blob: 17376d86f412a5096266a8051efa7616d10d0a14 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Jens Axboe0fe23472006-09-04 15:41:16 +02002 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
Linus Torvalds1da177e2005-04-16 15:20:36 -07003 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
James Bottomley f1970ba2005-06-20 14:06:52 +020028#include <scsi/sg.h> /* for struct sg_iovec */
Linus Torvalds1da177e2005-04-16 15:20:36 -070029
Li Zefan55782132009-06-09 13:43:05 +080030#include <trace/events/block.h>
Ingo Molnar0bfc2452008-11-26 11:59:56 +010031
Jens Axboe392ddc32008-12-23 12:42:54 +010032/*
33 * Test patch to inline a certain number of bi_io_vec's inside the bio
34 * itself, to shrink a bio data allocation from two mempool calls to one
35 */
36#define BIO_INLINE_VECS 4
37
Denis ChengRq6feef532008-10-09 08:57:05 +020038static mempool_t *bio_split_pool __read_mostly;
Linus Torvalds1da177e2005-04-16 15:20:36 -070039
Linus Torvalds1da177e2005-04-16 15:20:36 -070040/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
Jens Axboebb799ca2008-12-10 15:35:05 +010046struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
Linus Torvalds1da177e2005-04-16 15:20:36 -070047 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
51/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070052 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
Martin K. Petersen51d654e2008-06-17 18:59:56 +020055struct bio_set *fs_bio_set;
Linus Torvalds1da177e2005-04-16 15:20:36 -070056
Jens Axboebb799ca2008-12-10 15:35:05 +010057/*
58 * Our slab pool management
59 */
60struct bio_slab {
61 struct kmem_cache *slab;
62 unsigned int slab_ref;
63 unsigned int slab_size;
64 char name[8];
65};
66static DEFINE_MUTEX(bio_slab_lock);
67static struct bio_slab *bio_slabs;
68static unsigned int bio_slab_nr, bio_slab_max;
69
70static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
71{
72 unsigned int sz = sizeof(struct bio) + extra_size;
73 struct kmem_cache *slab = NULL;
74 struct bio_slab *bslab;
75 unsigned int i, entry = -1;
76
77 mutex_lock(&bio_slab_lock);
78
79 i = 0;
80 while (i < bio_slab_nr) {
Thiago Farinaf06f1352010-01-19 14:07:09 +010081 bslab = &bio_slabs[i];
Jens Axboebb799ca2008-12-10 15:35:05 +010082
83 if (!bslab->slab && entry == -1)
84 entry = i;
85 else if (bslab->slab_size == sz) {
86 slab = bslab->slab;
87 bslab->slab_ref++;
88 break;
89 }
90 i++;
91 }
92
93 if (slab)
94 goto out_unlock;
95
96 if (bio_slab_nr == bio_slab_max && entry == -1) {
97 bio_slab_max <<= 1;
98 bio_slabs = krealloc(bio_slabs,
99 bio_slab_max * sizeof(struct bio_slab),
100 GFP_KERNEL);
101 if (!bio_slabs)
102 goto out_unlock;
103 }
104 if (entry == -1)
105 entry = bio_slab_nr++;
106
107 bslab = &bio_slabs[entry];
108
109 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111 if (!slab)
112 goto out_unlock;
113
114 printk("bio: create slab <%s> at %d\n", bslab->name, entry);
115 bslab->slab = slab;
116 bslab->slab_ref = 1;
117 bslab->slab_size = sz;
118out_unlock:
119 mutex_unlock(&bio_slab_lock);
120 return slab;
121}
122
123static void bio_put_slab(struct bio_set *bs)
124{
125 struct bio_slab *bslab = NULL;
126 unsigned int i;
127
128 mutex_lock(&bio_slab_lock);
129
130 for (i = 0; i < bio_slab_nr; i++) {
131 if (bs->bio_slab == bio_slabs[i].slab) {
132 bslab = &bio_slabs[i];
133 break;
134 }
135 }
136
137 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138 goto out;
139
140 WARN_ON(!bslab->slab_ref);
141
142 if (--bslab->slab_ref)
143 goto out;
144
145 kmem_cache_destroy(bslab->slab);
146 bslab->slab = NULL;
147
148out:
149 mutex_unlock(&bio_slab_lock);
150}
151
Martin K. Petersen7ba1ba12008-06-30 20:04:41 +0200152unsigned int bvec_nr_vecs(unsigned short idx)
153{
154 return bvec_slabs[idx].nr_vecs;
155}
156
Jens Axboebb799ca2008-12-10 15:35:05 +0100157void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
158{
159 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
160
161 if (idx == BIOVEC_MAX_IDX)
162 mempool_free(bv, bs->bvec_pool);
163 else {
164 struct biovec_slab *bvs = bvec_slabs + idx;
165
166 kmem_cache_free(bvs->slab, bv);
167 }
168}
169
Jens Axboe7ff93452008-12-11 11:53:43 +0100170struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171 struct bio_set *bs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172{
173 struct bio_vec *bvl;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174
175 /*
Jens Axboe7ff93452008-12-11 11:53:43 +0100176 * see comment near bvec_array define!
177 */
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
199 }
200
201 /*
202 * idx now points to the pool we want to allocate from. only the
203 * 1-vec entry pool is mempool backed.
204 */
205 if (*idx == BIOVEC_MAX_IDX) {
206fallback:
207 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208 } else {
209 struct biovec_slab *bvs = bvec_slabs + *idx;
210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700211
Jens Axboe0a0d96b2008-09-11 13:17:37 +0200212 /*
Jens Axboe7ff93452008-12-11 11:53:43 +0100213 * Make this allocation restricted and don't dump info on
214 * allocation failures, since we'll fallback to the mempool
215 * in case of failure.
Jens Axboe0a0d96b2008-09-11 13:17:37 +0200216 */
Jens Axboe7ff93452008-12-11 11:53:43 +0100217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218
219 /*
220 * Try a slab allocation. If this fails and __GFP_WAIT
221 * is set, retry with the 1-entry mempool
222 */
223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225 *idx = BIOVEC_MAX_IDX;
226 goto fallback;
227 }
228 }
229
Linus Torvalds1da177e2005-04-16 15:20:36 -0700230 return bvl;
231}
232
Jens Axboe7ff93452008-12-11 11:53:43 +0100233void bio_free(struct bio *bio, struct bio_set *bs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700234{
Jens Axboebb799ca2008-12-10 15:35:05 +0100235 void *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700236
Jens Axboe392ddc32008-12-23 12:42:54 +0100237 if (bio_has_allocated_vec(bio))
Jens Axboebb799ca2008-12-10 15:35:05 +0100238 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
Jens Axboe992c5dd2007-07-18 13:18:08 +0200239
Martin K. Petersen7ba1ba12008-06-30 20:04:41 +0200240 if (bio_integrity(bio))
Martin K. Petersen7878cba2009-06-26 15:37:49 +0200241 bio_integrity_free(bio, bs);
Martin K. Petersen7ba1ba12008-06-30 20:04:41 +0200242
Jens Axboebb799ca2008-12-10 15:35:05 +0100243 /*
244 * If we have front padding, adjust the bio pointer before freeing
245 */
246 p = bio;
247 if (bs->front_pad)
248 p -= bs->front_pad;
249
250 mempool_free(p, bs->bio_pool);
Peter Osterlund36763472005-09-06 15:16:42 -0700251}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200252EXPORT_SYMBOL(bio_free);
Peter Osterlund36763472005-09-06 15:16:42 -0700253
Arjan van de Ven858119e2006-01-14 13:20:43 -0800254void bio_init(struct bio *bio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700255{
Jens Axboe2b94de52007-07-18 13:14:03 +0200256 memset(bio, 0, sizeof(*bio));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700257 bio->bi_flags = 1 << BIO_UPTODATE;
Jens Axboec7c22e42008-09-13 20:26:01 +0200258 bio->bi_comp_cpu = -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700259 atomic_set(&bio->bi_cnt, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700260}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200261EXPORT_SYMBOL(bio_init);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700262
263/**
264 * bio_alloc_bioset - allocate a bio for I/O
265 * @gfp_mask: the GFP_ mask given to the slab allocator
266 * @nr_iovecs: number of iovecs to pre-allocate
Jaak Ristiojadb18efa2010-01-15 12:05:07 +0200267 * @bs: the bio_set to allocate from.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700268 *
269 * Description:
Jaak Ristiojadb18efa2010-01-15 12:05:07 +0200270 * bio_alloc_bioset will try its own mempool to satisfy the allocation.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700271 * If %__GFP_WAIT is set then we will block on the internal pool waiting
Jaak Ristiojadb18efa2010-01-15 12:05:07 +0200272 * for a &struct bio to become free.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700273 *
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200274 * Note that the caller must set ->bi_destructor on successful return
Jens Axboebb799ca2008-12-10 15:35:05 +0100275 * of a bio, to do the appropriate freeing of the bio once the reference
276 * count drops to zero.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700277 **/
Al Virodd0fc662005-10-07 07:46:04 +0100278struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279{
Tejun Heo451a9eb2009-04-15 19:50:51 +0200280 unsigned long idx = BIO_POOL_NONE;
Ingo Molnar34053972009-02-21 11:16:36 +0100281 struct bio_vec *bvl = NULL;
Tejun Heo451a9eb2009-04-15 19:50:51 +0200282 struct bio *bio;
283 void *p;
Jens Axboe0a0d96b2008-09-11 13:17:37 +0200284
Tejun Heo451a9eb2009-04-15 19:50:51 +0200285 p = mempool_alloc(bs->bio_pool, gfp_mask);
286 if (unlikely(!p))
287 return NULL;
288 bio = p + bs->front_pad;
Ingo Molnar34053972009-02-21 11:16:36 +0100289
290 bio_init(bio);
291
292 if (unlikely(!nr_iovecs))
293 goto out_set;
294
295 if (nr_iovecs <= BIO_INLINE_VECS) {
296 bvl = bio->bi_inline_vecs;
297 nr_iovecs = BIO_INLINE_VECS;
298 } else {
299 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
300 if (unlikely(!bvl))
301 goto err_free;
302
303 nr_iovecs = bvec_nr_vecs(idx);
304 }
Tejun Heo451a9eb2009-04-15 19:50:51 +0200305out_set:
Ingo Molnar34053972009-02-21 11:16:36 +0100306 bio->bi_flags |= idx << BIO_POOL_OFFSET;
307 bio->bi_max_vecs = nr_iovecs;
Ingo Molnar34053972009-02-21 11:16:36 +0100308 bio->bi_io_vec = bvl;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700309 return bio;
Ingo Molnar34053972009-02-21 11:16:36 +0100310
311err_free:
Tejun Heo451a9eb2009-04-15 19:50:51 +0200312 mempool_free(p, bs->bio_pool);
Ingo Molnar34053972009-02-21 11:16:36 +0100313 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700314}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200315EXPORT_SYMBOL(bio_alloc_bioset);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700316
Tejun Heo451a9eb2009-04-15 19:50:51 +0200317static void bio_fs_destructor(struct bio *bio)
318{
319 bio_free(bio, fs_bio_set);
320}
321
322/**
323 * bio_alloc - allocate a new bio, memory pool backed
324 * @gfp_mask: allocation mask to use
325 * @nr_iovecs: number of iovecs
326 *
Alberto Bertogli5f04eeb2009-11-02 11:39:42 +0100327 * bio_alloc will allocate a bio and associated bio_vec array that can hold
328 * at least @nr_iovecs entries. Allocations will be done from the
329 * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
330 *
331 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
332 * a bio. This is due to the mempool guarantees. To make this work, callers
333 * must never allocate more than 1 bio at a time from this pool. Callers
334 * that need to allocate more than 1 bio must always submit the previously
335 * allocated bio for IO before attempting to allocate a new one. Failure to
336 * do so can cause livelocks under memory pressure.
Tejun Heo451a9eb2009-04-15 19:50:51 +0200337 *
338 * RETURNS:
339 * Pointer to new bio on success, NULL on failure.
340 */
341struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
342{
343 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
344
345 if (bio)
346 bio->bi_destructor = bio_fs_destructor;
347
348 return bio;
349}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200350EXPORT_SYMBOL(bio_alloc);
Tejun Heo451a9eb2009-04-15 19:50:51 +0200351
352static void bio_kmalloc_destructor(struct bio *bio)
353{
354 if (bio_integrity(bio))
Martin K. Petersen7878cba2009-06-26 15:37:49 +0200355 bio_integrity_free(bio, fs_bio_set);
Tejun Heo451a9eb2009-04-15 19:50:51 +0200356 kfree(bio);
357}
358
Jens Axboe86c824b2009-04-15 09:00:07 +0200359/**
Alberto Bertogli5f04eeb2009-11-02 11:39:42 +0100360 * bio_kmalloc - allocate a bio for I/O using kmalloc()
Jens Axboe86c824b2009-04-15 09:00:07 +0200361 * @gfp_mask: the GFP_ mask given to the slab allocator
362 * @nr_iovecs: number of iovecs to pre-allocate
363 *
364 * Description:
Alberto Bertogli5f04eeb2009-11-02 11:39:42 +0100365 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
366 * %__GFP_WAIT, the allocation is guaranteed to succeed.
Jens Axboe86c824b2009-04-15 09:00:07 +0200367 *
368 **/
Jens Axboe0a0d96b2008-09-11 13:17:37 +0200369struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
370{
Tejun Heo451a9eb2009-04-15 19:50:51 +0200371 struct bio *bio;
Jens Axboe0a0d96b2008-09-11 13:17:37 +0200372
Tejun Heo451a9eb2009-04-15 19:50:51 +0200373 bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
374 gfp_mask);
375 if (unlikely(!bio))
376 return NULL;
377
378 bio_init(bio);
379 bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
380 bio->bi_max_vecs = nr_iovecs;
381 bio->bi_io_vec = bio->bi_inline_vecs;
382 bio->bi_destructor = bio_kmalloc_destructor;
Jens Axboe0a0d96b2008-09-11 13:17:37 +0200383
384 return bio;
385}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200386EXPORT_SYMBOL(bio_kmalloc);
Jens Axboe0a0d96b2008-09-11 13:17:37 +0200387
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388void zero_fill_bio(struct bio *bio)
389{
390 unsigned long flags;
391 struct bio_vec *bv;
392 int i;
393
394 bio_for_each_segment(bv, bio, i) {
395 char *data = bvec_kmap_irq(bv, &flags);
396 memset(data, 0, bv->bv_len);
397 flush_dcache_page(bv->bv_page);
398 bvec_kunmap_irq(data, &flags);
399 }
400}
401EXPORT_SYMBOL(zero_fill_bio);
402
403/**
404 * bio_put - release a reference to a bio
405 * @bio: bio to release reference to
406 *
407 * Description:
408 * Put a reference to a &struct bio, either one you have gotten with
Alberto Bertogliad0bf112009-11-02 11:39:22 +0100409 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410 **/
411void bio_put(struct bio *bio)
412{
413 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
414
415 /*
416 * last put frees it
417 */
418 if (atomic_dec_and_test(&bio->bi_cnt)) {
419 bio->bi_next = NULL;
420 bio->bi_destructor(bio);
421 }
422}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200423EXPORT_SYMBOL(bio_put);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700424
Jens Axboe165125e2007-07-24 09:28:11 +0200425inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700426{
427 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
428 blk_recount_segments(q, bio);
429
430 return bio->bi_phys_segments;
431}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200432EXPORT_SYMBOL(bio_phys_segments);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700433
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434/**
435 * __bio_clone - clone a bio
436 * @bio: destination bio
437 * @bio_src: bio to clone
438 *
439 * Clone a &bio. Caller will own the returned bio, but not
440 * the actual data it points to. Reference count of returned
441 * bio will be one.
442 */
Arjan van de Ven858119e2006-01-14 13:20:43 -0800443void __bio_clone(struct bio *bio, struct bio *bio_src)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444{
Andrew Mortone525e152005-08-07 09:42:12 -0700445 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
446 bio_src->bi_max_vecs * sizeof(struct bio_vec));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700447
Jens Axboe5d840702008-01-25 12:44:44 +0100448 /*
449 * most users will be overriding ->bi_bdev with a new target,
450 * so we don't set nor calculate new physical/hw segment counts here
451 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700452 bio->bi_sector = bio_src->bi_sector;
453 bio->bi_bdev = bio_src->bi_bdev;
454 bio->bi_flags |= 1 << BIO_CLONED;
455 bio->bi_rw = bio_src->bi_rw;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456 bio->bi_vcnt = bio_src->bi_vcnt;
457 bio->bi_size = bio_src->bi_size;
Andrew Mortona5453be2005-07-28 01:07:18 -0700458 bio->bi_idx = bio_src->bi_idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700459}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200460EXPORT_SYMBOL(__bio_clone);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700461
462/**
463 * bio_clone - clone a bio
464 * @bio: bio to clone
465 * @gfp_mask: allocation priority
466 *
467 * Like __bio_clone, only also allocates the returned bio
468 */
Al Virodd0fc662005-10-07 07:46:04 +0100469struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700470{
471 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
472
Martin K. Petersen7ba1ba12008-06-30 20:04:41 +0200473 if (!b)
474 return NULL;
475
476 b->bi_destructor = bio_fs_destructor;
477 __bio_clone(b, bio);
478
479 if (bio_integrity(bio)) {
480 int ret;
481
Martin K. Petersen7878cba2009-06-26 15:37:49 +0200482 ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
Martin K. Petersen7ba1ba12008-06-30 20:04:41 +0200483
Li Zefan059ea332009-03-09 10:42:45 +0100484 if (ret < 0) {
485 bio_put(b);
Martin K. Petersen7ba1ba12008-06-30 20:04:41 +0200486 return NULL;
Li Zefan059ea332009-03-09 10:42:45 +0100487 }
Peter Osterlund36763472005-09-06 15:16:42 -0700488 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700489
490 return b;
491}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200492EXPORT_SYMBOL(bio_clone);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493
494/**
495 * bio_get_nr_vecs - return approx number of vecs
496 * @bdev: I/O target
497 *
498 * Return the approximate number of pages we can send to this target.
499 * There's no guarantee that you will be able to fit this number of pages
500 * into a bio, it does not account for dynamic restrictions that vary
501 * on offset.
502 */
503int bio_get_nr_vecs(struct block_device *bdev)
504{
Jens Axboe165125e2007-07-24 09:28:11 +0200505 struct request_queue *q = bdev_get_queue(bdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700506 int nr_pages;
507
Martin K. Petersenae03bf62009-05-22 17:17:50 -0400508 nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
509 if (nr_pages > queue_max_phys_segments(q))
510 nr_pages = queue_max_phys_segments(q);
511 if (nr_pages > queue_max_hw_segments(q))
512 nr_pages = queue_max_hw_segments(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700513
514 return nr_pages;
515}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200516EXPORT_SYMBOL(bio_get_nr_vecs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517
Jens Axboe165125e2007-07-24 09:28:11 +0200518static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
Mike Christiedefd94b2005-12-05 02:37:06 -0600519 *page, unsigned int len, unsigned int offset,
520 unsigned short max_sectors)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521{
522 int retried_segments = 0;
523 struct bio_vec *bvec;
524
525 /*
526 * cloned bio must not modify vec list
527 */
528 if (unlikely(bio_flagged(bio, BIO_CLONED)))
529 return 0;
530
Jens Axboe80cfd542006-01-06 09:43:28 +0100531 if (((bio->bi_size + len) >> 9) > max_sectors)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700532 return 0;
533
Jens Axboe80cfd542006-01-06 09:43:28 +0100534 /*
535 * For filesystems with a blocksize smaller than the pagesize
536 * we will often be called with the same page as last time and
537 * a consecutive offset. Optimize this special case.
538 */
539 if (bio->bi_vcnt > 0) {
540 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
541
542 if (page == prev->bv_page &&
543 offset == prev->bv_offset + prev->bv_len) {
Dmitry Monakhov1d616582010-01-27 22:44:36 +0300544 unsigned int prev_bv_len = prev->bv_len;
Jens Axboe80cfd542006-01-06 09:43:28 +0100545 prev->bv_len += len;
Alasdair G Kergoncc371e62008-07-03 09:53:43 +0200546
547 if (q->merge_bvec_fn) {
548 struct bvec_merge_data bvm = {
Dmitry Monakhov1d616582010-01-27 22:44:36 +0300549 /* prev_bvec is already charged in
550 bi_size, discharge it in order to
551 simulate merging updated prev_bvec
552 as new bvec. */
Alasdair G Kergoncc371e62008-07-03 09:53:43 +0200553 .bi_bdev = bio->bi_bdev,
554 .bi_sector = bio->bi_sector,
Dmitry Monakhov1d616582010-01-27 22:44:36 +0300555 .bi_size = bio->bi_size - prev_bv_len,
Alasdair G Kergoncc371e62008-07-03 09:53:43 +0200556 .bi_rw = bio->bi_rw,
557 };
558
559 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
560 prev->bv_len -= len;
561 return 0;
562 }
Jens Axboe80cfd542006-01-06 09:43:28 +0100563 }
564
565 goto done;
566 }
567 }
568
569 if (bio->bi_vcnt >= bio->bi_max_vecs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700570 return 0;
571
572 /*
573 * we might lose a segment or two here, but rather that than
574 * make this too complex.
575 */
576
Martin K. Petersenae03bf62009-05-22 17:17:50 -0400577 while (bio->bi_phys_segments >= queue_max_phys_segments(q)
578 || bio->bi_phys_segments >= queue_max_hw_segments(q)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700579
580 if (retried_segments)
581 return 0;
582
583 retried_segments = 1;
584 blk_recount_segments(q, bio);
585 }
586
587 /*
588 * setup the new entry, we might clear it again later if we
589 * cannot add the page
590 */
591 bvec = &bio->bi_io_vec[bio->bi_vcnt];
592 bvec->bv_page = page;
593 bvec->bv_len = len;
594 bvec->bv_offset = offset;
595
596 /*
597 * if queue has other restrictions (eg varying max sector size
598 * depending on offset), it can specify a merge_bvec_fn in the
599 * queue to get further control
600 */
601 if (q->merge_bvec_fn) {
Alasdair G Kergoncc371e62008-07-03 09:53:43 +0200602 struct bvec_merge_data bvm = {
603 .bi_bdev = bio->bi_bdev,
604 .bi_sector = bio->bi_sector,
605 .bi_size = bio->bi_size,
606 .bi_rw = bio->bi_rw,
607 };
608
Linus Torvalds1da177e2005-04-16 15:20:36 -0700609 /*
610 * merge_bvec_fn() returns number of bytes it can accept
611 * at this offset
612 */
Alasdair G Kergoncc371e62008-07-03 09:53:43 +0200613 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700614 bvec->bv_page = NULL;
615 bvec->bv_len = 0;
616 bvec->bv_offset = 0;
617 return 0;
618 }
619 }
620
621 /* If we may be able to merge these biovecs, force a recount */
Mikulas Patockab8b3e162008-08-15 10:15:19 +0200622 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
624
625 bio->bi_vcnt++;
626 bio->bi_phys_segments++;
Jens Axboe80cfd542006-01-06 09:43:28 +0100627 done:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700628 bio->bi_size += len;
629 return len;
630}
631
632/**
Mike Christie6e68af62005-11-11 05:30:27 -0600633 * bio_add_pc_page - attempt to add page to bio
Jens Axboefddfdea2006-01-31 15:24:34 +0100634 * @q: the target queue
Mike Christie6e68af62005-11-11 05:30:27 -0600635 * @bio: destination bio
636 * @page: page to add
637 * @len: vec entry length
638 * @offset: vec entry offset
639 *
640 * Attempt to add a page to the bio_vec maplist. This can fail for a
641 * number of reasons, such as the bio being full or target block
642 * device limitations. The target block device must allow bio's
643 * smaller than PAGE_SIZE, so it is always possible to add a single
644 * page to an empty bio. This should only be used by REQ_PC bios.
645 */
Jens Axboe165125e2007-07-24 09:28:11 +0200646int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
Mike Christie6e68af62005-11-11 05:30:27 -0600647 unsigned int len, unsigned int offset)
648{
Martin K. Petersenae03bf62009-05-22 17:17:50 -0400649 return __bio_add_page(q, bio, page, len, offset,
650 queue_max_hw_sectors(q));
Mike Christie6e68af62005-11-11 05:30:27 -0600651}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200652EXPORT_SYMBOL(bio_add_pc_page);
Mike Christie6e68af62005-11-11 05:30:27 -0600653
654/**
Linus Torvalds1da177e2005-04-16 15:20:36 -0700655 * bio_add_page - attempt to add page to bio
656 * @bio: destination bio
657 * @page: page to add
658 * @len: vec entry length
659 * @offset: vec entry offset
660 *
661 * Attempt to add a page to the bio_vec maplist. This can fail for a
662 * number of reasons, such as the bio being full or target block
663 * device limitations. The target block device must allow bio's
664 * smaller than PAGE_SIZE, so it is always possible to add a single
665 * page to an empty bio.
666 */
667int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
668 unsigned int offset)
669{
Mike Christiedefd94b2005-12-05 02:37:06 -0600670 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
Martin K. Petersenae03bf62009-05-22 17:17:50 -0400671 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700672}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200673EXPORT_SYMBOL(bio_add_page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674
675struct bio_map_data {
676 struct bio_vec *iovecs;
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200677 struct sg_iovec *sgvecs;
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900678 int nr_sgvecs;
679 int is_our_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700680};
681
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200682static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900683 struct sg_iovec *iov, int iov_count,
684 int is_our_pages)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700685{
686 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200687 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
688 bmd->nr_sgvecs = iov_count;
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900689 bmd->is_our_pages = is_our_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700690 bio->bi_private = bmd;
691}
692
693static void bio_free_map_data(struct bio_map_data *bmd)
694{
695 kfree(bmd->iovecs);
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200696 kfree(bmd->sgvecs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700697 kfree(bmd);
698}
699
FUJITA Tomonori76029ff2008-08-25 20:36:08 +0200700static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
701 gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700702{
FUJITA Tomonori76029ff2008-08-25 20:36:08 +0200703 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700704
705 if (!bmd)
706 return NULL;
707
FUJITA Tomonori76029ff2008-08-25 20:36:08 +0200708 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200709 if (!bmd->iovecs) {
710 kfree(bmd);
711 return NULL;
712 }
713
FUJITA Tomonori76029ff2008-08-25 20:36:08 +0200714 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200715 if (bmd->sgvecs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700716 return bmd;
717
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200718 kfree(bmd->iovecs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700719 kfree(bmd);
720 return NULL;
721}
722
FUJITA Tomonoriaefcc282008-08-25 20:36:08 +0200723static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
FUJITA Tomonoriecb554a2009-07-09 14:46:53 +0200724 struct sg_iovec *iov, int iov_count,
725 int to_user, int from_user, int do_free_page)
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200726{
727 int ret = 0, i;
728 struct bio_vec *bvec;
729 int iov_idx = 0;
730 unsigned int iov_off = 0;
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200731
732 __bio_for_each_segment(bvec, bio, i, 0) {
733 char *bv_addr = page_address(bvec->bv_page);
FUJITA Tomonoriaefcc282008-08-25 20:36:08 +0200734 unsigned int bv_len = iovecs[i].bv_len;
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200735
736 while (bv_len && iov_idx < iov_count) {
737 unsigned int bytes;
Michal Simek0e0c6212009-06-10 12:57:07 -0700738 char __user *iov_addr;
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200739
740 bytes = min_t(unsigned int,
741 iov[iov_idx].iov_len - iov_off, bv_len);
742 iov_addr = iov[iov_idx].iov_base + iov_off;
743
744 if (!ret) {
FUJITA Tomonoriecb554a2009-07-09 14:46:53 +0200745 if (to_user)
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200746 ret = copy_to_user(iov_addr, bv_addr,
747 bytes);
748
FUJITA Tomonoriecb554a2009-07-09 14:46:53 +0200749 if (from_user)
750 ret = copy_from_user(bv_addr, iov_addr,
751 bytes);
752
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200753 if (ret)
754 ret = -EFAULT;
755 }
756
757 bv_len -= bytes;
758 bv_addr += bytes;
759 iov_addr += bytes;
760 iov_off += bytes;
761
762 if (iov[iov_idx].iov_len == iov_off) {
763 iov_idx++;
764 iov_off = 0;
765 }
766 }
767
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900768 if (do_free_page)
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200769 __free_page(bvec->bv_page);
770 }
771
772 return ret;
773}
774
Linus Torvalds1da177e2005-04-16 15:20:36 -0700775/**
776 * bio_uncopy_user - finish previously mapped bio
777 * @bio: bio being terminated
778 *
779 * Free pages allocated from bio_copy_user() and write back data
780 * to user space in case of a read.
781 */
782int bio_uncopy_user(struct bio *bio)
783{
784 struct bio_map_data *bmd = bio->bi_private;
FUJITA Tomonori81882762008-09-02 16:20:19 +0900785 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700786
FUJITA Tomonori81882762008-09-02 16:20:19 +0900787 if (!bio_flagged(bio, BIO_NULL_MAPPED))
788 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
FUJITA Tomonoriecb554a2009-07-09 14:46:53 +0200789 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
790 0, bmd->is_our_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700791 bio_free_map_data(bmd);
792 bio_put(bio);
793 return ret;
794}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200795EXPORT_SYMBOL(bio_uncopy_user);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700796
797/**
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200798 * bio_copy_user_iov - copy user data to bio
Linus Torvalds1da177e2005-04-16 15:20:36 -0700799 * @q: destination block queue
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900800 * @map_data: pointer to the rq_map_data holding pages (if necessary)
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200801 * @iov: the iovec.
802 * @iov_count: number of elements in the iovec
Linus Torvalds1da177e2005-04-16 15:20:36 -0700803 * @write_to_vm: bool indicating writing to pages or not
FUJITA Tomonoria3bce902008-08-28 16:17:05 +0900804 * @gfp_mask: memory allocation flags
Linus Torvalds1da177e2005-04-16 15:20:36 -0700805 *
806 * Prepares and returns a bio for indirect user io, bouncing data
807 * to/from kernel pages as necessary. Must be paired with
808 * call bio_uncopy_user() on io completion.
809 */
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900810struct bio *bio_copy_user_iov(struct request_queue *q,
811 struct rq_map_data *map_data,
812 struct sg_iovec *iov, int iov_count,
813 int write_to_vm, gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700814{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700815 struct bio_map_data *bmd;
816 struct bio_vec *bvec;
817 struct page *page;
818 struct bio *bio;
819 int i, ret;
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200820 int nr_pages = 0;
821 unsigned int len = 0;
FUJITA Tomonori56c451f2008-12-18 14:49:37 +0900822 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700823
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200824 for (i = 0; i < iov_count; i++) {
825 unsigned long uaddr;
826 unsigned long end;
827 unsigned long start;
828
829 uaddr = (unsigned long)iov[i].iov_base;
830 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
831 start = uaddr >> PAGE_SHIFT;
832
833 nr_pages += end - start;
834 len += iov[i].iov_len;
835 }
836
FUJITA Tomonori69838722009-04-28 20:24:29 +0200837 if (offset)
838 nr_pages++;
839
FUJITA Tomonoria3bce902008-08-28 16:17:05 +0900840 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700841 if (!bmd)
842 return ERR_PTR(-ENOMEM);
843
Linus Torvalds1da177e2005-04-16 15:20:36 -0700844 ret = -ENOMEM;
Tejun Heoa9e9dc22009-04-15 22:10:27 +0900845 bio = bio_kmalloc(gfp_mask, nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700846 if (!bio)
847 goto out_bmd;
848
849 bio->bi_rw |= (!write_to_vm << BIO_RW);
850
851 ret = 0;
FUJITA Tomonori56c451f2008-12-18 14:49:37 +0900852
853 if (map_data) {
FUJITA Tomonorie623ddb2008-12-18 14:49:36 +0900854 nr_pages = 1 << map_data->page_order;
FUJITA Tomonori56c451f2008-12-18 14:49:37 +0900855 i = map_data->offset / PAGE_SIZE;
856 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857 while (len) {
FUJITA Tomonorie623ddb2008-12-18 14:49:36 +0900858 unsigned int bytes = PAGE_SIZE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859
FUJITA Tomonori56c451f2008-12-18 14:49:37 +0900860 bytes -= offset;
861
Linus Torvalds1da177e2005-04-16 15:20:36 -0700862 if (bytes > len)
863 bytes = len;
864
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900865 if (map_data) {
FUJITA Tomonorie623ddb2008-12-18 14:49:36 +0900866 if (i == map_data->nr_entries * nr_pages) {
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900867 ret = -ENOMEM;
868 break;
869 }
FUJITA Tomonorie623ddb2008-12-18 14:49:36 +0900870
871 page = map_data->pages[i / nr_pages];
872 page += (i % nr_pages);
873
874 i++;
875 } else {
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900876 page = alloc_page(q->bounce_gfp | gfp_mask);
FUJITA Tomonorie623ddb2008-12-18 14:49:36 +0900877 if (!page) {
878 ret = -ENOMEM;
879 break;
880 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700881 }
882
FUJITA Tomonori56c451f2008-12-18 14:49:37 +0900883 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700884 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885
886 len -= bytes;
FUJITA Tomonori56c451f2008-12-18 14:49:37 +0900887 offset = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700888 }
889
890 if (ret)
891 goto cleanup;
892
893 /*
894 * success
895 */
FUJITA Tomonoriecb554a2009-07-09 14:46:53 +0200896 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
897 (map_data && map_data->from_user)) {
898 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200899 if (ret)
900 goto cleanup;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700901 }
902
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900903 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700904 return bio;
905cleanup:
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900906 if (!map_data)
907 bio_for_each_segment(bvec, bio, i)
908 __free_page(bvec->bv_page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700909
910 bio_put(bio);
911out_bmd:
912 bio_free_map_data(bmd);
913 return ERR_PTR(ret);
914}
915
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200916/**
917 * bio_copy_user - copy user data to bio
918 * @q: destination block queue
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900919 * @map_data: pointer to the rq_map_data holding pages (if necessary)
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200920 * @uaddr: start of user address
921 * @len: length in bytes
922 * @write_to_vm: bool indicating writing to pages or not
FUJITA Tomonoria3bce902008-08-28 16:17:05 +0900923 * @gfp_mask: memory allocation flags
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200924 *
925 * Prepares and returns a bio for indirect user io, bouncing data
926 * to/from kernel pages as necessary. Must be paired with
927 * call bio_uncopy_user() on io completion.
928 */
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900929struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
930 unsigned long uaddr, unsigned int len,
931 int write_to_vm, gfp_t gfp_mask)
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200932{
933 struct sg_iovec iov;
934
935 iov.iov_base = (void __user *)uaddr;
936 iov.iov_len = len;
937
FUJITA Tomonori152e2832008-08-28 16:17:06 +0900938 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200939}
H Hartley Sweetena112a712009-09-26 16:19:21 +0200940EXPORT_SYMBOL(bio_copy_user);
FUJITA Tomonoric5dec1c2008-04-11 12:56:49 +0200941
Jens Axboe165125e2007-07-24 09:28:11 +0200942static struct bio *__bio_map_user_iov(struct request_queue *q,
James Bottomley f1970ba2005-06-20 14:06:52 +0200943 struct block_device *bdev,
944 struct sg_iovec *iov, int iov_count,
FUJITA Tomonoria3bce902008-08-28 16:17:05 +0900945 int write_to_vm, gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946{
James Bottomley f1970ba2005-06-20 14:06:52 +0200947 int i, j;
948 int nr_pages = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700949 struct page **pages;
950 struct bio *bio;
James Bottomley f1970ba2005-06-20 14:06:52 +0200951 int cur_page = 0;
952 int ret, offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700953
James Bottomley f1970ba2005-06-20 14:06:52 +0200954 for (i = 0; i < iov_count; i++) {
955 unsigned long uaddr = (unsigned long)iov[i].iov_base;
956 unsigned long len = iov[i].iov_len;
957 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
958 unsigned long start = uaddr >> PAGE_SHIFT;
959
960 nr_pages += end - start;
961 /*
Mike Christiead2d7222006-12-01 10:40:20 +0100962 * buffer must be aligned to at least hardsector size for now
James Bottomley f1970ba2005-06-20 14:06:52 +0200963 */
Mike Christiead2d7222006-12-01 10:40:20 +0100964 if (uaddr & queue_dma_alignment(q))
James Bottomley f1970ba2005-06-20 14:06:52 +0200965 return ERR_PTR(-EINVAL);
966 }
967
968 if (!nr_pages)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700969 return ERR_PTR(-EINVAL);
970
Tejun Heoa9e9dc22009-04-15 22:10:27 +0900971 bio = bio_kmalloc(gfp_mask, nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972 if (!bio)
973 return ERR_PTR(-ENOMEM);
974
975 ret = -ENOMEM;
FUJITA Tomonoria3bce902008-08-28 16:17:05 +0900976 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700977 if (!pages)
978 goto out;
979
James Bottomley f1970ba2005-06-20 14:06:52 +0200980 for (i = 0; i < iov_count; i++) {
981 unsigned long uaddr = (unsigned long)iov[i].iov_base;
982 unsigned long len = iov[i].iov_len;
983 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
984 unsigned long start = uaddr >> PAGE_SHIFT;
985 const int local_nr_pages = end - start;
986 const int page_limit = cur_page + local_nr_pages;
987
Nick Pigginf5dd33c2008-07-25 19:45:25 -0700988 ret = get_user_pages_fast(uaddr, local_nr_pages,
989 write_to_vm, &pages[cur_page]);
Jens Axboe99172152006-06-16 13:02:29 +0200990 if (ret < local_nr_pages) {
991 ret = -EFAULT;
James Bottomley f1970ba2005-06-20 14:06:52 +0200992 goto out_unmap;
Jens Axboe99172152006-06-16 13:02:29 +0200993 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700994
James Bottomley f1970ba2005-06-20 14:06:52 +0200995 offset = uaddr & ~PAGE_MASK;
996 for (j = cur_page; j < page_limit; j++) {
997 unsigned int bytes = PAGE_SIZE - offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700998
James Bottomley f1970ba2005-06-20 14:06:52 +0200999 if (len <= 0)
1000 break;
1001
1002 if (bytes > len)
1003 bytes = len;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001004
James Bottomley f1970ba2005-06-20 14:06:52 +02001005 /*
1006 * sorry...
1007 */
Mike Christiedefd94b2005-12-05 02:37:06 -06001008 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1009 bytes)
James Bottomley f1970ba2005-06-20 14:06:52 +02001010 break;
1011
1012 len -= bytes;
1013 offset = 0;
1014 }
1015
1016 cur_page = j;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001017 /*
James Bottomley f1970ba2005-06-20 14:06:52 +02001018 * release the pages we didn't map into the bio, if any
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019 */
James Bottomley f1970ba2005-06-20 14:06:52 +02001020 while (j < page_limit)
1021 page_cache_release(pages[j++]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001022 }
1023
Linus Torvalds1da177e2005-04-16 15:20:36 -07001024 kfree(pages);
1025
1026 /*
1027 * set data direction, and check if mapped pages need bouncing
1028 */
1029 if (!write_to_vm)
1030 bio->bi_rw |= (1 << BIO_RW);
1031
James Bottomley f1970ba2005-06-20 14:06:52 +02001032 bio->bi_bdev = bdev;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001033 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1034 return bio;
James Bottomley f1970ba2005-06-20 14:06:52 +02001035
1036 out_unmap:
1037 for (i = 0; i < nr_pages; i++) {
1038 if(!pages[i])
1039 break;
1040 page_cache_release(pages[i]);
1041 }
1042 out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001043 kfree(pages);
1044 bio_put(bio);
1045 return ERR_PTR(ret);
1046}
1047
1048/**
1049 * bio_map_user - map user address into bio
Jens Axboe165125e2007-07-24 09:28:11 +02001050 * @q: the struct request_queue for the bio
Linus Torvalds1da177e2005-04-16 15:20:36 -07001051 * @bdev: destination block device
1052 * @uaddr: start of user address
1053 * @len: length in bytes
1054 * @write_to_vm: bool indicating writing to pages or not
FUJITA Tomonoria3bce902008-08-28 16:17:05 +09001055 * @gfp_mask: memory allocation flags
Linus Torvalds1da177e2005-04-16 15:20:36 -07001056 *
1057 * Map the user space address into a bio suitable for io to a block
1058 * device. Returns an error pointer in case of error.
1059 */
Jens Axboe165125e2007-07-24 09:28:11 +02001060struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
FUJITA Tomonoria3bce902008-08-28 16:17:05 +09001061 unsigned long uaddr, unsigned int len, int write_to_vm,
1062 gfp_t gfp_mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001063{
James Bottomley f1970ba2005-06-20 14:06:52 +02001064 struct sg_iovec iov;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065
viro@ZenIV.linux.org.uk3f703532005-09-09 16:53:56 +01001066 iov.iov_base = (void __user *)uaddr;
James Bottomley f1970ba2005-06-20 14:06:52 +02001067 iov.iov_len = len;
1068
FUJITA Tomonoria3bce902008-08-28 16:17:05 +09001069 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
James Bottomley f1970ba2005-06-20 14:06:52 +02001070}
H Hartley Sweetena112a712009-09-26 16:19:21 +02001071EXPORT_SYMBOL(bio_map_user);
James Bottomley f1970ba2005-06-20 14:06:52 +02001072
1073/**
1074 * bio_map_user_iov - map user sg_iovec table into bio
Jens Axboe165125e2007-07-24 09:28:11 +02001075 * @q: the struct request_queue for the bio
James Bottomley f1970ba2005-06-20 14:06:52 +02001076 * @bdev: destination block device
1077 * @iov: the iovec.
1078 * @iov_count: number of elements in the iovec
1079 * @write_to_vm: bool indicating writing to pages or not
FUJITA Tomonoria3bce902008-08-28 16:17:05 +09001080 * @gfp_mask: memory allocation flags
James Bottomley f1970ba2005-06-20 14:06:52 +02001081 *
1082 * Map the user space address into a bio suitable for io to a block
1083 * device. Returns an error pointer in case of error.
1084 */
Jens Axboe165125e2007-07-24 09:28:11 +02001085struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
James Bottomley f1970ba2005-06-20 14:06:52 +02001086 struct sg_iovec *iov, int iov_count,
FUJITA Tomonoria3bce902008-08-28 16:17:05 +09001087 int write_to_vm, gfp_t gfp_mask)
James Bottomley f1970ba2005-06-20 14:06:52 +02001088{
1089 struct bio *bio;
James Bottomley f1970ba2005-06-20 14:06:52 +02001090
FUJITA Tomonoria3bce902008-08-28 16:17:05 +09001091 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1092 gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001093 if (IS_ERR(bio))
1094 return bio;
1095
1096 /*
1097 * subtle -- if __bio_map_user() ended up bouncing a bio,
1098 * it would normally disappear when its bi_end_io is run.
1099 * however, we need it for the unmap, so grab an extra
1100 * reference to it
1101 */
1102 bio_get(bio);
1103
Mike Christie0e75f902006-12-01 10:40:55 +01001104 return bio;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001105}
1106
1107static void __bio_unmap_user(struct bio *bio)
1108{
1109 struct bio_vec *bvec;
1110 int i;
1111
1112 /*
1113 * make sure we dirty pages we wrote to
1114 */
1115 __bio_for_each_segment(bvec, bio, i, 0) {
1116 if (bio_data_dir(bio) == READ)
1117 set_page_dirty_lock(bvec->bv_page);
1118
1119 page_cache_release(bvec->bv_page);
1120 }
1121
1122 bio_put(bio);
1123}
1124
1125/**
1126 * bio_unmap_user - unmap a bio
1127 * @bio: the bio being unmapped
1128 *
1129 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1130 * a process context.
1131 *
1132 * bio_unmap_user() may sleep.
1133 */
1134void bio_unmap_user(struct bio *bio)
1135{
1136 __bio_unmap_user(bio);
1137 bio_put(bio);
1138}
H Hartley Sweetena112a712009-09-26 16:19:21 +02001139EXPORT_SYMBOL(bio_unmap_user);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140
NeilBrown6712ecf2007-09-27 12:47:43 +02001141static void bio_map_kern_endio(struct bio *bio, int err)
Jens Axboeb8238252005-06-20 14:05:27 +02001142{
Jens Axboeb8238252005-06-20 14:05:27 +02001143 bio_put(bio);
Jens Axboeb8238252005-06-20 14:05:27 +02001144}
1145
Jens Axboe165125e2007-07-24 09:28:11 +02001146static struct bio *__bio_map_kern(struct request_queue *q, void *data,
Al Viro27496a82005-10-21 03:20:48 -04001147 unsigned int len, gfp_t gfp_mask)
Mike Christie df46b9a2005-06-20 14:04:44 +02001148{
1149 unsigned long kaddr = (unsigned long)data;
1150 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1151 unsigned long start = kaddr >> PAGE_SHIFT;
1152 const int nr_pages = end - start;
1153 int offset, i;
1154 struct bio *bio;
1155
Tejun Heoa9e9dc22009-04-15 22:10:27 +09001156 bio = bio_kmalloc(gfp_mask, nr_pages);
Mike Christie df46b9a2005-06-20 14:04:44 +02001157 if (!bio)
1158 return ERR_PTR(-ENOMEM);
1159
1160 offset = offset_in_page(kaddr);
1161 for (i = 0; i < nr_pages; i++) {
1162 unsigned int bytes = PAGE_SIZE - offset;
1163
1164 if (len <= 0)
1165 break;
1166
1167 if (bytes > len)
1168 bytes = len;
1169
Mike Christiedefd94b2005-12-05 02:37:06 -06001170 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1171 offset) < bytes)
Mike Christie df46b9a2005-06-20 14:04:44 +02001172 break;
1173
1174 data += bytes;
1175 len -= bytes;
1176 offset = 0;
1177 }
1178
Jens Axboeb8238252005-06-20 14:05:27 +02001179 bio->bi_end_io = bio_map_kern_endio;
Mike Christie df46b9a2005-06-20 14:04:44 +02001180 return bio;
1181}
1182
1183/**
1184 * bio_map_kern - map kernel address into bio
Jens Axboe165125e2007-07-24 09:28:11 +02001185 * @q: the struct request_queue for the bio
Mike Christie df46b9a2005-06-20 14:04:44 +02001186 * @data: pointer to buffer to map
1187 * @len: length in bytes
1188 * @gfp_mask: allocation flags for bio allocation
1189 *
1190 * Map the kernel address into a bio suitable for io to a block
1191 * device. Returns an error pointer in case of error.
1192 */
Jens Axboe165125e2007-07-24 09:28:11 +02001193struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
Al Viro27496a82005-10-21 03:20:48 -04001194 gfp_t gfp_mask)
Mike Christie df46b9a2005-06-20 14:04:44 +02001195{
1196 struct bio *bio;
1197
1198 bio = __bio_map_kern(q, data, len, gfp_mask);
1199 if (IS_ERR(bio))
1200 return bio;
1201
1202 if (bio->bi_size == len)
1203 return bio;
1204
1205 /*
1206 * Don't support partial mappings.
1207 */
1208 bio_put(bio);
1209 return ERR_PTR(-EINVAL);
1210}
H Hartley Sweetena112a712009-09-26 16:19:21 +02001211EXPORT_SYMBOL(bio_map_kern);
Mike Christie df46b9a2005-06-20 14:04:44 +02001212
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001213static void bio_copy_kern_endio(struct bio *bio, int err)
1214{
1215 struct bio_vec *bvec;
1216 const int read = bio_data_dir(bio) == READ;
FUJITA Tomonori76029ff2008-08-25 20:36:08 +02001217 struct bio_map_data *bmd = bio->bi_private;
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001218 int i;
FUJITA Tomonori76029ff2008-08-25 20:36:08 +02001219 char *p = bmd->sgvecs[0].iov_base;
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001220
1221 __bio_for_each_segment(bvec, bio, i, 0) {
1222 char *addr = page_address(bvec->bv_page);
FUJITA Tomonori76029ff2008-08-25 20:36:08 +02001223 int len = bmd->iovecs[i].bv_len;
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001224
Tejun Heo4fc981e2009-05-19 18:33:06 +09001225 if (read)
FUJITA Tomonori76029ff2008-08-25 20:36:08 +02001226 memcpy(p, addr, len);
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001227
1228 __free_page(bvec->bv_page);
FUJITA Tomonori76029ff2008-08-25 20:36:08 +02001229 p += len;
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001230 }
1231
FUJITA Tomonori76029ff2008-08-25 20:36:08 +02001232 bio_free_map_data(bmd);
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001233 bio_put(bio);
1234}
1235
1236/**
1237 * bio_copy_kern - copy kernel address into bio
1238 * @q: the struct request_queue for the bio
1239 * @data: pointer to buffer to copy
1240 * @len: length in bytes
1241 * @gfp_mask: allocation flags for bio and page allocation
Randy Dunlapffee0252008-04-30 09:08:54 +02001242 * @reading: data direction is READ
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001243 *
1244 * copy the kernel address into a bio suitable for io to a block
1245 * device. Returns an error pointer in case of error.
1246 */
1247struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1248 gfp_t gfp_mask, int reading)
1249{
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001250 struct bio *bio;
1251 struct bio_vec *bvec;
FUJITA Tomonori4d8ab622008-08-28 15:05:57 +09001252 int i;
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001253
FUJITA Tomonori4d8ab622008-08-28 15:05:57 +09001254 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1255 if (IS_ERR(bio))
1256 return bio;
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001257
1258 if (!reading) {
1259 void *p = data;
1260
1261 bio_for_each_segment(bvec, bio, i) {
1262 char *addr = page_address(bvec->bv_page);
1263
1264 memcpy(addr, p, bvec->bv_len);
1265 p += bvec->bv_len;
1266 }
1267 }
1268
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001269 bio->bi_end_io = bio_copy_kern_endio;
FUJITA Tomonori76029ff2008-08-25 20:36:08 +02001270
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001271 return bio;
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001272}
H Hartley Sweetena112a712009-09-26 16:19:21 +02001273EXPORT_SYMBOL(bio_copy_kern);
FUJITA Tomonori68154e92008-04-25 12:47:50 +02001274
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275/*
1276 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1277 * for performing direct-IO in BIOs.
1278 *
1279 * The problem is that we cannot run set_page_dirty() from interrupt context
1280 * because the required locks are not interrupt-safe. So what we can do is to
1281 * mark the pages dirty _before_ performing IO. And in interrupt context,
1282 * check that the pages are still dirty. If so, fine. If not, redirty them
1283 * in process context.
1284 *
1285 * We special-case compound pages here: normally this means reads into hugetlb
1286 * pages. The logic in here doesn't really work right for compound pages
1287 * because the VM does not uniformly chase down the head page in all cases.
1288 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1289 * handle them at all. So we skip compound pages here at an early stage.
1290 *
1291 * Note that this code is very hard to test under normal circumstances because
1292 * direct-io pins the pages with get_user_pages(). This makes
1293 * is_page_cache_freeable return false, and the VM will not clean the pages.
1294 * But other code (eg, pdflush) could clean the pages if they are mapped
1295 * pagecache.
1296 *
1297 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1298 * deferred bio dirtying paths.
1299 */
1300
1301/*
1302 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1303 */
1304void bio_set_pages_dirty(struct bio *bio)
1305{
1306 struct bio_vec *bvec = bio->bi_io_vec;
1307 int i;
1308
1309 for (i = 0; i < bio->bi_vcnt; i++) {
1310 struct page *page = bvec[i].bv_page;
1311
1312 if (page && !PageCompound(page))
1313 set_page_dirty_lock(page);
1314 }
1315}
1316
Adrian Bunk86b6c7a2008-02-18 13:48:32 +01001317static void bio_release_pages(struct bio *bio)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001318{
1319 struct bio_vec *bvec = bio->bi_io_vec;
1320 int i;
1321
1322 for (i = 0; i < bio->bi_vcnt; i++) {
1323 struct page *page = bvec[i].bv_page;
1324
1325 if (page)
1326 put_page(page);
1327 }
1328}
1329
1330/*
1331 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1332 * If they are, then fine. If, however, some pages are clean then they must
1333 * have been written out during the direct-IO read. So we take another ref on
1334 * the BIO and the offending pages and re-dirty the pages in process context.
1335 *
1336 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1337 * here on. It will run one page_cache_release() against each page and will
1338 * run one bio_put() against the BIO.
1339 */
1340
David Howells65f27f32006-11-22 14:55:48 +00001341static void bio_dirty_fn(struct work_struct *work);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001342
David Howells65f27f32006-11-22 14:55:48 +00001343static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001344static DEFINE_SPINLOCK(bio_dirty_lock);
1345static struct bio *bio_dirty_list;
1346
1347/*
1348 * This runs in process context
1349 */
David Howells65f27f32006-11-22 14:55:48 +00001350static void bio_dirty_fn(struct work_struct *work)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351{
1352 unsigned long flags;
1353 struct bio *bio;
1354
1355 spin_lock_irqsave(&bio_dirty_lock, flags);
1356 bio = bio_dirty_list;
1357 bio_dirty_list = NULL;
1358 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1359
1360 while (bio) {
1361 struct bio *next = bio->bi_private;
1362
1363 bio_set_pages_dirty(bio);
1364 bio_release_pages(bio);
1365 bio_put(bio);
1366 bio = next;
1367 }
1368}
1369
1370void bio_check_pages_dirty(struct bio *bio)
1371{
1372 struct bio_vec *bvec = bio->bi_io_vec;
1373 int nr_clean_pages = 0;
1374 int i;
1375
1376 for (i = 0; i < bio->bi_vcnt; i++) {
1377 struct page *page = bvec[i].bv_page;
1378
1379 if (PageDirty(page) || PageCompound(page)) {
1380 page_cache_release(page);
1381 bvec[i].bv_page = NULL;
1382 } else {
1383 nr_clean_pages++;
1384 }
1385 }
1386
1387 if (nr_clean_pages) {
1388 unsigned long flags;
1389
1390 spin_lock_irqsave(&bio_dirty_lock, flags);
1391 bio->bi_private = bio_dirty_list;
1392 bio_dirty_list = bio;
1393 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1394 schedule_work(&bio_dirty_work);
1395 } else {
1396 bio_put(bio);
1397 }
1398}
1399
Ilya Loginov2d4dc892009-11-26 09:16:19 +01001400#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1401void bio_flush_dcache_pages(struct bio *bi)
1402{
1403 int i;
1404 struct bio_vec *bvec;
1405
1406 bio_for_each_segment(bvec, bi, i)
1407 flush_dcache_page(bvec->bv_page);
1408}
1409EXPORT_SYMBOL(bio_flush_dcache_pages);
1410#endif
1411
Linus Torvalds1da177e2005-04-16 15:20:36 -07001412/**
1413 * bio_endio - end I/O on a bio
1414 * @bio: bio
Linus Torvalds1da177e2005-04-16 15:20:36 -07001415 * @error: error, if any
1416 *
1417 * Description:
NeilBrown6712ecf2007-09-27 12:47:43 +02001418 * bio_endio() will end I/O on the whole bio. bio_endio() is the
NeilBrown5bb23a62007-09-27 12:46:13 +02001419 * preferred way to end I/O on a bio, it takes care of clearing
1420 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1421 * established -Exxxx (-EIO, for instance) error values in case
1422 * something went wrong. Noone should call bi_end_io() directly on a
1423 * bio unless they own it and thus know that it has an end_io
1424 * function.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001425 **/
NeilBrown6712ecf2007-09-27 12:47:43 +02001426void bio_endio(struct bio *bio, int error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001427{
1428 if (error)
1429 clear_bit(BIO_UPTODATE, &bio->bi_flags);
NeilBrown9cc54d42007-09-27 12:46:12 +02001430 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1431 error = -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432
NeilBrown5bb23a62007-09-27 12:46:13 +02001433 if (bio->bi_end_io)
NeilBrown6712ecf2007-09-27 12:47:43 +02001434 bio->bi_end_io(bio, error);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001435}
H Hartley Sweetena112a712009-09-26 16:19:21 +02001436EXPORT_SYMBOL(bio_endio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001437
1438void bio_pair_release(struct bio_pair *bp)
1439{
1440 if (atomic_dec_and_test(&bp->cnt)) {
1441 struct bio *master = bp->bio1.bi_private;
1442
NeilBrown6712ecf2007-09-27 12:47:43 +02001443 bio_endio(master, bp->error);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001444 mempool_free(bp, bp->bio2.bi_private);
1445 }
1446}
H Hartley Sweetena112a712009-09-26 16:19:21 +02001447EXPORT_SYMBOL(bio_pair_release);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001448
NeilBrown6712ecf2007-09-27 12:47:43 +02001449static void bio_pair_end_1(struct bio *bi, int err)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001450{
1451 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1452
1453 if (err)
1454 bp->error = err;
1455
Linus Torvalds1da177e2005-04-16 15:20:36 -07001456 bio_pair_release(bp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001457}
1458
NeilBrown6712ecf2007-09-27 12:47:43 +02001459static void bio_pair_end_2(struct bio *bi, int err)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001460{
1461 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1462
1463 if (err)
1464 bp->error = err;
1465
Linus Torvalds1da177e2005-04-16 15:20:36 -07001466 bio_pair_release(bp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001467}
1468
1469/*
Alberto Bertoglic7eee1b2009-01-25 23:36:14 -02001470 * split a bio - only worry about a bio with a single page in its iovec
Linus Torvalds1da177e2005-04-16 15:20:36 -07001471 */
Denis ChengRq6feef532008-10-09 08:57:05 +02001472struct bio_pair *bio_split(struct bio *bi, int first_sectors)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001473{
Denis ChengRq6feef532008-10-09 08:57:05 +02001474 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001475
1476 if (!bp)
1477 return bp;
1478
Arnaldo Carvalho de Melo5f3ea372008-10-30 08:34:33 +01001479 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
Jens Axboe2056a782006-03-23 20:00:26 +01001480 bi->bi_sector + first_sectors);
1481
Linus Torvalds1da177e2005-04-16 15:20:36 -07001482 BUG_ON(bi->bi_vcnt != 1);
1483 BUG_ON(bi->bi_idx != 0);
1484 atomic_set(&bp->cnt, 3);
1485 bp->error = 0;
1486 bp->bio1 = *bi;
1487 bp->bio2 = *bi;
1488 bp->bio2.bi_sector += first_sectors;
1489 bp->bio2.bi_size -= first_sectors << 9;
1490 bp->bio1.bi_size = first_sectors << 9;
1491
1492 bp->bv1 = bi->bi_io_vec[0];
1493 bp->bv2 = bi->bi_io_vec[0];
1494 bp->bv2.bv_offset += first_sectors << 9;
1495 bp->bv2.bv_len -= first_sectors << 9;
1496 bp->bv1.bv_len = first_sectors << 9;
1497
1498 bp->bio1.bi_io_vec = &bp->bv1;
1499 bp->bio2.bi_io_vec = &bp->bv2;
1500
NeilBrowna2eb0c12006-05-22 22:35:27 -07001501 bp->bio1.bi_max_vecs = 1;
1502 bp->bio2.bi_max_vecs = 1;
1503
Linus Torvalds1da177e2005-04-16 15:20:36 -07001504 bp->bio1.bi_end_io = bio_pair_end_1;
1505 bp->bio2.bi_end_io = bio_pair_end_2;
1506
1507 bp->bio1.bi_private = bi;
Denis ChengRq6feef532008-10-09 08:57:05 +02001508 bp->bio2.bi_private = bio_split_pool;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001509
Martin K. Petersen7ba1ba12008-06-30 20:04:41 +02001510 if (bio_integrity(bi))
1511 bio_integrity_split(bi, bp, first_sectors);
1512
Linus Torvalds1da177e2005-04-16 15:20:36 -07001513 return bp;
1514}
H Hartley Sweetena112a712009-09-26 16:19:21 +02001515EXPORT_SYMBOL(bio_split);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001516
Martin K. Petersenad3316b2008-10-01 22:42:53 -04001517/**
1518 * bio_sector_offset - Find hardware sector offset in bio
1519 * @bio: bio to inspect
1520 * @index: bio_vec index
1521 * @offset: offset in bv_page
1522 *
1523 * Return the number of hardware sectors between beginning of bio
1524 * and an end point indicated by a bio_vec index and an offset
1525 * within that vector's page.
1526 */
1527sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1528 unsigned int offset)
1529{
Martin K. Petersene1defc42009-05-22 17:17:49 -04001530 unsigned int sector_sz;
Martin K. Petersenad3316b2008-10-01 22:42:53 -04001531 struct bio_vec *bv;
1532 sector_t sectors;
1533 int i;
1534
Martin K. Petersene1defc42009-05-22 17:17:49 -04001535 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
Martin K. Petersenad3316b2008-10-01 22:42:53 -04001536 sectors = 0;
1537
1538 if (index >= bio->bi_idx)
1539 index = bio->bi_vcnt - 1;
1540
1541 __bio_for_each_segment(bv, bio, i, 0) {
1542 if (i == index) {
1543 if (offset > bv->bv_offset)
1544 sectors += (offset - bv->bv_offset) / sector_sz;
1545 break;
1546 }
1547
1548 sectors += bv->bv_len / sector_sz;
1549 }
1550
1551 return sectors;
1552}
1553EXPORT_SYMBOL(bio_sector_offset);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001554
1555/*
1556 * create memory pools for biovec's in a bio_set.
1557 * use the global biovec slabs created for general use.
1558 */
Jens Axboe59725112007-04-02 10:06:42 +02001559static int biovec_create_pools(struct bio_set *bs, int pool_entries)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001560{
Jens Axboe7ff93452008-12-11 11:53:43 +01001561 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001562
Jens Axboe7ff93452008-12-11 11:53:43 +01001563 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1564 if (!bs->bvec_pool)
1565 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566
Linus Torvalds1da177e2005-04-16 15:20:36 -07001567 return 0;
1568}
1569
1570static void biovec_free_pools(struct bio_set *bs)
1571{
Jens Axboe7ff93452008-12-11 11:53:43 +01001572 mempool_destroy(bs->bvec_pool);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001573}
1574
1575void bioset_free(struct bio_set *bs)
1576{
1577 if (bs->bio_pool)
1578 mempool_destroy(bs->bio_pool);
1579
Martin K. Petersen7878cba2009-06-26 15:37:49 +02001580 bioset_integrity_free(bs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001581 biovec_free_pools(bs);
Jens Axboebb799ca2008-12-10 15:35:05 +01001582 bio_put_slab(bs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001583
1584 kfree(bs);
1585}
H Hartley Sweetena112a712009-09-26 16:19:21 +02001586EXPORT_SYMBOL(bioset_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001587
Jens Axboebb799ca2008-12-10 15:35:05 +01001588/**
1589 * bioset_create - Create a bio_set
1590 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1591 * @front_pad: Number of bytes to allocate in front of the returned bio
1592 *
1593 * Description:
1594 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1595 * to ask for a number of bytes to be allocated in front of the bio.
1596 * Front pad allocation is useful for embedding the bio inside
1597 * another structure, to avoid allocating extra data to go with the bio.
1598 * Note that the bio must be embedded at the END of that structure always,
1599 * or things will break badly.
1600 */
1601struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001602{
Jens Axboe392ddc32008-12-23 12:42:54 +01001603 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
Jens Axboe1b434492008-10-22 20:32:58 +02001604 struct bio_set *bs;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001605
Jens Axboe1b434492008-10-22 20:32:58 +02001606 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001607 if (!bs)
1608 return NULL;
1609
Jens Axboebb799ca2008-12-10 15:35:05 +01001610 bs->front_pad = front_pad;
Jens Axboe1b434492008-10-22 20:32:58 +02001611
Jens Axboe392ddc32008-12-23 12:42:54 +01001612 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
Jens Axboebb799ca2008-12-10 15:35:05 +01001613 if (!bs->bio_slab) {
1614 kfree(bs);
1615 return NULL;
1616 }
1617
1618 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001619 if (!bs->bio_pool)
1620 goto bad;
1621
Martin K. Petersen7878cba2009-06-26 15:37:49 +02001622 if (bioset_integrity_create(bs, pool_size))
1623 goto bad;
1624
Jens Axboebb799ca2008-12-10 15:35:05 +01001625 if (!biovec_create_pools(bs, pool_size))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001626 return bs;
1627
1628bad:
1629 bioset_free(bs);
1630 return NULL;
1631}
H Hartley Sweetena112a712009-09-26 16:19:21 +02001632EXPORT_SYMBOL(bioset_create);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633
1634static void __init biovec_init_slabs(void)
1635{
1636 int i;
1637
1638 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1639 int size;
1640 struct biovec_slab *bvs = bvec_slabs + i;
1641
Jens Axboea7fcd372008-12-05 16:10:29 +01001642#ifndef CONFIG_BLK_DEV_INTEGRITY
1643 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1644 bvs->slab = NULL;
1645 continue;
1646 }
1647#endif
1648
Linus Torvalds1da177e2005-04-16 15:20:36 -07001649 size = bvs->nr_vecs * sizeof(struct bio_vec);
1650 bvs->slab = kmem_cache_create(bvs->name, size, 0,
Paul Mundt20c2df82007-07-20 10:11:58 +09001651 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001652 }
1653}
1654
1655static int __init init_bio(void)
1656{
Jens Axboebb799ca2008-12-10 15:35:05 +01001657 bio_slab_max = 2;
1658 bio_slab_nr = 0;
1659 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1660 if (!bio_slabs)
1661 panic("bio: can't allocate bios\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001662
Martin K. Petersen7878cba2009-06-26 15:37:49 +02001663 bio_integrity_init();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001664 biovec_init_slabs();
1665
Jens Axboebb799ca2008-12-10 15:35:05 +01001666 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001667 if (!fs_bio_set)
1668 panic("bio: can't allocate bios\n");
1669
Matthew Dobson0eaae62a2006-03-26 01:37:47 -08001670 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1671 sizeof(struct bio_pair));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001672 if (!bio_split_pool)
1673 panic("bio: can't create split pool\n");
1674
1675 return 0;
1676}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001677subsys_initcall(init_bio);