Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame] | 1 | /* |
| 2 | * This file is part of UBIFS. |
| 3 | * |
| 4 | * Copyright (C) 2006-2008 Nokia Corporation. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published by |
| 8 | * the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | * more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License along with |
| 16 | * this program; if not, write to the Free Software Foundation, Inc., 51 |
| 17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 18 | * |
| 19 | * Authors: Artem Bityutskiy (Битюцкий Артём) |
| 20 | * Adrian Hunter |
| 21 | */ |
| 22 | |
| 23 | /* |
| 24 | * This file contains functions for finding LEBs for various purposes e.g. |
| 25 | * garbage collection. In general, lprops category heaps and lists are used |
| 26 | * for fast access, falling back on scanning the LPT as a last resort. |
| 27 | */ |
| 28 | |
| 29 | #include <linux/sort.h> |
| 30 | #include "ubifs.h" |
| 31 | |
| 32 | /** |
| 33 | * struct scan_data - data provided to scan callback functions |
| 34 | * @min_space: minimum number of bytes for which to scan |
| 35 | * @pick_free: whether it is OK to scan for empty LEBs |
| 36 | * @lnum: LEB number found is returned here |
| 37 | * @exclude_index: whether to exclude index LEBs |
| 38 | */ |
| 39 | struct scan_data { |
| 40 | int min_space; |
| 41 | int pick_free; |
| 42 | int lnum; |
| 43 | int exclude_index; |
| 44 | }; |
| 45 | |
| 46 | /** |
| 47 | * valuable - determine whether LEB properties are valuable. |
| 48 | * @c: the UBIFS file-system description object |
| 49 | * @lprops: LEB properties |
| 50 | * |
| 51 | * This function return %1 if the LEB properties should be added to the LEB |
| 52 | * properties tree in memory. Otherwise %0 is returned. |
| 53 | */ |
| 54 | static int valuable(struct ubifs_info *c, const struct ubifs_lprops *lprops) |
| 55 | { |
| 56 | int n, cat = lprops->flags & LPROPS_CAT_MASK; |
| 57 | struct ubifs_lpt_heap *heap; |
| 58 | |
| 59 | switch (cat) { |
| 60 | case LPROPS_DIRTY: |
| 61 | case LPROPS_DIRTY_IDX: |
| 62 | case LPROPS_FREE: |
| 63 | heap = &c->lpt_heap[cat - 1]; |
| 64 | if (heap->cnt < heap->max_cnt) |
| 65 | return 1; |
| 66 | if (lprops->free + lprops->dirty >= c->dark_wm) |
| 67 | return 1; |
| 68 | return 0; |
| 69 | case LPROPS_EMPTY: |
| 70 | n = c->lst.empty_lebs + c->freeable_cnt - |
| 71 | c->lst.taken_empty_lebs; |
| 72 | if (n < c->lsave_cnt) |
| 73 | return 1; |
| 74 | return 0; |
| 75 | case LPROPS_FREEABLE: |
| 76 | return 1; |
| 77 | case LPROPS_FRDI_IDX: |
| 78 | return 1; |
| 79 | } |
| 80 | return 0; |
| 81 | } |
| 82 | |
| 83 | /** |
| 84 | * scan_for_dirty_cb - dirty space scan callback. |
| 85 | * @c: the UBIFS file-system description object |
| 86 | * @lprops: LEB properties to scan |
| 87 | * @in_tree: whether the LEB properties are in main memory |
| 88 | * @data: information passed to and from the caller of the scan |
| 89 | * |
| 90 | * This function returns a code that indicates whether the scan should continue |
| 91 | * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree |
| 92 | * in main memory (%LPT_SCAN_ADD), or whether the scan should stop |
| 93 | * (%LPT_SCAN_STOP). |
| 94 | */ |
| 95 | static int scan_for_dirty_cb(struct ubifs_info *c, |
| 96 | const struct ubifs_lprops *lprops, int in_tree, |
| 97 | struct scan_data *data) |
| 98 | { |
| 99 | int ret = LPT_SCAN_CONTINUE; |
| 100 | |
| 101 | /* Exclude LEBs that are currently in use */ |
| 102 | if (lprops->flags & LPROPS_TAKEN) |
| 103 | return LPT_SCAN_CONTINUE; |
| 104 | /* Determine whether to add these LEB properties to the tree */ |
| 105 | if (!in_tree && valuable(c, lprops)) |
| 106 | ret |= LPT_SCAN_ADD; |
| 107 | /* Exclude LEBs with too little space */ |
| 108 | if (lprops->free + lprops->dirty < data->min_space) |
| 109 | return ret; |
| 110 | /* If specified, exclude index LEBs */ |
| 111 | if (data->exclude_index && lprops->flags & LPROPS_INDEX) |
| 112 | return ret; |
| 113 | /* If specified, exclude empty or freeable LEBs */ |
| 114 | if (lprops->free + lprops->dirty == c->leb_size) { |
| 115 | if (!data->pick_free) |
| 116 | return ret; |
| 117 | /* Exclude LEBs with too little dirty space (unless it is empty) */ |
| 118 | } else if (lprops->dirty < c->dead_wm) |
| 119 | return ret; |
| 120 | /* Finally we found space */ |
| 121 | data->lnum = lprops->lnum; |
| 122 | return LPT_SCAN_ADD | LPT_SCAN_STOP; |
| 123 | } |
| 124 | |
| 125 | /** |
| 126 | * scan_for_dirty - find a data LEB with free space. |
| 127 | * @c: the UBIFS file-system description object |
| 128 | * @min_space: minimum amount free plus dirty space the returned LEB has to |
| 129 | * have |
| 130 | * @pick_free: if it is OK to return a free or freeable LEB |
| 131 | * @exclude_index: whether to exclude index LEBs |
| 132 | * |
| 133 | * This function returns a pointer to the LEB properties found or a negative |
| 134 | * error code. |
| 135 | */ |
| 136 | static const struct ubifs_lprops *scan_for_dirty(struct ubifs_info *c, |
| 137 | int min_space, int pick_free, |
| 138 | int exclude_index) |
| 139 | { |
| 140 | const struct ubifs_lprops *lprops; |
| 141 | struct ubifs_lpt_heap *heap; |
| 142 | struct scan_data data; |
| 143 | int err, i; |
| 144 | |
| 145 | /* There may be an LEB with enough dirty space on the free heap */ |
| 146 | heap = &c->lpt_heap[LPROPS_FREE - 1]; |
| 147 | for (i = 0; i < heap->cnt; i++) { |
| 148 | lprops = heap->arr[i]; |
| 149 | if (lprops->free + lprops->dirty < min_space) |
| 150 | continue; |
| 151 | if (lprops->dirty < c->dead_wm) |
| 152 | continue; |
| 153 | return lprops; |
| 154 | } |
| 155 | /* |
| 156 | * A LEB may have fallen off of the bottom of the dirty heap, and ended |
| 157 | * up as uncategorized even though it has enough dirty space for us now, |
| 158 | * so check the uncategorized list. N.B. neither empty nor freeable LEBs |
| 159 | * can end up as uncategorized because they are kept on lists not |
| 160 | * finite-sized heaps. |
| 161 | */ |
| 162 | list_for_each_entry(lprops, &c->uncat_list, list) { |
| 163 | if (lprops->flags & LPROPS_TAKEN) |
| 164 | continue; |
| 165 | if (lprops->free + lprops->dirty < min_space) |
| 166 | continue; |
| 167 | if (exclude_index && (lprops->flags & LPROPS_INDEX)) |
| 168 | continue; |
| 169 | if (lprops->dirty < c->dead_wm) |
| 170 | continue; |
| 171 | return lprops; |
| 172 | } |
| 173 | /* We have looked everywhere in main memory, now scan the flash */ |
| 174 | if (c->pnodes_have >= c->pnode_cnt) |
| 175 | /* All pnodes are in memory, so skip scan */ |
| 176 | return ERR_PTR(-ENOSPC); |
| 177 | data.min_space = min_space; |
| 178 | data.pick_free = pick_free; |
| 179 | data.lnum = -1; |
| 180 | data.exclude_index = exclude_index; |
| 181 | err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, |
| 182 | (ubifs_lpt_scan_callback)scan_for_dirty_cb, |
| 183 | &data); |
| 184 | if (err) |
| 185 | return ERR_PTR(err); |
| 186 | ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); |
| 187 | c->lscan_lnum = data.lnum; |
| 188 | lprops = ubifs_lpt_lookup_dirty(c, data.lnum); |
| 189 | if (IS_ERR(lprops)) |
| 190 | return lprops; |
| 191 | ubifs_assert(lprops->lnum == data.lnum); |
| 192 | ubifs_assert(lprops->free + lprops->dirty >= min_space); |
| 193 | ubifs_assert(lprops->dirty >= c->dead_wm || |
| 194 | (pick_free && |
| 195 | lprops->free + lprops->dirty == c->leb_size)); |
| 196 | ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); |
| 197 | ubifs_assert(!exclude_index || !(lprops->flags & LPROPS_INDEX)); |
| 198 | return lprops; |
| 199 | } |
| 200 | |
| 201 | /** |
| 202 | * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector. |
| 203 | * @c: the UBIFS file-system description object |
| 204 | * @ret_lp: LEB properties are returned here on exit |
| 205 | * @min_space: minimum amount free plus dirty space the returned LEB has to |
| 206 | * have |
| 207 | * @pick_free: controls whether it is OK to pick empty or index LEBs |
| 208 | * |
| 209 | * This function tries to find a dirty logical eraseblock which has at least |
| 210 | * @min_space free and dirty space. It prefers to take an LEB from the dirty or |
| 211 | * dirty index heap, and it falls-back to LPT scanning if the heaps are empty |
| 212 | * or do not have an LEB which satisfies the @min_space criteria. |
| 213 | * |
| 214 | * Note: |
| 215 | * o LEBs which have less than dead watermark of dirty space are never picked |
| 216 | * by this function; |
| 217 | * |
| 218 | * Returns zero and the LEB properties of |
| 219 | * found dirty LEB in case of success, %-ENOSPC if no dirty LEB was found and a |
| 220 | * negative error code in case of other failures. The returned LEB is marked as |
| 221 | * "taken". |
| 222 | * |
| 223 | * The additional @pick_free argument controls if this function has to return a |
| 224 | * free or freeable LEB if one is present. For example, GC must to set it to %1, |
| 225 | * when called from the journal space reservation function, because the |
| 226 | * appearance of free space may coincide with the loss of enough dirty space |
| 227 | * for GC to succeed anyway. |
| 228 | * |
| 229 | * In contrast, if the Garbage Collector is called from budgeting, it should |
| 230 | * just make free space, not return LEBs which are already free or freeable. |
| 231 | * |
| 232 | * In addition @pick_free is set to %2 by the recovery process in order to |
| 233 | * recover gc_lnum in which case an index LEB must not be returned. |
| 234 | */ |
| 235 | int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp, |
| 236 | int min_space, int pick_free) |
| 237 | { |
| 238 | int err = 0, sum, exclude_index = pick_free == 2 ? 1 : 0; |
| 239 | const struct ubifs_lprops *lp = NULL, *idx_lp = NULL; |
| 240 | struct ubifs_lpt_heap *heap, *idx_heap; |
| 241 | |
| 242 | ubifs_get_lprops(c); |
| 243 | |
| 244 | if (pick_free) { |
| 245 | int lebs, rsvd_idx_lebs = 0; |
| 246 | |
| 247 | spin_lock(&c->space_lock); |
| 248 | lebs = c->lst.empty_lebs; |
| 249 | lebs += c->freeable_cnt - c->lst.taken_empty_lebs; |
| 250 | |
| 251 | /* |
| 252 | * Note, the index may consume more LEBs than have been reserved |
| 253 | * for it. It is OK because it might be consolidated by GC. |
| 254 | * But if the index takes fewer LEBs than it is reserved for it, |
| 255 | * this function must avoid picking those reserved LEBs. |
| 256 | */ |
| 257 | if (c->min_idx_lebs >= c->lst.idx_lebs) { |
| 258 | rsvd_idx_lebs = c->min_idx_lebs - c->lst.idx_lebs; |
| 259 | exclude_index = 1; |
| 260 | } |
| 261 | spin_unlock(&c->space_lock); |
| 262 | |
| 263 | /* Check if there are enough free LEBs for the index */ |
| 264 | if (rsvd_idx_lebs < lebs) { |
| 265 | /* OK, try to find an empty LEB */ |
| 266 | lp = ubifs_fast_find_empty(c); |
| 267 | if (lp) |
| 268 | goto found; |
| 269 | |
| 270 | /* Or a freeable LEB */ |
| 271 | lp = ubifs_fast_find_freeable(c); |
| 272 | if (lp) |
| 273 | goto found; |
| 274 | } else |
| 275 | /* |
| 276 | * We cannot pick free/freeable LEBs in the below code. |
| 277 | */ |
| 278 | pick_free = 0; |
| 279 | } else { |
| 280 | spin_lock(&c->space_lock); |
| 281 | exclude_index = (c->min_idx_lebs >= c->lst.idx_lebs); |
| 282 | spin_unlock(&c->space_lock); |
| 283 | } |
| 284 | |
| 285 | /* Look on the dirty and dirty index heaps */ |
| 286 | heap = &c->lpt_heap[LPROPS_DIRTY - 1]; |
| 287 | idx_heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; |
| 288 | |
| 289 | if (idx_heap->cnt && !exclude_index) { |
| 290 | idx_lp = idx_heap->arr[0]; |
| 291 | sum = idx_lp->free + idx_lp->dirty; |
| 292 | /* |
| 293 | * Since we reserve twice as more space for the index than it |
| 294 | * actually takes, it does not make sense to pick indexing LEBs |
| 295 | * with less than half LEB of dirty space. |
| 296 | */ |
| 297 | if (sum < min_space || sum < c->half_leb_size) |
| 298 | idx_lp = NULL; |
| 299 | } |
| 300 | |
| 301 | if (heap->cnt) { |
| 302 | lp = heap->arr[0]; |
| 303 | if (lp->dirty + lp->free < min_space) |
| 304 | lp = NULL; |
| 305 | } |
| 306 | |
| 307 | /* Pick the LEB with most space */ |
| 308 | if (idx_lp && lp) { |
| 309 | if (idx_lp->free + idx_lp->dirty >= lp->free + lp->dirty) |
| 310 | lp = idx_lp; |
| 311 | } else if (idx_lp && !lp) |
| 312 | lp = idx_lp; |
| 313 | |
| 314 | if (lp) { |
| 315 | ubifs_assert(lp->dirty >= c->dead_wm); |
| 316 | goto found; |
| 317 | } |
| 318 | |
| 319 | /* Did not find a dirty LEB on the dirty heaps, have to scan */ |
| 320 | dbg_find("scanning LPT for a dirty LEB"); |
| 321 | lp = scan_for_dirty(c, min_space, pick_free, exclude_index); |
| 322 | if (IS_ERR(lp)) { |
| 323 | err = PTR_ERR(lp); |
| 324 | goto out; |
| 325 | } |
| 326 | ubifs_assert(lp->dirty >= c->dead_wm || |
| 327 | (pick_free && lp->free + lp->dirty == c->leb_size)); |
| 328 | |
| 329 | found: |
| 330 | dbg_find("found LEB %d, free %d, dirty %d, flags %#x", |
| 331 | lp->lnum, lp->free, lp->dirty, lp->flags); |
| 332 | |
| 333 | lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, |
| 334 | lp->flags | LPROPS_TAKEN, 0); |
| 335 | if (IS_ERR(lp)) { |
| 336 | err = PTR_ERR(lp); |
| 337 | goto out; |
| 338 | } |
| 339 | |
| 340 | memcpy(ret_lp, lp, sizeof(struct ubifs_lprops)); |
| 341 | |
| 342 | out: |
| 343 | ubifs_release_lprops(c); |
| 344 | return err; |
| 345 | } |
| 346 | |
| 347 | /** |
| 348 | * scan_for_free_cb - free space scan callback. |
| 349 | * @c: the UBIFS file-system description object |
| 350 | * @lprops: LEB properties to scan |
| 351 | * @in_tree: whether the LEB properties are in main memory |
| 352 | * @data: information passed to and from the caller of the scan |
| 353 | * |
| 354 | * This function returns a code that indicates whether the scan should continue |
| 355 | * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree |
| 356 | * in main memory (%LPT_SCAN_ADD), or whether the scan should stop |
| 357 | * (%LPT_SCAN_STOP). |
| 358 | */ |
| 359 | static int scan_for_free_cb(struct ubifs_info *c, |
| 360 | const struct ubifs_lprops *lprops, int in_tree, |
| 361 | struct scan_data *data) |
| 362 | { |
| 363 | int ret = LPT_SCAN_CONTINUE; |
| 364 | |
| 365 | /* Exclude LEBs that are currently in use */ |
| 366 | if (lprops->flags & LPROPS_TAKEN) |
| 367 | return LPT_SCAN_CONTINUE; |
| 368 | /* Determine whether to add these LEB properties to the tree */ |
| 369 | if (!in_tree && valuable(c, lprops)) |
| 370 | ret |= LPT_SCAN_ADD; |
| 371 | /* Exclude index LEBs */ |
| 372 | if (lprops->flags & LPROPS_INDEX) |
| 373 | return ret; |
| 374 | /* Exclude LEBs with too little space */ |
| 375 | if (lprops->free < data->min_space) |
| 376 | return ret; |
| 377 | /* If specified, exclude empty LEBs */ |
| 378 | if (!data->pick_free && lprops->free == c->leb_size) |
| 379 | return ret; |
| 380 | /* |
| 381 | * LEBs that have only free and dirty space must not be allocated |
| 382 | * because they may have been unmapped already or they may have data |
| 383 | * that is obsolete only because of nodes that are still sitting in a |
| 384 | * wbuf. |
| 385 | */ |
| 386 | if (lprops->free + lprops->dirty == c->leb_size && lprops->dirty > 0) |
| 387 | return ret; |
| 388 | /* Finally we found space */ |
| 389 | data->lnum = lprops->lnum; |
| 390 | return LPT_SCAN_ADD | LPT_SCAN_STOP; |
| 391 | } |
| 392 | |
| 393 | /** |
| 394 | * do_find_free_space - find a data LEB with free space. |
| 395 | * @c: the UBIFS file-system description object |
| 396 | * @min_space: minimum amount of free space required |
| 397 | * @pick_free: whether it is OK to scan for empty LEBs |
| 398 | * @squeeze: whether to try to find space in a non-empty LEB first |
| 399 | * |
| 400 | * This function returns a pointer to the LEB properties found or a negative |
| 401 | * error code. |
| 402 | */ |
| 403 | static |
| 404 | const struct ubifs_lprops *do_find_free_space(struct ubifs_info *c, |
| 405 | int min_space, int pick_free, |
| 406 | int squeeze) |
| 407 | { |
| 408 | const struct ubifs_lprops *lprops; |
| 409 | struct ubifs_lpt_heap *heap; |
| 410 | struct scan_data data; |
| 411 | int err, i; |
| 412 | |
| 413 | if (squeeze) { |
| 414 | lprops = ubifs_fast_find_free(c); |
| 415 | if (lprops && lprops->free >= min_space) |
| 416 | return lprops; |
| 417 | } |
| 418 | if (pick_free) { |
| 419 | lprops = ubifs_fast_find_empty(c); |
| 420 | if (lprops) |
| 421 | return lprops; |
| 422 | } |
| 423 | if (!squeeze) { |
| 424 | lprops = ubifs_fast_find_free(c); |
| 425 | if (lprops && lprops->free >= min_space) |
| 426 | return lprops; |
| 427 | } |
| 428 | /* There may be an LEB with enough free space on the dirty heap */ |
| 429 | heap = &c->lpt_heap[LPROPS_DIRTY - 1]; |
| 430 | for (i = 0; i < heap->cnt; i++) { |
| 431 | lprops = heap->arr[i]; |
| 432 | if (lprops->free >= min_space) |
| 433 | return lprops; |
| 434 | } |
| 435 | /* |
| 436 | * A LEB may have fallen off of the bottom of the free heap, and ended |
| 437 | * up as uncategorized even though it has enough free space for us now, |
| 438 | * so check the uncategorized list. N.B. neither empty nor freeable LEBs |
| 439 | * can end up as uncategorized because they are kept on lists not |
| 440 | * finite-sized heaps. |
| 441 | */ |
| 442 | list_for_each_entry(lprops, &c->uncat_list, list) { |
| 443 | if (lprops->flags & LPROPS_TAKEN) |
| 444 | continue; |
| 445 | if (lprops->flags & LPROPS_INDEX) |
| 446 | continue; |
| 447 | if (lprops->free >= min_space) |
| 448 | return lprops; |
| 449 | } |
| 450 | /* We have looked everywhere in main memory, now scan the flash */ |
| 451 | if (c->pnodes_have >= c->pnode_cnt) |
| 452 | /* All pnodes are in memory, so skip scan */ |
| 453 | return ERR_PTR(-ENOSPC); |
| 454 | data.min_space = min_space; |
| 455 | data.pick_free = pick_free; |
| 456 | data.lnum = -1; |
| 457 | err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, |
| 458 | (ubifs_lpt_scan_callback)scan_for_free_cb, |
| 459 | &data); |
| 460 | if (err) |
| 461 | return ERR_PTR(err); |
| 462 | ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); |
| 463 | c->lscan_lnum = data.lnum; |
| 464 | lprops = ubifs_lpt_lookup_dirty(c, data.lnum); |
| 465 | if (IS_ERR(lprops)) |
| 466 | return lprops; |
| 467 | ubifs_assert(lprops->lnum == data.lnum); |
| 468 | ubifs_assert(lprops->free >= min_space); |
| 469 | ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); |
| 470 | ubifs_assert(!(lprops->flags & LPROPS_INDEX)); |
| 471 | return lprops; |
| 472 | } |
| 473 | |
| 474 | /** |
| 475 | * ubifs_find_free_space - find a data LEB with free space. |
| 476 | * @c: the UBIFS file-system description object |
| 477 | * @min_space: minimum amount of required free space |
| 478 | * @free: contains amount of free space in the LEB on exit |
| 479 | * @squeeze: whether to try to find space in a non-empty LEB first |
| 480 | * |
| 481 | * This function looks for an LEB with at least @min_space bytes of free space. |
| 482 | * It tries to find an empty LEB if possible. If no empty LEBs are available, |
| 483 | * this function searches for a non-empty data LEB. The returned LEB is marked |
| 484 | * as "taken". |
| 485 | * |
| 486 | * This function returns found LEB number in case of success, %-ENOSPC if it |
| 487 | * failed to find a LEB with @min_space bytes of free space and other a negative |
| 488 | * error codes in case of failure. |
| 489 | */ |
| 490 | int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *free, |
| 491 | int squeeze) |
| 492 | { |
| 493 | const struct ubifs_lprops *lprops; |
| 494 | int lebs, rsvd_idx_lebs, pick_free = 0, err, lnum, flags; |
| 495 | |
| 496 | dbg_find("min_space %d", min_space); |
| 497 | ubifs_get_lprops(c); |
| 498 | |
| 499 | /* Check if there are enough empty LEBs for commit */ |
| 500 | spin_lock(&c->space_lock); |
| 501 | if (c->min_idx_lebs > c->lst.idx_lebs) |
| 502 | rsvd_idx_lebs = c->min_idx_lebs - c->lst.idx_lebs; |
| 503 | else |
| 504 | rsvd_idx_lebs = 0; |
| 505 | lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - |
| 506 | c->lst.taken_empty_lebs; |
| 507 | ubifs_assert(lebs + c->lst.idx_lebs >= c->min_idx_lebs); |
| 508 | if (rsvd_idx_lebs < lebs) |
| 509 | /* |
| 510 | * OK to allocate an empty LEB, but we still don't want to go |
| 511 | * looking for one if there aren't any. |
| 512 | */ |
| 513 | if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) { |
| 514 | pick_free = 1; |
| 515 | /* |
| 516 | * Because we release the space lock, we must account |
| 517 | * for this allocation here. After the LEB properties |
| 518 | * flags have been updated, we subtract one. Note, the |
| 519 | * result of this is that lprops also decreases |
| 520 | * @taken_empty_lebs in 'ubifs_change_lp()', so it is |
| 521 | * off by one for a short period of time which may |
| 522 | * introduce a small disturbance to budgeting |
| 523 | * calculations, but this is harmless because at the |
| 524 | * worst case this would make the budgeting subsystem |
| 525 | * be more pessimistic than needed. |
| 526 | * |
| 527 | * Fundamentally, this is about serialization of the |
| 528 | * budgeting and lprops subsystems. We could make the |
| 529 | * @space_lock a mutex and avoid dropping it before |
| 530 | * calling 'ubifs_change_lp()', but mutex is more |
| 531 | * heavy-weight, and we want budgeting to be as fast as |
| 532 | * possible. |
| 533 | */ |
| 534 | c->lst.taken_empty_lebs += 1; |
| 535 | } |
| 536 | spin_unlock(&c->space_lock); |
| 537 | |
| 538 | lprops = do_find_free_space(c, min_space, pick_free, squeeze); |
| 539 | if (IS_ERR(lprops)) { |
| 540 | err = PTR_ERR(lprops); |
| 541 | goto out; |
| 542 | } |
| 543 | |
| 544 | lnum = lprops->lnum; |
| 545 | flags = lprops->flags | LPROPS_TAKEN; |
| 546 | |
| 547 | lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, flags, 0); |
| 548 | if (IS_ERR(lprops)) { |
| 549 | err = PTR_ERR(lprops); |
| 550 | goto out; |
| 551 | } |
| 552 | |
| 553 | if (pick_free) { |
| 554 | spin_lock(&c->space_lock); |
| 555 | c->lst.taken_empty_lebs -= 1; |
| 556 | spin_unlock(&c->space_lock); |
| 557 | } |
| 558 | |
| 559 | *free = lprops->free; |
| 560 | ubifs_release_lprops(c); |
| 561 | |
| 562 | if (*free == c->leb_size) { |
| 563 | /* |
| 564 | * Ensure that empty LEBs have been unmapped. They may not have |
| 565 | * been, for example, because of an unclean unmount. Also |
| 566 | * LEBs that were freeable LEBs (free + dirty == leb_size) will |
| 567 | * not have been unmapped. |
| 568 | */ |
| 569 | err = ubifs_leb_unmap(c, lnum); |
| 570 | if (err) |
| 571 | return err; |
| 572 | } |
| 573 | |
| 574 | dbg_find("found LEB %d, free %d", lnum, *free); |
| 575 | ubifs_assert(*free >= min_space); |
| 576 | return lnum; |
| 577 | |
| 578 | out: |
| 579 | if (pick_free) { |
| 580 | spin_lock(&c->space_lock); |
| 581 | c->lst.taken_empty_lebs -= 1; |
| 582 | spin_unlock(&c->space_lock); |
| 583 | } |
| 584 | ubifs_release_lprops(c); |
| 585 | return err; |
| 586 | } |
| 587 | |
| 588 | /** |
| 589 | * scan_for_idx_cb - callback used by the scan for a free LEB for the index. |
| 590 | * @c: the UBIFS file-system description object |
| 591 | * @lprops: LEB properties to scan |
| 592 | * @in_tree: whether the LEB properties are in main memory |
| 593 | * @data: information passed to and from the caller of the scan |
| 594 | * |
| 595 | * This function returns a code that indicates whether the scan should continue |
| 596 | * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree |
| 597 | * in main memory (%LPT_SCAN_ADD), or whether the scan should stop |
| 598 | * (%LPT_SCAN_STOP). |
| 599 | */ |
| 600 | static int scan_for_idx_cb(struct ubifs_info *c, |
| 601 | const struct ubifs_lprops *lprops, int in_tree, |
| 602 | struct scan_data *data) |
| 603 | { |
| 604 | int ret = LPT_SCAN_CONTINUE; |
| 605 | |
| 606 | /* Exclude LEBs that are currently in use */ |
| 607 | if (lprops->flags & LPROPS_TAKEN) |
| 608 | return LPT_SCAN_CONTINUE; |
| 609 | /* Determine whether to add these LEB properties to the tree */ |
| 610 | if (!in_tree && valuable(c, lprops)) |
| 611 | ret |= LPT_SCAN_ADD; |
| 612 | /* Exclude index LEBS */ |
| 613 | if (lprops->flags & LPROPS_INDEX) |
| 614 | return ret; |
| 615 | /* Exclude LEBs that cannot be made empty */ |
| 616 | if (lprops->free + lprops->dirty != c->leb_size) |
| 617 | return ret; |
| 618 | /* |
| 619 | * We are allocating for the index so it is safe to allocate LEBs with |
| 620 | * only free and dirty space, because write buffers are sync'd at commit |
| 621 | * start. |
| 622 | */ |
| 623 | data->lnum = lprops->lnum; |
| 624 | return LPT_SCAN_ADD | LPT_SCAN_STOP; |
| 625 | } |
| 626 | |
| 627 | /** |
| 628 | * scan_for_leb_for_idx - scan for a free LEB for the index. |
| 629 | * @c: the UBIFS file-system description object |
| 630 | */ |
| 631 | static const struct ubifs_lprops *scan_for_leb_for_idx(struct ubifs_info *c) |
| 632 | { |
| 633 | struct ubifs_lprops *lprops; |
| 634 | struct scan_data data; |
| 635 | int err; |
| 636 | |
| 637 | data.lnum = -1; |
| 638 | err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, |
| 639 | (ubifs_lpt_scan_callback)scan_for_idx_cb, |
| 640 | &data); |
| 641 | if (err) |
| 642 | return ERR_PTR(err); |
| 643 | ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); |
| 644 | c->lscan_lnum = data.lnum; |
| 645 | lprops = ubifs_lpt_lookup_dirty(c, data.lnum); |
| 646 | if (IS_ERR(lprops)) |
| 647 | return lprops; |
| 648 | ubifs_assert(lprops->lnum == data.lnum); |
| 649 | ubifs_assert(lprops->free + lprops->dirty == c->leb_size); |
| 650 | ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); |
| 651 | ubifs_assert(!(lprops->flags & LPROPS_INDEX)); |
| 652 | return lprops; |
| 653 | } |
| 654 | |
| 655 | /** |
| 656 | * ubifs_find_free_leb_for_idx - find a free LEB for the index. |
| 657 | * @c: the UBIFS file-system description object |
| 658 | * |
| 659 | * This function looks for a free LEB and returns that LEB number. The returned |
| 660 | * LEB is marked as "taken", "index". |
| 661 | * |
| 662 | * Only empty LEBs are allocated. This is for two reasons. First, the commit |
| 663 | * calculates the number of LEBs to allocate based on the assumption that they |
| 664 | * will be empty. Secondly, free space at the end of an index LEB is not |
| 665 | * guaranteed to be empty because it may have been used by the in-the-gaps |
| 666 | * method prior to an unclean unmount. |
| 667 | * |
| 668 | * If no LEB is found %-ENOSPC is returned. For other failures another negative |
| 669 | * error code is returned. |
| 670 | */ |
| 671 | int ubifs_find_free_leb_for_idx(struct ubifs_info *c) |
| 672 | { |
| 673 | const struct ubifs_lprops *lprops; |
| 674 | int lnum = -1, err, flags; |
| 675 | |
| 676 | ubifs_get_lprops(c); |
| 677 | |
| 678 | lprops = ubifs_fast_find_empty(c); |
| 679 | if (!lprops) { |
| 680 | lprops = ubifs_fast_find_freeable(c); |
| 681 | if (!lprops) { |
| 682 | ubifs_assert(c->freeable_cnt == 0); |
| 683 | if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) { |
| 684 | lprops = scan_for_leb_for_idx(c); |
| 685 | if (IS_ERR(lprops)) { |
| 686 | err = PTR_ERR(lprops); |
| 687 | goto out; |
| 688 | } |
| 689 | } |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | if (!lprops) { |
| 694 | err = -ENOSPC; |
| 695 | goto out; |
| 696 | } |
| 697 | |
| 698 | lnum = lprops->lnum; |
| 699 | |
| 700 | dbg_find("found LEB %d, free %d, dirty %d, flags %#x", |
| 701 | lnum, lprops->free, lprops->dirty, lprops->flags); |
| 702 | |
| 703 | flags = lprops->flags | LPROPS_TAKEN | LPROPS_INDEX; |
| 704 | lprops = ubifs_change_lp(c, lprops, c->leb_size, 0, flags, 0); |
| 705 | if (IS_ERR(lprops)) { |
| 706 | err = PTR_ERR(lprops); |
| 707 | goto out; |
| 708 | } |
| 709 | |
| 710 | ubifs_release_lprops(c); |
| 711 | |
| 712 | /* |
| 713 | * Ensure that empty LEBs have been unmapped. They may not have been, |
| 714 | * for example, because of an unclean unmount. Also LEBs that were |
| 715 | * freeable LEBs (free + dirty == leb_size) will not have been unmapped. |
| 716 | */ |
| 717 | err = ubifs_leb_unmap(c, lnum); |
| 718 | if (err) { |
| 719 | ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, |
| 720 | LPROPS_TAKEN | LPROPS_INDEX, 0); |
| 721 | return err; |
| 722 | } |
| 723 | |
| 724 | return lnum; |
| 725 | |
| 726 | out: |
| 727 | ubifs_release_lprops(c); |
| 728 | return err; |
| 729 | } |
| 730 | |
| 731 | static int cmp_dirty_idx(const struct ubifs_lprops **a, |
| 732 | const struct ubifs_lprops **b) |
| 733 | { |
| 734 | const struct ubifs_lprops *lpa = *a; |
| 735 | const struct ubifs_lprops *lpb = *b; |
| 736 | |
| 737 | return lpa->dirty + lpa->free - lpb->dirty - lpb->free; |
| 738 | } |
| 739 | |
| 740 | static void swap_dirty_idx(struct ubifs_lprops **a, struct ubifs_lprops **b, |
| 741 | int size) |
| 742 | { |
| 743 | struct ubifs_lprops *t = *a; |
| 744 | |
| 745 | *a = *b; |
| 746 | *b = t; |
| 747 | } |
| 748 | |
| 749 | /** |
| 750 | * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos. |
| 751 | * @c: the UBIFS file-system description object |
| 752 | * |
| 753 | * This function is called each commit to create an array of LEB numbers of |
| 754 | * dirty index LEBs sorted in order of dirty and free space. This is used by |
| 755 | * the in-the-gaps method of TNC commit. |
| 756 | */ |
| 757 | int ubifs_save_dirty_idx_lnums(struct ubifs_info *c) |
| 758 | { |
| 759 | int i; |
| 760 | |
| 761 | ubifs_get_lprops(c); |
| 762 | /* Copy the LPROPS_DIRTY_IDX heap */ |
| 763 | c->dirty_idx.cnt = c->lpt_heap[LPROPS_DIRTY_IDX - 1].cnt; |
| 764 | memcpy(c->dirty_idx.arr, c->lpt_heap[LPROPS_DIRTY_IDX - 1].arr, |
| 765 | sizeof(void *) * c->dirty_idx.cnt); |
| 766 | /* Sort it so that the dirtiest is now at the end */ |
| 767 | sort(c->dirty_idx.arr, c->dirty_idx.cnt, sizeof(void *), |
| 768 | (int (*)(const void *, const void *))cmp_dirty_idx, |
| 769 | (void (*)(void *, void *, int))swap_dirty_idx); |
| 770 | dbg_find("found %d dirty index LEBs", c->dirty_idx.cnt); |
| 771 | if (c->dirty_idx.cnt) |
| 772 | dbg_find("dirtiest index LEB is %d with dirty %d and free %d", |
| 773 | c->dirty_idx.arr[c->dirty_idx.cnt - 1]->lnum, |
| 774 | c->dirty_idx.arr[c->dirty_idx.cnt - 1]->dirty, |
| 775 | c->dirty_idx.arr[c->dirty_idx.cnt - 1]->free); |
| 776 | /* Replace the lprops pointers with LEB numbers */ |
| 777 | for (i = 0; i < c->dirty_idx.cnt; i++) |
| 778 | c->dirty_idx.arr[i] = (void *)(size_t)c->dirty_idx.arr[i]->lnum; |
| 779 | ubifs_release_lprops(c); |
| 780 | return 0; |
| 781 | } |
| 782 | |
| 783 | /** |
| 784 | * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB. |
| 785 | * @c: the UBIFS file-system description object |
| 786 | * @lprops: LEB properties to scan |
| 787 | * @in_tree: whether the LEB properties are in main memory |
| 788 | * @data: information passed to and from the caller of the scan |
| 789 | * |
| 790 | * This function returns a code that indicates whether the scan should continue |
| 791 | * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree |
| 792 | * in main memory (%LPT_SCAN_ADD), or whether the scan should stop |
| 793 | * (%LPT_SCAN_STOP). |
| 794 | */ |
| 795 | static int scan_dirty_idx_cb(struct ubifs_info *c, |
| 796 | const struct ubifs_lprops *lprops, int in_tree, |
| 797 | struct scan_data *data) |
| 798 | { |
| 799 | int ret = LPT_SCAN_CONTINUE; |
| 800 | |
| 801 | /* Exclude LEBs that are currently in use */ |
| 802 | if (lprops->flags & LPROPS_TAKEN) |
| 803 | return LPT_SCAN_CONTINUE; |
| 804 | /* Determine whether to add these LEB properties to the tree */ |
| 805 | if (!in_tree && valuable(c, lprops)) |
| 806 | ret |= LPT_SCAN_ADD; |
| 807 | /* Exclude non-index LEBs */ |
| 808 | if (!(lprops->flags & LPROPS_INDEX)) |
| 809 | return ret; |
| 810 | /* Exclude LEBs with too little space */ |
| 811 | if (lprops->free + lprops->dirty < c->min_idx_node_sz) |
| 812 | return ret; |
| 813 | /* Finally we found space */ |
| 814 | data->lnum = lprops->lnum; |
| 815 | return LPT_SCAN_ADD | LPT_SCAN_STOP; |
| 816 | } |
| 817 | |
| 818 | /** |
| 819 | * find_dirty_idx_leb - find a dirty index LEB. |
| 820 | * @c: the UBIFS file-system description object |
| 821 | * |
| 822 | * This function returns LEB number upon success and a negative error code upon |
| 823 | * failure. In particular, -ENOSPC is returned if a dirty index LEB is not |
| 824 | * found. |
| 825 | * |
| 826 | * Note that this function scans the entire LPT but it is called very rarely. |
| 827 | */ |
| 828 | static int find_dirty_idx_leb(struct ubifs_info *c) |
| 829 | { |
| 830 | const struct ubifs_lprops *lprops; |
| 831 | struct ubifs_lpt_heap *heap; |
| 832 | struct scan_data data; |
| 833 | int err, i, ret; |
| 834 | |
| 835 | /* Check all structures in memory first */ |
| 836 | data.lnum = -1; |
| 837 | heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; |
| 838 | for (i = 0; i < heap->cnt; i++) { |
| 839 | lprops = heap->arr[i]; |
| 840 | ret = scan_dirty_idx_cb(c, lprops, 1, &data); |
| 841 | if (ret & LPT_SCAN_STOP) |
| 842 | goto found; |
| 843 | } |
| 844 | list_for_each_entry(lprops, &c->frdi_idx_list, list) { |
| 845 | ret = scan_dirty_idx_cb(c, lprops, 1, &data); |
| 846 | if (ret & LPT_SCAN_STOP) |
| 847 | goto found; |
| 848 | } |
| 849 | list_for_each_entry(lprops, &c->uncat_list, list) { |
| 850 | ret = scan_dirty_idx_cb(c, lprops, 1, &data); |
| 851 | if (ret & LPT_SCAN_STOP) |
| 852 | goto found; |
| 853 | } |
| 854 | if (c->pnodes_have >= c->pnode_cnt) |
| 855 | /* All pnodes are in memory, so skip scan */ |
| 856 | return -ENOSPC; |
| 857 | err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, |
| 858 | (ubifs_lpt_scan_callback)scan_dirty_idx_cb, |
| 859 | &data); |
| 860 | if (err) |
| 861 | return err; |
| 862 | found: |
| 863 | ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); |
| 864 | c->lscan_lnum = data.lnum; |
| 865 | lprops = ubifs_lpt_lookup_dirty(c, data.lnum); |
| 866 | if (IS_ERR(lprops)) |
| 867 | return PTR_ERR(lprops); |
| 868 | ubifs_assert(lprops->lnum == data.lnum); |
| 869 | ubifs_assert(lprops->free + lprops->dirty >= c->min_idx_node_sz); |
| 870 | ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); |
| 871 | ubifs_assert((lprops->flags & LPROPS_INDEX)); |
| 872 | |
| 873 | dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x", |
| 874 | lprops->lnum, lprops->free, lprops->dirty, lprops->flags); |
| 875 | |
| 876 | lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, |
| 877 | lprops->flags | LPROPS_TAKEN, 0); |
| 878 | if (IS_ERR(lprops)) |
| 879 | return PTR_ERR(lprops); |
| 880 | |
| 881 | return lprops->lnum; |
| 882 | } |
| 883 | |
| 884 | /** |
| 885 | * get_idx_gc_leb - try to get a LEB number from trivial GC. |
| 886 | * @c: the UBIFS file-system description object |
| 887 | */ |
| 888 | static int get_idx_gc_leb(struct ubifs_info *c) |
| 889 | { |
| 890 | const struct ubifs_lprops *lp; |
| 891 | int err, lnum; |
| 892 | |
| 893 | err = ubifs_get_idx_gc_leb(c); |
| 894 | if (err < 0) |
| 895 | return err; |
| 896 | lnum = err; |
| 897 | /* |
| 898 | * The LEB was due to be unmapped after the commit but |
| 899 | * it is needed now for this commit. |
| 900 | */ |
| 901 | lp = ubifs_lpt_lookup_dirty(c, lnum); |
| 902 | if (unlikely(IS_ERR(lp))) |
| 903 | return PTR_ERR(lp); |
| 904 | lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, |
| 905 | lp->flags | LPROPS_INDEX, -1); |
| 906 | if (unlikely(IS_ERR(lp))) |
| 907 | return PTR_ERR(lp); |
| 908 | dbg_find("LEB %d, dirty %d and free %d flags %#x", |
| 909 | lp->lnum, lp->dirty, lp->free, lp->flags); |
| 910 | return lnum; |
| 911 | } |
| 912 | |
| 913 | /** |
| 914 | * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array. |
| 915 | * @c: the UBIFS file-system description object |
| 916 | */ |
| 917 | static int find_dirtiest_idx_leb(struct ubifs_info *c) |
| 918 | { |
| 919 | const struct ubifs_lprops *lp; |
| 920 | int lnum; |
| 921 | |
| 922 | while (1) { |
| 923 | if (!c->dirty_idx.cnt) |
| 924 | return -ENOSPC; |
| 925 | /* The lprops pointers were replaced by LEB numbers */ |
| 926 | lnum = (size_t)c->dirty_idx.arr[--c->dirty_idx.cnt]; |
| 927 | lp = ubifs_lpt_lookup(c, lnum); |
| 928 | if (IS_ERR(lp)) |
| 929 | return PTR_ERR(lp); |
| 930 | if ((lp->flags & LPROPS_TAKEN) || !(lp->flags & LPROPS_INDEX)) |
| 931 | continue; |
| 932 | lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, |
| 933 | lp->flags | LPROPS_TAKEN, 0); |
| 934 | if (IS_ERR(lp)) |
| 935 | return PTR_ERR(lp); |
| 936 | break; |
| 937 | } |
| 938 | dbg_find("LEB %d, dirty %d and free %d flags %#x", lp->lnum, lp->dirty, |
| 939 | lp->free, lp->flags); |
| 940 | ubifs_assert(lp->flags | LPROPS_TAKEN); |
| 941 | ubifs_assert(lp->flags | LPROPS_INDEX); |
| 942 | return lnum; |
| 943 | } |
| 944 | |
| 945 | /** |
| 946 | * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit. |
| 947 | * @c: the UBIFS file-system description object |
| 948 | * |
| 949 | * This function attempts to find an untaken index LEB with the most free and |
| 950 | * dirty space that can be used without overwriting index nodes that were in the |
| 951 | * last index committed. |
| 952 | */ |
| 953 | int ubifs_find_dirty_idx_leb(struct ubifs_info *c) |
| 954 | { |
| 955 | int err; |
| 956 | |
| 957 | ubifs_get_lprops(c); |
| 958 | |
| 959 | /* |
| 960 | * We made an array of the dirtiest index LEB numbers as at the start of |
| 961 | * last commit. Try that array first. |
| 962 | */ |
| 963 | err = find_dirtiest_idx_leb(c); |
| 964 | |
| 965 | /* Next try scanning the entire LPT */ |
| 966 | if (err == -ENOSPC) |
| 967 | err = find_dirty_idx_leb(c); |
| 968 | |
| 969 | /* Finally take any index LEBs awaiting trivial GC */ |
| 970 | if (err == -ENOSPC) |
| 971 | err = get_idx_gc_leb(c); |
| 972 | |
| 973 | ubifs_release_lprops(c); |
| 974 | return err; |
| 975 | } |