Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Sound driver for Silicon Graphics 320 and 540 Visual Workstations' |
| 3 | * onboard audio. See notes in Documentation/sound/oss/vwsnd . |
| 4 | * |
| 5 | * Copyright 1999 Silicon Graphics, Inc. All rights reserved. |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program; if not, write to the Free Software |
| 19 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 20 | */ |
| 21 | |
| 22 | #undef VWSND_DEBUG /* define for debugging */ |
| 23 | |
| 24 | /* |
| 25 | * XXX to do - |
| 26 | * |
| 27 | * External sync. |
| 28 | * Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational. |
| 29 | * Bug - if select() called before read(), pcm_setup() not called. |
| 30 | * Bug - output doesn't stop soon enough if process killed. |
| 31 | */ |
| 32 | |
| 33 | /* |
| 34 | * Things to test - |
| 35 | * |
| 36 | * Will readv/writev work? Write a test. |
| 37 | * |
| 38 | * insmod/rmmod 100 million times. |
| 39 | * |
| 40 | * Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT |
| 41 | * rate). |
| 42 | * |
| 43 | * Concurrent threads banging on mixer simultaneously, both UP |
| 44 | * and SMP kernels. Especially, watch for thread A changing |
| 45 | * OUTSRC while thread B changes gain -- both write to the same |
| 46 | * ad1843 register. |
| 47 | * |
| 48 | * What happens if a client opens /dev/audio then forks? |
| 49 | * Do two procs have /dev/audio open? Test. |
| 50 | * |
| 51 | * Pump audio through the CD, MIC and line inputs and verify that |
| 52 | * they mix/mute into the output. |
| 53 | * |
| 54 | * Apps: |
| 55 | * amp |
| 56 | * mpg123 |
| 57 | * x11amp |
| 58 | * mxv |
| 59 | * kmedia |
| 60 | * esound |
| 61 | * need more input apps |
| 62 | * |
| 63 | * Run tests while bombarding with signals. setitimer(2) will do it... */ |
| 64 | |
| 65 | /* |
| 66 | * This driver is organized in nine sections. |
| 67 | * The nine sections are: |
| 68 | * |
| 69 | * debug stuff |
| 70 | * low level lithium access |
| 71 | * high level lithium access |
| 72 | * AD1843 access |
| 73 | * PCM I/O |
| 74 | * audio driver |
| 75 | * mixer driver |
| 76 | * probe/attach/unload |
| 77 | * initialization and loadable kernel module interface |
| 78 | * |
| 79 | * That is roughly the order of increasing abstraction, so forward |
| 80 | * dependencies are minimal. |
| 81 | */ |
| 82 | |
| 83 | /* |
| 84 | * Locking Notes |
| 85 | * |
| 86 | * INC_USE_COUNT and DEC_USE_COUNT keep track of the number of |
| 87 | * open descriptors to this driver. They store it in vwsnd_use_count. |
| 88 | * The global device list, vwsnd_dev_list, is immutable when the IN_USE |
| 89 | * is true. |
| 90 | * |
| 91 | * devc->open_lock is a semaphore that is used to enforce the |
| 92 | * single reader/single writer rule for /dev/audio. The rule is |
| 93 | * that each device may have at most one reader and one writer. |
| 94 | * Open will block until the previous client has closed the |
| 95 | * device, unless O_NONBLOCK is specified. |
| 96 | * |
| 97 | * The semaphore devc->io_sema serializes PCM I/O syscalls. This |
| 98 | * is unnecessary in Linux 2.2, because the kernel lock |
| 99 | * serializes read, write, and ioctl globally, but it's there, |
| 100 | * ready for the brave, new post-kernel-lock world. |
| 101 | * |
| 102 | * Locking between interrupt and baselevel is handled by the |
| 103 | * "lock" spinlock in vwsnd_port (one lock each for read and |
| 104 | * write). Each half holds the lock just long enough to see what |
| 105 | * area it owns and update its pointers. See pcm_output() and |
| 106 | * pcm_input() for most of the gory stuff. |
| 107 | * |
| 108 | * devc->mix_sema serializes all mixer ioctls. This is also |
| 109 | * redundant because of the kernel lock. |
| 110 | * |
| 111 | * The lowest level lock is lith->lithium_lock. It is a |
| 112 | * spinlock which is held during the two-register tango of |
| 113 | * reading/writing an AD1843 register. See |
| 114 | * li_{read,write}_ad1843_reg(). |
| 115 | */ |
| 116 | |
| 117 | /* |
| 118 | * Sample Format Notes |
| 119 | * |
| 120 | * Lithium's DMA engine has two formats: 16-bit 2's complement |
| 121 | * and 8-bit unsigned . 16-bit transfers the data unmodified, 2 |
| 122 | * bytes per sample. 8-bit unsigned transfers 1 byte per sample |
| 123 | * and XORs each byte with 0x80. Lithium can input or output |
| 124 | * either mono or stereo in either format. |
| 125 | * |
| 126 | * The AD1843 has four formats: 16-bit 2's complement, 8-bit |
| 127 | * unsigned, 8-bit mu-Law and 8-bit A-Law. |
| 128 | * |
| 129 | * This driver supports five formats: AFMT_S8, AFMT_U8, |
| 130 | * AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE. |
| 131 | * |
| 132 | * For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and |
| 133 | * rely on Lithium's XOR to translate between U8 and S8. |
| 134 | * |
| 135 | * For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR |
| 136 | * the 0x80 bit in software to compensate for Lithium's XOR. |
| 137 | * This happens in pcm_copy_{in,out}(). |
| 138 | * |
| 139 | * Changes: |
| 140 | * 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org> |
| 141 | * Added some __init/__exit |
| 142 | */ |
| 143 | |
| 144 | #include <linux/module.h> |
| 145 | #include <linux/init.h> |
| 146 | |
| 147 | #include <linux/spinlock.h> |
| 148 | #include <linux/smp_lock.h> |
| 149 | #include <linux/wait.h> |
| 150 | #include <linux/interrupt.h> |
| 151 | #include <asm/semaphore.h> |
| 152 | #include <asm/mach-visws/cobalt.h> |
| 153 | |
| 154 | #include "sound_config.h" |
| 155 | |
| 156 | /*****************************************************************************/ |
| 157 | /* debug stuff */ |
| 158 | |
| 159 | #ifdef VWSND_DEBUG |
| 160 | |
| 161 | static int shut_up = 1; |
| 162 | |
| 163 | /* |
| 164 | * dbgassert - called when an assertion fails. |
| 165 | */ |
| 166 | |
| 167 | static void dbgassert(const char *fcn, int line, const char *expr) |
| 168 | { |
| 169 | if (in_interrupt()) |
| 170 | panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n", |
| 171 | __FILE__, fcn, line, expr); |
| 172 | else { |
| 173 | int x; |
| 174 | printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n", |
| 175 | __FILE__, fcn, line, expr); |
| 176 | x = * (volatile int *) 0; /* force proc to exit */ |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * Bunch of useful debug macros: |
| 182 | * |
| 183 | * ASSERT - print unless e nonzero (panic if in interrupt) |
| 184 | * DBGDO - include arbitrary code if debugging |
| 185 | * DBGX - debug print raw (w/o function name) |
| 186 | * DBGP - debug print w/ function name |
| 187 | * DBGE - debug print function entry |
| 188 | * DBGC - debug print function call |
| 189 | * DBGR - debug print function return |
| 190 | * DBGXV - debug print raw when verbose |
| 191 | * DBGPV - debug print when verbose |
| 192 | * DBGEV - debug print function entry when verbose |
| 193 | * DBGRV - debug print function return when verbose |
| 194 | */ |
| 195 | |
| 196 | #define ASSERT(e) ((e) ? (void) 0 : dbgassert(__FUNCTION__, __LINE__, #e)) |
| 197 | #define DBGDO(x) x |
| 198 | #define DBGX(fmt, args...) (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args)) |
| 199 | #define DBGP(fmt, args...) (DBGX("%s: " fmt, __FUNCTION__ , ##args)) |
| 200 | #define DBGE(fmt, args...) (DBGX("%s" fmt, __FUNCTION__ , ##args)) |
| 201 | #define DBGC(rtn) (DBGP("calling %s\n", rtn)) |
| 202 | #define DBGR() (DBGP("returning\n")) |
| 203 | #define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args)) |
| 204 | #define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args)) |
| 205 | #define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args)) |
| 206 | #define DBGCV(rtn) (shut_up ? 0 : DBGC(rtn)) |
| 207 | #define DBGRV() (shut_up ? 0 : DBGR()) |
| 208 | |
| 209 | #else /* !VWSND_DEBUG */ |
| 210 | |
| 211 | #define ASSERT(e) ((void) 0) |
| 212 | #define DBGDO(x) /* don't */ |
| 213 | #define DBGX(fmt, args...) ((void) 0) |
| 214 | #define DBGP(fmt, args...) ((void) 0) |
| 215 | #define DBGE(fmt, args...) ((void) 0) |
| 216 | #define DBGC(rtn) ((void) 0) |
| 217 | #define DBGR() ((void) 0) |
| 218 | #define DBGPV(fmt, args...) ((void) 0) |
| 219 | #define DBGXV(fmt, args...) ((void) 0) |
| 220 | #define DBGEV(fmt, args...) ((void) 0) |
| 221 | #define DBGCV(rtn) ((void) 0) |
| 222 | #define DBGRV() ((void) 0) |
| 223 | |
| 224 | #endif /* !VWSND_DEBUG */ |
| 225 | |
| 226 | /*****************************************************************************/ |
| 227 | /* low level lithium access */ |
| 228 | |
| 229 | /* |
| 230 | * We need to talk to Lithium registers on three pages. Here are |
| 231 | * the pages' offsets from the base address (0xFF001000). |
| 232 | */ |
| 233 | |
| 234 | enum { |
| 235 | LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */ |
| 236 | LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */ |
| 237 | LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */ |
| 238 | }; |
| 239 | |
| 240 | /* low-level lithium data */ |
| 241 | |
| 242 | typedef struct lithium { |
| 243 | void * page0; /* virtual addresses */ |
| 244 | void * page1; |
| 245 | void * page2; |
| 246 | spinlock_t lock; /* protects codec and UST/MSC access */ |
| 247 | } lithium_t; |
| 248 | |
| 249 | /* |
| 250 | * li_create initializes the lithium_t structure and sets up vm mappings |
| 251 | * to access the registers. |
| 252 | * Returns 0 on success, -errno on failure. |
| 253 | */ |
| 254 | |
| 255 | static int __init li_create(lithium_t *lith, unsigned long baseaddr) |
| 256 | { |
| 257 | static void li_destroy(lithium_t *); |
| 258 | |
| 259 | spin_lock_init(&lith->lock); |
| 260 | lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE); |
| 261 | lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE); |
| 262 | lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE); |
| 263 | if (!lith->page0 || !lith->page1 || !lith->page2) { |
| 264 | li_destroy(lith); |
| 265 | return -ENOMEM; |
| 266 | } |
| 267 | return 0; |
| 268 | } |
| 269 | |
| 270 | /* |
| 271 | * li_destroy destroys the lithium_t structure and vm mappings. |
| 272 | */ |
| 273 | |
| 274 | static void li_destroy(lithium_t *lith) |
| 275 | { |
| 276 | if (lith->page0) { |
| 277 | iounmap(lith->page0); |
| 278 | lith->page0 = NULL; |
| 279 | } |
| 280 | if (lith->page1) { |
| 281 | iounmap(lith->page1); |
| 282 | lith->page1 = NULL; |
| 283 | } |
| 284 | if (lith->page2) { |
| 285 | iounmap(lith->page2); |
| 286 | lith->page2 = NULL; |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * basic register accessors - read/write long/byte |
| 292 | */ |
| 293 | |
| 294 | static __inline__ unsigned long li_readl(lithium_t *lith, int off) |
| 295 | { |
| 296 | return * (volatile unsigned long *) (lith->page0 + off); |
| 297 | } |
| 298 | |
| 299 | static __inline__ unsigned char li_readb(lithium_t *lith, int off) |
| 300 | { |
| 301 | return * (volatile unsigned char *) (lith->page0 + off); |
| 302 | } |
| 303 | |
| 304 | static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val) |
| 305 | { |
| 306 | * (volatile unsigned long *) (lith->page0 + off) = val; |
| 307 | } |
| 308 | |
| 309 | static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val) |
| 310 | { |
| 311 | * (volatile unsigned char *) (lith->page0 + off) = val; |
| 312 | } |
| 313 | |
| 314 | /*****************************************************************************/ |
| 315 | /* High Level Lithium Access */ |
| 316 | |
| 317 | /* |
| 318 | * Lithium DMA Notes |
| 319 | * |
| 320 | * Lithium has two dedicated DMA channels for audio. They are known |
| 321 | * as comm1 and comm2 (communication areas 1 and 2). Comm1 is for |
| 322 | * input, and comm2 is for output. Each is controlled by three |
| 323 | * registers: BASE (base address), CFG (config) and CCTL |
| 324 | * (config/control). |
| 325 | * |
| 326 | * Each DMA channel points to a physically contiguous ring buffer in |
| 327 | * main memory of up to 8 Kbytes. (This driver always uses 8 Kb.) |
| 328 | * There are three pointers into the ring buffer: read, write, and |
| 329 | * trigger. The pointers are 8 bits each. Each pointer points to |
| 330 | * 32-byte "chunks" of data. The DMA engine moves 32 bytes at a time, |
| 331 | * so there is no finer-granularity control. |
| 332 | * |
| 333 | * In comm1, the hardware updates the write ptr, and software updates |
| 334 | * the read ptr. In comm2, it's the opposite: hardware updates the |
| 335 | * read ptr, and software updates the write ptr. I designate the |
| 336 | * hardware-updated ptr as the hwptr, and the software-updated ptr as |
| 337 | * the swptr. |
| 338 | * |
| 339 | * The trigger ptr and trigger mask are used to trigger interrupts. |
| 340 | * From the Lithium spec, section 5.6.8, revision of 12/15/1998: |
| 341 | * |
| 342 | * Trigger Mask Value |
| 343 | * |
| 344 | * A three bit wide field that represents a power of two mask |
| 345 | * that is used whenever the trigger pointer is compared to its |
| 346 | * respective read or write pointer. A value of zero here |
| 347 | * implies a mask of 0xFF and a value of seven implies a mask |
| 348 | * 0x01. This value can be used to sub-divide the ring buffer |
| 349 | * into pie sections so that interrupts monitor the progress of |
| 350 | * hardware from section to section. |
| 351 | * |
| 352 | * My interpretation of that is, whenever the hw ptr is updated, it is |
| 353 | * compared with the trigger ptr, and the result is masked by the |
| 354 | * trigger mask. (Actually, by the complement of the trigger mask.) |
| 355 | * If the result is zero, an interrupt is triggered. I.e., interrupt |
| 356 | * if ((hwptr & ~mask) == (trptr & ~mask)). The mask is formed from |
| 357 | * the trigger register value as mask = (1 << (8 - tmreg)) - 1. |
| 358 | * |
| 359 | * In yet different words, setting tmreg to 0 causes an interrupt after |
| 360 | * every 256 DMA chunks (8192 bytes) or once per traversal of the |
| 361 | * ring buffer. Setting it to 7 caues an interrupt every 2 DMA chunks |
| 362 | * (64 bytes) or 128 times per traversal of the ring buffer. |
| 363 | */ |
| 364 | |
| 365 | /* Lithium register offsets and bit definitions */ |
| 366 | |
| 367 | #define LI_HOST_CONTROLLER 0x000 |
| 368 | # define LI_HC_RESET 0x00008000 |
| 369 | # define LI_HC_LINK_ENABLE 0x00004000 |
| 370 | # define LI_HC_LINK_FAILURE 0x00000004 |
| 371 | # define LI_HC_LINK_CODEC 0x00000002 |
| 372 | # define LI_HC_LINK_READY 0x00000001 |
| 373 | |
| 374 | #define LI_INTR_STATUS 0x010 |
| 375 | #define LI_INTR_MASK 0x014 |
| 376 | # define LI_INTR_LINK_ERR 0x00008000 |
| 377 | # define LI_INTR_COMM2_TRIG 0x00000008 |
| 378 | # define LI_INTR_COMM2_UNDERFLOW 0x00000004 |
| 379 | # define LI_INTR_COMM1_TRIG 0x00000002 |
| 380 | # define LI_INTR_COMM1_OVERFLOW 0x00000001 |
| 381 | |
| 382 | #define LI_CODEC_COMMAND 0x018 |
| 383 | # define LI_CC_BUSY 0x00008000 |
| 384 | # define LI_CC_DIR 0x00000080 |
| 385 | # define LI_CC_DIR_RD LI_CC_DIR |
| 386 | # define LI_CC_DIR_WR (!LI_CC_DIR) |
| 387 | # define LI_CC_ADDR_MASK 0x0000007F |
| 388 | |
| 389 | #define LI_CODEC_DATA 0x01C |
| 390 | |
| 391 | #define LI_COMM1_BASE 0x100 |
| 392 | #define LI_COMM1_CTL 0x104 |
| 393 | # define LI_CCTL_RESET 0x80000000 |
| 394 | # define LI_CCTL_SIZE 0x70000000 |
| 395 | # define LI_CCTL_DMA_ENABLE 0x08000000 |
| 396 | # define LI_CCTL_TMASK 0x07000000 /* trigger mask */ |
| 397 | # define LI_CCTL_TPTR 0x00FF0000 /* trigger pointer */ |
| 398 | # define LI_CCTL_RPTR 0x0000FF00 |
| 399 | # define LI_CCTL_WPTR 0x000000FF |
| 400 | #define LI_COMM1_CFG 0x108 |
| 401 | # define LI_CCFG_LOCK 0x00008000 |
| 402 | # define LI_CCFG_SLOT 0x00000070 |
| 403 | # define LI_CCFG_DIRECTION 0x00000008 |
| 404 | # define LI_CCFG_DIR_IN (!LI_CCFG_DIRECTION) |
| 405 | # define LI_CCFG_DIR_OUT LI_CCFG_DIRECTION |
| 406 | # define LI_CCFG_MODE 0x00000004 |
| 407 | # define LI_CCFG_MODE_MONO (!LI_CCFG_MODE) |
| 408 | # define LI_CCFG_MODE_STEREO LI_CCFG_MODE |
| 409 | # define LI_CCFG_FORMAT 0x00000003 |
| 410 | # define LI_CCFG_FMT_8BIT 0x00000000 |
| 411 | # define LI_CCFG_FMT_16BIT 0x00000001 |
| 412 | #define LI_COMM2_BASE 0x10C |
| 413 | #define LI_COMM2_CTL 0x110 |
| 414 | /* bit definitions are the same as LI_COMM1_CTL */ |
| 415 | #define LI_COMM2_CFG 0x114 |
| 416 | /* bit definitions are the same as LI_COMM1_CFG */ |
| 417 | |
| 418 | #define LI_UST_LOW 0x200 /* 64-bit Unadjusted System Time is */ |
| 419 | #define LI_UST_HIGH 0x204 /* microseconds since boot */ |
| 420 | |
| 421 | #define LI_AUDIO1_UST 0x300 /* UST-MSC pairs */ |
| 422 | #define LI_AUDIO1_MSC 0x304 /* MSC (Media Stream Counter) */ |
| 423 | #define LI_AUDIO2_UST 0x308 /* counts samples actually */ |
| 424 | #define LI_AUDIO2_MSC 0x30C /* processed as of time UST */ |
| 425 | |
| 426 | /* |
| 427 | * Lithium's DMA engine operates on chunks of 32 bytes. We call that |
| 428 | * a DMACHUNK. |
| 429 | */ |
| 430 | |
| 431 | #define DMACHUNK_SHIFT 5 |
| 432 | #define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT) |
| 433 | #define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT) |
| 434 | #define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT) |
| 435 | |
| 436 | /* |
| 437 | * Two convenient macros to shift bitfields into/out of position. |
| 438 | * |
| 439 | * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)). |
| 440 | * As long as mask is constant, we trust the compiler will change the |
| 441 | * multipy and divide into shifts. |
| 442 | */ |
| 443 | |
| 444 | #define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask)) |
| 445 | #define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask))) |
| 446 | |
| 447 | /* |
| 448 | * dma_chan_desc is invariant information about a Lithium |
| 449 | * DMA channel. There are two instances, li_comm1 and li_comm2. |
| 450 | * |
| 451 | * Note that the CCTL register fields are write ptr and read ptr, but what |
| 452 | * we care about are which pointer is updated by software and which by |
| 453 | * hardware. |
| 454 | */ |
| 455 | |
| 456 | typedef struct dma_chan_desc { |
| 457 | int basereg; |
| 458 | int cfgreg; |
| 459 | int ctlreg; |
| 460 | int hwptrreg; |
| 461 | int swptrreg; |
| 462 | int ustreg; |
| 463 | int mscreg; |
| 464 | unsigned long swptrmask; |
| 465 | int ad1843_slot; |
| 466 | int direction; /* LI_CCTL_DIR_IN/OUT */ |
| 467 | } dma_chan_desc_t; |
| 468 | |
| 469 | static const dma_chan_desc_t li_comm1 = { |
| 470 | LI_COMM1_BASE, /* base register offset */ |
| 471 | LI_COMM1_CFG, /* config register offset */ |
| 472 | LI_COMM1_CTL, /* control register offset */ |
| 473 | LI_COMM1_CTL + 0, /* hw ptr reg offset (write ptr) */ |
| 474 | LI_COMM1_CTL + 1, /* sw ptr reg offset (read ptr) */ |
| 475 | LI_AUDIO1_UST, /* ust reg offset */ |
| 476 | LI_AUDIO1_MSC, /* msc reg offset */ |
| 477 | LI_CCTL_RPTR, /* sw ptr bitmask in ctlval */ |
| 478 | 2, /* ad1843 serial slot */ |
| 479 | LI_CCFG_DIR_IN /* direction */ |
| 480 | }; |
| 481 | |
| 482 | static const dma_chan_desc_t li_comm2 = { |
| 483 | LI_COMM2_BASE, /* base register offset */ |
| 484 | LI_COMM2_CFG, /* config register offset */ |
| 485 | LI_COMM2_CTL, /* control register offset */ |
| 486 | LI_COMM2_CTL + 1, /* hw ptr reg offset (read ptr) */ |
| 487 | LI_COMM2_CTL + 0, /* sw ptr reg offset (writr ptr) */ |
| 488 | LI_AUDIO2_UST, /* ust reg offset */ |
| 489 | LI_AUDIO2_MSC, /* msc reg offset */ |
| 490 | LI_CCTL_WPTR, /* sw ptr bitmask in ctlval */ |
| 491 | 2, /* ad1843 serial slot */ |
| 492 | LI_CCFG_DIR_OUT /* direction */ |
| 493 | }; |
| 494 | |
| 495 | /* |
| 496 | * dma_chan is variable information about a Lithium DMA channel. |
| 497 | * |
| 498 | * The desc field points to invariant information. |
| 499 | * The lith field points to a lithium_t which is passed |
| 500 | * to li_read* and li_write* to access the registers. |
| 501 | * The *val fields shadow the lithium registers' contents. |
| 502 | */ |
| 503 | |
| 504 | typedef struct dma_chan { |
| 505 | const dma_chan_desc_t *desc; |
| 506 | lithium_t *lith; |
| 507 | unsigned long baseval; |
| 508 | unsigned long cfgval; |
| 509 | unsigned long ctlval; |
| 510 | } dma_chan_t; |
| 511 | |
| 512 | /* |
| 513 | * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter). |
| 514 | * UST is time in microseconds since the system booted, and MSC is a |
| 515 | * counter that increments with every audio sample. |
| 516 | */ |
| 517 | |
| 518 | typedef struct ustmsc { |
| 519 | unsigned long long ust; |
| 520 | unsigned long msc; |
| 521 | } ustmsc_t; |
| 522 | |
| 523 | /* |
| 524 | * li_ad1843_wait waits until lithium says the AD1843 register |
| 525 | * exchange is not busy. Returns 0 on success, -EBUSY on timeout. |
| 526 | * |
| 527 | * Locking: must be called with lithium_lock held. |
| 528 | */ |
| 529 | |
| 530 | static int li_ad1843_wait(lithium_t *lith) |
| 531 | { |
| 532 | unsigned long later = jiffies + 2; |
| 533 | while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY) |
| 534 | if (time_after_eq(jiffies, later)) |
| 535 | return -EBUSY; |
| 536 | return 0; |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register. |
| 541 | * |
| 542 | * Returns unsigned register value on success, -errno on failure. |
| 543 | */ |
| 544 | |
| 545 | static int li_read_ad1843_reg(lithium_t *lith, int reg) |
| 546 | { |
| 547 | int val; |
| 548 | |
| 549 | ASSERT(!in_interrupt()); |
| 550 | spin_lock(&lith->lock); |
| 551 | { |
| 552 | val = li_ad1843_wait(lith); |
| 553 | if (val == 0) { |
| 554 | li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg); |
| 555 | val = li_ad1843_wait(lith); |
| 556 | } |
| 557 | if (val == 0) |
| 558 | val = li_readl(lith, LI_CODEC_DATA); |
| 559 | } |
| 560 | spin_unlock(&lith->lock); |
| 561 | |
| 562 | DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n", |
| 563 | lith, reg, val); |
| 564 | |
| 565 | return val; |
| 566 | } |
| 567 | |
| 568 | /* |
| 569 | * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register. |
| 570 | */ |
| 571 | |
| 572 | static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval) |
| 573 | { |
| 574 | spin_lock(&lith->lock); |
| 575 | { |
| 576 | if (li_ad1843_wait(lith) == 0) { |
| 577 | li_writel(lith, LI_CODEC_DATA, newval); |
| 578 | li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg); |
| 579 | } |
| 580 | } |
| 581 | spin_unlock(&lith->lock); |
| 582 | } |
| 583 | |
| 584 | /* |
| 585 | * li_setup_dma calculates all the register settings for DMA in a particular |
| 586 | * mode. It takes too many arguments. |
| 587 | */ |
| 588 | |
| 589 | static void li_setup_dma(dma_chan_t *chan, |
| 590 | const dma_chan_desc_t *desc, |
| 591 | lithium_t *lith, |
| 592 | unsigned long buffer_paddr, |
| 593 | int bufshift, |
| 594 | int fragshift, |
| 595 | int channels, |
| 596 | int sampsize) |
| 597 | { |
| 598 | unsigned long mode, format; |
| 599 | unsigned long size, tmask; |
| 600 | |
| 601 | DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, " |
| 602 | "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n", |
| 603 | chan, desc, lith, buffer_paddr, |
| 604 | bufshift, fragshift, channels, sampsize); |
| 605 | |
| 606 | /* Reset the channel first. */ |
| 607 | |
| 608 | li_writel(lith, desc->ctlreg, LI_CCTL_RESET); |
| 609 | |
| 610 | ASSERT(channels == 1 || channels == 2); |
| 611 | if (channels == 2) |
| 612 | mode = LI_CCFG_MODE_STEREO; |
| 613 | else |
| 614 | mode = LI_CCFG_MODE_MONO; |
| 615 | ASSERT(sampsize == 1 || sampsize == 2); |
| 616 | if (sampsize == 2) |
| 617 | format = LI_CCFG_FMT_16BIT; |
| 618 | else |
| 619 | format = LI_CCFG_FMT_8BIT; |
| 620 | chan->desc = desc; |
| 621 | chan->lith = lith; |
| 622 | |
| 623 | /* |
| 624 | * Lithium DMA address register takes a 40-bit physical |
| 625 | * address, right-shifted by 8 so it fits in 32 bits. Bit 37 |
| 626 | * must be set -- it enables cache coherence. |
| 627 | */ |
| 628 | |
| 629 | ASSERT(!(buffer_paddr & 0xFF)); |
| 630 | chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8); |
| 631 | |
| 632 | chan->cfgval = (!LI_CCFG_LOCK | |
| 633 | SHIFT_FIELD(desc->ad1843_slot, LI_CCFG_SLOT) | |
| 634 | desc->direction | |
| 635 | mode | |
| 636 | format); |
| 637 | |
| 638 | size = bufshift - 6; |
| 639 | tmask = 13 - fragshift; /* See Lithium DMA Notes above. */ |
| 640 | ASSERT(size >= 2 && size <= 7); |
| 641 | ASSERT(tmask >= 1 && tmask <= 7); |
| 642 | chan->ctlval = (!LI_CCTL_RESET | |
| 643 | SHIFT_FIELD(size, LI_CCTL_SIZE) | |
| 644 | !LI_CCTL_DMA_ENABLE | |
| 645 | SHIFT_FIELD(tmask, LI_CCTL_TMASK) | |
| 646 | SHIFT_FIELD(0, LI_CCTL_TPTR)); |
| 647 | |
| 648 | DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval); |
| 649 | DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval); |
| 650 | DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval); |
| 651 | |
| 652 | li_writel(lith, desc->basereg, chan->baseval); |
| 653 | li_writel(lith, desc->cfgreg, chan->cfgval); |
| 654 | li_writel(lith, desc->ctlreg, chan->ctlval); |
| 655 | |
| 656 | DBGRV(); |
| 657 | } |
| 658 | |
| 659 | static void li_shutdown_dma(dma_chan_t *chan) |
| 660 | { |
| 661 | lithium_t *lith = chan->lith; |
| 662 | void * lith1 = lith->page1; |
| 663 | |
| 664 | DBGEV("(chan=0x%p)\n", chan); |
| 665 | |
| 666 | chan->ctlval &= ~LI_CCTL_DMA_ENABLE; |
| 667 | DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval); |
| 668 | li_writel(lith, chan->desc->ctlreg, chan->ctlval); |
| 669 | |
| 670 | /* |
| 671 | * Offset 0x500 on Lithium page 1 is an undocumented, |
| 672 | * unsupported register that holds the zero sample value. |
| 673 | * Lithium is supposed to output zero samples when DMA is |
| 674 | * inactive, and repeat the last sample when DMA underflows. |
| 675 | * But it has a bug, where, after underflow occurs, the zero |
| 676 | * sample is not reset. |
| 677 | * |
| 678 | * I expect this to break in a future rev of Lithium. |
| 679 | */ |
| 680 | |
| 681 | if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT) |
| 682 | * (volatile unsigned long *) (lith1 + 0x500) = 0; |
| 683 | } |
| 684 | |
| 685 | /* |
| 686 | * li_activate_dma always starts dma at the beginning of the buffer. |
| 687 | * |
| 688 | * N.B., these may be called from interrupt. |
| 689 | */ |
| 690 | |
| 691 | static __inline__ void li_activate_dma(dma_chan_t *chan) |
| 692 | { |
| 693 | chan->ctlval |= LI_CCTL_DMA_ENABLE; |
| 694 | DBGPV("ctlval = 0x%lx\n", chan->ctlval); |
| 695 | li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval); |
| 696 | } |
| 697 | |
| 698 | static void li_deactivate_dma(dma_chan_t *chan) |
| 699 | { |
| 700 | lithium_t *lith = chan->lith; |
| 701 | void * lith2 = lith->page2; |
| 702 | |
| 703 | chan->ctlval &= ~(LI_CCTL_DMA_ENABLE | LI_CCTL_RPTR | LI_CCTL_WPTR); |
| 704 | DBGPV("ctlval = 0x%lx\n", chan->ctlval); |
| 705 | DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval); |
| 706 | li_writel(lith, chan->desc->ctlreg, chan->ctlval); |
| 707 | |
| 708 | /* |
| 709 | * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented, |
| 710 | * unsupported registers that are internal copies of the DMA |
| 711 | * read and write pointers. Because of a Lithium bug, these |
| 712 | * registers aren't zeroed correctly when DMA is shut off. So |
| 713 | * we whack them directly. |
| 714 | * |
| 715 | * I expect this to break in a future rev of Lithium. |
| 716 | */ |
| 717 | |
| 718 | if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) { |
| 719 | * (volatile unsigned long *) (lith2 + 0x98) = 0; |
| 720 | * (volatile unsigned long *) (lith2 + 0x9C) = 0; |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | /* |
| 725 | * read/write the ring buffer pointers. These routines' arguments and results |
| 726 | * are byte offsets from the beginning of the ring buffer. |
| 727 | */ |
| 728 | |
| 729 | static __inline__ int li_read_swptr(dma_chan_t *chan) |
| 730 | { |
| 731 | const unsigned long mask = chan->desc->swptrmask; |
| 732 | |
| 733 | return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask)); |
| 734 | } |
| 735 | |
| 736 | static __inline__ int li_read_hwptr(dma_chan_t *chan) |
| 737 | { |
| 738 | return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg)); |
| 739 | } |
| 740 | |
| 741 | static __inline__ void li_write_swptr(dma_chan_t *chan, int val) |
| 742 | { |
| 743 | const unsigned long mask = chan->desc->swptrmask; |
| 744 | |
| 745 | ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF))); |
| 746 | val = BYTES_TO_CHUNKS(val); |
| 747 | chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask); |
| 748 | li_writeb(chan->lith, chan->desc->swptrreg, val); |
| 749 | } |
| 750 | |
| 751 | /* li_read_USTMSC() returns a UST/MSC pair for the given channel. */ |
| 752 | |
| 753 | static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc) |
| 754 | { |
| 755 | lithium_t *lith = chan->lith; |
| 756 | const dma_chan_desc_t *desc = chan->desc; |
| 757 | unsigned long now_low, now_high0, now_high1, chan_ust; |
| 758 | |
| 759 | spin_lock(&lith->lock); |
| 760 | { |
| 761 | /* |
| 762 | * retry until we do all five reads without the |
| 763 | * high word changing. (High word increments |
| 764 | * every 2^32 microseconds, i.e., not often) |
| 765 | */ |
| 766 | do { |
| 767 | now_high0 = li_readl(lith, LI_UST_HIGH); |
| 768 | now_low = li_readl(lith, LI_UST_LOW); |
| 769 | |
| 770 | /* |
| 771 | * Lithium guarantees these two reads will be |
| 772 | * atomic -- ust will not increment after msc |
| 773 | * is read. |
| 774 | */ |
| 775 | |
| 776 | ustmsc->msc = li_readl(lith, desc->mscreg); |
| 777 | chan_ust = li_readl(lith, desc->ustreg); |
| 778 | |
| 779 | now_high1 = li_readl(lith, LI_UST_HIGH); |
| 780 | } while (now_high0 != now_high1); |
| 781 | } |
| 782 | spin_unlock(&lith->lock); |
| 783 | ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust); |
| 784 | } |
| 785 | |
| 786 | static void li_enable_interrupts(lithium_t *lith, unsigned int mask) |
| 787 | { |
| 788 | DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask); |
| 789 | |
| 790 | /* clear any already-pending interrupts. */ |
| 791 | |
| 792 | li_writel(lith, LI_INTR_STATUS, mask); |
| 793 | |
| 794 | /* enable the interrupts. */ |
| 795 | |
| 796 | mask |= li_readl(lith, LI_INTR_MASK); |
| 797 | li_writel(lith, LI_INTR_MASK, mask); |
| 798 | } |
| 799 | |
| 800 | static void li_disable_interrupts(lithium_t *lith, unsigned int mask) |
| 801 | { |
| 802 | unsigned int keepmask; |
| 803 | |
| 804 | DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask); |
| 805 | |
| 806 | /* disable the interrupts */ |
| 807 | |
| 808 | keepmask = li_readl(lith, LI_INTR_MASK) & ~mask; |
| 809 | li_writel(lith, LI_INTR_MASK, keepmask); |
| 810 | |
| 811 | /* clear any pending interrupts. */ |
| 812 | |
| 813 | li_writel(lith, LI_INTR_STATUS, mask); |
| 814 | } |
| 815 | |
| 816 | /* Get the interrupt status and clear all pending interrupts. */ |
| 817 | |
| 818 | static unsigned int li_get_clear_intr_status(lithium_t *lith) |
| 819 | { |
| 820 | unsigned int status; |
| 821 | |
| 822 | status = li_readl(lith, LI_INTR_STATUS); |
| 823 | li_writel(lith, LI_INTR_STATUS, ~0); |
| 824 | return status & li_readl(lith, LI_INTR_MASK); |
| 825 | } |
| 826 | |
| 827 | static int li_init(lithium_t *lith) |
| 828 | { |
| 829 | /* 1. System power supplies stabilize. */ |
| 830 | |
| 831 | /* 2. Assert the ~RESET signal. */ |
| 832 | |
| 833 | li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET); |
| 834 | udelay(1); |
| 835 | |
| 836 | /* 3. Deassert the ~RESET signal and enter a wait period to allow |
| 837 | the AD1843 internal clocks and the external crystal oscillator |
| 838 | to stabilize. */ |
| 839 | |
| 840 | li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE); |
| 841 | udelay(1); |
| 842 | |
| 843 | return 0; |
| 844 | } |
| 845 | |
| 846 | /*****************************************************************************/ |
| 847 | /* AD1843 access */ |
| 848 | |
| 849 | /* |
| 850 | * AD1843 bitfield definitions. All are named as in the AD1843 data |
| 851 | * sheet, with ad1843_ prepended and individual bit numbers removed. |
| 852 | * |
| 853 | * E.g., bits LSS0 through LSS2 become ad1843_LSS. |
| 854 | * |
| 855 | * Only the bitfields we need are defined. |
| 856 | */ |
| 857 | |
| 858 | typedef struct ad1843_bitfield { |
| 859 | char reg; |
| 860 | char lo_bit; |
| 861 | char nbits; |
| 862 | } ad1843_bitfield_t; |
| 863 | |
| 864 | static const ad1843_bitfield_t |
| 865 | ad1843_PDNO = { 0, 14, 1 }, /* Converter Power-Down Flag */ |
| 866 | ad1843_INIT = { 0, 15, 1 }, /* Clock Initialization Flag */ |
| 867 | ad1843_RIG = { 2, 0, 4 }, /* Right ADC Input Gain */ |
| 868 | ad1843_RMGE = { 2, 4, 1 }, /* Right ADC Mic Gain Enable */ |
| 869 | ad1843_RSS = { 2, 5, 3 }, /* Right ADC Source Select */ |
| 870 | ad1843_LIG = { 2, 8, 4 }, /* Left ADC Input Gain */ |
| 871 | ad1843_LMGE = { 2, 12, 1 }, /* Left ADC Mic Gain Enable */ |
| 872 | ad1843_LSS = { 2, 13, 3 }, /* Left ADC Source Select */ |
| 873 | ad1843_RX1M = { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */ |
| 874 | ad1843_RX1MM = { 4, 7, 1 }, /* Right Aux 1 Mix Mute */ |
| 875 | ad1843_LX1M = { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */ |
| 876 | ad1843_LX1MM = { 4, 15, 1 }, /* Left Aux 1 Mix Mute */ |
| 877 | ad1843_RX2M = { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */ |
| 878 | ad1843_RX2MM = { 5, 7, 1 }, /* Right Aux 2 Mix Mute */ |
| 879 | ad1843_LX2M = { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */ |
| 880 | ad1843_LX2MM = { 5, 15, 1 }, /* Left Aux 2 Mix Mute */ |
| 881 | ad1843_RMCM = { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */ |
| 882 | ad1843_RMCMM = { 7, 7, 1 }, /* Right Mic Mix Mute */ |
| 883 | ad1843_LMCM = { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */ |
| 884 | ad1843_LMCMM = { 7, 15, 1 }, /* Left Mic Mix Mute */ |
| 885 | ad1843_HPOS = { 8, 4, 1 }, /* Headphone Output Voltage Swing */ |
| 886 | ad1843_HPOM = { 8, 5, 1 }, /* Headphone Output Mute */ |
| 887 | ad1843_RDA1G = { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */ |
| 888 | ad1843_RDA1GM = { 9, 7, 1 }, /* Right DAC1 Analog Mute */ |
| 889 | ad1843_LDA1G = { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */ |
| 890 | ad1843_LDA1GM = { 9, 15, 1 }, /* Left DAC1 Analog Mute */ |
| 891 | ad1843_RDA1AM = { 11, 7, 1 }, /* Right DAC1 Digital Mute */ |
| 892 | ad1843_LDA1AM = { 11, 15, 1 }, /* Left DAC1 Digital Mute */ |
| 893 | ad1843_ADLC = { 15, 0, 2 }, /* ADC Left Sample Rate Source */ |
| 894 | ad1843_ADRC = { 15, 2, 2 }, /* ADC Right Sample Rate Source */ |
| 895 | ad1843_DA1C = { 15, 8, 2 }, /* DAC1 Sample Rate Source */ |
| 896 | ad1843_C1C = { 17, 0, 16 }, /* Clock 1 Sample Rate Select */ |
| 897 | ad1843_C2C = { 20, 0, 16 }, /* Clock 1 Sample Rate Select */ |
| 898 | ad1843_DAADL = { 25, 4, 2 }, /* Digital ADC Left Source Select */ |
| 899 | ad1843_DAADR = { 25, 6, 2 }, /* Digital ADC Right Source Select */ |
| 900 | ad1843_DRSFLT = { 25, 15, 1 }, /* Digital Reampler Filter Mode */ |
| 901 | ad1843_ADLF = { 26, 0, 2 }, /* ADC Left Channel Data Format */ |
| 902 | ad1843_ADRF = { 26, 2, 2 }, /* ADC Right Channel Data Format */ |
| 903 | ad1843_ADTLK = { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */ |
| 904 | ad1843_SCF = { 26, 7, 1 }, /* SCLK Frequency Select */ |
| 905 | ad1843_DA1F = { 26, 8, 2 }, /* DAC1 Data Format Select */ |
| 906 | ad1843_DA1SM = { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */ |
| 907 | ad1843_ADLEN = { 27, 0, 1 }, /* ADC Left Channel Enable */ |
| 908 | ad1843_ADREN = { 27, 1, 1 }, /* ADC Right Channel Enable */ |
| 909 | ad1843_AAMEN = { 27, 4, 1 }, /* Analog to Analog Mix Enable */ |
| 910 | ad1843_ANAEN = { 27, 7, 1 }, /* Analog Channel Enable */ |
| 911 | ad1843_DA1EN = { 27, 8, 1 }, /* DAC1 Enable */ |
| 912 | ad1843_DA2EN = { 27, 9, 1 }, /* DAC2 Enable */ |
| 913 | ad1843_C1EN = { 28, 11, 1 }, /* Clock Generator 1 Enable */ |
| 914 | ad1843_C2EN = { 28, 12, 1 }, /* Clock Generator 2 Enable */ |
| 915 | ad1843_PDNI = { 28, 15, 1 }; /* Converter Power Down */ |
| 916 | |
| 917 | /* |
| 918 | * The various registers of the AD1843 use three different formats for |
| 919 | * specifying gain. The ad1843_gain structure parameterizes the |
| 920 | * formats. |
| 921 | */ |
| 922 | |
| 923 | typedef struct ad1843_gain { |
| 924 | |
| 925 | int negative; /* nonzero if gain is negative. */ |
| 926 | const ad1843_bitfield_t *lfield; |
| 927 | const ad1843_bitfield_t *rfield; |
| 928 | |
| 929 | } ad1843_gain_t; |
| 930 | |
| 931 | static const ad1843_gain_t ad1843_gain_RECLEV |
| 932 | = { 0, &ad1843_LIG, &ad1843_RIG }; |
| 933 | static const ad1843_gain_t ad1843_gain_LINE |
| 934 | = { 1, &ad1843_LX1M, &ad1843_RX1M }; |
| 935 | static const ad1843_gain_t ad1843_gain_CD |
| 936 | = { 1, &ad1843_LX2M, &ad1843_RX2M }; |
| 937 | static const ad1843_gain_t ad1843_gain_MIC |
| 938 | = { 1, &ad1843_LMCM, &ad1843_RMCM }; |
| 939 | static const ad1843_gain_t ad1843_gain_PCM |
| 940 | = { 1, &ad1843_LDA1G, &ad1843_RDA1G }; |
| 941 | |
| 942 | /* read the current value of an AD1843 bitfield. */ |
| 943 | |
| 944 | static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field) |
| 945 | { |
| 946 | int w = li_read_ad1843_reg(lith, field->reg); |
| 947 | int val = w >> field->lo_bit & ((1 << field->nbits) - 1); |
| 948 | |
| 949 | DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n", |
| 950 | lith, field->reg, field->lo_bit, field->nbits, val); |
| 951 | |
| 952 | return val; |
| 953 | } |
| 954 | |
| 955 | /* |
| 956 | * write a new value to an AD1843 bitfield and return the old value. |
| 957 | */ |
| 958 | |
| 959 | static int ad1843_write_bits(lithium_t *lith, |
| 960 | const ad1843_bitfield_t *field, |
| 961 | int newval) |
| 962 | { |
| 963 | int w = li_read_ad1843_reg(lith, field->reg); |
| 964 | int mask = ((1 << field->nbits) - 1) << field->lo_bit; |
| 965 | int oldval = (w & mask) >> field->lo_bit; |
| 966 | int newbits = (newval << field->lo_bit) & mask; |
| 967 | w = (w & ~mask) | newbits; |
| 968 | (void) li_write_ad1843_reg(lith, field->reg, w); |
| 969 | |
| 970 | DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) " |
| 971 | "returns 0x%x\n", |
| 972 | lith, field->reg, field->lo_bit, field->nbits, newval, |
| 973 | oldval); |
| 974 | |
| 975 | return oldval; |
| 976 | } |
| 977 | |
| 978 | /* |
| 979 | * ad1843_read_multi reads multiple bitfields from the same AD1843 |
| 980 | * register. It uses a single read cycle to do it. (Reading the |
| 981 | * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20 |
| 982 | * microseconds.) |
| 983 | * |
| 984 | * Called ike this. |
| 985 | * |
| 986 | * ad1843_read_multi(lith, nfields, |
| 987 | * &ad1843_FIELD1, &val1, |
| 988 | * &ad1843_FIELD2, &val2, ...); |
| 989 | */ |
| 990 | |
| 991 | static void ad1843_read_multi(lithium_t *lith, int argcount, ...) |
| 992 | { |
| 993 | va_list ap; |
| 994 | const ad1843_bitfield_t *fp; |
| 995 | int w = 0, mask, *value, reg = -1; |
| 996 | |
| 997 | va_start(ap, argcount); |
| 998 | while (--argcount >= 0) { |
| 999 | fp = va_arg(ap, const ad1843_bitfield_t *); |
| 1000 | value = va_arg(ap, int *); |
| 1001 | if (reg == -1) { |
| 1002 | reg = fp->reg; |
| 1003 | w = li_read_ad1843_reg(lith, reg); |
| 1004 | } |
| 1005 | ASSERT(reg == fp->reg); |
| 1006 | mask = (1 << fp->nbits) - 1; |
| 1007 | *value = w >> fp->lo_bit & mask; |
| 1008 | } |
| 1009 | va_end(ap); |
| 1010 | } |
| 1011 | |
| 1012 | /* |
| 1013 | * ad1843_write_multi stores multiple bitfields into the same AD1843 |
| 1014 | * register. It uses one read and one write cycle to do it. |
| 1015 | * |
| 1016 | * Called like this. |
| 1017 | * |
| 1018 | * ad1843_write_multi(lith, nfields, |
| 1019 | * &ad1843_FIELD1, val1, |
| 1020 | * &ad1843_FIELF2, val2, ...); |
| 1021 | */ |
| 1022 | |
| 1023 | static void ad1843_write_multi(lithium_t *lith, int argcount, ...) |
| 1024 | { |
| 1025 | va_list ap; |
| 1026 | int reg; |
| 1027 | const ad1843_bitfield_t *fp; |
| 1028 | int value; |
| 1029 | int w, m, mask, bits; |
| 1030 | |
| 1031 | mask = 0; |
| 1032 | bits = 0; |
| 1033 | reg = -1; |
| 1034 | |
| 1035 | va_start(ap, argcount); |
| 1036 | while (--argcount >= 0) { |
| 1037 | fp = va_arg(ap, const ad1843_bitfield_t *); |
| 1038 | value = va_arg(ap, int); |
| 1039 | if (reg == -1) |
| 1040 | reg = fp->reg; |
| 1041 | ASSERT(fp->reg == reg); |
| 1042 | m = ((1 << fp->nbits) - 1) << fp->lo_bit; |
| 1043 | mask |= m; |
| 1044 | bits |= (value << fp->lo_bit) & m; |
| 1045 | } |
| 1046 | va_end(ap); |
| 1047 | ASSERT(!(bits & ~mask)); |
| 1048 | if (~mask & 0xFFFF) |
| 1049 | w = li_read_ad1843_reg(lith, reg); |
| 1050 | else |
| 1051 | w = 0; |
| 1052 | w = (w & ~mask) | bits; |
| 1053 | (void) li_write_ad1843_reg(lith, reg, w); |
| 1054 | } |
| 1055 | |
| 1056 | /* |
| 1057 | * ad1843_get_gain reads the specified register and extracts the gain value |
| 1058 | * using the supplied gain type. It returns the gain in OSS format. |
| 1059 | */ |
| 1060 | |
| 1061 | static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp) |
| 1062 | { |
| 1063 | int lg, rg; |
| 1064 | unsigned short mask = (1 << gp->lfield->nbits) - 1; |
| 1065 | |
| 1066 | ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg); |
| 1067 | if (gp->negative) { |
| 1068 | lg = mask - lg; |
| 1069 | rg = mask - rg; |
| 1070 | } |
| 1071 | lg = (lg * 100 + (mask >> 1)) / mask; |
| 1072 | rg = (rg * 100 + (mask >> 1)) / mask; |
| 1073 | return lg << 0 | rg << 8; |
| 1074 | } |
| 1075 | |
| 1076 | /* |
| 1077 | * Set an audio channel's gain. Converts from OSS format to AD1843's |
| 1078 | * format. |
| 1079 | * |
| 1080 | * Returns the new gain, which may be lower than the old gain. |
| 1081 | */ |
| 1082 | |
| 1083 | static int ad1843_set_gain(lithium_t *lith, |
| 1084 | const ad1843_gain_t *gp, |
| 1085 | int newval) |
| 1086 | { |
| 1087 | unsigned short mask = (1 << gp->lfield->nbits) - 1; |
| 1088 | |
| 1089 | int lg = newval >> 0 & 0xFF; |
| 1090 | int rg = newval >> 8; |
| 1091 | if (lg < 0 || lg > 100 || rg < 0 || rg > 100) |
| 1092 | return -EINVAL; |
| 1093 | lg = (lg * mask + (mask >> 1)) / 100; |
| 1094 | rg = (rg * mask + (mask >> 1)) / 100; |
| 1095 | if (gp->negative) { |
| 1096 | lg = mask - lg; |
| 1097 | rg = mask - rg; |
| 1098 | } |
| 1099 | ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg); |
| 1100 | return ad1843_get_gain(lith, gp); |
| 1101 | } |
| 1102 | |
| 1103 | /* Returns the current recording source, in OSS format. */ |
| 1104 | |
| 1105 | static int ad1843_get_recsrc(lithium_t *lith) |
| 1106 | { |
| 1107 | int ls = ad1843_read_bits(lith, &ad1843_LSS); |
| 1108 | |
| 1109 | switch (ls) { |
| 1110 | case 1: |
| 1111 | return SOUND_MASK_MIC; |
| 1112 | case 2: |
| 1113 | return SOUND_MASK_LINE; |
| 1114 | case 3: |
| 1115 | return SOUND_MASK_CD; |
| 1116 | case 6: |
| 1117 | return SOUND_MASK_PCM; |
| 1118 | default: |
| 1119 | ASSERT(0); |
| 1120 | return -1; |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | /* |
| 1125 | * Enable/disable digital resample mode in the AD1843. |
| 1126 | * |
| 1127 | * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down |
| 1128 | * while switching modes. So we save DA1's state (DA2's state is not |
| 1129 | * interesting), power them down, switch into/out of resample mode, |
| 1130 | * power them up, and restore state. |
| 1131 | * |
| 1132 | * This will cause audible glitches if D/A or A/D is going on, so the |
| 1133 | * driver disallows that (in mixer_write_ioctl()). |
| 1134 | * |
| 1135 | * The open question is, is this worth doing? I'm leaving it in, |
| 1136 | * because it's written, but... |
| 1137 | */ |
| 1138 | |
| 1139 | static void ad1843_set_resample_mode(lithium_t *lith, int onoff) |
| 1140 | { |
| 1141 | /* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */ |
| 1142 | int save_da1 = li_read_ad1843_reg(lith, 9); |
| 1143 | |
| 1144 | /* Power down A/D and D/A. */ |
| 1145 | ad1843_write_multi(lith, 4, |
| 1146 | &ad1843_DA1EN, 0, |
| 1147 | &ad1843_DA2EN, 0, |
| 1148 | &ad1843_ADLEN, 0, |
| 1149 | &ad1843_ADREN, 0); |
| 1150 | |
| 1151 | /* Switch mode */ |
| 1152 | ASSERT(onoff == 0 || onoff == 1); |
| 1153 | ad1843_write_bits(lith, &ad1843_DRSFLT, onoff); |
| 1154 | |
| 1155 | /* Power up A/D and D/A. */ |
| 1156 | ad1843_write_multi(lith, 3, |
| 1157 | &ad1843_DA1EN, 1, |
| 1158 | &ad1843_ADLEN, 1, |
| 1159 | &ad1843_ADREN, 1); |
| 1160 | |
| 1161 | /* Restore DA1 mute and gain. */ |
| 1162 | li_write_ad1843_reg(lith, 9, save_da1); |
| 1163 | } |
| 1164 | |
| 1165 | /* |
| 1166 | * Set recording source. Arg newsrc specifies an OSS channel mask. |
| 1167 | * |
| 1168 | * The complication is that when we switch into/out of loopback mode |
| 1169 | * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of |
| 1170 | * digital resampling mode. |
| 1171 | * |
| 1172 | * Returns newsrc on success, -errno on failure. |
| 1173 | */ |
| 1174 | |
| 1175 | static int ad1843_set_recsrc(lithium_t *lith, int newsrc) |
| 1176 | { |
| 1177 | int bits; |
| 1178 | int oldbits; |
| 1179 | |
| 1180 | switch (newsrc) { |
| 1181 | case SOUND_MASK_PCM: |
| 1182 | bits = 6; |
| 1183 | break; |
| 1184 | |
| 1185 | case SOUND_MASK_MIC: |
| 1186 | bits = 1; |
| 1187 | break; |
| 1188 | |
| 1189 | case SOUND_MASK_LINE: |
| 1190 | bits = 2; |
| 1191 | break; |
| 1192 | |
| 1193 | case SOUND_MASK_CD: |
| 1194 | bits = 3; |
| 1195 | break; |
| 1196 | |
| 1197 | default: |
| 1198 | return -EINVAL; |
| 1199 | } |
| 1200 | oldbits = ad1843_read_bits(lith, &ad1843_LSS); |
| 1201 | if (newsrc == SOUND_MASK_PCM && oldbits != 6) { |
| 1202 | DBGP("enabling digital resample mode\n"); |
| 1203 | ad1843_set_resample_mode(lith, 1); |
| 1204 | ad1843_write_multi(lith, 2, |
| 1205 | &ad1843_DAADL, 2, |
| 1206 | &ad1843_DAADR, 2); |
| 1207 | } else if (newsrc != SOUND_MASK_PCM && oldbits == 6) { |
| 1208 | DBGP("disabling digital resample mode\n"); |
| 1209 | ad1843_set_resample_mode(lith, 0); |
| 1210 | ad1843_write_multi(lith, 2, |
| 1211 | &ad1843_DAADL, 0, |
| 1212 | &ad1843_DAADR, 0); |
| 1213 | } |
| 1214 | ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits); |
| 1215 | return newsrc; |
| 1216 | } |
| 1217 | |
| 1218 | /* |
| 1219 | * Return current output sources, in OSS format. |
| 1220 | */ |
| 1221 | |
| 1222 | static int ad1843_get_outsrc(lithium_t *lith) |
| 1223 | { |
| 1224 | int pcm, line, mic, cd; |
| 1225 | |
| 1226 | pcm = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM; |
| 1227 | line = ad1843_read_bits(lith, &ad1843_LX1MM) ? 0 : SOUND_MASK_LINE; |
| 1228 | cd = ad1843_read_bits(lith, &ad1843_LX2MM) ? 0 : SOUND_MASK_CD; |
| 1229 | mic = ad1843_read_bits(lith, &ad1843_LMCMM) ? 0 : SOUND_MASK_MIC; |
| 1230 | |
| 1231 | return pcm | line | cd | mic; |
| 1232 | } |
| 1233 | |
| 1234 | /* |
| 1235 | * Set output sources. Arg is a mask of active sources in OSS format. |
| 1236 | * |
| 1237 | * Returns source mask on success, -errno on failure. |
| 1238 | */ |
| 1239 | |
| 1240 | static int ad1843_set_outsrc(lithium_t *lith, int mask) |
| 1241 | { |
| 1242 | int pcm, line, mic, cd; |
| 1243 | |
| 1244 | if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE | |
| 1245 | SOUND_MASK_CD | SOUND_MASK_MIC)) |
| 1246 | return -EINVAL; |
| 1247 | pcm = (mask & SOUND_MASK_PCM) ? 0 : 1; |
| 1248 | line = (mask & SOUND_MASK_LINE) ? 0 : 1; |
| 1249 | mic = (mask & SOUND_MASK_MIC) ? 0 : 1; |
| 1250 | cd = (mask & SOUND_MASK_CD) ? 0 : 1; |
| 1251 | |
| 1252 | ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm); |
| 1253 | ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line); |
| 1254 | ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd, &ad1843_RX2MM, cd); |
| 1255 | ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic, &ad1843_RMCMM, mic); |
| 1256 | |
| 1257 | return mask; |
| 1258 | } |
| 1259 | |
| 1260 | /* Setup ad1843 for D/A conversion. */ |
| 1261 | |
| 1262 | static void ad1843_setup_dac(lithium_t *lith, |
| 1263 | int framerate, |
| 1264 | int fmt, |
| 1265 | int channels) |
| 1266 | { |
| 1267 | int ad_fmt = 0, ad_mode = 0; |
| 1268 | |
| 1269 | DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n", |
| 1270 | lith, framerate, fmt, channels); |
| 1271 | |
| 1272 | switch (fmt) { |
| 1273 | case AFMT_S8: ad_fmt = 1; break; |
| 1274 | case AFMT_U8: ad_fmt = 1; break; |
| 1275 | case AFMT_S16_LE: ad_fmt = 1; break; |
| 1276 | case AFMT_MU_LAW: ad_fmt = 2; break; |
| 1277 | case AFMT_A_LAW: ad_fmt = 3; break; |
| 1278 | default: ASSERT(0); |
| 1279 | } |
| 1280 | |
| 1281 | switch (channels) { |
| 1282 | case 2: ad_mode = 0; break; |
| 1283 | case 1: ad_mode = 1; break; |
| 1284 | default: ASSERT(0); |
| 1285 | } |
| 1286 | |
| 1287 | DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt); |
| 1288 | ASSERT(framerate >= 4000 && framerate <= 49000); |
| 1289 | ad1843_write_bits(lith, &ad1843_C1C, framerate); |
| 1290 | ad1843_write_multi(lith, 2, |
| 1291 | &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt); |
| 1292 | } |
| 1293 | |
| 1294 | static void ad1843_shutdown_dac(lithium_t *lith) |
| 1295 | { |
| 1296 | ad1843_write_bits(lith, &ad1843_DA1F, 1); |
| 1297 | } |
| 1298 | |
| 1299 | static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels) |
| 1300 | { |
| 1301 | int da_fmt = 0; |
| 1302 | |
| 1303 | DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n", |
| 1304 | lith, framerate, fmt, channels); |
| 1305 | |
| 1306 | switch (fmt) { |
| 1307 | case AFMT_S8: da_fmt = 1; break; |
| 1308 | case AFMT_U8: da_fmt = 1; break; |
| 1309 | case AFMT_S16_LE: da_fmt = 1; break; |
| 1310 | case AFMT_MU_LAW: da_fmt = 2; break; |
| 1311 | case AFMT_A_LAW: da_fmt = 3; break; |
| 1312 | default: ASSERT(0); |
| 1313 | } |
| 1314 | |
| 1315 | DBGPV("da_fmt = %d\n", da_fmt); |
| 1316 | ASSERT(framerate >= 4000 && framerate <= 49000); |
| 1317 | ad1843_write_bits(lith, &ad1843_C2C, framerate); |
| 1318 | ad1843_write_multi(lith, 2, |
| 1319 | &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt); |
| 1320 | } |
| 1321 | |
| 1322 | static void ad1843_shutdown_adc(lithium_t *lith) |
| 1323 | { |
| 1324 | /* nothing to do */ |
| 1325 | } |
| 1326 | |
| 1327 | /* |
| 1328 | * Fully initialize the ad1843. As described in the AD1843 data |
| 1329 | * sheet, section "START-UP SEQUENCE". The numbered comments are |
| 1330 | * subsection headings from the data sheet. See the data sheet, pages |
| 1331 | * 52-54, for more info. |
| 1332 | * |
| 1333 | * return 0 on success, -errno on failure. */ |
| 1334 | |
| 1335 | static int __init ad1843_init(lithium_t *lith) |
| 1336 | { |
| 1337 | unsigned long later; |
| 1338 | int err; |
| 1339 | |
| 1340 | err = li_init(lith); |
| 1341 | if (err) |
| 1342 | return err; |
| 1343 | |
| 1344 | if (ad1843_read_bits(lith, &ad1843_INIT) != 0) { |
| 1345 | printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n"); |
| 1346 | return -EIO; |
| 1347 | } |
| 1348 | |
| 1349 | ad1843_write_bits(lith, &ad1843_SCF, 1); |
| 1350 | |
| 1351 | /* 4. Put the conversion resources into standby. */ |
| 1352 | |
| 1353 | ad1843_write_bits(lith, &ad1843_PDNI, 0); |
| 1354 | later = jiffies + HZ / 2; /* roughly half a second */ |
| 1355 | DBGDO(shut_up++); |
| 1356 | while (ad1843_read_bits(lith, &ad1843_PDNO)) { |
| 1357 | if (time_after(jiffies, later)) { |
| 1358 | printk(KERN_ERR |
| 1359 | "vwsnd audio: AD1843 won't power up\n"); |
| 1360 | return -EIO; |
| 1361 | } |
| 1362 | schedule(); |
| 1363 | } |
| 1364 | DBGDO(shut_up--); |
| 1365 | |
| 1366 | /* 5. Power up the clock generators and enable clock output pins. */ |
| 1367 | |
| 1368 | ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1); |
| 1369 | |
| 1370 | /* 6. Configure conversion resources while they are in standby. */ |
| 1371 | |
| 1372 | /* DAC1 uses clock 1 as source, ADC uses clock 2. Always. */ |
| 1373 | |
| 1374 | ad1843_write_multi(lith, 3, |
| 1375 | &ad1843_DA1C, 1, |
| 1376 | &ad1843_ADLC, 2, |
| 1377 | &ad1843_ADRC, 2); |
| 1378 | |
| 1379 | /* 7. Enable conversion resources. */ |
| 1380 | |
| 1381 | ad1843_write_bits(lith, &ad1843_ADTLK, 1); |
| 1382 | ad1843_write_multi(lith, 5, |
| 1383 | &ad1843_ANAEN, 1, |
| 1384 | &ad1843_AAMEN, 1, |
| 1385 | &ad1843_DA1EN, 1, |
| 1386 | &ad1843_ADLEN, 1, |
| 1387 | &ad1843_ADREN, 1); |
| 1388 | |
| 1389 | /* 8. Configure conversion resources while they are enabled. */ |
| 1390 | |
| 1391 | ad1843_write_bits(lith, &ad1843_DA1C, 1); |
| 1392 | |
| 1393 | /* Unmute all channels. */ |
| 1394 | |
| 1395 | ad1843_set_outsrc(lith, |
| 1396 | (SOUND_MASK_PCM | SOUND_MASK_LINE | |
| 1397 | SOUND_MASK_MIC | SOUND_MASK_CD)); |
| 1398 | ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0); |
| 1399 | |
| 1400 | /* Set default recording source to Line In and set |
| 1401 | * mic gain to +20 dB. |
| 1402 | */ |
| 1403 | |
| 1404 | ad1843_set_recsrc(lith, SOUND_MASK_LINE); |
| 1405 | ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1); |
| 1406 | |
| 1407 | /* Set Speaker Out level to +/- 4V and unmute it. */ |
| 1408 | |
| 1409 | ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0); |
| 1410 | |
| 1411 | return 0; |
| 1412 | } |
| 1413 | |
| 1414 | /*****************************************************************************/ |
| 1415 | /* PCM I/O */ |
| 1416 | |
| 1417 | #define READ_INTR_MASK (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW) |
| 1418 | #define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW) |
| 1419 | |
| 1420 | typedef enum vwsnd_port_swstate { /* software state */ |
| 1421 | SW_OFF, |
| 1422 | SW_INITIAL, |
| 1423 | SW_RUN, |
| 1424 | SW_DRAIN, |
| 1425 | } vwsnd_port_swstate_t; |
| 1426 | |
| 1427 | typedef enum vwsnd_port_hwstate { /* hardware state */ |
| 1428 | HW_STOPPED, |
| 1429 | HW_RUNNING, |
| 1430 | } vwsnd_port_hwstate_t; |
| 1431 | |
| 1432 | /* |
| 1433 | * These flags are read by ISR, but only written at baseline. |
| 1434 | */ |
| 1435 | |
| 1436 | typedef enum vwsnd_port_flags { |
| 1437 | DISABLED = 1 << 0, |
| 1438 | ERFLOWN = 1 << 1, /* overflown or underflown */ |
| 1439 | HW_BUSY = 1 << 2, |
| 1440 | } vwsnd_port_flags_t; |
| 1441 | |
| 1442 | /* |
| 1443 | * vwsnd_port is the per-port data structure. Each device has two |
| 1444 | * ports, one for input and one for output. |
| 1445 | * |
| 1446 | * Locking: |
| 1447 | * |
| 1448 | * port->lock protects: hwstate, flags, swb_[iu]_avail. |
| 1449 | * |
| 1450 | * devc->io_sema protects: swstate, sw_*, swb_[iu]_idx. |
| 1451 | * |
| 1452 | * everything else is only written by open/release or |
| 1453 | * pcm_{setup,shutdown}(), which are serialized by a |
| 1454 | * combination of devc->open_sema and devc->io_sema. |
| 1455 | */ |
| 1456 | |
| 1457 | typedef struct vwsnd_port { |
| 1458 | |
| 1459 | spinlock_t lock; |
| 1460 | wait_queue_head_t queue; |
| 1461 | vwsnd_port_swstate_t swstate; |
| 1462 | vwsnd_port_hwstate_t hwstate; |
| 1463 | vwsnd_port_flags_t flags; |
| 1464 | |
| 1465 | int sw_channels; |
| 1466 | int sw_samplefmt; |
| 1467 | int sw_framerate; |
| 1468 | int sample_size; |
| 1469 | int frame_size; |
| 1470 | unsigned int zero_word; /* zero for the sample format */ |
| 1471 | |
| 1472 | int sw_fragshift; |
| 1473 | int sw_fragcount; |
| 1474 | int sw_subdivshift; |
| 1475 | |
| 1476 | unsigned int hw_fragshift; |
| 1477 | unsigned int hw_fragsize; |
| 1478 | unsigned int hw_fragcount; |
| 1479 | |
| 1480 | int hwbuf_size; |
| 1481 | unsigned long hwbuf_paddr; |
| 1482 | unsigned long hwbuf_vaddr; |
| 1483 | void * hwbuf; /* hwbuf == hwbuf_vaddr */ |
| 1484 | int hwbuf_max; /* max bytes to preload */ |
| 1485 | |
| 1486 | void * swbuf; |
| 1487 | unsigned int swbuf_size; /* size in bytes */ |
| 1488 | unsigned int swb_u_idx; /* index of next user byte */ |
| 1489 | unsigned int swb_i_idx; /* index of next intr byte */ |
| 1490 | unsigned int swb_u_avail; /* # bytes avail to user */ |
| 1491 | unsigned int swb_i_avail; /* # bytes avail to intr */ |
| 1492 | |
| 1493 | dma_chan_t chan; |
| 1494 | |
| 1495 | /* Accounting */ |
| 1496 | |
| 1497 | int byte_count; |
| 1498 | int frag_count; |
| 1499 | int MSC_offset; |
| 1500 | |
| 1501 | } vwsnd_port_t; |
| 1502 | |
| 1503 | /* vwsnd_dev is the per-device data structure. */ |
| 1504 | |
| 1505 | typedef struct vwsnd_dev { |
| 1506 | struct vwsnd_dev *next_dev; |
| 1507 | int audio_minor; /* minor number of audio device */ |
| 1508 | int mixer_minor; /* minor number of mixer device */ |
| 1509 | |
| 1510 | struct semaphore open_sema; |
| 1511 | struct semaphore io_sema; |
| 1512 | struct semaphore mix_sema; |
| 1513 | mode_t open_mode; |
| 1514 | wait_queue_head_t open_wait; |
| 1515 | |
| 1516 | lithium_t lith; |
| 1517 | |
| 1518 | vwsnd_port_t rport; |
| 1519 | vwsnd_port_t wport; |
| 1520 | } vwsnd_dev_t; |
| 1521 | |
| 1522 | static vwsnd_dev_t *vwsnd_dev_list; /* linked list of all devices */ |
| 1523 | |
| 1524 | static atomic_t vwsnd_use_count = ATOMIC_INIT(0); |
| 1525 | |
| 1526 | # define INC_USE_COUNT (atomic_inc(&vwsnd_use_count)) |
| 1527 | # define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count)) |
| 1528 | # define IN_USE (atomic_read(&vwsnd_use_count) != 0) |
| 1529 | |
| 1530 | /* |
| 1531 | * Lithium can only DMA multiples of 32 bytes. Its DMA buffer may |
| 1532 | * be up to 8 Kb. This driver always uses 8 Kb. |
| 1533 | * |
| 1534 | * Memory bug workaround -- I'm not sure what's going on here, but |
| 1535 | * somehow pcm_copy_out() was triggering segv's going on to the next |
| 1536 | * page of the hw buffer. So, I make the hw buffer one size bigger |
| 1537 | * than we actually use. That way, the following page is allocated |
| 1538 | * and mapped, and no error. I suspect that something is broken |
| 1539 | * in Cobalt, but haven't really investigated. HBO is the actual |
| 1540 | * size of the buffer, and HWBUF_ORDER is what we allocate. |
| 1541 | */ |
| 1542 | |
| 1543 | #define HWBUF_SHIFT 13 |
| 1544 | #define HWBUF_SIZE (1 << HWBUF_SHIFT) |
| 1545 | # define HBO (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0) |
| 1546 | # define HWBUF_ORDER (HBO + 1) /* next size bigger */ |
| 1547 | #define MIN_SPEED 4000 |
| 1548 | #define MAX_SPEED 49000 |
| 1549 | |
| 1550 | #define MIN_FRAGSHIFT (DMACHUNK_SHIFT + 1) |
| 1551 | #define MAX_FRAGSHIFT (PAGE_SHIFT) |
| 1552 | #define MIN_FRAGSIZE (1 << MIN_FRAGSHIFT) |
| 1553 | #define MAX_FRAGSIZE (1 << MAX_FRAGSHIFT) |
| 1554 | #define MIN_FRAGCOUNT(fragsize) 3 |
| 1555 | #define MAX_FRAGCOUNT(fragsize) (32 * PAGE_SIZE / (fragsize)) |
| 1556 | #define DEFAULT_FRAGSHIFT 12 |
| 1557 | #define DEFAULT_FRAGCOUNT 16 |
| 1558 | #define DEFAULT_SUBDIVSHIFT 0 |
| 1559 | |
| 1560 | /* |
| 1561 | * The software buffer (swbuf) is a ring buffer shared between user |
| 1562 | * level and interrupt level. Each level owns some of the bytes in |
| 1563 | * the buffer, and may give bytes away by calling swb_inc_{u,i}(). |
| 1564 | * User level calls _u for user, and interrupt level calls _i for |
| 1565 | * interrupt. |
| 1566 | * |
| 1567 | * port->swb_{u,i}_avail is the number of bytes available to that level. |
| 1568 | * |
| 1569 | * port->swb_{u,i}_idx is the index of the first available byte in the |
| 1570 | * buffer. |
| 1571 | * |
| 1572 | * Each level calls swb_inc_{u,i}() to atomically increment its index, |
| 1573 | * recalculate the number of bytes available for both sides, and |
| 1574 | * return the number of bytes available. Since each side can only |
| 1575 | * give away bytes, the other side can only increase the number of |
| 1576 | * bytes available to this side. Each side updates its own index |
| 1577 | * variable, swb_{u,i}_idx, so no lock is needed to read it. |
| 1578 | * |
| 1579 | * To query the number of bytes available, call swb_inc_{u,i} with an |
| 1580 | * increment of zero. |
| 1581 | */ |
| 1582 | |
| 1583 | static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc) |
| 1584 | { |
| 1585 | if (inc) { |
| 1586 | port->swb_u_idx += inc; |
| 1587 | port->swb_u_idx %= port->swbuf_size; |
| 1588 | port->swb_u_avail -= inc; |
| 1589 | port->swb_i_avail += inc; |
| 1590 | } |
| 1591 | return port->swb_u_avail; |
| 1592 | } |
| 1593 | |
| 1594 | static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc) |
| 1595 | { |
| 1596 | unsigned long flags; |
| 1597 | unsigned int ret; |
| 1598 | |
| 1599 | spin_lock_irqsave(&port->lock, flags); |
| 1600 | { |
| 1601 | ret = __swb_inc_u(port, inc); |
| 1602 | } |
| 1603 | spin_unlock_irqrestore(&port->lock, flags); |
| 1604 | return ret; |
| 1605 | } |
| 1606 | |
| 1607 | static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc) |
| 1608 | { |
| 1609 | if (inc) { |
| 1610 | port->swb_i_idx += inc; |
| 1611 | port->swb_i_idx %= port->swbuf_size; |
| 1612 | port->swb_i_avail -= inc; |
| 1613 | port->swb_u_avail += inc; |
| 1614 | } |
| 1615 | return port->swb_i_avail; |
| 1616 | } |
| 1617 | |
| 1618 | static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc) |
| 1619 | { |
| 1620 | unsigned long flags; |
| 1621 | unsigned int ret; |
| 1622 | |
| 1623 | spin_lock_irqsave(&port->lock, flags); |
| 1624 | { |
| 1625 | ret = __swb_inc_i(port, inc); |
| 1626 | } |
| 1627 | spin_unlock_irqrestore(&port->lock, flags); |
| 1628 | return ret; |
| 1629 | } |
| 1630 | |
| 1631 | /* |
| 1632 | * pcm_setup - this routine initializes all port state after |
| 1633 | * mode-setting ioctls have been done, but before the first I/O is |
| 1634 | * done. |
| 1635 | * |
| 1636 | * Locking: called with devc->io_sema held. |
| 1637 | * |
| 1638 | * Returns 0 on success, -errno on failure. |
| 1639 | */ |
| 1640 | |
| 1641 | static int pcm_setup(vwsnd_dev_t *devc, |
| 1642 | vwsnd_port_t *rport, |
| 1643 | vwsnd_port_t *wport) |
| 1644 | { |
| 1645 | vwsnd_port_t *aport = rport ? rport : wport; |
| 1646 | int sample_size; |
| 1647 | unsigned int zero_word; |
| 1648 | |
| 1649 | DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport); |
| 1650 | |
| 1651 | ASSERT(aport != NULL); |
| 1652 | if (aport->swbuf != NULL) |
| 1653 | return 0; |
| 1654 | switch (aport->sw_samplefmt) { |
| 1655 | case AFMT_MU_LAW: |
| 1656 | sample_size = 1; |
| 1657 | zero_word = 0xFFFFFFFF ^ 0x80808080; |
| 1658 | break; |
| 1659 | |
| 1660 | case AFMT_A_LAW: |
| 1661 | sample_size = 1; |
| 1662 | zero_word = 0xD5D5D5D5 ^ 0x80808080; |
| 1663 | break; |
| 1664 | |
| 1665 | case AFMT_U8: |
| 1666 | sample_size = 1; |
| 1667 | zero_word = 0x80808080; |
| 1668 | break; |
| 1669 | |
| 1670 | case AFMT_S8: |
| 1671 | sample_size = 1; |
| 1672 | zero_word = 0x00000000; |
| 1673 | break; |
| 1674 | |
| 1675 | case AFMT_S16_LE: |
| 1676 | sample_size = 2; |
| 1677 | zero_word = 0x00000000; |
| 1678 | break; |
| 1679 | |
| 1680 | default: |
| 1681 | sample_size = 0; /* prevent compiler warning */ |
| 1682 | zero_word = 0; |
| 1683 | ASSERT(0); |
| 1684 | } |
| 1685 | aport->sample_size = sample_size; |
| 1686 | aport->zero_word = zero_word; |
| 1687 | aport->frame_size = aport->sw_channels * aport->sample_size; |
| 1688 | aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift; |
| 1689 | aport->hw_fragsize = 1 << aport->hw_fragshift; |
| 1690 | aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift; |
| 1691 | ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE); |
| 1692 | ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE); |
| 1693 | ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize)); |
| 1694 | ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize)); |
| 1695 | if (rport) { |
| 1696 | int hwfrags, swfrags; |
| 1697 | rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE; |
| 1698 | hwfrags = rport->hwbuf_max >> aport->hw_fragshift; |
| 1699 | swfrags = aport->hw_fragcount - hwfrags; |
| 1700 | if (swfrags < 2) |
| 1701 | swfrags = 2; |
| 1702 | rport->swbuf_size = swfrags * aport->hw_fragsize; |
| 1703 | DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags); |
| 1704 | DBGPV("read hwbuf_max = %d, swbuf_size = %d\n", |
| 1705 | rport->hwbuf_max, rport->swbuf_size); |
| 1706 | } |
| 1707 | if (wport) { |
| 1708 | int hwfrags, swfrags; |
| 1709 | int total_bytes = aport->hw_fragcount * aport->hw_fragsize; |
| 1710 | wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE; |
| 1711 | if (wport->hwbuf_max > total_bytes) |
| 1712 | wport->hwbuf_max = total_bytes; |
| 1713 | hwfrags = wport->hwbuf_max >> aport->hw_fragshift; |
| 1714 | DBGPV("hwfrags = %d\n", hwfrags); |
| 1715 | swfrags = aport->hw_fragcount - hwfrags; |
| 1716 | if (swfrags < 2) |
| 1717 | swfrags = 2; |
| 1718 | wport->swbuf_size = swfrags * aport->hw_fragsize; |
| 1719 | DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags); |
| 1720 | DBGPV("write hwbuf_max = %d, swbuf_size = %d\n", |
| 1721 | wport->hwbuf_max, wport->swbuf_size); |
| 1722 | } |
| 1723 | |
| 1724 | aport->swb_u_idx = 0; |
| 1725 | aport->swb_i_idx = 0; |
| 1726 | aport->byte_count = 0; |
| 1727 | |
| 1728 | /* |
| 1729 | * Is this a Cobalt bug? We need to make this buffer extend |
| 1730 | * one page further than we actually use -- somehow memcpy |
| 1731 | * causes an exceptoin otherwise. I suspect there's a bug in |
| 1732 | * Cobalt (or somewhere) where it's generating a fault on a |
| 1733 | * speculative load or something. Obviously, I haven't taken |
| 1734 | * the time to track it down. |
| 1735 | */ |
| 1736 | |
| 1737 | aport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE); |
| 1738 | if (!aport->swbuf) |
| 1739 | return -ENOMEM; |
| 1740 | if (rport && wport) { |
| 1741 | ASSERT(aport == rport); |
| 1742 | ASSERT(wport->swbuf == NULL); |
| 1743 | /* One extra page - see comment above. */ |
| 1744 | wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE); |
| 1745 | if (!wport->swbuf) { |
| 1746 | vfree(aport->swbuf); |
| 1747 | aport->swbuf = NULL; |
| 1748 | return -ENOMEM; |
| 1749 | } |
| 1750 | wport->sample_size = rport->sample_size; |
| 1751 | wport->zero_word = rport->zero_word; |
| 1752 | wport->frame_size = rport->frame_size; |
| 1753 | wport->hw_fragshift = rport->hw_fragshift; |
| 1754 | wport->hw_fragsize = rport->hw_fragsize; |
| 1755 | wport->hw_fragcount = rport->hw_fragcount; |
| 1756 | wport->swbuf_size = rport->swbuf_size; |
| 1757 | wport->hwbuf_max = rport->hwbuf_max; |
| 1758 | wport->swb_u_idx = rport->swb_u_idx; |
| 1759 | wport->swb_i_idx = rport->swb_i_idx; |
| 1760 | wport->byte_count = rport->byte_count; |
| 1761 | } |
| 1762 | if (rport) { |
| 1763 | rport->swb_u_avail = 0; |
| 1764 | rport->swb_i_avail = rport->swbuf_size; |
| 1765 | rport->swstate = SW_RUN; |
| 1766 | li_setup_dma(&rport->chan, |
| 1767 | &li_comm1, |
| 1768 | &devc->lith, |
| 1769 | rport->hwbuf_paddr, |
| 1770 | HWBUF_SHIFT, |
| 1771 | rport->hw_fragshift, |
| 1772 | rport->sw_channels, |
| 1773 | rport->sample_size); |
| 1774 | ad1843_setup_adc(&devc->lith, |
| 1775 | rport->sw_framerate, |
| 1776 | rport->sw_samplefmt, |
| 1777 | rport->sw_channels); |
| 1778 | li_enable_interrupts(&devc->lith, READ_INTR_MASK); |
| 1779 | if (!(rport->flags & DISABLED)) { |
| 1780 | ustmsc_t ustmsc; |
| 1781 | rport->hwstate = HW_RUNNING; |
| 1782 | li_activate_dma(&rport->chan); |
| 1783 | li_read_USTMSC(&rport->chan, &ustmsc); |
| 1784 | rport->MSC_offset = ustmsc.msc; |
| 1785 | } |
| 1786 | } |
| 1787 | if (wport) { |
| 1788 | if (wport->hwbuf_max > wport->swbuf_size) |
| 1789 | wport->hwbuf_max = wport->swbuf_size; |
| 1790 | wport->flags &= ~ERFLOWN; |
| 1791 | wport->swb_u_avail = wport->swbuf_size; |
| 1792 | wport->swb_i_avail = 0; |
| 1793 | wport->swstate = SW_RUN; |
| 1794 | li_setup_dma(&wport->chan, |
| 1795 | &li_comm2, |
| 1796 | &devc->lith, |
| 1797 | wport->hwbuf_paddr, |
| 1798 | HWBUF_SHIFT, |
| 1799 | wport->hw_fragshift, |
| 1800 | wport->sw_channels, |
| 1801 | wport->sample_size); |
| 1802 | ad1843_setup_dac(&devc->lith, |
| 1803 | wport->sw_framerate, |
| 1804 | wport->sw_samplefmt, |
| 1805 | wport->sw_channels); |
| 1806 | li_enable_interrupts(&devc->lith, WRITE_INTR_MASK); |
| 1807 | } |
| 1808 | DBGRV(); |
| 1809 | return 0; |
| 1810 | } |
| 1811 | |
| 1812 | /* |
| 1813 | * pcm_shutdown_port - shut down one port (direction) for PCM I/O. |
| 1814 | * Only called from pcm_shutdown. |
| 1815 | */ |
| 1816 | |
| 1817 | static void pcm_shutdown_port(vwsnd_dev_t *devc, |
| 1818 | vwsnd_port_t *aport, |
| 1819 | unsigned int mask) |
| 1820 | { |
| 1821 | unsigned long flags; |
| 1822 | vwsnd_port_hwstate_t hwstate; |
| 1823 | DECLARE_WAITQUEUE(wait, current); |
| 1824 | |
| 1825 | aport->swstate = SW_INITIAL; |
| 1826 | add_wait_queue(&aport->queue, &wait); |
| 1827 | while (1) { |
| 1828 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 1829 | spin_lock_irqsave(&aport->lock, flags); |
| 1830 | { |
| 1831 | hwstate = aport->hwstate; |
| 1832 | } |
| 1833 | spin_unlock_irqrestore(&aport->lock, flags); |
| 1834 | if (hwstate == HW_STOPPED) |
| 1835 | break; |
| 1836 | schedule(); |
| 1837 | } |
| 1838 | current->state = TASK_RUNNING; |
| 1839 | remove_wait_queue(&aport->queue, &wait); |
| 1840 | li_disable_interrupts(&devc->lith, mask); |
| 1841 | if (aport == &devc->rport) |
| 1842 | ad1843_shutdown_adc(&devc->lith); |
| 1843 | else /* aport == &devc->wport) */ |
| 1844 | ad1843_shutdown_dac(&devc->lith); |
| 1845 | li_shutdown_dma(&aport->chan); |
| 1846 | vfree(aport->swbuf); |
| 1847 | aport->swbuf = NULL; |
| 1848 | aport->byte_count = 0; |
| 1849 | } |
| 1850 | |
| 1851 | /* |
| 1852 | * pcm_shutdown undoes what pcm_setup did. |
| 1853 | * Also sets the ports' swstate to newstate. |
| 1854 | */ |
| 1855 | |
| 1856 | static void pcm_shutdown(vwsnd_dev_t *devc, |
| 1857 | vwsnd_port_t *rport, |
| 1858 | vwsnd_port_t *wport) |
| 1859 | { |
| 1860 | DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport); |
| 1861 | |
| 1862 | if (rport && rport->swbuf) { |
| 1863 | DBGPV("shutting down rport\n"); |
| 1864 | pcm_shutdown_port(devc, rport, READ_INTR_MASK); |
| 1865 | } |
| 1866 | if (wport && wport->swbuf) { |
| 1867 | DBGPV("shutting down wport\n"); |
| 1868 | pcm_shutdown_port(devc, wport, WRITE_INTR_MASK); |
| 1869 | } |
| 1870 | DBGRV(); |
| 1871 | } |
| 1872 | |
| 1873 | static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb) |
| 1874 | { |
| 1875 | char *src = rport->hwbuf + hwidx; |
| 1876 | char *dst = rport->swbuf + swidx; |
| 1877 | int fmt = rport->sw_samplefmt; |
| 1878 | |
| 1879 | DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx); |
| 1880 | ASSERT(rport->hwbuf != NULL); |
| 1881 | ASSERT(rport->swbuf != NULL); |
| 1882 | ASSERT(nb > 0 && (nb % 32) == 0); |
| 1883 | ASSERT(swidx % 32 == 0 && hwidx % 32 == 0); |
| 1884 | ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size); |
| 1885 | ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size); |
| 1886 | |
| 1887 | if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) { |
| 1888 | |
| 1889 | /* See Sample Format Notes above. */ |
| 1890 | |
| 1891 | char *end = src + nb; |
| 1892 | while (src < end) |
| 1893 | *dst++ = *src++ ^ 0x80; |
| 1894 | } else |
| 1895 | memcpy(dst, src, nb); |
| 1896 | } |
| 1897 | |
| 1898 | static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb) |
| 1899 | { |
| 1900 | char *src = wport->swbuf + swidx; |
| 1901 | char *dst = wport->hwbuf + hwidx; |
| 1902 | int fmt = wport->sw_samplefmt; |
| 1903 | |
| 1904 | ASSERT(nb > 0 && (nb % 32) == 0); |
| 1905 | ASSERT(wport->hwbuf != NULL); |
| 1906 | ASSERT(wport->swbuf != NULL); |
| 1907 | ASSERT(swidx % 32 == 0 && hwidx % 32 == 0); |
| 1908 | ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size); |
| 1909 | ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size); |
| 1910 | if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) { |
| 1911 | |
| 1912 | /* See Sample Format Notes above. */ |
| 1913 | |
| 1914 | char *end = src + nb; |
| 1915 | while (src < end) |
| 1916 | *dst++ = *src++ ^ 0x80; |
| 1917 | } else |
| 1918 | memcpy(dst, src, nb); |
| 1919 | } |
| 1920 | |
| 1921 | /* |
| 1922 | * pcm_output() is called both from baselevel and from interrupt level. |
| 1923 | * This is where audio frames are copied into the hardware-accessible |
| 1924 | * ring buffer. |
| 1925 | * |
| 1926 | * Locking note: The part of this routine that figures out what to do |
| 1927 | * holds wport->lock. The longer part releases wport->lock, but sets |
| 1928 | * wport->flags & HW_BUSY. Afterward, it reacquires wport->lock, and |
| 1929 | * checks for more work to do. |
| 1930 | * |
| 1931 | * If another thread calls pcm_output() while HW_BUSY is set, it |
| 1932 | * returns immediately, knowing that the thread that set HW_BUSY will |
| 1933 | * look for more work to do before returning. |
| 1934 | * |
| 1935 | * This has the advantage that port->lock is held for several short |
| 1936 | * periods instead of one long period. Also, when pcm_output is |
| 1937 | * called from base level, it reenables interrupts. |
| 1938 | */ |
| 1939 | |
| 1940 | static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb) |
| 1941 | { |
| 1942 | vwsnd_port_t *wport = &devc->wport; |
| 1943 | const int hwmax = wport->hwbuf_max; |
| 1944 | const int hwsize = wport->hwbuf_size; |
| 1945 | const int swsize = wport->swbuf_size; |
| 1946 | const int fragsize = wport->hw_fragsize; |
| 1947 | unsigned long iflags; |
| 1948 | |
| 1949 | DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb); |
| 1950 | spin_lock_irqsave(&wport->lock, iflags); |
| 1951 | if (erflown) |
| 1952 | wport->flags |= ERFLOWN; |
| 1953 | (void) __swb_inc_u(wport, nb); |
| 1954 | if (wport->flags & HW_BUSY) { |
| 1955 | spin_unlock_irqrestore(&wport->lock, iflags); |
| 1956 | DBGPV("returning: HW BUSY\n"); |
| 1957 | return; |
| 1958 | } |
| 1959 | if (wport->flags & DISABLED) { |
| 1960 | spin_unlock_irqrestore(&wport->lock, iflags); |
| 1961 | DBGPV("returning: DISABLED\n"); |
| 1962 | return; |
| 1963 | } |
| 1964 | wport->flags |= HW_BUSY; |
| 1965 | while (1) { |
| 1966 | int swptr, hwptr, hw_avail, sw_avail, swidx; |
| 1967 | vwsnd_port_hwstate_t hwstate = wport->hwstate; |
| 1968 | vwsnd_port_swstate_t swstate = wport->swstate; |
| 1969 | int hw_unavail; |
| 1970 | ustmsc_t ustmsc; |
| 1971 | |
| 1972 | hwptr = li_read_hwptr(&wport->chan); |
| 1973 | swptr = li_read_swptr(&wport->chan); |
| 1974 | hw_unavail = (swptr - hwptr + hwsize) % hwsize; |
| 1975 | hw_avail = (hwmax - hw_unavail) & -fragsize; |
| 1976 | sw_avail = wport->swb_i_avail & -fragsize; |
| 1977 | if (sw_avail && swstate == SW_RUN) { |
| 1978 | if (wport->flags & ERFLOWN) { |
| 1979 | wport->flags &= ~ERFLOWN; |
| 1980 | } |
| 1981 | } else if (swstate == SW_INITIAL || |
| 1982 | swstate == SW_OFF || |
| 1983 | (swstate == SW_DRAIN && |
| 1984 | !sw_avail && |
| 1985 | (wport->flags & ERFLOWN))) { |
| 1986 | DBGP("stopping. hwstate = %d\n", hwstate); |
| 1987 | if (hwstate != HW_STOPPED) { |
| 1988 | li_deactivate_dma(&wport->chan); |
| 1989 | wport->hwstate = HW_STOPPED; |
| 1990 | } |
| 1991 | wake_up(&wport->queue); |
| 1992 | break; |
| 1993 | } |
| 1994 | if (!sw_avail || !hw_avail) |
| 1995 | break; |
| 1996 | spin_unlock_irqrestore(&wport->lock, iflags); |
| 1997 | |
| 1998 | /* |
| 1999 | * We gave up the port lock, but we have the HW_BUSY flag. |
| 2000 | * Proceed without accessing any nonlocal state. |
| 2001 | * Do not exit the loop -- must check for more work. |
| 2002 | */ |
| 2003 | |
| 2004 | swidx = wport->swb_i_idx; |
| 2005 | nb = hw_avail; |
| 2006 | if (nb > sw_avail) |
| 2007 | nb = sw_avail; |
| 2008 | if (nb > hwsize - swptr) |
| 2009 | nb = hwsize - swptr; /* don't overflow hwbuf */ |
| 2010 | if (nb > swsize - swidx) |
| 2011 | nb = swsize - swidx; /* don't overflow swbuf */ |
| 2012 | ASSERT(nb > 0); |
| 2013 | if (nb % fragsize) { |
| 2014 | DBGP("nb = %d, fragsize = %d\n", nb, fragsize); |
| 2015 | DBGP("hw_avail = %d\n", hw_avail); |
| 2016 | DBGP("sw_avail = %d\n", sw_avail); |
| 2017 | DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr); |
| 2018 | DBGP("swsize = %d, swidx = %d\n", swsize, swidx); |
| 2019 | } |
| 2020 | ASSERT(!(nb % fragsize)); |
| 2021 | DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n", |
| 2022 | swidx, swidx + nb, swptr, swptr + nb); |
| 2023 | pcm_copy_out(wport, swidx, swptr, nb); |
| 2024 | li_write_swptr(&wport->chan, (swptr + nb) % hwsize); |
| 2025 | spin_lock_irqsave(&wport->lock, iflags); |
| 2026 | if (hwstate == HW_STOPPED) { |
| 2027 | DBGPV("starting\n"); |
| 2028 | li_activate_dma(&wport->chan); |
| 2029 | wport->hwstate = HW_RUNNING; |
| 2030 | li_read_USTMSC(&wport->chan, &ustmsc); |
| 2031 | ASSERT(wport->byte_count % wport->frame_size == 0); |
| 2032 | wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size; |
| 2033 | } |
| 2034 | __swb_inc_i(wport, nb); |
| 2035 | wport->byte_count += nb; |
| 2036 | wport->frag_count += nb / fragsize; |
| 2037 | ASSERT(nb % fragsize == 0); |
| 2038 | wake_up(&wport->queue); |
| 2039 | } |
| 2040 | wport->flags &= ~HW_BUSY; |
| 2041 | spin_unlock_irqrestore(&wport->lock, iflags); |
| 2042 | DBGRV(); |
| 2043 | } |
| 2044 | |
| 2045 | /* |
| 2046 | * pcm_input() is called both from baselevel and from interrupt level. |
| 2047 | * This is where audio frames are copied out of the hardware-accessible |
| 2048 | * ring buffer. |
| 2049 | * |
| 2050 | * Locking note: The part of this routine that figures out what to do |
| 2051 | * holds rport->lock. The longer part releases rport->lock, but sets |
| 2052 | * rport->flags & HW_BUSY. Afterward, it reacquires rport->lock, and |
| 2053 | * checks for more work to do. |
| 2054 | * |
| 2055 | * If another thread calls pcm_input() while HW_BUSY is set, it |
| 2056 | * returns immediately, knowing that the thread that set HW_BUSY will |
| 2057 | * look for more work to do before returning. |
| 2058 | * |
| 2059 | * This has the advantage that port->lock is held for several short |
| 2060 | * periods instead of one long period. Also, when pcm_input is |
| 2061 | * called from base level, it reenables interrupts. |
| 2062 | */ |
| 2063 | |
| 2064 | static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb) |
| 2065 | { |
| 2066 | vwsnd_port_t *rport = &devc->rport; |
| 2067 | const int hwmax = rport->hwbuf_max; |
| 2068 | const int hwsize = rport->hwbuf_size; |
| 2069 | const int swsize = rport->swbuf_size; |
| 2070 | const int fragsize = rport->hw_fragsize; |
| 2071 | unsigned long iflags; |
| 2072 | |
| 2073 | DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb); |
| 2074 | |
| 2075 | spin_lock_irqsave(&rport->lock, iflags); |
| 2076 | if (erflown) |
| 2077 | rport->flags |= ERFLOWN; |
| 2078 | (void) __swb_inc_u(rport, nb); |
| 2079 | if (rport->flags & HW_BUSY || !rport->swbuf) { |
| 2080 | spin_unlock_irqrestore(&rport->lock, iflags); |
| 2081 | DBGPV("returning: HW BUSY or !swbuf\n"); |
| 2082 | return; |
| 2083 | } |
| 2084 | if (rport->flags & DISABLED) { |
| 2085 | spin_unlock_irqrestore(&rport->lock, iflags); |
| 2086 | DBGPV("returning: DISABLED\n"); |
| 2087 | return; |
| 2088 | } |
| 2089 | rport->flags |= HW_BUSY; |
| 2090 | while (1) { |
| 2091 | int swptr, hwptr, hw_avail, sw_avail, swidx; |
| 2092 | vwsnd_port_hwstate_t hwstate = rport->hwstate; |
| 2093 | vwsnd_port_swstate_t swstate = rport->swstate; |
| 2094 | |
| 2095 | hwptr = li_read_hwptr(&rport->chan); |
| 2096 | swptr = li_read_swptr(&rport->chan); |
| 2097 | hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize; |
| 2098 | if (hw_avail > hwmax) |
| 2099 | hw_avail = hwmax; |
| 2100 | sw_avail = rport->swb_i_avail & -fragsize; |
| 2101 | if (swstate != SW_RUN) { |
| 2102 | DBGP("stopping. hwstate = %d\n", hwstate); |
| 2103 | if (hwstate != HW_STOPPED) { |
| 2104 | li_deactivate_dma(&rport->chan); |
| 2105 | rport->hwstate = HW_STOPPED; |
| 2106 | } |
| 2107 | wake_up(&rport->queue); |
| 2108 | break; |
| 2109 | } |
| 2110 | if (!sw_avail || !hw_avail) |
| 2111 | break; |
| 2112 | spin_unlock_irqrestore(&rport->lock, iflags); |
| 2113 | |
| 2114 | /* |
| 2115 | * We gave up the port lock, but we have the HW_BUSY flag. |
| 2116 | * Proceed without accessing any nonlocal state. |
| 2117 | * Do not exit the loop -- must check for more work. |
| 2118 | */ |
| 2119 | |
| 2120 | swidx = rport->swb_i_idx; |
| 2121 | nb = hw_avail; |
| 2122 | if (nb > sw_avail) |
| 2123 | nb = sw_avail; |
| 2124 | if (nb > hwsize - swptr) |
| 2125 | nb = hwsize - swptr; /* don't overflow hwbuf */ |
| 2126 | if (nb > swsize - swidx) |
| 2127 | nb = swsize - swidx; /* don't overflow swbuf */ |
| 2128 | ASSERT(nb > 0); |
| 2129 | if (nb % fragsize) { |
| 2130 | DBGP("nb = %d, fragsize = %d\n", nb, fragsize); |
| 2131 | DBGP("hw_avail = %d\n", hw_avail); |
| 2132 | DBGP("sw_avail = %d\n", sw_avail); |
| 2133 | DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr); |
| 2134 | DBGP("swsize = %d, swidx = %d\n", swsize, swidx); |
| 2135 | } |
| 2136 | ASSERT(!(nb % fragsize)); |
| 2137 | DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n", |
| 2138 | swptr, swptr + nb, swidx, swidx + nb); |
| 2139 | pcm_copy_in(rport, swidx, swptr, nb); |
| 2140 | li_write_swptr(&rport->chan, (swptr + nb) % hwsize); |
| 2141 | spin_lock_irqsave(&rport->lock, iflags); |
| 2142 | __swb_inc_i(rport, nb); |
| 2143 | rport->byte_count += nb; |
| 2144 | rport->frag_count += nb / fragsize; |
| 2145 | ASSERT(nb % fragsize == 0); |
| 2146 | wake_up(&rport->queue); |
| 2147 | } |
| 2148 | rport->flags &= ~HW_BUSY; |
| 2149 | spin_unlock_irqrestore(&rport->lock, iflags); |
| 2150 | DBGRV(); |
| 2151 | } |
| 2152 | |
| 2153 | /* |
| 2154 | * pcm_flush_frag() writes zero samples to fill the current fragment, |
| 2155 | * then flushes it to the hardware. |
| 2156 | * |
| 2157 | * It is only meaningful to flush output, not input. |
| 2158 | */ |
| 2159 | |
| 2160 | static void pcm_flush_frag(vwsnd_dev_t *devc) |
| 2161 | { |
| 2162 | vwsnd_port_t *wport = &devc->wport; |
| 2163 | |
| 2164 | DBGPV("swstate = %d\n", wport->swstate); |
| 2165 | if (wport->swstate == SW_RUN) { |
| 2166 | int idx = wport->swb_u_idx; |
| 2167 | int end = (idx + wport->hw_fragsize - 1) |
| 2168 | >> wport->hw_fragshift |
| 2169 | << wport->hw_fragshift; |
| 2170 | int nb = end - idx; |
| 2171 | DBGPV("clearing %d bytes\n", nb); |
| 2172 | if (nb) |
| 2173 | memset(wport->swbuf + idx, |
| 2174 | (char) wport->zero_word, |
| 2175 | nb); |
| 2176 | wport->swstate = SW_DRAIN; |
| 2177 | pcm_output(devc, 0, nb); |
| 2178 | } |
| 2179 | DBGRV(); |
| 2180 | } |
| 2181 | |
| 2182 | /* |
| 2183 | * Wait for output to drain. This sleeps uninterruptibly because |
| 2184 | * there is nothing intelligent we can do if interrupted. This |
| 2185 | * means the process will be delayed in responding to the signal. |
| 2186 | */ |
| 2187 | |
| 2188 | static void pcm_write_sync(vwsnd_dev_t *devc) |
| 2189 | { |
| 2190 | vwsnd_port_t *wport = &devc->wport; |
| 2191 | DECLARE_WAITQUEUE(wait, current); |
| 2192 | unsigned long flags; |
| 2193 | vwsnd_port_hwstate_t hwstate; |
| 2194 | |
| 2195 | DBGEV("(devc=0x%p)\n", devc); |
| 2196 | add_wait_queue(&wport->queue, &wait); |
| 2197 | while (1) { |
| 2198 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 2199 | spin_lock_irqsave(&wport->lock, flags); |
| 2200 | { |
| 2201 | hwstate = wport->hwstate; |
| 2202 | } |
| 2203 | spin_unlock_irqrestore(&wport->lock, flags); |
| 2204 | if (hwstate == HW_STOPPED) |
| 2205 | break; |
| 2206 | schedule(); |
| 2207 | } |
| 2208 | current->state = TASK_RUNNING; |
| 2209 | remove_wait_queue(&wport->queue, &wait); |
| 2210 | DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate); |
| 2211 | DBGRV(); |
| 2212 | } |
| 2213 | |
| 2214 | /*****************************************************************************/ |
| 2215 | /* audio driver */ |
| 2216 | |
| 2217 | /* |
| 2218 | * seek on an audio device always fails. |
| 2219 | */ |
| 2220 | |
| 2221 | static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status) |
| 2222 | { |
| 2223 | int overflown = status & LI_INTR_COMM1_OVERFLOW; |
| 2224 | |
| 2225 | if (status & READ_INTR_MASK) |
| 2226 | pcm_input(devc, overflown, 0); |
| 2227 | } |
| 2228 | |
| 2229 | static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status) |
| 2230 | { |
| 2231 | int underflown = status & LI_INTR_COMM2_UNDERFLOW; |
| 2232 | |
| 2233 | if (status & WRITE_INTR_MASK) |
| 2234 | pcm_output(devc, underflown, 0); |
| 2235 | } |
| 2236 | |
| 2237 | static irqreturn_t vwsnd_audio_intr(int irq, void *dev_id, struct pt_regs *regs) |
| 2238 | { |
| 2239 | vwsnd_dev_t *devc = (vwsnd_dev_t *) dev_id; |
| 2240 | unsigned int status; |
| 2241 | |
| 2242 | DBGEV("(irq=%d, dev_id=0x%p, regs=0x%p)\n", irq, dev_id, regs); |
| 2243 | |
| 2244 | status = li_get_clear_intr_status(&devc->lith); |
| 2245 | vwsnd_audio_read_intr(devc, status); |
| 2246 | vwsnd_audio_write_intr(devc, status); |
| 2247 | return IRQ_HANDLED; |
| 2248 | } |
| 2249 | |
| 2250 | static ssize_t vwsnd_audio_do_read(struct file *file, |
| 2251 | char *buffer, |
| 2252 | size_t count, |
| 2253 | loff_t *ppos) |
| 2254 | { |
| 2255 | vwsnd_dev_t *devc = file->private_data; |
| 2256 | vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ? |
| 2257 | &devc->rport : NULL); |
| 2258 | int ret, nb; |
| 2259 | |
| 2260 | DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n", |
| 2261 | file, buffer, count, ppos); |
| 2262 | |
| 2263 | if (!rport) |
| 2264 | return -EINVAL; |
| 2265 | |
| 2266 | if (rport->swbuf == NULL) { |
| 2267 | vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? |
| 2268 | &devc->wport : NULL; |
| 2269 | ret = pcm_setup(devc, rport, wport); |
| 2270 | if (ret < 0) |
| 2271 | return ret; |
| 2272 | } |
| 2273 | |
| 2274 | if (!access_ok(VERIFY_READ, buffer, count)) |
| 2275 | return -EFAULT; |
| 2276 | ret = 0; |
| 2277 | while (count) { |
| 2278 | DECLARE_WAITQUEUE(wait, current); |
| 2279 | add_wait_queue(&rport->queue, &wait); |
| 2280 | while ((nb = swb_inc_u(rport, 0)) == 0) { |
| 2281 | DBGPV("blocking\n"); |
| 2282 | set_current_state(TASK_INTERRUPTIBLE); |
| 2283 | if (rport->flags & DISABLED || |
| 2284 | file->f_flags & O_NONBLOCK) { |
| 2285 | current->state = TASK_RUNNING; |
| 2286 | remove_wait_queue(&rport->queue, &wait); |
| 2287 | return ret ? ret : -EAGAIN; |
| 2288 | } |
| 2289 | schedule(); |
| 2290 | if (signal_pending(current)) { |
| 2291 | current->state = TASK_RUNNING; |
| 2292 | remove_wait_queue(&rport->queue, &wait); |
| 2293 | return ret ? ret : -ERESTARTSYS; |
| 2294 | } |
| 2295 | } |
| 2296 | current->state = TASK_RUNNING; |
| 2297 | remove_wait_queue(&rport->queue, &wait); |
| 2298 | pcm_input(devc, 0, 0); |
| 2299 | /* nb bytes are available in userbuf. */ |
| 2300 | if (nb > count) |
| 2301 | nb = count; |
| 2302 | DBGPV("nb = %d\n", nb); |
| 2303 | if (copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb)) |
| 2304 | return -EFAULT; |
| 2305 | (void) swb_inc_u(rport, nb); |
| 2306 | buffer += nb; |
| 2307 | count -= nb; |
| 2308 | ret += nb; |
| 2309 | } |
| 2310 | DBGPV("returning %d\n", ret); |
| 2311 | return ret; |
| 2312 | } |
| 2313 | |
| 2314 | static ssize_t vwsnd_audio_read(struct file *file, |
| 2315 | char *buffer, |
| 2316 | size_t count, |
| 2317 | loff_t *ppos) |
| 2318 | { |
| 2319 | vwsnd_dev_t *devc = file->private_data; |
| 2320 | ssize_t ret; |
| 2321 | |
| 2322 | down(&devc->io_sema); |
| 2323 | ret = vwsnd_audio_do_read(file, buffer, count, ppos); |
| 2324 | up(&devc->io_sema); |
| 2325 | return ret; |
| 2326 | } |
| 2327 | |
| 2328 | static ssize_t vwsnd_audio_do_write(struct file *file, |
| 2329 | const char *buffer, |
| 2330 | size_t count, |
| 2331 | loff_t *ppos) |
| 2332 | { |
| 2333 | vwsnd_dev_t *devc = file->private_data; |
| 2334 | vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ? |
| 2335 | &devc->wport : NULL); |
| 2336 | int ret, nb; |
| 2337 | |
| 2338 | DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n", |
| 2339 | file, buffer, count, ppos); |
| 2340 | |
| 2341 | if (!wport) |
| 2342 | return -EINVAL; |
| 2343 | |
| 2344 | if (wport->swbuf == NULL) { |
| 2345 | vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? |
| 2346 | &devc->rport : NULL; |
| 2347 | ret = pcm_setup(devc, rport, wport); |
| 2348 | if (ret < 0) |
| 2349 | return ret; |
| 2350 | } |
| 2351 | if (!access_ok(VERIFY_WRITE, buffer, count)) |
| 2352 | return -EFAULT; |
| 2353 | ret = 0; |
| 2354 | while (count) { |
| 2355 | DECLARE_WAITQUEUE(wait, current); |
| 2356 | add_wait_queue(&wport->queue, &wait); |
| 2357 | while ((nb = swb_inc_u(wport, 0)) == 0) { |
| 2358 | set_current_state(TASK_INTERRUPTIBLE); |
| 2359 | if (wport->flags & DISABLED || |
| 2360 | file->f_flags & O_NONBLOCK) { |
| 2361 | current->state = TASK_RUNNING; |
| 2362 | remove_wait_queue(&wport->queue, &wait); |
| 2363 | return ret ? ret : -EAGAIN; |
| 2364 | } |
| 2365 | schedule(); |
| 2366 | if (signal_pending(current)) { |
| 2367 | current->state = TASK_RUNNING; |
| 2368 | remove_wait_queue(&wport->queue, &wait); |
| 2369 | return ret ? ret : -ERESTARTSYS; |
| 2370 | } |
| 2371 | } |
| 2372 | current->state = TASK_RUNNING; |
| 2373 | remove_wait_queue(&wport->queue, &wait); |
| 2374 | /* nb bytes are available in userbuf. */ |
| 2375 | if (nb > count) |
| 2376 | nb = count; |
| 2377 | DBGPV("nb = %d\n", nb); |
| 2378 | if (copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb)) |
| 2379 | return -EFAULT; |
| 2380 | pcm_output(devc, 0, nb); |
| 2381 | buffer += nb; |
| 2382 | count -= nb; |
| 2383 | ret += nb; |
| 2384 | } |
| 2385 | DBGPV("returning %d\n", ret); |
| 2386 | return ret; |
| 2387 | } |
| 2388 | |
| 2389 | static ssize_t vwsnd_audio_write(struct file *file, |
| 2390 | const char *buffer, |
| 2391 | size_t count, |
| 2392 | loff_t *ppos) |
| 2393 | { |
| 2394 | vwsnd_dev_t *devc = file->private_data; |
| 2395 | ssize_t ret; |
| 2396 | |
| 2397 | down(&devc->io_sema); |
| 2398 | ret = vwsnd_audio_do_write(file, buffer, count, ppos); |
| 2399 | up(&devc->io_sema); |
| 2400 | return ret; |
| 2401 | } |
| 2402 | |
| 2403 | /* No kernel lock - fine */ |
| 2404 | static unsigned int vwsnd_audio_poll(struct file *file, |
| 2405 | struct poll_table_struct *wait) |
| 2406 | { |
| 2407 | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; |
| 2408 | vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? |
| 2409 | &devc->rport : NULL; |
| 2410 | vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? |
| 2411 | &devc->wport : NULL; |
| 2412 | unsigned int mask = 0; |
| 2413 | |
| 2414 | DBGEV("(file=0x%p, wait=0x%p)\n", file, wait); |
| 2415 | |
| 2416 | ASSERT(rport || wport); |
| 2417 | if (rport) { |
| 2418 | poll_wait(file, &rport->queue, wait); |
| 2419 | if (swb_inc_u(rport, 0)) |
| 2420 | mask |= (POLLIN | POLLRDNORM); |
| 2421 | } |
| 2422 | if (wport) { |
| 2423 | poll_wait(file, &wport->queue, wait); |
| 2424 | if (wport->swbuf == NULL || swb_inc_u(wport, 0)) |
| 2425 | mask |= (POLLOUT | POLLWRNORM); |
| 2426 | } |
| 2427 | |
| 2428 | DBGPV("returning 0x%x\n", mask); |
| 2429 | return mask; |
| 2430 | } |
| 2431 | |
| 2432 | static int vwsnd_audio_do_ioctl(struct inode *inode, |
| 2433 | struct file *file, |
| 2434 | unsigned int cmd, |
| 2435 | unsigned long arg) |
| 2436 | { |
| 2437 | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; |
| 2438 | vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? |
| 2439 | &devc->rport : NULL; |
| 2440 | vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? |
| 2441 | &devc->wport : NULL; |
| 2442 | vwsnd_port_t *aport = rport ? rport : wport; |
| 2443 | struct audio_buf_info buf_info; |
| 2444 | struct count_info info; |
| 2445 | unsigned long flags; |
| 2446 | int ival; |
| 2447 | |
| 2448 | |
| 2449 | DBGEV("(inode=0x%p, file=0x%p, cmd=0x%x, arg=0x%lx)\n", |
| 2450 | inode, file, cmd, arg); |
| 2451 | switch (cmd) { |
| 2452 | case OSS_GETVERSION: /* _SIOR ('M', 118, int) */ |
| 2453 | DBGX("OSS_GETVERSION\n"); |
| 2454 | ival = SOUND_VERSION; |
| 2455 | return put_user(ival, (int *) arg); |
| 2456 | |
| 2457 | case SNDCTL_DSP_GETCAPS: /* _SIOR ('P',15, int) */ |
| 2458 | DBGX("SNDCTL_DSP_GETCAPS\n"); |
| 2459 | ival = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER; |
| 2460 | return put_user(ival, (int *) arg); |
| 2461 | |
| 2462 | case SNDCTL_DSP_GETFMTS: /* _SIOR ('P',11, int) */ |
| 2463 | DBGX("SNDCTL_DSP_GETFMTS\n"); |
| 2464 | ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW | |
| 2465 | AFMT_U8 | AFMT_S8); |
| 2466 | return put_user(ival, (int *) arg); |
| 2467 | break; |
| 2468 | |
| 2469 | case SOUND_PCM_READ_RATE: /* _SIOR ('P', 2, int) */ |
| 2470 | DBGX("SOUND_PCM_READ_RATE\n"); |
| 2471 | ival = aport->sw_framerate; |
| 2472 | return put_user(ival, (int *) arg); |
| 2473 | |
| 2474 | case SOUND_PCM_READ_CHANNELS: /* _SIOR ('P', 6, int) */ |
| 2475 | DBGX("SOUND_PCM_READ_CHANNELS\n"); |
| 2476 | ival = aport->sw_channels; |
| 2477 | return put_user(ival, (int *) arg); |
| 2478 | |
| 2479 | case SNDCTL_DSP_SPEED: /* _SIOWR('P', 2, int) */ |
| 2480 | if (get_user(ival, (int *) arg)) |
| 2481 | return -EFAULT; |
| 2482 | DBGX("SNDCTL_DSP_SPEED %d\n", ival); |
| 2483 | if (ival) { |
| 2484 | if (aport->swstate != SW_INITIAL) { |
| 2485 | DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n", |
| 2486 | aport->swstate); |
| 2487 | return -EINVAL; |
| 2488 | } |
| 2489 | if (ival < MIN_SPEED) |
| 2490 | ival = MIN_SPEED; |
| 2491 | if (ival > MAX_SPEED) |
| 2492 | ival = MAX_SPEED; |
| 2493 | if (rport) |
| 2494 | rport->sw_framerate = ival; |
| 2495 | if (wport) |
| 2496 | wport->sw_framerate = ival; |
| 2497 | } else |
| 2498 | ival = aport->sw_framerate; |
| 2499 | return put_user(ival, (int *) arg); |
| 2500 | |
| 2501 | case SNDCTL_DSP_STEREO: /* _SIOWR('P', 3, int) */ |
| 2502 | if (get_user(ival, (int *) arg)) |
| 2503 | return -EFAULT; |
| 2504 | DBGX("SNDCTL_DSP_STEREO %d\n", ival); |
| 2505 | if (ival != 0 && ival != 1) |
| 2506 | return -EINVAL; |
| 2507 | if (aport->swstate != SW_INITIAL) |
| 2508 | return -EINVAL; |
| 2509 | if (rport) |
| 2510 | rport->sw_channels = ival + 1; |
| 2511 | if (wport) |
| 2512 | wport->sw_channels = ival + 1; |
| 2513 | return put_user(ival, (int *) arg); |
| 2514 | |
| 2515 | case SNDCTL_DSP_CHANNELS: /* _SIOWR('P', 6, int) */ |
| 2516 | if (get_user(ival, (int *) arg)) |
| 2517 | return -EFAULT; |
| 2518 | DBGX("SNDCTL_DSP_CHANNELS %d\n", ival); |
| 2519 | if (ival != 1 && ival != 2) |
| 2520 | return -EINVAL; |
| 2521 | if (aport->swstate != SW_INITIAL) |
| 2522 | return -EINVAL; |
| 2523 | if (rport) |
| 2524 | rport->sw_channels = ival; |
| 2525 | if (wport) |
| 2526 | wport->sw_channels = ival; |
| 2527 | return put_user(ival, (int *) arg); |
| 2528 | |
| 2529 | case SNDCTL_DSP_GETBLKSIZE: /* _SIOWR('P', 4, int) */ |
| 2530 | ival = pcm_setup(devc, rport, wport); |
| 2531 | if (ival < 0) { |
| 2532 | DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival); |
| 2533 | return ival; |
| 2534 | } |
| 2535 | ival = 1 << aport->sw_fragshift; |
| 2536 | DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival); |
| 2537 | return put_user(ival, (int *) arg); |
| 2538 | |
| 2539 | case SNDCTL_DSP_SETFRAGMENT: /* _SIOWR('P',10, int) */ |
| 2540 | if (get_user(ival, (int *) arg)) |
| 2541 | return -EFAULT; |
| 2542 | DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n", |
| 2543 | ival >> 16, ival & 0xFFFF); |
| 2544 | if (aport->swstate != SW_INITIAL) |
| 2545 | return -EINVAL; |
| 2546 | { |
| 2547 | int sw_fragshift = ival & 0xFFFF; |
| 2548 | int sw_subdivshift = aport->sw_subdivshift; |
| 2549 | int hw_fragshift = sw_fragshift - sw_subdivshift; |
| 2550 | int sw_fragcount = (ival >> 16) & 0xFFFF; |
| 2551 | int hw_fragsize; |
| 2552 | if (hw_fragshift < MIN_FRAGSHIFT) |
| 2553 | hw_fragshift = MIN_FRAGSHIFT; |
| 2554 | if (hw_fragshift > MAX_FRAGSHIFT) |
| 2555 | hw_fragshift = MAX_FRAGSHIFT; |
| 2556 | sw_fragshift = hw_fragshift + aport->sw_subdivshift; |
| 2557 | hw_fragsize = 1 << hw_fragshift; |
| 2558 | if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize)) |
| 2559 | sw_fragcount = MIN_FRAGCOUNT(hw_fragsize); |
| 2560 | if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize)) |
| 2561 | sw_fragcount = MAX_FRAGCOUNT(hw_fragsize); |
| 2562 | DBGPV("sw_fragshift = %d\n", sw_fragshift); |
| 2563 | DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport); |
| 2564 | if (rport) { |
| 2565 | rport->sw_fragshift = sw_fragshift; |
| 2566 | rport->sw_fragcount = sw_fragcount; |
| 2567 | } |
| 2568 | if (wport) { |
| 2569 | wport->sw_fragshift = sw_fragshift; |
| 2570 | wport->sw_fragcount = sw_fragcount; |
| 2571 | } |
| 2572 | ival = sw_fragcount << 16 | sw_fragshift; |
| 2573 | } |
| 2574 | DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n", |
| 2575 | ival >> 16, ival & 0xFFFF); |
| 2576 | return put_user(ival, (int *) arg); |
| 2577 | |
| 2578 | case SNDCTL_DSP_SUBDIVIDE: /* _SIOWR('P', 9, int) */ |
| 2579 | if (get_user(ival, (int *) arg)) |
| 2580 | return -EFAULT; |
| 2581 | DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival); |
| 2582 | if (aport->swstate != SW_INITIAL) |
| 2583 | return -EINVAL; |
| 2584 | { |
| 2585 | int subdivshift; |
| 2586 | int hw_fragshift, hw_fragsize, hw_fragcount; |
| 2587 | switch (ival) { |
| 2588 | case 1: subdivshift = 0; break; |
| 2589 | case 2: subdivshift = 1; break; |
| 2590 | case 4: subdivshift = 2; break; |
| 2591 | default: return -EINVAL; |
| 2592 | } |
| 2593 | hw_fragshift = aport->sw_fragshift - subdivshift; |
| 2594 | if (hw_fragshift < MIN_FRAGSHIFT || |
| 2595 | hw_fragshift > MAX_FRAGSHIFT) |
| 2596 | return -EINVAL; |
| 2597 | hw_fragsize = 1 << hw_fragshift; |
| 2598 | hw_fragcount = aport->sw_fragcount >> subdivshift; |
| 2599 | if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) || |
| 2600 | hw_fragcount > MAX_FRAGCOUNT(hw_fragsize)) |
| 2601 | return -EINVAL; |
| 2602 | if (rport) |
| 2603 | rport->sw_subdivshift = subdivshift; |
| 2604 | if (wport) |
| 2605 | wport->sw_subdivshift = subdivshift; |
| 2606 | } |
| 2607 | return 0; |
| 2608 | |
| 2609 | case SNDCTL_DSP_SETFMT: /* _SIOWR('P',5, int) */ |
| 2610 | if (get_user(ival, (int *) arg)) |
| 2611 | return -EFAULT; |
| 2612 | DBGX("SNDCTL_DSP_SETFMT %d\n", ival); |
| 2613 | if (ival != AFMT_QUERY) { |
| 2614 | if (aport->swstate != SW_INITIAL) { |
| 2615 | DBGP("SETFMT failed, swstate = %d\n", |
| 2616 | aport->swstate); |
| 2617 | return -EINVAL; |
| 2618 | } |
| 2619 | switch (ival) { |
| 2620 | case AFMT_MU_LAW: |
| 2621 | case AFMT_A_LAW: |
| 2622 | case AFMT_U8: |
| 2623 | case AFMT_S8: |
| 2624 | case AFMT_S16_LE: |
| 2625 | if (rport) |
| 2626 | rport->sw_samplefmt = ival; |
| 2627 | if (wport) |
| 2628 | wport->sw_samplefmt = ival; |
| 2629 | break; |
| 2630 | default: |
| 2631 | return -EINVAL; |
| 2632 | } |
| 2633 | } |
| 2634 | ival = aport->sw_samplefmt; |
| 2635 | return put_user(ival, (int *) arg); |
| 2636 | |
| 2637 | case SNDCTL_DSP_GETOSPACE: /* _SIOR ('P',12, audio_buf_info) */ |
| 2638 | DBGXV("SNDCTL_DSP_GETOSPACE\n"); |
| 2639 | if (!wport) |
| 2640 | return -EINVAL; |
| 2641 | ival = pcm_setup(devc, rport, wport); |
| 2642 | if (ival < 0) |
| 2643 | return ival; |
| 2644 | ival = swb_inc_u(wport, 0); |
| 2645 | buf_info.fragments = ival >> wport->sw_fragshift; |
| 2646 | buf_info.fragstotal = wport->sw_fragcount; |
| 2647 | buf_info.fragsize = 1 << wport->sw_fragshift; |
| 2648 | buf_info.bytes = ival; |
| 2649 | DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n", |
| 2650 | buf_info.fragments, buf_info.fragstotal, |
| 2651 | buf_info.fragsize, buf_info.bytes); |
| 2652 | if (copy_to_user((void *) arg, &buf_info, sizeof buf_info)) |
| 2653 | return -EFAULT; |
| 2654 | return 0; |
| 2655 | |
| 2656 | case SNDCTL_DSP_GETISPACE: /* _SIOR ('P',13, audio_buf_info) */ |
| 2657 | DBGX("SNDCTL_DSP_GETISPACE\n"); |
| 2658 | if (!rport) |
| 2659 | return -EINVAL; |
| 2660 | ival = pcm_setup(devc, rport, wport); |
| 2661 | if (ival < 0) |
| 2662 | return ival; |
| 2663 | ival = swb_inc_u(rport, 0); |
| 2664 | buf_info.fragments = ival >> rport->sw_fragshift; |
| 2665 | buf_info.fragstotal = rport->sw_fragcount; |
| 2666 | buf_info.fragsize = 1 << rport->sw_fragshift; |
| 2667 | buf_info.bytes = ival; |
| 2668 | DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n", |
| 2669 | buf_info.fragments, buf_info.fragstotal, |
| 2670 | buf_info.fragsize, buf_info.bytes); |
| 2671 | if (copy_to_user((void *) arg, &buf_info, sizeof buf_info)) |
| 2672 | return -EFAULT; |
| 2673 | return 0; |
| 2674 | |
| 2675 | case SNDCTL_DSP_NONBLOCK: /* _SIO ('P',14) */ |
| 2676 | DBGX("SNDCTL_DSP_NONBLOCK\n"); |
| 2677 | file->f_flags |= O_NONBLOCK; |
| 2678 | return 0; |
| 2679 | |
| 2680 | case SNDCTL_DSP_RESET: /* _SIO ('P', 0) */ |
| 2681 | DBGX("SNDCTL_DSP_RESET\n"); |
| 2682 | /* |
| 2683 | * Nothing special needs to be done for input. Input |
| 2684 | * samples sit in swbuf, but it will be reinitialized |
| 2685 | * to empty when pcm_setup() is called. |
| 2686 | */ |
| 2687 | if (wport && wport->swbuf) { |
| 2688 | wport->swstate = SW_INITIAL; |
| 2689 | pcm_output(devc, 0, 0); |
| 2690 | pcm_write_sync(devc); |
| 2691 | } |
| 2692 | pcm_shutdown(devc, rport, wport); |
| 2693 | return 0; |
| 2694 | |
| 2695 | case SNDCTL_DSP_SYNC: /* _SIO ('P', 1) */ |
| 2696 | DBGX("SNDCTL_DSP_SYNC\n"); |
| 2697 | if (wport) { |
| 2698 | pcm_flush_frag(devc); |
| 2699 | pcm_write_sync(devc); |
| 2700 | } |
| 2701 | pcm_shutdown(devc, rport, wport); |
| 2702 | return 0; |
| 2703 | |
| 2704 | case SNDCTL_DSP_POST: /* _SIO ('P', 8) */ |
| 2705 | DBGX("SNDCTL_DSP_POST\n"); |
| 2706 | if (!wport) |
| 2707 | return -EINVAL; |
| 2708 | pcm_flush_frag(devc); |
| 2709 | return 0; |
| 2710 | |
| 2711 | case SNDCTL_DSP_GETIPTR: /* _SIOR ('P', 17, count_info) */ |
| 2712 | DBGX("SNDCTL_DSP_GETIPTR\n"); |
| 2713 | if (!rport) |
| 2714 | return -EINVAL; |
| 2715 | spin_lock_irqsave(&rport->lock, flags); |
| 2716 | { |
| 2717 | ustmsc_t ustmsc; |
| 2718 | if (rport->hwstate == HW_RUNNING) { |
| 2719 | ASSERT(rport->swstate == SW_RUN); |
| 2720 | li_read_USTMSC(&rport->chan, &ustmsc); |
| 2721 | info.bytes = ustmsc.msc - rport->MSC_offset; |
| 2722 | info.bytes *= rport->frame_size; |
| 2723 | } else { |
| 2724 | info.bytes = rport->byte_count; |
| 2725 | } |
| 2726 | info.blocks = rport->frag_count; |
| 2727 | info.ptr = 0; /* not implemented */ |
| 2728 | rport->frag_count = 0; |
| 2729 | } |
| 2730 | spin_unlock_irqrestore(&rport->lock, flags); |
| 2731 | if (copy_to_user((void *) arg, &info, sizeof info)) |
| 2732 | return -EFAULT; |
| 2733 | return 0; |
| 2734 | |
| 2735 | case SNDCTL_DSP_GETOPTR: /* _SIOR ('P',18, count_info) */ |
| 2736 | DBGX("SNDCTL_DSP_GETOPTR\n"); |
| 2737 | if (!wport) |
| 2738 | return -EINVAL; |
| 2739 | spin_lock_irqsave(&wport->lock, flags); |
| 2740 | { |
| 2741 | ustmsc_t ustmsc; |
| 2742 | if (wport->hwstate == HW_RUNNING) { |
| 2743 | ASSERT(wport->swstate == SW_RUN); |
| 2744 | li_read_USTMSC(&wport->chan, &ustmsc); |
| 2745 | info.bytes = ustmsc.msc - wport->MSC_offset; |
| 2746 | info.bytes *= wport->frame_size; |
| 2747 | } else { |
| 2748 | info.bytes = wport->byte_count; |
| 2749 | } |
| 2750 | info.blocks = wport->frag_count; |
| 2751 | info.ptr = 0; /* not implemented */ |
| 2752 | wport->frag_count = 0; |
| 2753 | } |
| 2754 | spin_unlock_irqrestore(&wport->lock, flags); |
| 2755 | if (copy_to_user((void *) arg, &info, sizeof info)) |
| 2756 | return -EFAULT; |
| 2757 | return 0; |
| 2758 | |
| 2759 | case SNDCTL_DSP_GETODELAY: /* _SIOR ('P', 23, int) */ |
| 2760 | DBGX("SNDCTL_DSP_GETODELAY\n"); |
| 2761 | if (!wport) |
| 2762 | return -EINVAL; |
| 2763 | spin_lock_irqsave(&wport->lock, flags); |
| 2764 | { |
| 2765 | int fsize = wport->frame_size; |
| 2766 | ival = wport->swb_i_avail / fsize; |
| 2767 | if (wport->hwstate == HW_RUNNING) { |
| 2768 | int swptr, hwptr, hwframes, hwbytes, hwsize; |
| 2769 | int totalhwbytes; |
| 2770 | ustmsc_t ustmsc; |
| 2771 | |
| 2772 | hwsize = wport->hwbuf_size; |
| 2773 | swptr = li_read_swptr(&wport->chan); |
| 2774 | li_read_USTMSC(&wport->chan, &ustmsc); |
| 2775 | hwframes = ustmsc.msc - wport->MSC_offset; |
| 2776 | totalhwbytes = hwframes * fsize; |
| 2777 | hwptr = totalhwbytes % hwsize; |
| 2778 | hwbytes = (swptr - hwptr + hwsize) % hwsize; |
| 2779 | ival += hwbytes / fsize; |
| 2780 | } |
| 2781 | } |
| 2782 | spin_unlock_irqrestore(&wport->lock, flags); |
| 2783 | return put_user(ival, (int *) arg); |
| 2784 | |
| 2785 | case SNDCTL_DSP_PROFILE: /* _SIOW ('P', 23, int) */ |
| 2786 | DBGX("SNDCTL_DSP_PROFILE\n"); |
| 2787 | |
| 2788 | /* |
| 2789 | * Thomas Sailer explains SNDCTL_DSP_PROFILE |
| 2790 | * (private email, March 24, 1999): |
| 2791 | * |
| 2792 | * This gives the sound driver a hint on what it |
| 2793 | * should do with partial fragments |
| 2794 | * (i.e. fragments partially filled with write). |
| 2795 | * This can direct the driver to zero them or |
| 2796 | * leave them alone. But don't ask me what this |
| 2797 | * is good for, my driver just zeroes the last |
| 2798 | * fragment before the receiver stops, no idea |
| 2799 | * what good for any other behaviour could |
| 2800 | * be. Implementing it as NOP seems safe. |
| 2801 | */ |
| 2802 | |
| 2803 | break; |
| 2804 | |
| 2805 | case SNDCTL_DSP_GETTRIGGER: /* _SIOR ('P',16, int) */ |
| 2806 | DBGX("SNDCTL_DSP_GETTRIGGER\n"); |
| 2807 | ival = 0; |
| 2808 | if (rport) { |
| 2809 | spin_lock_irqsave(&rport->lock, flags); |
| 2810 | { |
| 2811 | if (!(rport->flags & DISABLED)) |
| 2812 | ival |= PCM_ENABLE_INPUT; |
| 2813 | } |
| 2814 | spin_unlock_irqrestore(&rport->lock, flags); |
| 2815 | } |
| 2816 | if (wport) { |
| 2817 | spin_lock_irqsave(&wport->lock, flags); |
| 2818 | { |
| 2819 | if (!(wport->flags & DISABLED)) |
| 2820 | ival |= PCM_ENABLE_OUTPUT; |
| 2821 | } |
| 2822 | spin_unlock_irqrestore(&wport->lock, flags); |
| 2823 | } |
| 2824 | return put_user(ival, (int *) arg); |
| 2825 | |
| 2826 | case SNDCTL_DSP_SETTRIGGER: /* _SIOW ('P',16, int) */ |
| 2827 | if (get_user(ival, (int *) arg)) |
| 2828 | return -EFAULT; |
| 2829 | DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival); |
| 2830 | |
| 2831 | /* |
| 2832 | * If user is disabling I/O and port is not in initial |
| 2833 | * state, fail with EINVAL. |
| 2834 | */ |
| 2835 | |
| 2836 | if (((rport && !(ival & PCM_ENABLE_INPUT)) || |
| 2837 | (wport && !(ival & PCM_ENABLE_OUTPUT))) && |
| 2838 | aport->swstate != SW_INITIAL) |
| 2839 | return -EINVAL; |
| 2840 | |
| 2841 | if (rport) { |
| 2842 | vwsnd_port_hwstate_t hwstate; |
| 2843 | spin_lock_irqsave(&rport->lock, flags); |
| 2844 | { |
| 2845 | hwstate = rport->hwstate; |
| 2846 | if (ival & PCM_ENABLE_INPUT) |
| 2847 | rport->flags &= ~DISABLED; |
| 2848 | else |
| 2849 | rport->flags |= DISABLED; |
| 2850 | } |
| 2851 | spin_unlock_irqrestore(&rport->lock, flags); |
| 2852 | if (hwstate != HW_RUNNING && ival & PCM_ENABLE_INPUT) { |
| 2853 | |
| 2854 | if (rport->swstate == SW_INITIAL) |
| 2855 | pcm_setup(devc, rport, wport); |
| 2856 | else |
| 2857 | li_activate_dma(&rport->chan); |
| 2858 | } |
| 2859 | } |
| 2860 | if (wport) { |
| 2861 | vwsnd_port_flags_t pflags; |
| 2862 | spin_lock_irqsave(&wport->lock, flags); |
| 2863 | { |
| 2864 | pflags = wport->flags; |
| 2865 | if (ival & PCM_ENABLE_OUTPUT) |
| 2866 | wport->flags &= ~DISABLED; |
| 2867 | else |
| 2868 | wport->flags |= DISABLED; |
| 2869 | } |
| 2870 | spin_unlock_irqrestore(&wport->lock, flags); |
| 2871 | if (pflags & DISABLED && ival & PCM_ENABLE_OUTPUT) { |
| 2872 | if (wport->swstate == SW_RUN) |
| 2873 | pcm_output(devc, 0, 0); |
| 2874 | } |
| 2875 | } |
| 2876 | return 0; |
| 2877 | |
| 2878 | default: |
| 2879 | DBGP("unknown ioctl 0x%x\n", cmd); |
| 2880 | return -EINVAL; |
| 2881 | } |
| 2882 | DBGP("unimplemented ioctl 0x%x\n", cmd); |
| 2883 | return -EINVAL; |
| 2884 | } |
| 2885 | |
| 2886 | static int vwsnd_audio_ioctl(struct inode *inode, |
| 2887 | struct file *file, |
| 2888 | unsigned int cmd, |
| 2889 | unsigned long arg) |
| 2890 | { |
| 2891 | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; |
| 2892 | int ret; |
| 2893 | |
| 2894 | down(&devc->io_sema); |
| 2895 | ret = vwsnd_audio_do_ioctl(inode, file, cmd, arg); |
| 2896 | up(&devc->io_sema); |
| 2897 | return ret; |
| 2898 | } |
| 2899 | |
| 2900 | /* No mmap. */ |
| 2901 | |
| 2902 | static int vwsnd_audio_mmap(struct file *file, struct vm_area_struct *vma) |
| 2903 | { |
| 2904 | DBGE("(file=0x%p, vma=0x%p)\n", file, vma); |
| 2905 | return -ENODEV; |
| 2906 | } |
| 2907 | |
| 2908 | /* |
| 2909 | * Open the audio device for read and/or write. |
| 2910 | * |
| 2911 | * Returns 0 on success, -errno on failure. |
| 2912 | */ |
| 2913 | |
| 2914 | static int vwsnd_audio_open(struct inode *inode, struct file *file) |
| 2915 | { |
| 2916 | vwsnd_dev_t *devc; |
| 2917 | int minor = iminor(inode); |
| 2918 | int sw_samplefmt; |
| 2919 | |
| 2920 | DBGE("(inode=0x%p, file=0x%p)\n", inode, file); |
| 2921 | |
| 2922 | INC_USE_COUNT; |
| 2923 | for (devc = vwsnd_dev_list; devc; devc = devc->next_dev) |
| 2924 | if ((devc->audio_minor & ~0x0F) == (minor & ~0x0F)) |
| 2925 | break; |
| 2926 | |
| 2927 | if (devc == NULL) { |
| 2928 | DEC_USE_COUNT; |
| 2929 | return -ENODEV; |
| 2930 | } |
| 2931 | |
| 2932 | down(&devc->open_sema); |
| 2933 | while (devc->open_mode & file->f_mode) { |
| 2934 | up(&devc->open_sema); |
| 2935 | if (file->f_flags & O_NONBLOCK) { |
| 2936 | DEC_USE_COUNT; |
| 2937 | return -EBUSY; |
| 2938 | } |
| 2939 | interruptible_sleep_on(&devc->open_wait); |
| 2940 | if (signal_pending(current)) { |
| 2941 | DEC_USE_COUNT; |
| 2942 | return -ERESTARTSYS; |
| 2943 | } |
| 2944 | down(&devc->open_sema); |
| 2945 | } |
| 2946 | devc->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); |
| 2947 | up(&devc->open_sema); |
| 2948 | |
| 2949 | /* get default sample format from minor number. */ |
| 2950 | |
| 2951 | sw_samplefmt = 0; |
| 2952 | if ((minor & 0xF) == SND_DEV_DSP) |
| 2953 | sw_samplefmt = AFMT_U8; |
| 2954 | else if ((minor & 0xF) == SND_DEV_AUDIO) |
| 2955 | sw_samplefmt = AFMT_MU_LAW; |
| 2956 | else if ((minor & 0xF) == SND_DEV_DSP16) |
| 2957 | sw_samplefmt = AFMT_S16_LE; |
| 2958 | else |
| 2959 | ASSERT(0); |
| 2960 | |
| 2961 | /* Initialize vwsnd_ports. */ |
| 2962 | |
| 2963 | down(&devc->io_sema); |
| 2964 | { |
| 2965 | if (file->f_mode & FMODE_READ) { |
| 2966 | devc->rport.swstate = SW_INITIAL; |
| 2967 | devc->rport.flags = 0; |
| 2968 | devc->rport.sw_channels = 1; |
| 2969 | devc->rport.sw_samplefmt = sw_samplefmt; |
| 2970 | devc->rport.sw_framerate = 8000; |
| 2971 | devc->rport.sw_fragshift = DEFAULT_FRAGSHIFT; |
| 2972 | devc->rport.sw_fragcount = DEFAULT_FRAGCOUNT; |
| 2973 | devc->rport.sw_subdivshift = DEFAULT_SUBDIVSHIFT; |
| 2974 | devc->rport.byte_count = 0; |
| 2975 | devc->rport.frag_count = 0; |
| 2976 | } |
| 2977 | if (file->f_mode & FMODE_WRITE) { |
| 2978 | devc->wport.swstate = SW_INITIAL; |
| 2979 | devc->wport.flags = 0; |
| 2980 | devc->wport.sw_channels = 1; |
| 2981 | devc->wport.sw_samplefmt = sw_samplefmt; |
| 2982 | devc->wport.sw_framerate = 8000; |
| 2983 | devc->wport.sw_fragshift = DEFAULT_FRAGSHIFT; |
| 2984 | devc->wport.sw_fragcount = DEFAULT_FRAGCOUNT; |
| 2985 | devc->wport.sw_subdivshift = DEFAULT_SUBDIVSHIFT; |
| 2986 | devc->wport.byte_count = 0; |
| 2987 | devc->wport.frag_count = 0; |
| 2988 | } |
| 2989 | } |
| 2990 | up(&devc->io_sema); |
| 2991 | |
| 2992 | file->private_data = devc; |
| 2993 | DBGRV(); |
| 2994 | return 0; |
| 2995 | } |
| 2996 | |
| 2997 | /* |
| 2998 | * Release (close) the audio device. |
| 2999 | */ |
| 3000 | |
| 3001 | static int vwsnd_audio_release(struct inode *inode, struct file *file) |
| 3002 | { |
| 3003 | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; |
| 3004 | vwsnd_port_t *wport = NULL, *rport = NULL; |
| 3005 | int err = 0; |
| 3006 | |
| 3007 | lock_kernel(); |
| 3008 | down(&devc->io_sema); |
| 3009 | { |
| 3010 | DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); |
| 3011 | |
| 3012 | if (file->f_mode & FMODE_READ) |
| 3013 | rport = &devc->rport; |
| 3014 | if (file->f_mode & FMODE_WRITE) { |
| 3015 | wport = &devc->wport; |
| 3016 | pcm_flush_frag(devc); |
| 3017 | pcm_write_sync(devc); |
| 3018 | } |
| 3019 | pcm_shutdown(devc, rport, wport); |
| 3020 | if (rport) |
| 3021 | rport->swstate = SW_OFF; |
| 3022 | if (wport) |
| 3023 | wport->swstate = SW_OFF; |
| 3024 | } |
| 3025 | up(&devc->io_sema); |
| 3026 | |
| 3027 | down(&devc->open_sema); |
| 3028 | { |
| 3029 | devc->open_mode &= ~file->f_mode; |
| 3030 | } |
| 3031 | up(&devc->open_sema); |
| 3032 | wake_up(&devc->open_wait); |
| 3033 | DEC_USE_COUNT; |
| 3034 | DBGR(); |
| 3035 | unlock_kernel(); |
| 3036 | return err; |
| 3037 | } |
| 3038 | |
| 3039 | static struct file_operations vwsnd_audio_fops = { |
| 3040 | .owner = THIS_MODULE, |
| 3041 | .llseek = no_llseek, |
| 3042 | .read = vwsnd_audio_read, |
| 3043 | .write = vwsnd_audio_write, |
| 3044 | .poll = vwsnd_audio_poll, |
| 3045 | .ioctl = vwsnd_audio_ioctl, |
| 3046 | .mmap = vwsnd_audio_mmap, |
| 3047 | .open = vwsnd_audio_open, |
| 3048 | .release = vwsnd_audio_release, |
| 3049 | }; |
| 3050 | |
| 3051 | /*****************************************************************************/ |
| 3052 | /* mixer driver */ |
| 3053 | |
| 3054 | /* open the mixer device. */ |
| 3055 | |
| 3056 | static int vwsnd_mixer_open(struct inode *inode, struct file *file) |
| 3057 | { |
| 3058 | vwsnd_dev_t *devc; |
| 3059 | |
| 3060 | DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); |
| 3061 | |
| 3062 | INC_USE_COUNT; |
| 3063 | for (devc = vwsnd_dev_list; devc; devc = devc->next_dev) |
| 3064 | if (devc->mixer_minor == iminor(inode)) |
| 3065 | break; |
| 3066 | |
| 3067 | if (devc == NULL) { |
| 3068 | DEC_USE_COUNT; |
| 3069 | return -ENODEV; |
| 3070 | } |
| 3071 | file->private_data = devc; |
| 3072 | return 0; |
| 3073 | } |
| 3074 | |
| 3075 | /* release (close) the mixer device. */ |
| 3076 | |
| 3077 | static int vwsnd_mixer_release(struct inode *inode, struct file *file) |
| 3078 | { |
| 3079 | DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); |
| 3080 | DEC_USE_COUNT; |
| 3081 | return 0; |
| 3082 | } |
| 3083 | |
| 3084 | /* mixer_read_ioctl handles all read ioctls on the mixer device. */ |
| 3085 | |
| 3086 | static int mixer_read_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg) |
| 3087 | { |
| 3088 | int val = -1; |
| 3089 | |
| 3090 | DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg); |
| 3091 | |
| 3092 | switch (nr) { |
| 3093 | case SOUND_MIXER_CAPS: |
| 3094 | val = SOUND_CAP_EXCL_INPUT; |
| 3095 | break; |
| 3096 | |
| 3097 | case SOUND_MIXER_DEVMASK: |
| 3098 | val = (SOUND_MASK_PCM | SOUND_MASK_LINE | |
| 3099 | SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV); |
| 3100 | break; |
| 3101 | |
| 3102 | case SOUND_MIXER_STEREODEVS: |
| 3103 | val = (SOUND_MASK_PCM | SOUND_MASK_LINE | |
| 3104 | SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV); |
| 3105 | break; |
| 3106 | |
| 3107 | case SOUND_MIXER_OUTMASK: |
| 3108 | val = (SOUND_MASK_PCM | SOUND_MASK_LINE | |
| 3109 | SOUND_MASK_MIC | SOUND_MASK_CD); |
| 3110 | break; |
| 3111 | |
| 3112 | case SOUND_MIXER_RECMASK: |
| 3113 | val = (SOUND_MASK_PCM | SOUND_MASK_LINE | |
| 3114 | SOUND_MASK_MIC | SOUND_MASK_CD); |
| 3115 | break; |
| 3116 | |
| 3117 | case SOUND_MIXER_PCM: |
| 3118 | val = ad1843_get_gain(&devc->lith, &ad1843_gain_PCM); |
| 3119 | break; |
| 3120 | |
| 3121 | case SOUND_MIXER_LINE: |
| 3122 | val = ad1843_get_gain(&devc->lith, &ad1843_gain_LINE); |
| 3123 | break; |
| 3124 | |
| 3125 | case SOUND_MIXER_MIC: |
| 3126 | val = ad1843_get_gain(&devc->lith, &ad1843_gain_MIC); |
| 3127 | break; |
| 3128 | |
| 3129 | case SOUND_MIXER_CD: |
| 3130 | val = ad1843_get_gain(&devc->lith, &ad1843_gain_CD); |
| 3131 | break; |
| 3132 | |
| 3133 | case SOUND_MIXER_RECLEV: |
| 3134 | val = ad1843_get_gain(&devc->lith, &ad1843_gain_RECLEV); |
| 3135 | break; |
| 3136 | |
| 3137 | case SOUND_MIXER_RECSRC: |
| 3138 | val = ad1843_get_recsrc(&devc->lith); |
| 3139 | break; |
| 3140 | |
| 3141 | case SOUND_MIXER_OUTSRC: |
| 3142 | val = ad1843_get_outsrc(&devc->lith); |
| 3143 | break; |
| 3144 | |
| 3145 | default: |
| 3146 | return -EINVAL; |
| 3147 | } |
| 3148 | return put_user(val, (int __user *) arg); |
| 3149 | } |
| 3150 | |
| 3151 | /* mixer_write_ioctl handles all write ioctls on the mixer device. */ |
| 3152 | |
| 3153 | static int mixer_write_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg) |
| 3154 | { |
| 3155 | int val; |
| 3156 | int err; |
| 3157 | |
| 3158 | DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg); |
| 3159 | |
| 3160 | err = get_user(val, (int __user *) arg); |
| 3161 | if (err) |
| 3162 | return -EFAULT; |
| 3163 | switch (nr) { |
| 3164 | case SOUND_MIXER_PCM: |
| 3165 | val = ad1843_set_gain(&devc->lith, &ad1843_gain_PCM, val); |
| 3166 | break; |
| 3167 | |
| 3168 | case SOUND_MIXER_LINE: |
| 3169 | val = ad1843_set_gain(&devc->lith, &ad1843_gain_LINE, val); |
| 3170 | break; |
| 3171 | |
| 3172 | case SOUND_MIXER_MIC: |
| 3173 | val = ad1843_set_gain(&devc->lith, &ad1843_gain_MIC, val); |
| 3174 | break; |
| 3175 | |
| 3176 | case SOUND_MIXER_CD: |
| 3177 | val = ad1843_set_gain(&devc->lith, &ad1843_gain_CD, val); |
| 3178 | break; |
| 3179 | |
| 3180 | case SOUND_MIXER_RECLEV: |
| 3181 | val = ad1843_set_gain(&devc->lith, &ad1843_gain_RECLEV, val); |
| 3182 | break; |
| 3183 | |
| 3184 | case SOUND_MIXER_RECSRC: |
| 3185 | if (devc->rport.swbuf || devc->wport.swbuf) |
| 3186 | return -EBUSY; /* can't change recsrc while running */ |
| 3187 | val = ad1843_set_recsrc(&devc->lith, val); |
| 3188 | break; |
| 3189 | |
| 3190 | case SOUND_MIXER_OUTSRC: |
| 3191 | val = ad1843_set_outsrc(&devc->lith, val); |
| 3192 | break; |
| 3193 | |
| 3194 | default: |
| 3195 | return -EINVAL; |
| 3196 | } |
| 3197 | if (val < 0) |
| 3198 | return val; |
| 3199 | return put_user(val, (int __user *) arg); |
| 3200 | } |
| 3201 | |
| 3202 | /* This is the ioctl entry to the mixer driver. */ |
| 3203 | |
| 3204 | static int vwsnd_mixer_ioctl(struct inode *ioctl, |
| 3205 | struct file *file, |
| 3206 | unsigned int cmd, |
| 3207 | unsigned long arg) |
| 3208 | { |
| 3209 | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; |
| 3210 | const unsigned int nrmask = _IOC_NRMASK << _IOC_NRSHIFT; |
| 3211 | const unsigned int nr = (cmd & nrmask) >> _IOC_NRSHIFT; |
| 3212 | int retval; |
| 3213 | |
| 3214 | DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc, cmd, arg); |
| 3215 | |
| 3216 | down(&devc->mix_sema); |
| 3217 | { |
| 3218 | if ((cmd & ~nrmask) == MIXER_READ(0)) |
| 3219 | retval = mixer_read_ioctl(devc, nr, (void __user *) arg); |
| 3220 | else if ((cmd & ~nrmask) == MIXER_WRITE(0)) |
| 3221 | retval = mixer_write_ioctl(devc, nr, (void __user *) arg); |
| 3222 | else |
| 3223 | retval = -EINVAL; |
| 3224 | } |
| 3225 | up(&devc->mix_sema); |
| 3226 | return retval; |
| 3227 | } |
| 3228 | |
| 3229 | static struct file_operations vwsnd_mixer_fops = { |
| 3230 | .owner = THIS_MODULE, |
| 3231 | .llseek = no_llseek, |
| 3232 | .ioctl = vwsnd_mixer_ioctl, |
| 3233 | .open = vwsnd_mixer_open, |
| 3234 | .release = vwsnd_mixer_release, |
| 3235 | }; |
| 3236 | |
| 3237 | /*****************************************************************************/ |
| 3238 | /* probe/attach/unload */ |
| 3239 | |
| 3240 | /* driver probe routine. Return nonzero if hardware is found. */ |
| 3241 | |
| 3242 | static int __init probe_vwsnd(struct address_info *hw_config) |
| 3243 | { |
| 3244 | lithium_t lith; |
| 3245 | int w; |
| 3246 | unsigned long later; |
| 3247 | |
| 3248 | DBGEV("(hw_config=0x%p)\n", hw_config); |
| 3249 | |
| 3250 | /* XXX verify lithium present (to prevent crash on non-vw) */ |
| 3251 | |
| 3252 | if (li_create(&lith, hw_config->io_base) != 0) { |
| 3253 | printk(KERN_WARNING "probe_vwsnd: can't map lithium\n"); |
| 3254 | return 0; |
| 3255 | } |
| 3256 | later = jiffies + 2; |
| 3257 | li_writel(&lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE); |
| 3258 | do { |
| 3259 | w = li_readl(&lith, LI_HOST_CONTROLLER); |
| 3260 | } while (w == LI_HC_LINK_ENABLE && time_before(jiffies, later)); |
| 3261 | |
| 3262 | li_destroy(&lith); |
| 3263 | |
| 3264 | DBGPV("HC = 0x%04x\n", w); |
| 3265 | |
| 3266 | if ((w == LI_HC_LINK_ENABLE) || (w & LI_HC_LINK_CODEC)) { |
| 3267 | |
| 3268 | /* This may indicate a beta machine with no audio, |
| 3269 | * or a future machine with different audio. |
| 3270 | * On beta-release 320 w/ no audio, HC == 0x4000 */ |
| 3271 | |
| 3272 | printk(KERN_WARNING "probe_vwsnd: audio codec not found\n"); |
| 3273 | return 0; |
| 3274 | } |
| 3275 | |
| 3276 | if (w & LI_HC_LINK_FAILURE) { |
| 3277 | printk(KERN_WARNING "probe_vwsnd: can't init audio codec\n"); |
| 3278 | return 0; |
| 3279 | } |
| 3280 | |
| 3281 | printk(KERN_INFO "vwsnd: lithium audio at mmio %#x irq %d\n", |
| 3282 | hw_config->io_base, hw_config->irq); |
| 3283 | |
| 3284 | return 1; |
| 3285 | } |
| 3286 | |
| 3287 | /* |
| 3288 | * driver attach routine. Initialize driver data structures and |
| 3289 | * initialize hardware. A new vwsnd_dev_t is allocated and put |
| 3290 | * onto the global list, vwsnd_dev_list. |
| 3291 | * |
| 3292 | * Return +minor_dev on success, -errno on failure. |
| 3293 | */ |
| 3294 | |
| 3295 | static int __init attach_vwsnd(struct address_info *hw_config) |
| 3296 | { |
| 3297 | vwsnd_dev_t *devc = NULL; |
| 3298 | int err = -ENOMEM; |
| 3299 | |
| 3300 | DBGEV("(hw_config=0x%p)\n", hw_config); |
| 3301 | |
| 3302 | devc = kmalloc(sizeof (vwsnd_dev_t), GFP_KERNEL); |
| 3303 | if (devc == NULL) |
| 3304 | goto fail0; |
| 3305 | |
| 3306 | err = li_create(&devc->lith, hw_config->io_base); |
| 3307 | if (err) |
| 3308 | goto fail1; |
| 3309 | |
| 3310 | init_waitqueue_head(&devc->open_wait); |
| 3311 | |
| 3312 | devc->rport.hwbuf_size = HWBUF_SIZE; |
| 3313 | devc->rport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER); |
| 3314 | if (!devc->rport.hwbuf_vaddr) |
| 3315 | goto fail2; |
| 3316 | devc->rport.hwbuf = (void *) devc->rport.hwbuf_vaddr; |
| 3317 | devc->rport.hwbuf_paddr = virt_to_phys(devc->rport.hwbuf); |
| 3318 | |
| 3319 | /* |
| 3320 | * Quote from the NT driver: |
| 3321 | * |
| 3322 | * // WARNING!!! HACK to setup output dma!!! |
| 3323 | * // This is required because even on output there is some data |
| 3324 | * // trickling into the input DMA channel. This is a bug in the |
| 3325 | * // Lithium microcode. |
| 3326 | * // --sde |
| 3327 | * |
| 3328 | * We set the input side's DMA base address here. It will remain |
| 3329 | * valid until the driver is unloaded. |
| 3330 | */ |
| 3331 | |
| 3332 | li_writel(&devc->lith, LI_COMM1_BASE, |
| 3333 | devc->rport.hwbuf_paddr >> 8 | 1 << (37 - 8)); |
| 3334 | |
| 3335 | devc->wport.hwbuf_size = HWBUF_SIZE; |
| 3336 | devc->wport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER); |
| 3337 | if (!devc->wport.hwbuf_vaddr) |
| 3338 | goto fail3; |
| 3339 | devc->wport.hwbuf = (void *) devc->wport.hwbuf_vaddr; |
| 3340 | devc->wport.hwbuf_paddr = virt_to_phys(devc->wport.hwbuf); |
| 3341 | DBGP("wport hwbuf = 0x%p\n", devc->wport.hwbuf); |
| 3342 | |
| 3343 | DBGDO(shut_up++); |
| 3344 | err = ad1843_init(&devc->lith); |
| 3345 | DBGDO(shut_up--); |
| 3346 | if (err) |
| 3347 | goto fail4; |
| 3348 | |
| 3349 | /* install interrupt handler */ |
| 3350 | |
| 3351 | err = request_irq(hw_config->irq, vwsnd_audio_intr, 0, "vwsnd", devc); |
| 3352 | if (err) |
| 3353 | goto fail5; |
| 3354 | |
| 3355 | /* register this device's drivers. */ |
| 3356 | |
| 3357 | devc->audio_minor = register_sound_dsp(&vwsnd_audio_fops, -1); |
| 3358 | if ((err = devc->audio_minor) < 0) { |
| 3359 | DBGDO(printk(KERN_WARNING |
| 3360 | "attach_vwsnd: register_sound_dsp error %d\n", |
| 3361 | err)); |
| 3362 | goto fail6; |
| 3363 | } |
| 3364 | devc->mixer_minor = register_sound_mixer(&vwsnd_mixer_fops, |
| 3365 | devc->audio_minor >> 4); |
| 3366 | if ((err = devc->mixer_minor) < 0) { |
| 3367 | DBGDO(printk(KERN_WARNING |
| 3368 | "attach_vwsnd: register_sound_mixer error %d\n", |
| 3369 | err)); |
| 3370 | goto fail7; |
| 3371 | } |
| 3372 | |
| 3373 | /* Squirrel away device indices for unload routine. */ |
| 3374 | |
| 3375 | hw_config->slots[0] = devc->audio_minor; |
| 3376 | |
| 3377 | /* Initialize as much of *devc as possible */ |
| 3378 | |
| 3379 | init_MUTEX(&devc->open_sema); |
| 3380 | init_MUTEX(&devc->io_sema); |
| 3381 | init_MUTEX(&devc->mix_sema); |
| 3382 | devc->open_mode = 0; |
| 3383 | spin_lock_init(&devc->rport.lock); |
| 3384 | init_waitqueue_head(&devc->rport.queue); |
| 3385 | devc->rport.swstate = SW_OFF; |
| 3386 | devc->rport.hwstate = HW_STOPPED; |
| 3387 | devc->rport.flags = 0; |
| 3388 | devc->rport.swbuf = NULL; |
| 3389 | spin_lock_init(&devc->wport.lock); |
| 3390 | init_waitqueue_head(&devc->wport.queue); |
| 3391 | devc->wport.swstate = SW_OFF; |
| 3392 | devc->wport.hwstate = HW_STOPPED; |
| 3393 | devc->wport.flags = 0; |
| 3394 | devc->wport.swbuf = NULL; |
| 3395 | |
| 3396 | /* Success. Link us onto the local device list. */ |
| 3397 | |
| 3398 | devc->next_dev = vwsnd_dev_list; |
| 3399 | vwsnd_dev_list = devc; |
| 3400 | return devc->audio_minor; |
| 3401 | |
| 3402 | /* So many ways to fail. Undo what we did. */ |
| 3403 | |
| 3404 | fail7: |
| 3405 | unregister_sound_dsp(devc->audio_minor); |
| 3406 | fail6: |
| 3407 | free_irq(hw_config->irq, devc); |
| 3408 | fail5: |
| 3409 | fail4: |
| 3410 | free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER); |
| 3411 | fail3: |
| 3412 | free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER); |
| 3413 | fail2: |
| 3414 | li_destroy(&devc->lith); |
| 3415 | fail1: |
| 3416 | kfree(devc); |
| 3417 | fail0: |
| 3418 | return err; |
| 3419 | } |
| 3420 | |
| 3421 | static int __exit unload_vwsnd(struct address_info *hw_config) |
| 3422 | { |
| 3423 | vwsnd_dev_t *devc, **devcp; |
| 3424 | |
| 3425 | DBGE("()\n"); |
| 3426 | |
| 3427 | devcp = &vwsnd_dev_list; |
| 3428 | while ((devc = *devcp)) { |
| 3429 | if (devc->audio_minor == hw_config->slots[0]) { |
| 3430 | *devcp = devc->next_dev; |
| 3431 | break; |
| 3432 | } |
| 3433 | devcp = &devc->next_dev; |
| 3434 | } |
| 3435 | |
| 3436 | if (!devc) |
| 3437 | return -ENODEV; |
| 3438 | |
| 3439 | unregister_sound_mixer(devc->mixer_minor); |
| 3440 | unregister_sound_dsp(devc->audio_minor); |
| 3441 | free_irq(hw_config->irq, devc); |
| 3442 | free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER); |
| 3443 | free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER); |
| 3444 | li_destroy(&devc->lith); |
| 3445 | kfree(devc); |
| 3446 | |
| 3447 | return 0; |
| 3448 | } |
| 3449 | |
| 3450 | /*****************************************************************************/ |
| 3451 | /* initialization and loadable kernel module interface */ |
| 3452 | |
| 3453 | static struct address_info the_hw_config = { |
| 3454 | 0xFF001000, /* lithium phys addr */ |
| 3455 | CO_IRQ(CO_APIC_LI_AUDIO) /* irq */ |
| 3456 | }; |
| 3457 | |
| 3458 | MODULE_DESCRIPTION("SGI Visual Workstation sound module"); |
| 3459 | MODULE_AUTHOR("Bob Miller <kbob@sgi.com>"); |
| 3460 | MODULE_LICENSE("GPL"); |
| 3461 | |
| 3462 | static int __init init_vwsnd(void) |
| 3463 | { |
| 3464 | int err; |
| 3465 | |
| 3466 | DBGXV("\n"); |
| 3467 | DBGXV("sound::vwsnd::init_module()\n"); |
| 3468 | |
| 3469 | if (!probe_vwsnd(&the_hw_config)) |
| 3470 | return -ENODEV; |
| 3471 | |
| 3472 | err = attach_vwsnd(&the_hw_config); |
| 3473 | if (err < 0) |
| 3474 | return err; |
| 3475 | return 0; |
| 3476 | } |
| 3477 | |
| 3478 | static void __exit cleanup_vwsnd(void) |
| 3479 | { |
| 3480 | DBGX("sound::vwsnd::cleanup_module()\n"); |
| 3481 | |
| 3482 | unload_vwsnd(&the_hw_config); |
| 3483 | } |
| 3484 | |
| 3485 | module_init(init_vwsnd); |
| 3486 | module_exit(cleanup_vwsnd); |