Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Basic one-word fraction declaration and manipulation. |
| 3 | */ |
| 4 | |
| 5 | #define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f |
| 6 | #define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f) |
| 7 | #define _FP_FRAC_SET_1(X,I) (X##_f = I) |
| 8 | #define _FP_FRAC_HIGH_1(X) (X##_f) |
| 9 | #define _FP_FRAC_LOW_1(X) (X##_f) |
| 10 | #define _FP_FRAC_WORD_1(X,w) (X##_f) |
| 11 | |
| 12 | #define _FP_FRAC_ADDI_1(X,I) (X##_f += I) |
| 13 | #define _FP_FRAC_SLL_1(X,N) \ |
| 14 | do { \ |
| 15 | if (__builtin_constant_p(N) && (N) == 1) \ |
| 16 | X##_f += X##_f; \ |
| 17 | else \ |
| 18 | X##_f <<= (N); \ |
| 19 | } while (0) |
| 20 | #define _FP_FRAC_SRL_1(X,N) (X##_f >>= N) |
| 21 | |
| 22 | /* Right shift with sticky-lsb. */ |
| 23 | #define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz) |
| 24 | |
| 25 | #define __FP_FRAC_SRS_1(X,N,sz) \ |
| 26 | (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1 \ |
| 27 | ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) |
| 28 | |
| 29 | #define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f) |
| 30 | #define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f) |
| 31 | #define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f) |
| 32 | |
| 33 | /* Predicates */ |
| 34 | #define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0) |
| 35 | #define _FP_FRAC_ZEROP_1(X) (X##_f == 0) |
| 36 | #define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs) |
| 37 | #define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f) |
| 38 | #define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f) |
| 39 | #define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f) |
| 40 | |
| 41 | #define _FP_ZEROFRAC_1 0 |
| 42 | #define _FP_MINFRAC_1 1 |
| 43 | |
| 44 | /* |
| 45 | * Unpack the raw bits of a native fp value. Do not classify or |
| 46 | * normalize the data. |
| 47 | */ |
| 48 | |
| 49 | #define _FP_UNPACK_RAW_1(fs, X, val) \ |
| 50 | do { \ |
| 51 | union _FP_UNION_##fs _flo; _flo.flt = (val); \ |
| 52 | \ |
| 53 | X##_f = _flo.bits.frac; \ |
| 54 | X##_e = _flo.bits.exp; \ |
| 55 | X##_s = _flo.bits.sign; \ |
| 56 | } while (0) |
| 57 | |
| 58 | |
| 59 | /* |
| 60 | * Repack the raw bits of a native fp value. |
| 61 | */ |
| 62 | |
| 63 | #define _FP_PACK_RAW_1(fs, val, X) \ |
| 64 | do { \ |
| 65 | union _FP_UNION_##fs _flo; \ |
| 66 | \ |
| 67 | _flo.bits.frac = X##_f; \ |
| 68 | _flo.bits.exp = X##_e; \ |
| 69 | _flo.bits.sign = X##_s; \ |
| 70 | \ |
| 71 | (val) = _flo.flt; \ |
| 72 | } while (0) |
| 73 | |
| 74 | |
| 75 | /* |
| 76 | * Multiplication algorithms: |
| 77 | */ |
| 78 | |
| 79 | /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the |
| 80 | multiplication immediately. */ |
| 81 | |
| 82 | #define _FP_MUL_MEAT_1_imm(fs, R, X, Y) \ |
| 83 | do { \ |
| 84 | R##_f = X##_f * Y##_f; \ |
| 85 | /* Normalize since we know where the msb of the multiplicands \ |
| 86 | were (bit B), we know that the msb of the of the product is \ |
| 87 | at either 2B or 2B-1. */ \ |
| 88 | _FP_FRAC_SRS_1(R, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs); \ |
| 89 | } while (0) |
| 90 | |
| 91 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ |
| 92 | |
| 93 | #define _FP_MUL_MEAT_1_wide(fs, R, X, Y, doit) \ |
| 94 | do { \ |
| 95 | _FP_W_TYPE _Z_f0, _Z_f1; \ |
| 96 | doit(_Z_f1, _Z_f0, X##_f, Y##_f); \ |
| 97 | /* Normalize since we know where the msb of the multiplicands \ |
| 98 | were (bit B), we know that the msb of the of the product is \ |
| 99 | at either 2B or 2B-1. */ \ |
| 100 | _FP_FRAC_SRS_2(_Z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs); \ |
| 101 | R##_f = _Z_f0; \ |
| 102 | } while (0) |
| 103 | |
| 104 | /* Finally, a simple widening multiply algorithm. What fun! */ |
| 105 | |
| 106 | #define _FP_MUL_MEAT_1_hard(fs, R, X, Y) \ |
| 107 | do { \ |
| 108 | _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1; \ |
| 109 | \ |
| 110 | /* split the words in half */ \ |
| 111 | _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \ |
| 112 | _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \ |
| 113 | _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \ |
| 114 | _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \ |
| 115 | \ |
| 116 | /* multiply the pieces */ \ |
| 117 | _z_f0 = _xl * _yl; \ |
| 118 | _a_f0 = _xh * _yl; \ |
| 119 | _a_f1 = _xl * _yh; \ |
| 120 | _z_f1 = _xh * _yh; \ |
| 121 | \ |
| 122 | /* reassemble into two full words */ \ |
| 123 | if ((_a_f0 += _a_f1) < _a_f1) \ |
| 124 | _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \ |
| 125 | _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \ |
| 126 | _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \ |
| 127 | _FP_FRAC_ADD_2(_z, _z, _a); \ |
| 128 | \ |
| 129 | /* normalize */ \ |
| 130 | _FP_FRAC_SRS_2(_z, _FP_WFRACBITS_##fs - 1, 2*_FP_WFRACBITS_##fs); \ |
| 131 | R##_f = _z_f0; \ |
| 132 | } while (0) |
| 133 | |
| 134 | |
| 135 | /* |
| 136 | * Division algorithms: |
| 137 | */ |
| 138 | |
| 139 | /* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the |
| 140 | division immediately. Give this macro either _FP_DIV_HELP_imm for |
| 141 | C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you |
| 142 | choose will depend on what the compiler does with divrem4. */ |
| 143 | |
| 144 | #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \ |
| 145 | do { \ |
| 146 | _FP_W_TYPE _q, _r; \ |
| 147 | X##_f <<= (X##_f < Y##_f \ |
| 148 | ? R##_e--, _FP_WFRACBITS_##fs \ |
| 149 | : _FP_WFRACBITS_##fs - 1); \ |
| 150 | doit(_q, _r, X##_f, Y##_f); \ |
| 151 | R##_f = _q | (_r != 0); \ |
| 152 | } while (0) |
| 153 | |
| 154 | /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd |
| 155 | that may be useful in this situation. This first is for a primitive |
| 156 | that requires normalization, the second for one that does not. Look |
| 157 | for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */ |
| 158 | |
| 159 | #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \ |
| 160 | do { \ |
| 161 | _FP_W_TYPE _nh, _nl, _q, _r; \ |
| 162 | \ |
| 163 | /* Normalize Y -- i.e. make the most significant bit set. */ \ |
| 164 | Y##_f <<= _FP_WFRACXBITS_##fs - 1; \ |
| 165 | \ |
| 166 | /* Shift X op correspondingly high, that is, up one full word. */ \ |
| 167 | if (X##_f <= Y##_f) \ |
| 168 | { \ |
| 169 | _nl = 0; \ |
| 170 | _nh = X##_f; \ |
| 171 | } \ |
| 172 | else \ |
| 173 | { \ |
| 174 | R##_e++; \ |
| 175 | _nl = X##_f << (_FP_W_TYPE_SIZE-1); \ |
| 176 | _nh = X##_f >> 1; \ |
| 177 | } \ |
| 178 | \ |
| 179 | udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \ |
| 180 | R##_f = _q | (_r != 0); \ |
| 181 | } while (0) |
| 182 | |
| 183 | #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \ |
| 184 | do { \ |
| 185 | _FP_W_TYPE _nh, _nl, _q, _r; \ |
| 186 | if (X##_f < Y##_f) \ |
| 187 | { \ |
| 188 | R##_e--; \ |
| 189 | _nl = X##_f << _FP_WFRACBITS_##fs; \ |
| 190 | _nh = X##_f >> _FP_WFRACXBITS_##fs; \ |
| 191 | } \ |
| 192 | else \ |
| 193 | { \ |
| 194 | _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \ |
| 195 | _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \ |
| 196 | } \ |
| 197 | udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \ |
| 198 | R##_f = _q | (_r != 0); \ |
| 199 | } while (0) |
| 200 | |
| 201 | |
| 202 | /* |
| 203 | * Square root algorithms: |
| 204 | * We have just one right now, maybe Newton approximation |
| 205 | * should be added for those machines where division is fast. |
| 206 | */ |
| 207 | |
| 208 | #define _FP_SQRT_MEAT_1(R, S, T, X, q) \ |
| 209 | do { \ |
| 210 | while (q) \ |
| 211 | { \ |
| 212 | T##_f = S##_f + q; \ |
| 213 | if (T##_f <= X##_f) \ |
| 214 | { \ |
| 215 | S##_f = T##_f + q; \ |
| 216 | X##_f -= T##_f; \ |
| 217 | R##_f += q; \ |
| 218 | } \ |
| 219 | _FP_FRAC_SLL_1(X, 1); \ |
| 220 | q >>= 1; \ |
| 221 | } \ |
| 222 | } while (0) |
| 223 | |
| 224 | /* |
| 225 | * Assembly/disassembly for converting to/from integral types. |
| 226 | * No shifting or overflow handled here. |
| 227 | */ |
| 228 | |
| 229 | #define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f) |
| 230 | #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r) |
| 231 | |
| 232 | |
| 233 | /* |
| 234 | * Convert FP values between word sizes |
| 235 | */ |
| 236 | |
| 237 | #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S) \ |
| 238 | do { \ |
| 239 | D##_f = S##_f; \ |
| 240 | if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs) \ |
| 241 | _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs), \ |
| 242 | _FP_WFRACBITS_##sfs); \ |
| 243 | else \ |
| 244 | D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs; \ |
| 245 | } while (0) |