL }, |
| 1203 | { mk_mii_read(MII_BMSR), mii_parse_sr }, |
| 1204 | { mk_mii_read(MII_EXPANSION), NULL }, |
| 1205 | |
| 1206 | /* read acsr to get info */ |
| 1207 | |
| 1208 | { mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr }, |
| 1209 | { mk_mii_end, } |
| 1210 | }, |
| 1211 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ |
| 1212 | { mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL }, |
| 1213 | { mk_mii_end, } |
| 1214 | }, |
| 1215 | }; |
| 1216 | |
| 1217 | |
| 1218 | #endif /* CONFIG_FEC_DM9131 */ |
| 1219 | #ifdef CONFIG_FCC_DM9161 |
| 1220 | /* ------------------------------------------------------------------------- */ |
| 1221 | /* DM9161 Control register values */ |
| 1222 | #define MIIM_DM9161_CR_STOP 0x0400 |
| 1223 | #define MIIM_DM9161_CR_RSTAN 0x1200 |
| 1224 | |
| 1225 | #define MIIM_DM9161_SCR 0x10 |
| 1226 | #define MIIM_DM9161_SCR_INIT 0x0610 |
| 1227 | |
| 1228 | /* DM9161 Specified Configuration and Status Register */ |
| 1229 | #define MIIM_DM9161_SCSR 0x11 |
| 1230 | #define MIIM_DM9161_SCSR_100F 0x8000 |
| 1231 | #define MIIM_DM9161_SCSR_100H 0x4000 |
| 1232 | #define MIIM_DM9161_SCSR_10F 0x2000 |
| 1233 | #define MIIM_DM9161_SCSR_10H 0x1000 |
| 1234 | /* DM9161 10BT register */ |
| 1235 | #define MIIM_DM9161_10BTCSR 0x12 |
| 1236 | #define MIIM_DM9161_10BTCSR_INIT 0x7800 |
| 1237 | /* DM9161 Interrupt Register */ |
| 1238 | #define MIIM_DM9161_INTR 0x15 |
| 1239 | #define MIIM_DM9161_INTR_PEND 0x8000 |
| 1240 | #define MIIM_DM9161_INTR_DPLX_MASK 0x0800 |
| 1241 | #define MIIM_DM9161_INTR_SPD_MASK 0x0400 |
| 1242 | #define MIIM_DM9161_INTR_LINK_MASK 0x0200 |
| 1243 | #define MIIM_DM9161_INTR_MASK 0x0100 |
| 1244 | #define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010 |
| 1245 | #define MIIM_DM9161_INTR_SPD_CHANGE 0x0008 |
| 1246 | #define MIIM_DM9161_INTR_LINK_CHANGE 0x0004 |
| 1247 | #define MIIM_DM9161_INTR_INIT 0x0000 |
| 1248 | #define MIIM_DM9161_INTR_STOP \ |
| 1249 | (MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \ |
| 1250 | | MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK) |
| 1251 | |
| 1252 | static void mii_parse_dm9161_sr(uint mii_reg, struct net_device * dev) |
| 1253 | { |
| 1254 | volatile struct fcc_enet_private *fep = dev->priv; |
| 1255 | uint regstat, timeout=0xffff; |
| 1256 | |
| 1257 | while(!(mii_reg & 0x0020) && timeout--) |
| 1258 | { |
| 1259 | regstat=mk_mii_read(MII_BMSR); |
| 1260 | regstat |= fep->phy_addr <<23; |
| 1261 | mii_reg = mii_send_receive(fep->fip,regstat); |
| 1262 | } |
| 1263 | |
| 1264 | mii_parse_sr(mii_reg, dev); |
| 1265 | } |
| 1266 | |
| 1267 | static void mii_parse_dm9161_scsr(uint mii_reg, struct net_device * dev) |
| 1268 | { |
| 1269 | volatile struct fcc_enet_private *fep = dev->priv; |
| 1270 | uint s = fep->phy_status; |
| 1271 | |
| 1272 | s &= ~(PHY_STAT_SPMASK); |
| 1273 | switch((mii_reg >>12) & 0xf) { |
| 1274 | case 1: |
| 1275 | { |
| 1276 | s |= PHY_STAT_10HDX; |
| 1277 | printk("10BaseT Half Duplex\n"); |
| 1278 | break; |
| 1279 | } |
| 1280 | case 2: |
| 1281 | { |
| 1282 | s |= PHY_STAT_10FDX; |
| 1283 | printk("10BaseT Full Duplex\n"); |
| 1284 | break; |
| 1285 | } |
| 1286 | case 4: |
| 1287 | { |
| 1288 | s |= PHY_STAT_100HDX; |
| 1289 | printk("100BaseT Half Duplex\n"); |
| 1290 | break; |
| 1291 | } |
| 1292 | case 8: |
| 1293 | { |
| 1294 | s |= PHY_STAT_100FDX; |
| 1295 | printk("100BaseT Full Duplex\n"); |
| 1296 | break; |
| 1297 | } |
| 1298 | } |
| 1299 | |
| 1300 | fep->phy_status = s; |
| 1301 | |
| 1302 | } |
| 1303 | |
| 1304 | static void mii_dm9161_wait(uint mii_reg, struct net_device *dev) |
| 1305 | { |
| 1306 | int timeout = HZ; |
| 1307 | |
| 1308 | /* Davicom takes a bit to come up after a reset, |
| 1309 | * so wait here for a bit */ |
Nishanth Aravamudan | 8f09f4a | 2005-11-07 01:01:13 -0800 | [diff] [blame] | 1310 | schedule_timeout_uninterruptible(timeout); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1311 | } |
| 1312 | |
| 1313 | static phy_info_t phy_info_dm9161 = { |
| 1314 | 0x00181b88, |
| 1315 | "Davicom DM9161E", |
| 1316 | (const phy_cmd_t[]) { /* config */ |
| 1317 | { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_STOP), NULL}, |
| 1318 | /* Do not bypass the scrambler/descrambler */ |
| 1319 | { mk_mii_write(MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT), NULL}, |
| 1320 | /* Configure 10BTCSR register */ |
| 1321 | { mk_mii_write(MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT),NULL}, |
| 1322 | /* Configure some basic stuff */ |
| 1323 | { mk_mii_write(MII_BMCR, 0x1000), NULL}, |
| 1324 | { mk_mii_read(MII_BMCR), mii_parse_cr }, |
| 1325 | { mk_mii_read(MII_ADVERTISE), mii_parse_anar }, |
| 1326 | { mk_mii_end,} |
| 1327 | }, |
| 1328 | (const phy_cmd_t[]) { /* startup */ |
| 1329 | /* Restart Auto Negotiation */ |
| 1330 | { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_RSTAN), NULL}, |
| 1331 | /* Status is read once to clear old link state */ |
| 1332 | { mk_mii_read(MII_BMSR), mii_dm9161_wait}, |
| 1333 | /* Auto-negotiate */ |
| 1334 | { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr}, |
| 1335 | /* Read the status */ |
| 1336 | { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr}, |
| 1337 | /* Clear any pending interrupts */ |
| 1338 | { mk_mii_read(MIIM_DM9161_INTR), NULL}, |
| 1339 | /* Enable Interrupts */ |
| 1340 | { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_INIT), NULL}, |
| 1341 | { mk_mii_end,} |
| 1342 | }, |
| 1343 | (const phy_cmd_t[]) { /* ack_int */ |
| 1344 | { mk_mii_read(MIIM_DM9161_INTR), NULL}, |
| 1345 | #if 0 |
| 1346 | { mk_mii_read(MII_BMSR), NULL}, |
| 1347 | { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr}, |
| 1348 | { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr}, |
| 1349 | #endif |
| 1350 | { mk_mii_end,} |
| 1351 | }, |
| 1352 | (const phy_cmd_t[]) { /* shutdown */ |
| 1353 | { mk_mii_read(MIIM_DM9161_INTR),NULL}, |
| 1354 | { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_STOP), NULL}, |
| 1355 | { mk_mii_end,} |
| 1356 | }, |
| 1357 | }; |
| 1358 | #endif /* CONFIG_FCC_DM9161 */ |
| 1359 | |
| 1360 | static phy_info_t *phy_info[] = { |
| 1361 | |
| 1362 | #ifdef CONFIG_FCC_LXT970 |
| 1363 | &phy_info_lxt970, |
| 1364 | #endif /* CONFIG_FEC_LXT970 */ |
| 1365 | |
| 1366 | #ifdef CONFIG_FCC_LXT971 |
| 1367 | &phy_info_lxt971, |
| 1368 | #endif /* CONFIG_FEC_LXT971 */ |
| 1369 | |
| 1370 | #ifdef CONFIG_FCC_QS6612 |
| 1371 | &phy_info_qs6612, |
| 1372 | #endif /* CONFIG_FEC_QS6612 */ |
| 1373 | |
| 1374 | #ifdef CONFIG_FCC_DM9131 |
| 1375 | &phy_info_dm9131, |
| 1376 | #endif /* CONFIG_FEC_DM9131 */ |
| 1377 | |
| 1378 | #ifdef CONFIG_FCC_DM9161 |
| 1379 | &phy_info_dm9161, |
| 1380 | #endif /* CONFIG_FCC_DM9161 */ |
| 1381 | |
| 1382 | #ifdef CONFIG_FCC_GENERIC_PHY |
| 1383 | /* Generic PHY support. This must be the last PHY in the table. |
| 1384 | * It will be used to support any PHY that doesn't match a previous |
| 1385 | * entry in the table. |
| 1386 | */ |
| 1387 | &phy_info_generic, |
| 1388 | #endif /* CONFIG_FCC_GENERIC_PHY */ |
| 1389 | |
| 1390 | NULL |
| 1391 | }; |
| 1392 | |
David Howells | 6d5aefb | 2006-12-05 19:36:26 +0000 | [diff] [blame] | 1393 | static void mii_display_status(struct work_struct *work) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1394 | { |
David Howells | 6d5aefb | 2006-12-05 19:36:26 +0000 | [diff] [blame] | 1395 | volatile struct fcc_enet_private *fep = |
| 1396 | container_of(work, struct fcc_enet_private, phy_relink); |
| 1397 | struct net_device *dev = fep->dev; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1398 | uint s = fep->phy_status; |
| 1399 | |
| 1400 | if (!fep->link && !fep->old_link) { |
| 1401 | /* Link is still down - don't print anything */ |
| 1402 | return; |
| 1403 | } |
| 1404 | |
| 1405 | printk("%s: status: ", dev->name); |
| 1406 | |
| 1407 | if (!fep->link) { |
| 1408 | printk("link down"); |
| 1409 | } else { |
| 1410 | printk("link up"); |
| 1411 | |
| 1412 | switch(s & PHY_STAT_SPMASK) { |
| 1413 | case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break; |
| 1414 | case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break; |
| 1415 | case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break; |
| 1416 | case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break; |
| 1417 | default: |
| 1418 | printk(", Unknown speed/duplex"); |
| 1419 | } |
| 1420 | |
| 1421 | if (s & PHY_STAT_ANC) |
| 1422 | printk(", auto-negotiation complete"); |
| 1423 | } |
| 1424 | |
| 1425 | if (s & PHY_STAT_FAULT) |
| 1426 | printk(", remote fault"); |
| 1427 | |
| 1428 | printk(".\n"); |
| 1429 | } |
| 1430 | |
David Howells | 6d5aefb | 2006-12-05 19:36:26 +0000 | [diff] [blame] | 1431 | static void mii_display_config(struct work_struct *work) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1432 | { |
David Howells | 6d5aefb | 2006-12-05 19:36:26 +0000 | [diff] [blame] | 1433 | volatile struct fcc_enet_private *fep = |
| 1434 | container_of(work, struct fcc_enet_private, |
| 1435 | phy_display_config); |
| 1436 | struct net_device *dev = fep->dev; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1437 | uint s = fep->phy_status; |
| 1438 | |
| 1439 | printk("%s: config: auto-negotiation ", dev->name); |
| 1440 | |
| 1441 | if (s & PHY_CONF_ANE) |
| 1442 | printk("on"); |
| 1443 | else |
| 1444 | printk("off"); |
| 1445 | |
| 1446 | if (s & PHY_CONF_100FDX) |
| 1447 | printk(", 100FDX"); |
| 1448 | if (s & PHY_CONF_100HDX) |
| 1449 | printk(", 100HDX"); |
| 1450 | if (s & PHY_CONF_10FDX) |
| 1451 | printk(", 10FDX"); |
| 1452 | if (s & PHY_CONF_10HDX) |
| 1453 | printk(", 10HDX"); |
| 1454 | if (!(s & PHY_CONF_SPMASK)) |
| 1455 | printk(", No speed/duplex selected?"); |
| 1456 | |
| 1457 | if (s & PHY_CONF_LOOP) |
| 1458 | printk(", loopback enabled"); |
| 1459 | |
| 1460 | printk(".\n"); |
| 1461 | |
| 1462 | fep->sequence_done = 1; |
| 1463 | } |
| 1464 | |
| 1465 | static void mii_relink(struct net_device *dev) |
| 1466 | { |
| 1467 | struct fcc_enet_private *fep = dev->priv; |
| 1468 | int duplex = 0; |
| 1469 | |
| 1470 | fep->old_link = fep->link; |
| 1471 | fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; |
| 1472 | |
| 1473 | #ifdef MDIO_DEBUG |
| 1474 | printk(" mii_relink: link=%d\n", fep->link); |
| 1475 | #endif |
| 1476 | |
| 1477 | if (fep->link) { |
| 1478 | if (fep->phy_status |
| 1479 | & (PHY_STAT_100FDX | PHY_STAT_10FDX)) |
| 1480 | duplex = 1; |
| 1481 | fcc_restart(dev, duplex); |
| 1482 | #ifdef MDIO_DEBUG |
| 1483 | printk(" mii_relink: duplex=%d\n", duplex); |
| 1484 | #endif |
| 1485 | } |
| 1486 | } |
| 1487 | |
| 1488 | static void mii_queue_relink(uint mii_reg, struct net_device *dev) |
| 1489 | { |
| 1490 | struct fcc_enet_private *fep = dev->priv; |
| 1491 | |
| 1492 | mii_relink(dev); |
| 1493 | |
| 1494 | schedule_work(&fep->phy_relink); |
| 1495 | } |
| 1496 | |
| 1497 | static void mii_queue_config(uint mii_reg, struct net_device *dev) |
| 1498 | { |
| 1499 | struct fcc_enet_private *fep = dev->priv; |
| 1500 | |
| 1501 | schedule_work(&fep->phy_display_config); |
| 1502 | } |
| 1503 | |
| 1504 | phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_BMCR), mii_queue_relink }, |
| 1505 | { mk_mii_end, } }; |
| 1506 | phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_BMCR), mii_queue_config }, |
| 1507 | { mk_mii_end, } }; |
| 1508 | |
| 1509 | |
| 1510 | /* Read remainder of PHY ID. |
| 1511 | */ |
| 1512 | static void |
| 1513 | mii_discover_phy3(uint mii_reg, struct net_device *dev) |
| 1514 | { |
| 1515 | struct fcc_enet_private *fep; |
| 1516 | int i; |
| 1517 | |
| 1518 | fep = dev->priv; |
| 1519 | printk("mii_reg: %08x\n", mii_reg); |
| 1520 | fep->phy_id |= (mii_reg & 0xffff); |
| 1521 | |
| 1522 | for(i = 0; phy_info[i]; i++) |
| 1523 | if((phy_info[i]->id == (fep->phy_id >> 4)) || !phy_info[i]->id) |
| 1524 | break; |
| 1525 | |
| 1526 | if(!phy_info[i]) |
| 1527 | panic("%s: PHY id 0x%08x is not supported!\n", |
| 1528 | dev->name, fep->phy_id); |
| 1529 | |
| 1530 | fep->phy = phy_info[i]; |
| 1531 | fep->phy_id_done = 1; |
| 1532 | |
| 1533 | printk("%s: Phy @ 0x%x, type %s (0x%08x)\n", |
| 1534 | dev->name, fep->phy_addr, fep->phy->name, fep->phy_id); |
| 1535 | } |
| 1536 | |
| 1537 | /* Scan all of the MII PHY addresses looking for someone to respond |
| 1538 | * with a valid ID. This usually happens quickly. |
| 1539 | */ |
| 1540 | static void |
| 1541 | mii_discover_phy(uint mii_reg, struct net_device *dev) |
| 1542 | { |
| 1543 | struct fcc_enet_private *fep; |
| 1544 | uint phytype; |
| 1545 | |
| 1546 | fep = dev->priv; |
| 1547 | |
| 1548 | if ((phytype = (mii_reg & 0xffff)) != 0xffff) { |
| 1549 | |
| 1550 | /* Got first part of ID, now get remainder. */ |
| 1551 | fep->phy_id = phytype << 16; |
| 1552 | mii_queue(dev, mk_mii_read(MII_PHYSID2), mii_discover_phy3); |
| 1553 | } else { |
| 1554 | fep->phy_addr++; |
| 1555 | if (fep->phy_addr < 32) { |
| 1556 | mii_queue(dev, mk_mii_read(MII_PHYSID1), |
| 1557 | mii_discover_phy); |
| 1558 | } else { |
| 1559 | printk("fec: No PHY device found.\n"); |
| 1560 | } |
| 1561 | } |
| 1562 | } |
| 1563 | #endif /* CONFIG_USE_MDIO */ |
| 1564 | |
| 1565 | #ifdef PHY_INTERRUPT |
| 1566 | /* This interrupt occurs when the PHY detects a link change. */ |
| 1567 | static irqreturn_t |
Al Viro | 39e3eb7 | 2006-10-09 12:48:42 +0100 | [diff] [blame] | 1568 | mii_link_interrupt(int irq, void * dev_id) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1569 | { |
| 1570 | struct net_device *dev = dev_id; |
| 1571 | struct fcc_enet_private *fep = dev->priv; |
| 1572 | fcc_info_t *fip = fep->fip; |
| 1573 | |
| 1574 | if (fep->phy) { |
| 1575 | /* We don't want to be interrupted by an FCC |
| 1576 | * interrupt here. |
| 1577 | */ |
| 1578 | disable_irq_nosync(fip->fc_interrupt); |
| 1579 | |
| 1580 | mii_do_cmd(dev, fep->phy->ack_int); |
| 1581 | /* restart and display status */ |
| 1582 | mii_do_cmd(dev, phy_cmd_relink); |
| 1583 | |
| 1584 | enable_irq(fip->fc_interrupt); |
| 1585 | } |
| 1586 | return IRQ_HANDLED; |
| 1587 | } |
| 1588 | #endif /* ifdef PHY_INTERRUPT */ |
| 1589 | |
| 1590 | #if 0 /* This should be fixed someday */ |
| 1591 | /* Set or clear the multicast filter for this adaptor. |
| 1592 | * Skeleton taken from sunlance driver. |
| 1593 | * The CPM Ethernet implementation allows Multicast as well as individual |
| 1594 | * MAC address filtering. Some of the drivers check to make sure it is |
| 1595 | * a group multicast address, and discard those that are not. I guess I |
| 1596 | * will do the same for now, but just remove the test if you want |
| 1597 | * individual filtering as well (do the upper net layers want or support |
| 1598 | * this kind of feature?). |
| 1599 | */ |
| 1600 | static void |
| 1601 | set_multicast_list(struct net_device *dev) |
| 1602 | { |
| 1603 | struct fcc_enet_private *cep; |
| 1604 | struct dev_mc_list *dmi; |
| 1605 | u_char *mcptr, *tdptr; |
| 1606 | volatile fcc_enet_t *ep; |
| 1607 | int i, j; |
| 1608 | |
| 1609 | cep = (struct fcc_enet_private *)dev->priv; |
| 1610 | |
| 1611 | return; |
| 1612 | /* Get pointer to FCC area in parameter RAM. |
| 1613 | */ |
| 1614 | ep = (fcc_enet_t *)dev->base_addr; |
| 1615 | |
| 1616 | if (dev->flags&IFF_PROMISC) { |
| 1617 | |
| 1618 | /* Log any net taps. */ |
| 1619 | printk("%s: Promiscuous mode enabled.\n", dev->name); |
| 1620 | cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO; |
| 1621 | } else { |
| 1622 | |
| 1623 | cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO; |
| 1624 | |
| 1625 | if (dev->flags & IFF_ALLMULTI) { |
| 1626 | /* Catch all multicast addresses, so set the |
| 1627 | * filter to all 1's. |
| 1628 | */ |
| 1629 | ep->fen_gaddrh = 0xffffffff; |
| 1630 | ep->fen_gaddrl = 0xffffffff; |
| 1631 | } |
| 1632 | else { |
| 1633 | /* Clear filter and add the addresses in the list. |
| 1634 | */ |
| 1635 | ep->fen_gaddrh = 0; |
| 1636 | ep->fen_gaddrl = 0; |
| 1637 | |
| 1638 | dmi = dev->mc_list; |
| 1639 | |
| 1640 | for (i=0; i<dev->mc_count; i++, dmi = dmi->next) { |
| 1641 | |
| 1642 | /* Only support group multicast for now. |
| 1643 | */ |
| 1644 | if (!(dmi->dmi_addr[0] & 1)) |
| 1645 | continue; |
| 1646 | |
| 1647 | /* The address in dmi_addr is LSB first, |
| 1648 | * and taddr is MSB first. We have to |
| 1649 | * copy bytes MSB first from dmi_addr. |
| 1650 | */ |
| 1651 | mcptr = (u_char *)dmi->dmi_addr + 5; |
| 1652 | tdptr = (u_char *)&ep->fen_taddrh; |
| 1653 | for (j=0; j<6; j++) |
| 1654 | *tdptr++ = *mcptr--; |
| 1655 | |
| 1656 | /* Ask CPM to run CRC and set bit in |
| 1657 | * filter mask. |
| 1658 | */ |
| 1659 | cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage, |
| 1660 | cep->fip->fc_cpmblock, 0x0c, |
| 1661 | CPM_CR_SET_GADDR) | CPM_CR_FLG; |
| 1662 | udelay(10); |
| 1663 | while (cpmp->cp_cpcr & CPM_CR_FLG); |
| 1664 | } |
| 1665 | } |
| 1666 | } |
| 1667 | } |
| 1668 | #endif /* if 0 */ |
| 1669 | |
| 1670 | |
| 1671 | /* Set the individual MAC address. |
| 1672 | */ |
| 1673 | int fcc_enet_set_mac_address(struct net_device *dev, void *p) |
| 1674 | { |
| 1675 | struct sockaddr *addr= (struct sockaddr *) p; |
| 1676 | struct fcc_enet_private *cep; |
| 1677 | volatile fcc_enet_t *ep; |
| 1678 | unsigned char *eap; |
| 1679 | int i; |
| 1680 | |
| 1681 | cep = (struct fcc_enet_private *)(dev->priv); |
| 1682 | ep = cep->ep; |
| 1683 | |
| 1684 | if (netif_running(dev)) |
| 1685 | return -EBUSY; |
| 1686 | |
| 1687 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| 1688 | |
| 1689 | eap = (unsigned char *) &(ep->fen_paddrh); |
| 1690 | for (i=5; i>=0; i--) |
| 1691 | *eap++ = addr->sa_data[i]; |
| 1692 | |
| 1693 | return 0; |
| 1694 | } |
| 1695 | |
| 1696 | |
| 1697 | /* Initialize the CPM Ethernet on FCC. |
| 1698 | */ |
| 1699 | static int __init fec_enet_init(void) |
| 1700 | { |
| 1701 | struct net_device *dev; |
| 1702 | struct fcc_enet_private *cep; |
| 1703 | fcc_info_t *fip; |
| 1704 | int i, np, err; |
| 1705 | volatile cpm2_map_t *immap; |
| 1706 | volatile iop_cpm2_t *io; |
| 1707 | |
| 1708 | immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */ |
| 1709 | io = &immap->im_ioport; |
| 1710 | |
| 1711 | np = sizeof(fcc_ports) / sizeof(fcc_info_t); |
| 1712 | fip = fcc_ports; |
| 1713 | |
| 1714 | while (np-- > 0) { |
| 1715 | /* Create an Ethernet device instance. |
| 1716 | */ |
| 1717 | dev = alloc_etherdev(sizeof(*cep)); |
| 1718 | if (!dev) |
| 1719 | return -ENOMEM; |
| 1720 | |
| 1721 | cep = dev->priv; |
| 1722 | spin_lock_init(&cep->lock); |
| 1723 | cep->fip = fip; |
| 1724 | |
| 1725 | init_fcc_shutdown(fip, cep, immap); |
| 1726 | init_fcc_ioports(fip, io, immap); |
| 1727 | init_fcc_param(fip, dev, immap); |
| 1728 | |
| 1729 | dev->base_addr = (unsigned long)(cep->ep); |
| 1730 | |
| 1731 | /* The CPM Ethernet specific entries in the device |
| 1732 | * structure. |
| 1733 | */ |
| 1734 | dev->open = fcc_enet_open; |
| 1735 | dev->hard_start_xmit = fcc_enet_start_xmit; |
| 1736 | dev->tx_timeout = fcc_enet_timeout; |
| 1737 | dev->watchdog_timeo = TX_TIMEOUT; |
| 1738 | dev->stop = fcc_enet_close; |
| 1739 | dev->get_stats = fcc_enet_get_stats; |
| 1740 | /* dev->set_multicast_list = set_multicast_list; */ |
| 1741 | dev->set_mac_address = fcc_enet_set_mac_address; |
| 1742 | |
| 1743 | init_fcc_startup(fip, dev); |
| 1744 | |
| 1745 | err = register_netdev(dev); |
| 1746 | if (err) { |
| 1747 | free_netdev(dev); |
| 1748 | return err; |
| 1749 | } |
| 1750 | |
| 1751 | printk("%s: FCC ENET Version 0.3, ", dev->name); |
| 1752 | for (i=0; i<5; i++) |
| 1753 | printk("%02x:", dev->dev_addr[i]); |
| 1754 | printk("%02x\n", dev->dev_addr[5]); |
| 1755 | |
| 1756 | #ifdef CONFIG_USE_MDIO |
| 1757 | /* Queue up command to detect the PHY and initialize the |
| 1758 | * remainder of the interface. |
| 1759 | */ |
| 1760 | cep->phy_id_done = 0; |
| 1761 | cep->phy_addr = fip->fc_phyaddr; |
| 1762 | mii_queue(dev, mk_mii_read(MII_PHYSID1), mii_discover_phy); |
David Howells | 6d5aefb | 2006-12-05 19:36:26 +0000 | [diff] [blame] | 1763 | INIT_WORK(&cep->phy_relink, mii_display_status); |
| 1764 | INIT_WORK(&cep->phy_display_config, mii_display_config); |
| 1765 | cep->dev = dev; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1766 | #endif /* CONFIG_USE_MDIO */ |
| 1767 | |
| 1768 | fip++; |
| 1769 | } |
| 1770 | |
| 1771 | return 0; |
| 1772 | } |
| 1773 | module_init(fec_enet_init); |
| 1774 | |
| 1775 | /* Make sure the device is shut down during initialization. |
| 1776 | */ |
| 1777 | static void __init |
| 1778 | init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep, |
| 1779 | volatile cpm2_map_t *immap) |
| 1780 | { |
| 1781 | volatile fcc_enet_t *ep; |
| 1782 | volatile fcc_t *fccp; |
| 1783 | |
| 1784 | /* Get pointer to FCC area in parameter RAM. |
| 1785 | */ |
| 1786 | ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]); |
| 1787 | |
| 1788 | /* And another to the FCC register area. |
| 1789 | */ |
| 1790 | fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]); |
| 1791 | cep->fccp = fccp; /* Keep the pointers handy */ |
| 1792 | cep->ep = ep; |
| 1793 | |
| 1794 | /* Disable receive and transmit in case someone left it running. |
| 1795 | */ |
| 1796 | fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT); |
| 1797 | } |
| 1798 | |
| 1799 | /* Initialize the I/O pins for the FCC Ethernet. |
| 1800 | */ |
| 1801 | static void __init |
| 1802 | init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io, |
| 1803 | volatile cpm2_map_t *immap) |
| 1804 | { |
| 1805 | |
| 1806 | /* FCC1 pins are on port A/C. FCC2/3 are port B/C. |
| 1807 | */ |
| 1808 | if (fip->fc_proff == PROFF_FCC1) { |
| 1809 | /* Configure port A and C pins for FCC1 Ethernet. |
| 1810 | */ |
| 1811 | io->iop_pdira &= ~PA1_DIRA_BOUT; |
| 1812 | io->iop_pdira |= PA1_DIRA_BIN; |
| 1813 | io->iop_psora &= ~PA1_PSORA_BOUT; |
| 1814 | io->iop_psora |= PA1_PSORA_BIN; |
| 1815 | io->iop_ppara |= (PA1_DIRA_BOUT | PA1_DIRA_BIN); |
| 1816 | } |
| 1817 | if (fip->fc_proff == PROFF_FCC2) { |
| 1818 | /* Configure port B and C pins for FCC Ethernet. |
| 1819 | */ |
| 1820 | io->iop_pdirb &= ~PB2_DIRB_BOUT; |
| 1821 | io->iop_pdirb |= PB2_DIRB_BIN; |
| 1822 | io->iop_psorb &= ~PB2_PSORB_BOUT; |
| 1823 | io->iop_psorb |= PB2_PSORB_BIN; |
| 1824 | io->iop_pparb |= (PB2_DIRB_BOUT | PB2_DIRB_BIN); |
| 1825 | } |
| 1826 | if (fip->fc_proff == PROFF_FCC3) { |
| 1827 | /* Configure port B and C pins for FCC Ethernet. |
| 1828 | */ |
| 1829 | io->iop_pdirb &= ~PB3_DIRB_BOUT; |
| 1830 | io->iop_pdirb |= PB3_DIRB_BIN; |
| 1831 | io->iop_psorb &= ~PB3_PSORB_BOUT; |
| 1832 | io->iop_psorb |= PB3_PSORB_BIN; |
| 1833 | io->iop_pparb |= (PB3_DIRB_BOUT | PB3_DIRB_BIN); |
| 1834 | |
| 1835 | io->iop_pdirc &= ~PC3_DIRC_BOUT; |
| 1836 | io->iop_pdirc |= PC3_DIRC_BIN; |
| 1837 | io->iop_psorc &= ~PC3_PSORC_BOUT; |
| 1838 | io->iop_psorc |= PC3_PSORC_BIN; |
| 1839 | io->iop_pparc |= (PC3_DIRC_BOUT | PC3_DIRC_BIN); |
| 1840 | |
| 1841 | } |
| 1842 | |
| 1843 | /* Port C has clocks...... |
| 1844 | */ |
| 1845 | io->iop_psorc &= ~(fip->fc_trxclocks); |
| 1846 | io->iop_pdirc &= ~(fip->fc_trxclocks); |
| 1847 | io->iop_pparc |= fip->fc_trxclocks; |
| 1848 | |
| 1849 | #ifdef CONFIG_USE_MDIO |
| 1850 | /* ....and the MII serial clock/data. |
| 1851 | */ |
| 1852 | io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck); |
| 1853 | io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck); |
| 1854 | io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck); |
| 1855 | io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck); |
| 1856 | #endif /* CONFIG_USE_MDIO */ |
| 1857 | |
| 1858 | /* Configure Serial Interface clock routing. |
| 1859 | * First, clear all FCC bits to zero, |
| 1860 | * then set the ones we want. |
| 1861 | */ |
| 1862 | immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask); |
| 1863 | immap->im_cpmux.cmx_fcr |= fip->fc_clockroute; |
| 1864 | } |
| 1865 | |
| 1866 | static void __init |
| 1867 | init_fcc_param(fcc_info_t *fip, struct net_device *dev, |
| 1868 | volatile cpm2_map_t *immap) |
| 1869 | { |
| 1870 | unsigned char *eap; |
| 1871 | unsigned long mem_addr; |
| 1872 | bd_t *bd; |
| 1873 | int i, j; |
| 1874 | struct fcc_enet_private *cep; |
| 1875 | volatile fcc_enet_t *ep; |
| 1876 | volatile cbd_t *bdp; |
| 1877 | volatile cpm_cpm2_t *cp; |
| 1878 | |
| 1879 | cep = (struct fcc_enet_private *)(dev->priv); |
| 1880 | ep = cep->ep; |
| 1881 | cp = cpmp; |
| 1882 | |
| 1883 | bd = (bd_t *)__res; |
| 1884 | |
| 1885 | /* Zero the whole thing.....I must have missed some individually. |
| 1886 | * It works when I do this. |
| 1887 | */ |
| 1888 | memset((char *)ep, 0, sizeof(fcc_enet_t)); |
| 1889 | |
| 1890 | /* Allocate space for the buffer descriptors from regular memory. |
| 1891 | * Initialize base addresses for the buffer descriptors. |
| 1892 | */ |
Robert P. J. Day | 5cbded5 | 2006-12-13 00:35:56 -0800 | [diff] [blame] | 1893 | cep->rx_bd_base = kmalloc(sizeof(cbd_t) * RX_RING_SIZE, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1894 | GFP_KERNEL | GFP_DMA); |
| 1895 | ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base); |
Robert P. J. Day | 5cbded5 | 2006-12-13 00:35:56 -0800 | [diff] [blame] | 1896 | cep->tx_bd_base = kmalloc(sizeof(cbd_t) * TX_RING_SIZE, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1897 | GFP_KERNEL | GFP_DMA); |
| 1898 | ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base); |
| 1899 | |
| 1900 | cep->dirty_tx = cep->cur_tx = cep->tx_bd_base; |
| 1901 | cep->cur_rx = cep->rx_bd_base; |
| 1902 | |
| 1903 | ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24; |
| 1904 | ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24; |
| 1905 | |
| 1906 | /* Set maximum bytes per receive buffer. |
| 1907 | * It must be a multiple of 32. |
| 1908 | */ |
| 1909 | ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE; |
| 1910 | |
| 1911 | /* Allocate space in the reserved FCC area of DPRAM for the |
| 1912 | * internal buffers. No one uses this space (yet), so we |
| 1913 | * can do this. Later, we will add resource management for |
| 1914 | * this area. |
| 1915 | */ |
| 1916 | mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128); |
| 1917 | ep->fen_genfcc.fcc_riptr = mem_addr; |
| 1918 | ep->fen_genfcc.fcc_tiptr = mem_addr+32; |
| 1919 | ep->fen_padptr = mem_addr+64; |
| 1920 | memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32); |
| 1921 | |
| 1922 | ep->fen_genfcc.fcc_rbptr = 0; |
| 1923 | ep->fen_genfcc.fcc_tbptr = 0; |
| 1924 | ep->fen_genfcc.fcc_rcrc = 0; |
| 1925 | ep->fen_genfcc.fcc_tcrc = 0; |
| 1926 | ep->fen_genfcc.fcc_res1 = 0; |
| 1927 | ep->fen_genfcc.fcc_res2 = 0; |
| 1928 | |
| 1929 | ep->fen_camptr = 0; /* CAM isn't used in this driver */ |
| 1930 | |
| 1931 | /* Set CRC preset and mask. |
| 1932 | */ |
| 1933 | ep->fen_cmask = 0xdebb20e3; |
| 1934 | ep->fen_cpres = 0xffffffff; |
| 1935 | |
| 1936 | ep->fen_crcec = 0; /* CRC Error counter */ |
| 1937 | ep->fen_alec = 0; /* alignment error counter */ |
| 1938 | ep->fen_disfc = 0; /* discard frame counter */ |
| 1939 | ep->fen_retlim = 15; /* Retry limit threshold */ |
| 1940 | ep->fen_pper = 0; /* Normal persistence */ |
| 1941 | |
| 1942 | /* Clear hash filter tables. |
| 1943 | */ |
| 1944 | ep->fen_gaddrh = 0; |
| 1945 | ep->fen_gaddrl = 0; |
| 1946 | ep->fen_iaddrh = 0; |
| 1947 | ep->fen_iaddrl = 0; |
| 1948 | |
| 1949 | /* Clear the Out-of-sequence TxBD. |
| 1950 | */ |
| 1951 | ep->fen_tfcstat = 0; |
| 1952 | ep->fen_tfclen = 0; |
| 1953 | ep->fen_tfcptr = 0; |
| 1954 | |
| 1955 | ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */ |
| 1956 | ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */ |
| 1957 | |
| 1958 | /* Set Ethernet station address. |
| 1959 | * |
| 1960 | * This is supplied in the board information structure, so we |
| 1961 | * copy that into the controller. |
| 1962 | * So, far we have only been given one Ethernet address. We make |
| 1963 | * it unique by setting a few bits in the upper byte of the |
| 1964 | * non-static part of the address. |
| 1965 | */ |
| 1966 | eap = (unsigned char *)&(ep->fen_paddrh); |
| 1967 | for (i=5; i>=0; i--) { |
| 1968 | |
| 1969 | /* |
| 1970 | * The EP8260 only uses FCC3, so we can safely give it the real |
| 1971 | * MAC address. |
| 1972 | */ |
| 1973 | #ifdef CONFIG_SBC82xx |
| 1974 | if (i == 5) { |
| 1975 | /* bd->bi_enetaddr holds the SCC0 address; the FCC |
| 1976 | devices count up from there */ |
| 1977 | dev->dev_addr[i] = bd->bi_enetaddr[i] & ~3; |
| 1978 | dev->dev_addr[i] += 1 + fip->fc_fccnum; |
| 1979 | *eap++ = dev->dev_addr[i]; |
| 1980 | } |
| 1981 | #else |
| 1982 | #ifndef CONFIG_RPX8260 |
| 1983 | if (i == 3) { |
| 1984 | dev->dev_addr[i] = bd->bi_enetaddr[i]; |
| 1985 | dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum)); |
| 1986 | *eap++ = dev->dev_addr[i]; |
| 1987 | } else |
| 1988 | #endif |
| 1989 | { |
| 1990 | *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i]; |
| 1991 | } |
| 1992 | #endif |
| 1993 | } |
| 1994 | |
| 1995 | ep->fen_taddrh = 0; |
| 1996 | ep->fen_taddrm = 0; |
| 1997 | ep->fen_taddrl = 0; |
| 1998 | |
| 1999 | ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */ |
| 2000 | ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */ |
| 2001 | |
| 2002 | /* Clear stat counters, in case we ever enable RMON. |
| 2003 | */ |
| 2004 | ep->fen_octc = 0; |
| 2005 | ep->fen_colc = 0; |
| 2006 | ep->fen_broc = 0; |
| 2007 | ep->fen_mulc = 0; |
| 2008 | ep->fen_uspc = 0; |
| 2009 | ep->fen_frgc = 0; |
| 2010 | ep->fen_ospc = 0; |
| 2011 | ep->fen_jbrc = 0; |
| 2012 | ep->fen_p64c = 0; |
| 2013 | ep->fen_p65c = 0; |
| 2014 | ep->fen_p128c = 0; |
| 2015 | ep->fen_p256c = 0; |
| 2016 | ep->fen_p512c = 0; |
| 2017 | ep->fen_p1024c = 0; |
| 2018 | |
| 2019 | ep->fen_rfthr = 0; /* Suggested by manual */ |
| 2020 | ep->fen_rfcnt = 0; |
| 2021 | ep->fen_cftype = 0; |
| 2022 | |
| 2023 | /* Now allocate the host memory pages and initialize the |
| 2024 | * buffer descriptors. |
| 2025 | */ |
| 2026 | bdp = cep->tx_bd_base; |
| 2027 | for (i=0; i<TX_RING_SIZE; i++) { |
| 2028 | |
| 2029 | /* Initialize the BD for every fragment in the page. |
| 2030 | */ |
| 2031 | bdp->cbd_sc = 0; |
| 2032 | bdp->cbd_datlen = 0; |
| 2033 | bdp->cbd_bufaddr = 0; |
| 2034 | bdp++; |
| 2035 | } |
| 2036 | |
| 2037 | /* Set the last buffer to wrap. |
| 2038 | */ |
| 2039 | bdp--; |
| 2040 | bdp->cbd_sc |= BD_SC_WRAP; |
| 2041 | |
| 2042 | bdp = cep->rx_bd_base; |
| 2043 | for (i=0; i<FCC_ENET_RX_PAGES; i++) { |
| 2044 | |
| 2045 | /* Allocate a page. |
| 2046 | */ |
| 2047 | mem_addr = __get_free_page(GFP_KERNEL); |
| 2048 | |
| 2049 | /* Initialize the BD for every fragment in the page. |
| 2050 | */ |
| 2051 | for (j=0; j<FCC_ENET_RX_FRPPG; j++) { |
| 2052 | bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR; |
| 2053 | bdp->cbd_datlen = 0; |
| 2054 | bdp->cbd_bufaddr = __pa(mem_addr); |
| 2055 | mem_addr += FCC_ENET_RX_FRSIZE; |
| 2056 | bdp++; |
| 2057 | } |
| 2058 | } |
| 2059 | |
| 2060 | /* Set the last buffer to wrap. |
| 2061 | */ |
| 2062 | bdp--; |
| 2063 | bdp->cbd_sc |= BD_SC_WRAP; |
| 2064 | |
| 2065 | /* Let's re-initialize the channel now. We have to do it later |
| 2066 | * than the manual describes because we have just now finished |
| 2067 | * the BD initialization. |
| 2068 | */ |
| 2069 | cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c, |
| 2070 | CPM_CR_INIT_TRX) | CPM_CR_FLG; |
| 2071 | while (cp->cp_cpcr & CPM_CR_FLG); |
| 2072 | |
| 2073 | cep->skb_cur = cep->skb_dirty = 0; |
| 2074 | } |
| 2075 | |
| 2076 | /* Let 'er rip. |
| 2077 | */ |
| 2078 | static void __init |
| 2079 | init_fcc_startup(fcc_info_t *fip, struct net_device *dev) |
| 2080 | { |
| 2081 | volatile fcc_t *fccp; |
| 2082 | struct fcc_enet_private *cep; |
| 2083 | |
| 2084 | cep = (struct fcc_enet_private *)(dev->priv); |
| 2085 | fccp = cep->fccp; |
| 2086 | |
| 2087 | #ifdef CONFIG_RPX8260 |
| 2088 | #ifdef PHY_INTERRUPT |
| 2089 | /* Route PHY interrupt to IRQ. The following code only works for |
| 2090 | * IRQ1 - IRQ7. It does not work for Port C interrupts. |
| 2091 | */ |
| 2092 | *((volatile u_char *) (RPX_CSR_ADDR + 13)) &= ~BCSR13_FETH_IRQMASK; |
| 2093 | *((volatile u_char *) (RPX_CSR_ADDR + 13)) |= |
| 2094 | ((PHY_INTERRUPT - SIU_INT_IRQ1 + 1) << 4); |
| 2095 | #endif |
| 2096 | /* Initialize MDIO pins. */ |
| 2097 | *((volatile u_char *) (RPX_CSR_ADDR + 4)) &= ~BCSR4_MII_MDC; |
| 2098 | *((volatile u_char *) (RPX_CSR_ADDR + 4)) |= |
| 2099 | BCSR4_MII_READ | BCSR4_MII_MDIO; |
| 2100 | /* Enable external LXT971 PHY. */ |
| 2101 | *((volatile u_char *) (RPX_CSR_ADDR + 4)) |= BCSR4_EN_PHY; |
| 2102 | udelay(1000); |
| 2103 | *((volatile u_char *) (RPX_CSR_ADDR+ 4)) |= BCSR4_EN_MII; |
| 2104 | udelay(1000); |
| 2105 | #endif /* ifdef CONFIG_RPX8260 */ |
| 2106 | |
| 2107 | fccp->fcc_fcce = 0xffff; /* Clear any pending events */ |
| 2108 | |
| 2109 | /* Leave FCC interrupts masked for now. Will be unmasked by |
| 2110 | * fcc_restart(). |
| 2111 | */ |
| 2112 | fccp->fcc_fccm = 0; |
| 2113 | |
| 2114 | /* Install our interrupt handler. |
| 2115 | */ |
| 2116 | if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet", |
| 2117 | dev) < 0) |
| 2118 | printk("Can't get FCC IRQ %d\n", fip->fc_interrupt); |
| 2119 | |
| 2120 | #ifdef PHY_INTERRUPT |
| 2121 | #ifdef CONFIG_ADS8272 |
Thomas Gleixner | bc59d28 | 2006-07-01 19:29:22 -0700 | [diff] [blame] | 2122 | if (request_irq(PHY_INTERRUPT, mii_link_interrupt, IRQF_SHARED, |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2123 | "mii", dev) < 0) |
| 2124 | printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT); |
| 2125 | #else |
| 2126 | /* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is |
| 2127 | * on Port C. |
| 2128 | */ |
| 2129 | ((volatile cpm2_map_t *) CPM_MAP_ADDR)->im_intctl.ic_siexr |= |
| 2130 | (1 << (14 - (PHY_INTERRUPT - SIU_INT_IRQ1))); |
| 2131 | |
| 2132 | if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0, |
| 2133 | "mii", dev) < 0) |
| 2134 | printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT); |
| 2135 | #endif |
| 2136 | #endif /* PHY_INTERRUPT */ |
| 2137 | |
| 2138 | /* Set GFMR to enable Ethernet operating mode. |
| 2139 | */ |
| 2140 | fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET); |
| 2141 | |
| 2142 | /* Set sync/delimiters. |
| 2143 | */ |
| 2144 | fccp->fcc_fdsr = 0xd555; |
| 2145 | |
| 2146 | /* Set protocol specific processing mode for Ethernet. |
| 2147 | * This has to be adjusted for Full Duplex operation after we can |
| 2148 | * determine how to detect that. |
| 2149 | */ |
| 2150 | fccp->fcc_fpsmr = FCC_PSMR_ENCRC; |
| 2151 | |
| 2152 | #ifdef CONFIG_PQ2ADS |
| 2153 | /* Enable the PHY. */ |
| 2154 | *(volatile uint *)(BCSR_ADDR + 4) &= ~BCSR1_FETHIEN; |
| 2155 | *(volatile uint *)(BCSR_ADDR + 4) |= BCSR1_FETH_RST; |
| 2156 | #endif |
| 2157 | #if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS) |
| 2158 | /* Enable the 2nd PHY. */ |
| 2159 | *(volatile uint *)(BCSR_ADDR + 12) &= ~BCSR3_FETHIEN2; |
| 2160 | *(volatile uint *)(BCSR_ADDR + 12) |= BCSR3_FETH2_RST; |
| 2161 | #endif |
| 2162 | |
| 2163 | #if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260) |
| 2164 | /* start in full duplex mode, and negotiate speed |
| 2165 | */ |
| 2166 | fcc_restart (dev, 1); |
| 2167 | #else |
| 2168 | /* start in half duplex mode |
| 2169 | */ |
| 2170 | fcc_restart (dev, 0); |
| 2171 | #endif |
| 2172 | } |
| 2173 | |
| 2174 | #ifdef CONFIG_USE_MDIO |
| 2175 | /* MII command/status interface. |
| 2176 | * I'm not going to describe all of the details. You can find the |
| 2177 | * protocol definition in many other places, including the data sheet |
| 2178 | * of most PHY parts. |
| 2179 | * I wonder what "they" were thinking (maybe weren't) when they leave |
| 2180 | * the I2C in the CPM but I have to toggle these bits...... |
| 2181 | */ |
| 2182 | #ifdef CONFIG_RPX8260 |
| 2183 | /* The EP8260 has the MDIO pins in a BCSR instead of on Port C |
| 2184 | * like most other boards. |
| 2185 | */ |
| 2186 | #define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4)) |
| 2187 | #define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ |
| 2188 | #define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO |
| 2189 | #define OUT_MDIO(bit) \ |
| 2190 | if (bit) \ |
| 2191 | *MDIO_ADDR |= BCSR4_MII_MDIO; \ |
| 2192 | else \ |
| 2193 | *MDIO_ADDR &= ~BCSR4_MII_MDIO; |
| 2194 | #define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO) |
| 2195 | #define OUT_MDC(bit) \ |
| 2196 | if (bit) \ |
| 2197 | *MDIO_ADDR |= BCSR4_MII_MDC; \ |
| 2198 | else \ |
| 2199 | *MDIO_ADDR &= ~BCSR4_MII_MDC; |
| 2200 | #else /* ifdef CONFIG_RPX8260 */ |
| 2201 | /* This is for the usual case where the MDIO pins are on Port C. |
| 2202 | */ |
| 2203 | #define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport) |
| 2204 | #define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio |
| 2205 | #define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio |
| 2206 | #define OUT_MDIO(bit) \ |
| 2207 | if (bit) \ |
| 2208 | MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \ |
| 2209 | else \ |
| 2210 | MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio; |
| 2211 | #define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio) |
| 2212 | #define OUT_MDC(bit) \ |
| 2213 | if (bit) \ |
| 2214 | MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \ |
| 2215 | else \ |
| 2216 | MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck; |
| 2217 | #endif /* ifdef CONFIG_RPX8260 */ |
| 2218 | |
| 2219 | static uint |
| 2220 | mii_send_receive(fcc_info_t *fip, uint cmd) |
| 2221 | { |
| 2222 | uint retval; |
| 2223 | int read_op, i, off; |
| 2224 | const int us = 1; |
| 2225 | |
| 2226 | read_op = ((cmd & 0xf0000000) == 0x60000000); |
| 2227 | |
| 2228 | /* Write preamble |
| 2229 | */ |
| 2230 | OUT_MDIO(1); |
| 2231 | MAKE_MDIO_OUTPUT; |
| 2232 | OUT_MDIO(1); |
| 2233 | for (i = 0; i < 32; i++) |
| 2234 | { |
| 2235 | udelay(us); |
| 2236 | OUT_MDC(1); |
| 2237 | udelay(us); |
| 2238 | OUT_MDC(0); |
| 2239 | } |
| 2240 | |
| 2241 | /* Write data |
| 2242 | */ |
| 2243 | for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off) |
| 2244 | { |
| 2245 | OUT_MDIO((cmd >> off) & 0x00000001); |
| 2246 | udelay(us); |
| 2247 | OUT_MDC(1); |
| 2248 | udelay(us); |
| 2249 | OUT_MDC(0); |
| 2250 | } |
| 2251 | |
| 2252 | retval = cmd; |
| 2253 | |
| 2254 | if (read_op) |
| 2255 | { |
| 2256 | retval >>= 16; |
| 2257 | |
| 2258 | MAKE_MDIO_INPUT; |
| 2259 | udelay(us); |
| 2260 | OUT_MDC(1); |
| 2261 | udelay(us); |
| 2262 | OUT_MDC(0); |
| 2263 | |
| 2264 | for (i = 0; i < 16; i++) |
| 2265 | { |
| 2266 | udelay(us); |
| 2267 | OUT_MDC(1); |
| 2268 | udelay(us); |
| 2269 | retval <<= 1; |
| 2270 | if (IN_MDIO) |
| 2271 | retval++; |
| 2272 | OUT_MDC(0); |
| 2273 | } |
| 2274 | } |
| 2275 | |
| 2276 | MAKE_MDIO_INPUT; |
| 2277 | udelay(us); |
| 2278 | OUT_MDC(1); |
| 2279 | udelay(us); |
| 2280 | OUT_MDC(0); |
| 2281 | |
| 2282 | return retval; |
| 2283 | } |
| 2284 | #endif /* CONFIG_USE_MDIO */ |
| 2285 | |
| 2286 | static void |
| 2287 | fcc_stop(struct net_device *dev) |
| 2288 | { |
| 2289 | struct fcc_enet_private *fep= (struct fcc_enet_private *)(dev->priv); |
| 2290 | volatile fcc_t *fccp = fep->fccp; |
| 2291 | fcc_info_t *fip = fep->fip; |
| 2292 | volatile fcc_enet_t *ep = fep->ep; |
| 2293 | volatile cpm_cpm2_t *cp = cpmp; |
| 2294 | volatile cbd_t *bdp; |
| 2295 | int i; |
| 2296 | |
| 2297 | if ((fccp->fcc_gfmr & (FCC_GFMR_ENR | FCC_GFMR_ENT)) == 0) |
| 2298 | return; /* already down */ |
| 2299 | |
| 2300 | fccp->fcc_fccm = 0; |
| 2301 | |
| 2302 | /* issue the graceful stop tx command */ |
| 2303 | while (cp->cp_cpcr & CPM_CR_FLG); |
| 2304 | cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, |
| 2305 | 0x0c, CPM_CR_GRA_STOP_TX) | CPM_CR_FLG; |
| 2306 | while (cp->cp_cpcr & CPM_CR_FLG); |
| 2307 | |
| 2308 | /* Disable transmit/receive */ |
| 2309 | fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT); |
| 2310 | |
| 2311 | /* issue the restart tx command */ |
| 2312 | fccp->fcc_fcce = FCC_ENET_GRA; |
| 2313 | while (cp->cp_cpcr & CPM_CR_FLG); |
| 2314 | cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, |
| 2315 | 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG; |
| 2316 | while (cp->cp_cpcr & CPM_CR_FLG); |
| 2317 | |
| 2318 | /* free tx buffers */ |
| 2319 | fep->skb_cur = fep->skb_dirty = 0; |
| 2320 | for (i=0; i<=TX_RING_MOD_MASK; i++) { |
| 2321 | if (fep->tx_skbuff[i] != NULL) { |
| 2322 | dev_kfree_skb(fep->tx_skbuff[i]); |
| 2323 | fep->tx_skbuff[i] = NULL; |
| 2324 | } |
| 2325 | } |
| 2326 | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; |
| 2327 | fep->tx_free = TX_RING_SIZE; |
| 2328 | ep->fen_genfcc.fcc_tbptr = ep->fen_genfcc.fcc_tbase; |
| 2329 | |
| 2330 | /* Initialize the tx buffer descriptors. */ |
| 2331 | bdp = fep->tx_bd_base; |
| 2332 | for (i=0; i<TX_RING_SIZE; i++) { |
| 2333 | bdp->cbd_sc = 0; |
| 2334 | bdp->cbd_datlen = 0; |
| 2335 | bdp->cbd_bufaddr = 0; |
| 2336 | bdp++; |
| 2337 | } |
| 2338 | /* Set the last buffer to wrap. */ |
| 2339 | bdp--; |
| 2340 | bdp->cbd_sc |= BD_SC_WRAP; |
| 2341 | } |
| 2342 | |
| 2343 | static void |
| 2344 | fcc_restart(struct net_device *dev, int duplex) |
| 2345 | { |
| 2346 | struct fcc_enet_private *fep = (struct fcc_enet_private *)(dev->priv); |
| 2347 | volatile fcc_t *fccp = fep->fccp; |
| 2348 | |
| 2349 | /* stop any transmissions in progress */ |
| 2350 | fcc_stop(dev); |
| 2351 | |
| 2352 | if (duplex) |
| 2353 | fccp->fcc_fpsmr |= FCC_PSMR_FDE | FCC_PSMR_LPB; |
| 2354 | else |
| 2355 | fccp->fcc_fpsmr &= ~(FCC_PSMR_FDE | FCC_PSMR_LPB); |
| 2356 | |
| 2357 | /* Enable interrupts for transmit error, complete frame |
| 2358 | * received, and any transmit buffer we have also set the |
| 2359 | * interrupt flag. |
| 2360 | */ |
| 2361 | fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB); |
| 2362 | |
| 2363 | /* Enable transmit/receive */ |
| 2364 | fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT; |
| 2365 | } |
| 2366 | |
| 2367 | static int |
| 2368 | fcc_enet_open(struct net_device *dev) |
| 2369 | { |
| 2370 | struct fcc_enet_private *fep = dev->priv; |
| 2371 | |
| 2372 | #ifdef CONFIG_USE_MDIO |
| 2373 | fep->sequence_done = 0; |
| 2374 | fep->link = 0; |
| 2375 | |
| 2376 | if (fep->phy) { |
| 2377 | fcc_restart(dev, 0); /* always start in half-duplex */ |
| 2378 | mii_do_cmd(dev, fep->phy->ack_int); |
| 2379 | mii_do_cmd(dev, fep->phy->config); |
| 2380 | mii_do_cmd(dev, phy_cmd_config); /* display configuration */ |
| 2381 | while(!fep->sequence_done) |
| 2382 | schedule(); |
| 2383 | |
| 2384 | mii_do_cmd(dev, fep->phy->startup); |
| 2385 | netif_start_queue(dev); |
| 2386 | return 0; /* Success */ |
| 2387 | } |
| 2388 | return -ENODEV; /* No PHY we understand */ |
| 2389 | #else |
| 2390 | fep->link = 1; |
| 2391 | fcc_restart(dev, 0); /* always start in half-duplex */ |
| 2392 | netif_start_queue(dev); |
| 2393 | return 0; /* Always succeed */ |
| 2394 | #endif /* CONFIG_USE_MDIO */ |
| 2395 | } |
| 2396 | |