Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | <?xml version="1.0" encoding="UTF-8"?> |
| 2 | <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" |
| 3 | "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> |
| 4 | |
| 5 | <book id="MTD-NAND-Guide"> |
| 6 | <bookinfo> |
| 7 | <title>MTD NAND Driver Programming Interface</title> |
| 8 | |
| 9 | <authorgroup> |
| 10 | <author> |
| 11 | <firstname>Thomas</firstname> |
| 12 | <surname>Gleixner</surname> |
| 13 | <affiliation> |
| 14 | <address> |
| 15 | <email>tglx@linutronix.de</email> |
| 16 | </address> |
| 17 | </affiliation> |
| 18 | </author> |
| 19 | </authorgroup> |
| 20 | |
| 21 | <copyright> |
| 22 | <year>2004</year> |
| 23 | <holder>Thomas Gleixner</holder> |
| 24 | </copyright> |
| 25 | |
| 26 | <legalnotice> |
| 27 | <para> |
| 28 | This documentation is free software; you can redistribute |
| 29 | it and/or modify it under the terms of the GNU General Public |
| 30 | License version 2 as published by the Free Software Foundation. |
| 31 | </para> |
| 32 | |
| 33 | <para> |
| 34 | This program is distributed in the hope that it will be |
| 35 | useful, but WITHOUT ANY WARRANTY; without even the implied |
| 36 | warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| 37 | See the GNU General Public License for more details. |
| 38 | </para> |
| 39 | |
| 40 | <para> |
| 41 | You should have received a copy of the GNU General Public |
| 42 | License along with this program; if not, write to the Free |
| 43 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| 44 | MA 02111-1307 USA |
| 45 | </para> |
| 46 | |
| 47 | <para> |
| 48 | For more details see the file COPYING in the source |
| 49 | distribution of Linux. |
| 50 | </para> |
| 51 | </legalnotice> |
| 52 | </bookinfo> |
| 53 | |
| 54 | <toc></toc> |
| 55 | |
| 56 | <chapter id="intro"> |
| 57 | <title>Introduction</title> |
| 58 | <para> |
| 59 | The generic NAND driver supports almost all NAND and AG-AND based |
| 60 | chips and connects them to the Memory Technology Devices (MTD) |
| 61 | subsystem of the Linux Kernel. |
| 62 | </para> |
| 63 | <para> |
| 64 | This documentation is provided for developers who want to implement |
| 65 | board drivers or filesystem drivers suitable for NAND devices. |
| 66 | </para> |
| 67 | </chapter> |
| 68 | |
| 69 | <chapter id="bugs"> |
| 70 | <title>Known Bugs And Assumptions</title> |
| 71 | <para> |
| 72 | None. |
| 73 | </para> |
| 74 | </chapter> |
| 75 | |
| 76 | <chapter id="dochints"> |
| 77 | <title>Documentation hints</title> |
| 78 | <para> |
| 79 | The function and structure docs are autogenerated. Each function and |
| 80 | struct member has a short description which is marked with an [XXX] identifier. |
| 81 | The following chapters explain the meaning of those identifiers. |
| 82 | </para> |
| 83 | <sect1> |
| 84 | <title>Function identifiers [XXX]</title> |
| 85 | <para> |
| 86 | The functions are marked with [XXX] identifiers in the short |
| 87 | comment. The identifiers explain the usage and scope of the |
| 88 | functions. Following identifiers are used: |
| 89 | </para> |
| 90 | <itemizedlist> |
| 91 | <listitem><para> |
| 92 | [MTD Interface]</para><para> |
| 93 | These functions provide the interface to the MTD kernel API. |
| 94 | They are not replacable and provide functionality |
| 95 | which is complete hardware independent. |
| 96 | </para></listitem> |
| 97 | <listitem><para> |
| 98 | [NAND Interface]</para><para> |
| 99 | These functions are exported and provide the interface to the NAND kernel API. |
| 100 | </para></listitem> |
| 101 | <listitem><para> |
| 102 | [GENERIC]</para><para> |
| 103 | Generic functions are not replacable and provide functionality |
| 104 | which is complete hardware independent. |
| 105 | </para></listitem> |
| 106 | <listitem><para> |
| 107 | [DEFAULT]</para><para> |
| 108 | Default functions provide hardware related functionality which is suitable |
| 109 | for most of the implementations. These functions can be replaced by the |
| 110 | board driver if neccecary. Those functions are called via pointers in the |
| 111 | NAND chip description structure. The board driver can set the functions which |
Randy Dunlap | ea9b6dc | 2006-06-28 21:48:38 -0700 | [diff] [blame^] | 112 | should be replaced by board dependent functions before calling nand_scan(). |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 113 | If the function pointer is NULL on entry to nand_scan() then the pointer |
| 114 | is set to the default function which is suitable for the detected chip type. |
| 115 | </para></listitem> |
| 116 | </itemizedlist> |
| 117 | </sect1> |
| 118 | <sect1> |
| 119 | <title>Struct member identifiers [XXX]</title> |
| 120 | <para> |
| 121 | The struct members are marked with [XXX] identifiers in the |
| 122 | comment. The identifiers explain the usage and scope of the |
| 123 | members. Following identifiers are used: |
| 124 | </para> |
| 125 | <itemizedlist> |
| 126 | <listitem><para> |
| 127 | [INTERN]</para><para> |
| 128 | These members are for NAND driver internal use only and must not be |
| 129 | modified. Most of these values are calculated from the chip geometry |
| 130 | information which is evaluated during nand_scan(). |
| 131 | </para></listitem> |
| 132 | <listitem><para> |
| 133 | [REPLACEABLE]</para><para> |
| 134 | Replaceable members hold hardware related functions which can be |
| 135 | provided by the board driver. The board driver can set the functions which |
Randy Dunlap | ea9b6dc | 2006-06-28 21:48:38 -0700 | [diff] [blame^] | 136 | should be replaced by board dependent functions before calling nand_scan(). |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 137 | If the function pointer is NULL on entry to nand_scan() then the pointer |
| 138 | is set to the default function which is suitable for the detected chip type. |
| 139 | </para></listitem> |
| 140 | <listitem><para> |
| 141 | [BOARDSPECIFIC]</para><para> |
| 142 | Board specific members hold hardware related information which must |
| 143 | be provided by the board driver. The board driver must set the function |
| 144 | pointers and datafields before calling nand_scan(). |
| 145 | </para></listitem> |
| 146 | <listitem><para> |
| 147 | [OPTIONAL]</para><para> |
| 148 | Optional members can hold information relevant for the board driver. The |
| 149 | generic NAND driver code does not use this information. |
| 150 | </para></listitem> |
| 151 | </itemizedlist> |
| 152 | </sect1> |
| 153 | </chapter> |
| 154 | |
| 155 | <chapter id="basicboarddriver"> |
| 156 | <title>Basic board driver</title> |
| 157 | <para> |
| 158 | For most boards it will be sufficient to provide just the |
Randy Dunlap | ea9b6dc | 2006-06-28 21:48:38 -0700 | [diff] [blame^] | 159 | basic functions and fill out some really board dependent |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 160 | members in the nand chip description structure. |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 161 | </para> |
| 162 | <sect1> |
| 163 | <title>Basic defines</title> |
| 164 | <para> |
| 165 | At least you have to provide a mtd structure and |
| 166 | a storage for the ioremap'ed chip address. |
| 167 | You can allocate the mtd structure using kmalloc |
| 168 | or you can allocate it statically. |
| 169 | In case of static allocation you have to allocate |
| 170 | a nand_chip structure too. |
| 171 | </para> |
| 172 | <para> |
| 173 | Kmalloc based example |
| 174 | </para> |
| 175 | <programlisting> |
| 176 | static struct mtd_info *board_mtd; |
| 177 | static unsigned long baseaddr; |
| 178 | </programlisting> |
| 179 | <para> |
| 180 | Static example |
| 181 | </para> |
| 182 | <programlisting> |
| 183 | static struct mtd_info board_mtd; |
| 184 | static struct nand_chip board_chip; |
| 185 | static unsigned long baseaddr; |
| 186 | </programlisting> |
| 187 | </sect1> |
| 188 | <sect1> |
| 189 | <title>Partition defines</title> |
| 190 | <para> |
| 191 | If you want to divide your device into parititions, then |
| 192 | enable the configuration switch CONFIG_MTD_PARITIONS and define |
| 193 | a paritioning scheme suitable to your board. |
| 194 | </para> |
| 195 | <programlisting> |
| 196 | #define NUM_PARTITIONS 2 |
| 197 | static struct mtd_partition partition_info[] = { |
| 198 | { .name = "Flash partition 1", |
| 199 | .offset = 0, |
| 200 | .size = 8 * 1024 * 1024 }, |
| 201 | { .name = "Flash partition 2", |
| 202 | .offset = MTDPART_OFS_NEXT, |
| 203 | .size = MTDPART_SIZ_FULL }, |
| 204 | }; |
| 205 | </programlisting> |
| 206 | </sect1> |
| 207 | <sect1> |
| 208 | <title>Hardware control function</title> |
| 209 | <para> |
| 210 | The hardware control function provides access to the |
| 211 | control pins of the NAND chip(s). |
| 212 | The access can be done by GPIO pins or by address lines. |
| 213 | If you use address lines, make sure that the timing |
| 214 | requirements are met. |
| 215 | </para> |
| 216 | <para> |
| 217 | <emphasis>GPIO based example</emphasis> |
| 218 | </para> |
| 219 | <programlisting> |
| 220 | static void board_hwcontrol(struct mtd_info *mtd, int cmd) |
| 221 | { |
| 222 | switch(cmd){ |
| 223 | case NAND_CTL_SETCLE: /* Set CLE pin high */ break; |
| 224 | case NAND_CTL_CLRCLE: /* Set CLE pin low */ break; |
| 225 | case NAND_CTL_SETALE: /* Set ALE pin high */ break; |
| 226 | case NAND_CTL_CLRALE: /* Set ALE pin low */ break; |
| 227 | case NAND_CTL_SETNCE: /* Set nCE pin low */ break; |
| 228 | case NAND_CTL_CLRNCE: /* Set nCE pin high */ break; |
| 229 | } |
| 230 | } |
| 231 | </programlisting> |
| 232 | <para> |
| 233 | <emphasis>Address lines based example.</emphasis> It's assumed that the |
| 234 | nCE pin is driven by a chip select decoder. |
| 235 | </para> |
| 236 | <programlisting> |
| 237 | static void board_hwcontrol(struct mtd_info *mtd, int cmd) |
| 238 | { |
| 239 | struct nand_chip *this = (struct nand_chip *) mtd->priv; |
| 240 | switch(cmd){ |
| 241 | case NAND_CTL_SETCLE: this->IO_ADDR_W |= CLE_ADRR_BIT; break; |
| 242 | case NAND_CTL_CLRCLE: this->IO_ADDR_W &= ~CLE_ADRR_BIT; break; |
| 243 | case NAND_CTL_SETALE: this->IO_ADDR_W |= ALE_ADRR_BIT; break; |
| 244 | case NAND_CTL_CLRALE: this->IO_ADDR_W &= ~ALE_ADRR_BIT; break; |
| 245 | } |
| 246 | } |
| 247 | </programlisting> |
| 248 | </sect1> |
| 249 | <sect1> |
| 250 | <title>Device ready function</title> |
| 251 | <para> |
| 252 | If the hardware interface has the ready busy pin of the NAND chip connected to a |
| 253 | GPIO or other accesible I/O pin, this function is used to read back the state of the |
| 254 | pin. The function has no arguments and should return 0, if the device is busy (R/B pin |
| 255 | is low) and 1, if the device is ready (R/B pin is high). |
| 256 | If the hardware interface does not give access to the ready busy pin, then |
| 257 | the function must not be defined and the function pointer this->dev_ready is set to NULL. |
| 258 | </para> |
| 259 | </sect1> |
| 260 | <sect1> |
| 261 | <title>Init function</title> |
| 262 | <para> |
| 263 | The init function allocates memory and sets up all the board |
| 264 | specific parameters and function pointers. When everything |
| 265 | is set up nand_scan() is called. This function tries to |
| 266 | detect and identify then chip. If a chip is found all the |
| 267 | internal data fields are initialized accordingly. |
| 268 | The structure(s) have to be zeroed out first and then filled with the neccecary |
| 269 | information about the device. |
| 270 | </para> |
| 271 | <programlisting> |
| 272 | int __init board_init (void) |
| 273 | { |
| 274 | struct nand_chip *this; |
| 275 | int err = 0; |
| 276 | |
| 277 | /* Allocate memory for MTD device structure and private data */ |
| 278 | board_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip), GFP_KERNEL); |
| 279 | if (!board_mtd) { |
| 280 | printk ("Unable to allocate NAND MTD device structure.\n"); |
| 281 | err = -ENOMEM; |
| 282 | goto out; |
| 283 | } |
| 284 | |
| 285 | /* Initialize structures */ |
| 286 | memset ((char *) board_mtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip)); |
| 287 | |
| 288 | /* map physical adress */ |
| 289 | baseaddr = (unsigned long)ioremap(CHIP_PHYSICAL_ADDRESS, 1024); |
| 290 | if(!baseaddr){ |
| 291 | printk("Ioremap to access NAND chip failed\n"); |
| 292 | err = -EIO; |
| 293 | goto out_mtd; |
| 294 | } |
| 295 | |
| 296 | /* Get pointer to private data */ |
| 297 | this = (struct nand_chip *) (); |
| 298 | /* Link the private data with the MTD structure */ |
| 299 | board_mtd->priv = this; |
| 300 | |
| 301 | /* Set address of NAND IO lines */ |
| 302 | this->IO_ADDR_R = baseaddr; |
| 303 | this->IO_ADDR_W = baseaddr; |
| 304 | /* Reference hardware control function */ |
| 305 | this->hwcontrol = board_hwcontrol; |
| 306 | /* Set command delay time, see datasheet for correct value */ |
| 307 | this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY; |
| 308 | /* Assign the device ready function, if available */ |
| 309 | this->dev_ready = board_dev_ready; |
| 310 | this->eccmode = NAND_ECC_SOFT; |
| 311 | |
| 312 | /* Scan to find existance of the device */ |
| 313 | if (nand_scan (board_mtd, 1)) { |
| 314 | err = -ENXIO; |
| 315 | goto out_ior; |
| 316 | } |
| 317 | |
| 318 | add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS); |
| 319 | goto out; |
| 320 | |
| 321 | out_ior: |
| 322 | iounmap((void *)baseaddr); |
| 323 | out_mtd: |
| 324 | kfree (board_mtd); |
| 325 | out: |
| 326 | return err; |
| 327 | } |
| 328 | module_init(board_init); |
| 329 | </programlisting> |
| 330 | </sect1> |
| 331 | <sect1> |
| 332 | <title>Exit function</title> |
| 333 | <para> |
| 334 | The exit function is only neccecary if the driver is |
| 335 | compiled as a module. It releases all resources which |
| 336 | are held by the chip driver and unregisters the partitions |
| 337 | in the MTD layer. |
| 338 | </para> |
| 339 | <programlisting> |
| 340 | #ifdef MODULE |
| 341 | static void __exit board_cleanup (void) |
| 342 | { |
| 343 | /* Release resources, unregister device */ |
| 344 | nand_release (board_mtd); |
| 345 | |
| 346 | /* unmap physical adress */ |
| 347 | iounmap((void *)baseaddr); |
| 348 | |
| 349 | /* Free the MTD device structure */ |
| 350 | kfree (board_mtd); |
| 351 | } |
| 352 | module_exit(board_cleanup); |
| 353 | #endif |
| 354 | </programlisting> |
| 355 | </sect1> |
| 356 | </chapter> |
| 357 | |
| 358 | <chapter id="boarddriversadvanced"> |
| 359 | <title>Advanced board driver functions</title> |
| 360 | <para> |
| 361 | This chapter describes the advanced functionality of the NAND |
| 362 | driver. For a list of functions which can be overridden by the board |
| 363 | driver see the documentation of the nand_chip structure. |
| 364 | </para> |
| 365 | <sect1> |
| 366 | <title>Multiple chip control</title> |
| 367 | <para> |
| 368 | The nand driver can control chip arrays. Therefor the |
| 369 | board driver must provide an own select_chip function. This |
| 370 | function must (de)select the requested chip. |
| 371 | The function pointer in the nand_chip structure must |
| 372 | be set before calling nand_scan(). The maxchip parameter |
| 373 | of nand_scan() defines the maximum number of chips to |
| 374 | scan for. Make sure that the select_chip function can |
| 375 | handle the requested number of chips. |
| 376 | </para> |
| 377 | <para> |
| 378 | The nand driver concatenates the chips to one virtual |
| 379 | chip and provides this virtual chip to the MTD layer. |
| 380 | </para> |
| 381 | <para> |
| 382 | <emphasis>Note: The driver can only handle linear chip arrays |
| 383 | of equally sized chips. There is no support for |
| 384 | parallel arrays which extend the buswidth.</emphasis> |
| 385 | </para> |
| 386 | <para> |
| 387 | <emphasis>GPIO based example</emphasis> |
| 388 | </para> |
| 389 | <programlisting> |
| 390 | static void board_select_chip (struct mtd_info *mtd, int chip) |
| 391 | { |
| 392 | /* Deselect all chips, set all nCE pins high */ |
| 393 | GPIO(BOARD_NAND_NCE) |= 0xff; |
| 394 | if (chip >= 0) |
| 395 | GPIO(BOARD_NAND_NCE) &= ~ (1 << chip); |
| 396 | } |
| 397 | </programlisting> |
| 398 | <para> |
| 399 | <emphasis>Address lines based example.</emphasis> |
| 400 | Its assumed that the nCE pins are connected to an |
| 401 | address decoder. |
| 402 | </para> |
| 403 | <programlisting> |
| 404 | static void board_select_chip (struct mtd_info *mtd, int chip) |
| 405 | { |
| 406 | struct nand_chip *this = (struct nand_chip *) mtd->priv; |
| 407 | |
| 408 | /* Deselect all chips */ |
| 409 | this->IO_ADDR_R &= ~BOARD_NAND_ADDR_MASK; |
| 410 | this->IO_ADDR_W &= ~BOARD_NAND_ADDR_MASK; |
| 411 | switch (chip) { |
| 412 | case 0: |
| 413 | this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0; |
| 414 | this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0; |
| 415 | break; |
| 416 | .... |
| 417 | case n: |
| 418 | this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn; |
| 419 | this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn; |
| 420 | break; |
| 421 | } |
| 422 | } |
| 423 | </programlisting> |
| 424 | </sect1> |
| 425 | <sect1> |
| 426 | <title>Hardware ECC support</title> |
| 427 | <sect2> |
| 428 | <title>Functions and constants</title> |
| 429 | <para> |
| 430 | The nand driver supports three different types of |
| 431 | hardware ECC. |
| 432 | <itemizedlist> |
| 433 | <listitem><para>NAND_ECC_HW3_256</para><para> |
| 434 | Hardware ECC generator providing 3 bytes ECC per |
| 435 | 256 byte. |
| 436 | </para> </listitem> |
| 437 | <listitem><para>NAND_ECC_HW3_512</para><para> |
| 438 | Hardware ECC generator providing 3 bytes ECC per |
| 439 | 512 byte. |
| 440 | </para> </listitem> |
| 441 | <listitem><para>NAND_ECC_HW6_512</para><para> |
| 442 | Hardware ECC generator providing 6 bytes ECC per |
| 443 | 512 byte. |
| 444 | </para> </listitem> |
| 445 | <listitem><para>NAND_ECC_HW8_512</para><para> |
| 446 | Hardware ECC generator providing 6 bytes ECC per |
| 447 | 512 byte. |
| 448 | </para> </listitem> |
| 449 | </itemizedlist> |
| 450 | If your hardware generator has a different functionality |
| 451 | add it at the appropriate place in nand_base.c |
| 452 | </para> |
| 453 | <para> |
| 454 | The board driver must provide following functions: |
| 455 | <itemizedlist> |
| 456 | <listitem><para>enable_hwecc</para><para> |
| 457 | This function is called before reading / writing to |
| 458 | the chip. Reset or initialize the hardware generator |
| 459 | in this function. The function is called with an |
| 460 | argument which let you distinguish between read |
| 461 | and write operations. |
| 462 | </para> </listitem> |
| 463 | <listitem><para>calculate_ecc</para><para> |
| 464 | This function is called after read / write from / to |
| 465 | the chip. Transfer the ECC from the hardware to |
| 466 | the buffer. If the option NAND_HWECC_SYNDROME is set |
| 467 | then the function is only called on write. See below. |
| 468 | </para> </listitem> |
| 469 | <listitem><para>correct_data</para><para> |
| 470 | In case of an ECC error this function is called for |
| 471 | error detection and correction. Return 1 respectively 2 |
| 472 | in case the error can be corrected. If the error is |
| 473 | not correctable return -1. If your hardware generator |
| 474 | matches the default algorithm of the nand_ecc software |
| 475 | generator then use the correction function provided |
| 476 | by nand_ecc instead of implementing duplicated code. |
| 477 | </para> </listitem> |
| 478 | </itemizedlist> |
| 479 | </para> |
| 480 | </sect2> |
| 481 | <sect2> |
| 482 | <title>Hardware ECC with syndrome calculation</title> |
| 483 | <para> |
| 484 | Many hardware ECC implementations provide Reed-Solomon |
| 485 | codes and calculate an error syndrome on read. The syndrome |
| 486 | must be converted to a standard Reed-Solomon syndrome |
| 487 | before calling the error correction code in the generic |
| 488 | Reed-Solomon library. |
| 489 | </para> |
| 490 | <para> |
| 491 | The ECC bytes must be placed immidiately after the data |
| 492 | bytes in order to make the syndrome generator work. This |
| 493 | is contrary to the usual layout used by software ECC. The |
| 494 | seperation of data and out of band area is not longer |
| 495 | possible. The nand driver code handles this layout and |
| 496 | the remaining free bytes in the oob area are managed by |
| 497 | the autoplacement code. Provide a matching oob-layout |
| 498 | in this case. See rts_from4.c and diskonchip.c for |
| 499 | implementation reference. In those cases we must also |
| 500 | use bad block tables on FLASH, because the ECC layout is |
| 501 | interferring with the bad block marker positions. |
| 502 | See bad block table support for details. |
| 503 | </para> |
| 504 | </sect2> |
| 505 | </sect1> |
| 506 | <sect1> |
| 507 | <title>Bad block table support</title> |
| 508 | <para> |
| 509 | Most NAND chips mark the bad blocks at a defined |
| 510 | position in the spare area. Those blocks must |
| 511 | not be erased under any circumstances as the bad |
| 512 | block information would be lost. |
| 513 | It is possible to check the bad block mark each |
| 514 | time when the blocks are accessed by reading the |
| 515 | spare area of the first page in the block. This |
| 516 | is time consuming so a bad block table is used. |
| 517 | </para> |
| 518 | <para> |
| 519 | The nand driver supports various types of bad block |
| 520 | tables. |
| 521 | <itemizedlist> |
| 522 | <listitem><para>Per device</para><para> |
| 523 | The bad block table contains all bad block information |
| 524 | of the device which can consist of multiple chips. |
| 525 | </para> </listitem> |
| 526 | <listitem><para>Per chip</para><para> |
| 527 | A bad block table is used per chip and contains the |
| 528 | bad block information for this particular chip. |
| 529 | </para> </listitem> |
| 530 | <listitem><para>Fixed offset</para><para> |
| 531 | The bad block table is located at a fixed offset |
| 532 | in the chip (device). This applies to various |
| 533 | DiskOnChip devices. |
| 534 | </para> </listitem> |
| 535 | <listitem><para>Automatic placed</para><para> |
| 536 | The bad block table is automatically placed and |
| 537 | detected either at the end or at the beginning |
| 538 | of a chip (device) |
| 539 | </para> </listitem> |
| 540 | <listitem><para>Mirrored tables</para><para> |
| 541 | The bad block table is mirrored on the chip (device) to |
| 542 | allow updates of the bad block table without data loss. |
| 543 | </para> </listitem> |
| 544 | </itemizedlist> |
| 545 | </para> |
| 546 | <para> |
| 547 | nand_scan() calls the function nand_default_bbt(). |
| 548 | nand_default_bbt() selects appropriate default |
| 549 | bad block table desriptors depending on the chip information |
| 550 | which was retrieved by nand_scan(). |
| 551 | </para> |
| 552 | <para> |
| 553 | The standard policy is scanning the device for bad |
| 554 | blocks and build a ram based bad block table which |
| 555 | allows faster access than always checking the |
| 556 | bad block information on the flash chip itself. |
| 557 | </para> |
| 558 | <sect2> |
| 559 | <title>Flash based tables</title> |
| 560 | <para> |
| 561 | It may be desired or neccecary to keep a bad block table in FLASH. |
| 562 | For AG-AND chips this is mandatory, as they have no factory marked |
| 563 | bad blocks. They have factory marked good blocks. The marker pattern |
| 564 | is erased when the block is erased to be reused. So in case of |
| 565 | powerloss before writing the pattern back to the chip this block |
| 566 | would be lost and added to the bad blocks. Therefor we scan the |
| 567 | chip(s) when we detect them the first time for good blocks and |
| 568 | store this information in a bad block table before erasing any |
| 569 | of the blocks. |
| 570 | </para> |
| 571 | <para> |
| 572 | The blocks in which the tables are stored are procteted against |
| 573 | accidental access by marking them bad in the memory bad block |
| 574 | table. The bad block table managment functions are allowed |
| 575 | to circumvernt this protection. |
| 576 | </para> |
| 577 | <para> |
| 578 | The simplest way to activate the FLASH based bad block table support |
| 579 | is to set the option NAND_USE_FLASH_BBT in the option field of |
| 580 | the nand chip structure before calling nand_scan(). For AG-AND |
| 581 | chips is this done by default. |
| 582 | This activates the default FLASH based bad block table functionality |
| 583 | of the NAND driver. The default bad block table options are |
| 584 | <itemizedlist> |
| 585 | <listitem><para>Store bad block table per chip</para></listitem> |
| 586 | <listitem><para>Use 2 bits per block</para></listitem> |
| 587 | <listitem><para>Automatic placement at the end of the chip</para></listitem> |
| 588 | <listitem><para>Use mirrored tables with version numbers</para></listitem> |
| 589 | <listitem><para>Reserve 4 blocks at the end of the chip</para></listitem> |
| 590 | </itemizedlist> |
| 591 | </para> |
| 592 | </sect2> |
| 593 | <sect2> |
| 594 | <title>User defined tables</title> |
| 595 | <para> |
| 596 | User defined tables are created by filling out a |
| 597 | nand_bbt_descr structure and storing the pointer in the |
| 598 | nand_chip structure member bbt_td before calling nand_scan(). |
| 599 | If a mirror table is neccecary a second structure must be |
| 600 | created and a pointer to this structure must be stored |
| 601 | in bbt_md inside the nand_chip structure. If the bbt_md |
| 602 | member is set to NULL then only the main table is used |
| 603 | and no scan for the mirrored table is performed. |
| 604 | </para> |
| 605 | <para> |
| 606 | The most important field in the nand_bbt_descr structure |
| 607 | is the options field. The options define most of the |
| 608 | table properties. Use the predefined constants from |
| 609 | nand.h to define the options. |
| 610 | <itemizedlist> |
| 611 | <listitem><para>Number of bits per block</para> |
| 612 | <para>The supported number of bits is 1, 2, 4, 8.</para></listitem> |
| 613 | <listitem><para>Table per chip</para> |
| 614 | <para>Setting the constant NAND_BBT_PERCHIP selects that |
| 615 | a bad block table is managed for each chip in a chip array. |
| 616 | If this option is not set then a per device bad block table |
| 617 | is used.</para></listitem> |
| 618 | <listitem><para>Table location is absolute</para> |
| 619 | <para>Use the option constant NAND_BBT_ABSPAGE and |
| 620 | define the absolute page number where the bad block |
| 621 | table starts in the field pages. If you have selected bad block |
| 622 | tables per chip and you have a multi chip array then the start page |
| 623 | must be given for each chip in the chip array. Note: there is no scan |
| 624 | for a table ident pattern performed, so the fields |
| 625 | pattern, veroffs, offs, len can be left uninitialized</para></listitem> |
| 626 | <listitem><para>Table location is automatically detected</para> |
| 627 | <para>The table can either be located in the first or the last good |
| 628 | blocks of the chip (device). Set NAND_BBT_LASTBLOCK to place |
| 629 | the bad block table at the end of the chip (device). The |
| 630 | bad block tables are marked and identified by a pattern which |
| 631 | is stored in the spare area of the first page in the block which |
| 632 | holds the bad block table. Store a pointer to the pattern |
| 633 | in the pattern field. Further the length of the pattern has to be |
| 634 | stored in len and the offset in the spare area must be given |
| 635 | in the offs member of the nand_bbt_descr stucture. For mirrored |
| 636 | bad block tables different patterns are mandatory.</para></listitem> |
| 637 | <listitem><para>Table creation</para> |
| 638 | <para>Set the option NAND_BBT_CREATE to enable the table creation |
| 639 | if no table can be found during the scan. Usually this is done only |
| 640 | once if a new chip is found. </para></listitem> |
| 641 | <listitem><para>Table write support</para> |
| 642 | <para>Set the option NAND_BBT_WRITE to enable the table write support. |
| 643 | This allows the update of the bad block table(s) in case a block has |
| 644 | to be marked bad due to wear. The MTD interface function block_markbad |
| 645 | is calling the update function of the bad block table. If the write |
| 646 | support is enabled then the table is updated on FLASH.</para> |
| 647 | <para> |
| 648 | Note: Write support should only be enabled for mirrored tables with |
| 649 | version control. |
| 650 | </para></listitem> |
| 651 | <listitem><para>Table version control</para> |
| 652 | <para>Set the option NAND_BBT_VERSION to enable the table version control. |
| 653 | It's highly recommended to enable this for mirrored tables with write |
| 654 | support. It makes sure that the risk of loosing the bad block |
| 655 | table information is reduced to the loss of the information about the |
| 656 | one worn out block which should be marked bad. The version is stored in |
| 657 | 4 consecutive bytes in the spare area of the device. The position of |
| 658 | the version number is defined by the member veroffs in the bad block table |
| 659 | descriptor.</para></listitem> |
| 660 | <listitem><para>Save block contents on write</para> |
| 661 | <para> |
| 662 | In case that the block which holds the bad block table does contain |
| 663 | other useful information, set the option NAND_BBT_SAVECONTENT. When |
| 664 | the bad block table is written then the whole block is read the bad |
| 665 | block table is updated and the block is erased and everything is |
| 666 | written back. If this option is not set only the bad block table |
| 667 | is written and everything else in the block is ignored and erased. |
| 668 | </para></listitem> |
| 669 | <listitem><para>Number of reserved blocks</para> |
| 670 | <para> |
| 671 | For automatic placement some blocks must be reserved for |
| 672 | bad block table storage. The number of reserved blocks is defined |
| 673 | in the maxblocks member of the babd block table description structure. |
| 674 | Reserving 4 blocks for mirrored tables should be a reasonable number. |
| 675 | This also limits the number of blocks which are scanned for the bad |
| 676 | block table ident pattern. |
| 677 | </para></listitem> |
| 678 | </itemizedlist> |
| 679 | </para> |
| 680 | </sect2> |
| 681 | </sect1> |
| 682 | <sect1> |
| 683 | <title>Spare area (auto)placement</title> |
| 684 | <para> |
| 685 | The nand driver implements different possibilities for |
| 686 | placement of filesystem data in the spare area, |
| 687 | <itemizedlist> |
| 688 | <listitem><para>Placement defined by fs driver</para></listitem> |
| 689 | <listitem><para>Automatic placement</para></listitem> |
| 690 | </itemizedlist> |
| 691 | The default placement function is automatic placement. The |
| 692 | nand driver has built in default placement schemes for the |
| 693 | various chiptypes. If due to hardware ECC functionality the |
| 694 | default placement does not fit then the board driver can |
| 695 | provide a own placement scheme. |
| 696 | </para> |
| 697 | <para> |
| 698 | File system drivers can provide a own placement scheme which |
| 699 | is used instead of the default placement scheme. |
| 700 | </para> |
| 701 | <para> |
| 702 | Placement schemes are defined by a nand_oobinfo structure |
| 703 | <programlisting> |
| 704 | struct nand_oobinfo { |
| 705 | int useecc; |
| 706 | int eccbytes; |
| 707 | int eccpos[24]; |
| 708 | int oobfree[8][2]; |
| 709 | }; |
| 710 | </programlisting> |
| 711 | <itemizedlist> |
| 712 | <listitem><para>useecc</para><para> |
| 713 | The useecc member controls the ecc and placement function. The header |
| 714 | file include/mtd/mtd-abi.h contains constants to select ecc and |
| 715 | placement. MTD_NANDECC_OFF switches off the ecc complete. This is |
| 716 | not recommended and available for testing and diagnosis only. |
| 717 | MTD_NANDECC_PLACE selects caller defined placement, MTD_NANDECC_AUTOPLACE |
| 718 | selects automatic placement. |
| 719 | </para></listitem> |
| 720 | <listitem><para>eccbytes</para><para> |
| 721 | The eccbytes member defines the number of ecc bytes per page. |
| 722 | </para></listitem> |
| 723 | <listitem><para>eccpos</para><para> |
| 724 | The eccpos array holds the byte offsets in the spare area where |
| 725 | the ecc codes are placed. |
| 726 | </para></listitem> |
| 727 | <listitem><para>oobfree</para><para> |
| 728 | The oobfree array defines the areas in the spare area which can be |
| 729 | used for automatic placement. The information is given in the format |
| 730 | {offset, size}. offset defines the start of the usable area, size the |
| 731 | length in bytes. More than one area can be defined. The list is terminated |
| 732 | by an {0, 0} entry. |
| 733 | </para></listitem> |
| 734 | </itemizedlist> |
| 735 | </para> |
| 736 | <sect2> |
| 737 | <title>Placement defined by fs driver</title> |
| 738 | <para> |
| 739 | The calling function provides a pointer to a nand_oobinfo |
| 740 | structure which defines the ecc placement. For writes the |
| 741 | caller must provide a spare area buffer along with the |
| 742 | data buffer. The spare area buffer size is (number of pages) * |
| 743 | (size of spare area). For reads the buffer size is |
| 744 | (number of pages) * ((size of spare area) + (number of ecc |
| 745 | steps per page) * sizeof (int)). The driver stores the |
| 746 | result of the ecc check for each tuple in the spare buffer. |
| 747 | The storage sequence is |
| 748 | </para> |
| 749 | <para> |
| 750 | <spare data page 0><ecc result 0>...<ecc result n> |
| 751 | </para> |
| 752 | <para> |
| 753 | ... |
| 754 | </para> |
| 755 | <para> |
| 756 | <spare data page n><ecc result 0>...<ecc result n> |
| 757 | </para> |
| 758 | <para> |
| 759 | This is a legacy mode used by YAFFS1. |
| 760 | </para> |
| 761 | <para> |
| 762 | If the spare area buffer is NULL then only the ECC placement is |
| 763 | done according to the given scheme in the nand_oobinfo structure. |
| 764 | </para> |
| 765 | </sect2> |
| 766 | <sect2> |
| 767 | <title>Automatic placement</title> |
| 768 | <para> |
| 769 | Automatic placement uses the built in defaults to place the |
| 770 | ecc bytes in the spare area. If filesystem data have to be stored / |
| 771 | read into the spare area then the calling function must provide a |
| 772 | buffer. The buffer size per page is determined by the oobfree array in |
| 773 | the nand_oobinfo structure. |
| 774 | </para> |
| 775 | <para> |
| 776 | If the spare area buffer is NULL then only the ECC placement is |
| 777 | done according to the default builtin scheme. |
| 778 | </para> |
| 779 | </sect2> |
| 780 | <sect2> |
| 781 | <title>User space placement selection</title> |
| 782 | <para> |
| 783 | All non ecc functions like mtd->read and mtd->write use an internal |
| 784 | structure, which can be set by an ioctl. This structure is preset |
| 785 | to the autoplacement default. |
| 786 | <programlisting> |
| 787 | ioctl (fd, MEMSETOOBSEL, oobsel); |
| 788 | </programlisting> |
| 789 | oobsel is a pointer to a user supplied structure of type |
| 790 | nand_oobconfig. The contents of this structure must match the |
| 791 | criteria of the filesystem, which will be used. See an example in utils/nandwrite.c. |
| 792 | </para> |
| 793 | </sect2> |
| 794 | </sect1> |
| 795 | <sect1> |
| 796 | <title>Spare area autoplacement default schemes</title> |
| 797 | <sect2> |
| 798 | <title>256 byte pagesize</title> |
| 799 | <informaltable><tgroup cols="3"><tbody> |
| 800 | <row> |
| 801 | <entry>Offset</entry> |
| 802 | <entry>Content</entry> |
| 803 | <entry>Comment</entry> |
| 804 | </row> |
| 805 | <row> |
| 806 | <entry>0x00</entry> |
| 807 | <entry>ECC byte 0</entry> |
| 808 | <entry>Error correction code byte 0</entry> |
| 809 | </row> |
| 810 | <row> |
| 811 | <entry>0x01</entry> |
| 812 | <entry>ECC byte 1</entry> |
| 813 | <entry>Error correction code byte 1</entry> |
| 814 | </row> |
| 815 | <row> |
| 816 | <entry>0x02</entry> |
| 817 | <entry>ECC byte 2</entry> |
| 818 | <entry>Error correction code byte 2</entry> |
| 819 | </row> |
| 820 | <row> |
| 821 | <entry>0x03</entry> |
| 822 | <entry>Autoplace 0</entry> |
| 823 | <entry></entry> |
| 824 | </row> |
| 825 | <row> |
| 826 | <entry>0x04</entry> |
| 827 | <entry>Autoplace 1</entry> |
| 828 | <entry></entry> |
| 829 | </row> |
| 830 | <row> |
| 831 | <entry>0x05</entry> |
| 832 | <entry>Bad block marker</entry> |
| 833 | <entry>If any bit in this byte is zero, then this block is bad. |
| 834 | This applies only to the first page in a block. In the remaining |
| 835 | pages this byte is reserved</entry> |
| 836 | </row> |
| 837 | <row> |
| 838 | <entry>0x06</entry> |
| 839 | <entry>Autoplace 2</entry> |
| 840 | <entry></entry> |
| 841 | </row> |
| 842 | <row> |
| 843 | <entry>0x07</entry> |
| 844 | <entry>Autoplace 3</entry> |
| 845 | <entry></entry> |
| 846 | </row> |
| 847 | </tbody></tgroup></informaltable> |
| 848 | </sect2> |
| 849 | <sect2> |
| 850 | <title>512 byte pagesize</title> |
| 851 | <informaltable><tgroup cols="3"><tbody> |
| 852 | <row> |
| 853 | <entry>Offset</entry> |
| 854 | <entry>Content</entry> |
| 855 | <entry>Comment</entry> |
| 856 | </row> |
| 857 | <row> |
| 858 | <entry>0x00</entry> |
| 859 | <entry>ECC byte 0</entry> |
| 860 | <entry>Error correction code byte 0 of the lower 256 Byte data in |
| 861 | this page</entry> |
| 862 | </row> |
| 863 | <row> |
| 864 | <entry>0x01</entry> |
| 865 | <entry>ECC byte 1</entry> |
| 866 | <entry>Error correction code byte 1 of the lower 256 Bytes of data |
| 867 | in this page</entry> |
| 868 | </row> |
| 869 | <row> |
| 870 | <entry>0x02</entry> |
| 871 | <entry>ECC byte 2</entry> |
| 872 | <entry>Error correction code byte 2 of the lower 256 Bytes of data |
| 873 | in this page</entry> |
| 874 | </row> |
| 875 | <row> |
| 876 | <entry>0x03</entry> |
| 877 | <entry>ECC byte 3</entry> |
| 878 | <entry>Error correction code byte 0 of the upper 256 Bytes of data |
| 879 | in this page</entry> |
| 880 | </row> |
| 881 | <row> |
| 882 | <entry>0x04</entry> |
| 883 | <entry>reserved</entry> |
| 884 | <entry>reserved</entry> |
| 885 | </row> |
| 886 | <row> |
| 887 | <entry>0x05</entry> |
| 888 | <entry>Bad block marker</entry> |
| 889 | <entry>If any bit in this byte is zero, then this block is bad. |
| 890 | This applies only to the first page in a block. In the remaining |
| 891 | pages this byte is reserved</entry> |
| 892 | </row> |
| 893 | <row> |
| 894 | <entry>0x06</entry> |
| 895 | <entry>ECC byte 4</entry> |
| 896 | <entry>Error correction code byte 1 of the upper 256 Bytes of data |
| 897 | in this page</entry> |
| 898 | </row> |
| 899 | <row> |
| 900 | <entry>0x07</entry> |
| 901 | <entry>ECC byte 5</entry> |
| 902 | <entry>Error correction code byte 2 of the upper 256 Bytes of data |
| 903 | in this page</entry> |
| 904 | </row> |
| 905 | <row> |
| 906 | <entry>0x08 - 0x0F</entry> |
| 907 | <entry>Autoplace 0 - 7</entry> |
| 908 | <entry></entry> |
| 909 | </row> |
| 910 | </tbody></tgroup></informaltable> |
| 911 | </sect2> |
| 912 | <sect2> |
| 913 | <title>2048 byte pagesize</title> |
| 914 | <informaltable><tgroup cols="3"><tbody> |
| 915 | <row> |
| 916 | <entry>Offset</entry> |
| 917 | <entry>Content</entry> |
| 918 | <entry>Comment</entry> |
| 919 | </row> |
| 920 | <row> |
| 921 | <entry>0x00</entry> |
| 922 | <entry>Bad block marker</entry> |
| 923 | <entry>If any bit in this byte is zero, then this block is bad. |
| 924 | This applies only to the first page in a block. In the remaining |
| 925 | pages this byte is reserved</entry> |
| 926 | </row> |
| 927 | <row> |
| 928 | <entry>0x01</entry> |
| 929 | <entry>Reserved</entry> |
| 930 | <entry>Reserved</entry> |
| 931 | </row> |
| 932 | <row> |
| 933 | <entry>0x02-0x27</entry> |
| 934 | <entry>Autoplace 0 - 37</entry> |
| 935 | <entry></entry> |
| 936 | </row> |
| 937 | <row> |
| 938 | <entry>0x28</entry> |
| 939 | <entry>ECC byte 0</entry> |
| 940 | <entry>Error correction code byte 0 of the first 256 Byte data in |
| 941 | this page</entry> |
| 942 | </row> |
| 943 | <row> |
| 944 | <entry>0x29</entry> |
| 945 | <entry>ECC byte 1</entry> |
| 946 | <entry>Error correction code byte 1 of the first 256 Bytes of data |
| 947 | in this page</entry> |
| 948 | </row> |
| 949 | <row> |
| 950 | <entry>0x2A</entry> |
| 951 | <entry>ECC byte 2</entry> |
| 952 | <entry>Error correction code byte 2 of the first 256 Bytes data in |
| 953 | this page</entry> |
| 954 | </row> |
| 955 | <row> |
| 956 | <entry>0x2B</entry> |
| 957 | <entry>ECC byte 3</entry> |
| 958 | <entry>Error correction code byte 0 of the second 256 Bytes of data |
| 959 | in this page</entry> |
| 960 | </row> |
| 961 | <row> |
| 962 | <entry>0x2C</entry> |
| 963 | <entry>ECC byte 4</entry> |
| 964 | <entry>Error correction code byte 1 of the second 256 Bytes of data |
| 965 | in this page</entry> |
| 966 | </row> |
| 967 | <row> |
| 968 | <entry>0x2D</entry> |
| 969 | <entry>ECC byte 5</entry> |
| 970 | <entry>Error correction code byte 2 of the second 256 Bytes of data |
| 971 | in this page</entry> |
| 972 | </row> |
| 973 | <row> |
| 974 | <entry>0x2E</entry> |
| 975 | <entry>ECC byte 6</entry> |
| 976 | <entry>Error correction code byte 0 of the third 256 Bytes of data |
| 977 | in this page</entry> |
| 978 | </row> |
| 979 | <row> |
| 980 | <entry>0x2F</entry> |
| 981 | <entry>ECC byte 7</entry> |
| 982 | <entry>Error correction code byte 1 of the third 256 Bytes of data |
| 983 | in this page</entry> |
| 984 | </row> |
| 985 | <row> |
| 986 | <entry>0x30</entry> |
| 987 | <entry>ECC byte 8</entry> |
| 988 | <entry>Error correction code byte 2 of the third 256 Bytes of data |
| 989 | in this page</entry> |
| 990 | </row> |
| 991 | <row> |
| 992 | <entry>0x31</entry> |
| 993 | <entry>ECC byte 9</entry> |
| 994 | <entry>Error correction code byte 0 of the fourth 256 Bytes of data |
| 995 | in this page</entry> |
| 996 | </row> |
| 997 | <row> |
| 998 | <entry>0x32</entry> |
| 999 | <entry>ECC byte 10</entry> |
| 1000 | <entry>Error correction code byte 1 of the fourth 256 Bytes of data |
| 1001 | in this page</entry> |
| 1002 | </row> |
| 1003 | <row> |
| 1004 | <entry>0x33</entry> |
| 1005 | <entry>ECC byte 11</entry> |
| 1006 | <entry>Error correction code byte 2 of the fourth 256 Bytes of data |
| 1007 | in this page</entry> |
| 1008 | </row> |
| 1009 | <row> |
| 1010 | <entry>0x34</entry> |
| 1011 | <entry>ECC byte 12</entry> |
| 1012 | <entry>Error correction code byte 0 of the fifth 256 Bytes of data |
| 1013 | in this page</entry> |
| 1014 | </row> |
| 1015 | <row> |
| 1016 | <entry>0x35</entry> |
| 1017 | <entry>ECC byte 13</entry> |
| 1018 | <entry>Error correction code byte 1 of the fifth 256 Bytes of data |
| 1019 | in this page</entry> |
| 1020 | </row> |
| 1021 | <row> |
| 1022 | <entry>0x36</entry> |
| 1023 | <entry>ECC byte 14</entry> |
| 1024 | <entry>Error correction code byte 2 of the fifth 256 Bytes of data |
| 1025 | in this page</entry> |
| 1026 | </row> |
| 1027 | <row> |
| 1028 | <entry>0x37</entry> |
| 1029 | <entry>ECC byte 15</entry> |
| 1030 | <entry>Error correction code byte 0 of the sixt 256 Bytes of data |
| 1031 | in this page</entry> |
| 1032 | </row> |
| 1033 | <row> |
| 1034 | <entry>0x38</entry> |
| 1035 | <entry>ECC byte 16</entry> |
| 1036 | <entry>Error correction code byte 1 of the sixt 256 Bytes of data |
| 1037 | in this page</entry> |
| 1038 | </row> |
| 1039 | <row> |
| 1040 | <entry>0x39</entry> |
| 1041 | <entry>ECC byte 17</entry> |
| 1042 | <entry>Error correction code byte 2 of the sixt 256 Bytes of data |
| 1043 | in this page</entry> |
| 1044 | </row> |
| 1045 | <row> |
| 1046 | <entry>0x3A</entry> |
| 1047 | <entry>ECC byte 18</entry> |
| 1048 | <entry>Error correction code byte 0 of the seventh 256 Bytes of |
| 1049 | data in this page</entry> |
| 1050 | </row> |
| 1051 | <row> |
| 1052 | <entry>0x3B</entry> |
| 1053 | <entry>ECC byte 19</entry> |
| 1054 | <entry>Error correction code byte 1 of the seventh 256 Bytes of |
| 1055 | data in this page</entry> |
| 1056 | </row> |
| 1057 | <row> |
| 1058 | <entry>0x3C</entry> |
| 1059 | <entry>ECC byte 20</entry> |
| 1060 | <entry>Error correction code byte 2 of the seventh 256 Bytes of |
| 1061 | data in this page</entry> |
| 1062 | </row> |
| 1063 | <row> |
| 1064 | <entry>0x3D</entry> |
| 1065 | <entry>ECC byte 21</entry> |
| 1066 | <entry>Error correction code byte 0 of the eigth 256 Bytes of data |
| 1067 | in this page</entry> |
| 1068 | </row> |
| 1069 | <row> |
| 1070 | <entry>0x3E</entry> |
| 1071 | <entry>ECC byte 22</entry> |
| 1072 | <entry>Error correction code byte 1 of the eigth 256 Bytes of data |
| 1073 | in this page</entry> |
| 1074 | </row> |
| 1075 | <row> |
| 1076 | <entry>0x3F</entry> |
| 1077 | <entry>ECC byte 23</entry> |
| 1078 | <entry>Error correction code byte 2 of the eigth 256 Bytes of data |
| 1079 | in this page</entry> |
| 1080 | </row> |
| 1081 | </tbody></tgroup></informaltable> |
| 1082 | </sect2> |
| 1083 | </sect1> |
| 1084 | </chapter> |
| 1085 | |
| 1086 | <chapter id="filesystems"> |
| 1087 | <title>Filesystem support</title> |
| 1088 | <para> |
| 1089 | The NAND driver provides all neccecary functions for a |
| 1090 | filesystem via the MTD interface. |
| 1091 | </para> |
| 1092 | <para> |
| 1093 | Filesystems must be aware of the NAND pecularities and |
| 1094 | restrictions. One major restrictions of NAND Flash is, that you cannot |
| 1095 | write as often as you want to a page. The consecutive writes to a page, |
| 1096 | before erasing it again, are restricted to 1-3 writes, depending on the |
| 1097 | manufacturers specifications. This applies similar to the spare area. |
| 1098 | </para> |
| 1099 | <para> |
| 1100 | Therefor NAND aware filesystems must either write in page size chunks |
| 1101 | or hold a writebuffer to collect smaller writes until they sum up to |
| 1102 | pagesize. Available NAND aware filesystems: JFFS2, YAFFS. |
| 1103 | </para> |
| 1104 | <para> |
| 1105 | The spare area usage to store filesystem data is controlled by |
| 1106 | the spare area placement functionality which is described in one |
| 1107 | of the earlier chapters. |
| 1108 | </para> |
| 1109 | </chapter> |
| 1110 | <chapter id="tools"> |
| 1111 | <title>Tools</title> |
| 1112 | <para> |
| 1113 | The MTD project provides a couple of helpful tools to handle NAND Flash. |
| 1114 | <itemizedlist> |
| 1115 | <listitem><para>flasherase, flasheraseall: Erase and format FLASH partitions</para></listitem> |
| 1116 | <listitem><para>nandwrite: write filesystem images to NAND FLASH</para></listitem> |
| 1117 | <listitem><para>nanddump: dump the contents of a NAND FLASH partitions</para></listitem> |
| 1118 | </itemizedlist> |
| 1119 | </para> |
| 1120 | <para> |
| 1121 | These tools are aware of the NAND restrictions. Please use those tools |
| 1122 | instead of complaining about errors which are caused by non NAND aware |
| 1123 | access methods. |
| 1124 | </para> |
| 1125 | </chapter> |
| 1126 | |
| 1127 | <chapter id="defines"> |
| 1128 | <title>Constants</title> |
| 1129 | <para> |
| 1130 | This chapter describes the constants which might be relevant for a driver developer. |
| 1131 | </para> |
| 1132 | <sect1> |
| 1133 | <title>Chip option constants</title> |
| 1134 | <sect2> |
| 1135 | <title>Constants for chip id table</title> |
| 1136 | <para> |
| 1137 | These constants are defined in nand.h. They are ored together to describe |
| 1138 | the chip functionality. |
| 1139 | <programlisting> |
| 1140 | /* Chip can not auto increment pages */ |
| 1141 | #define NAND_NO_AUTOINCR 0x00000001 |
| 1142 | /* Buswitdh is 16 bit */ |
| 1143 | #define NAND_BUSWIDTH_16 0x00000002 |
| 1144 | /* Device supports partial programming without padding */ |
| 1145 | #define NAND_NO_PADDING 0x00000004 |
| 1146 | /* Chip has cache program function */ |
| 1147 | #define NAND_CACHEPRG 0x00000008 |
| 1148 | /* Chip has copy back function */ |
| 1149 | #define NAND_COPYBACK 0x00000010 |
| 1150 | /* AND Chip which has 4 banks and a confusing page / block |
| 1151 | * assignment. See Renesas datasheet for further information */ |
| 1152 | #define NAND_IS_AND 0x00000020 |
| 1153 | /* Chip has a array of 4 pages which can be read without |
| 1154 | * additional ready /busy waits */ |
| 1155 | #define NAND_4PAGE_ARRAY 0x00000040 |
| 1156 | </programlisting> |
| 1157 | </para> |
| 1158 | </sect2> |
| 1159 | <sect2> |
| 1160 | <title>Constants for runtime options</title> |
| 1161 | <para> |
| 1162 | These constants are defined in nand.h. They are ored together to describe |
| 1163 | the functionality. |
| 1164 | <programlisting> |
| 1165 | /* Use a flash based bad block table. This option is parsed by the |
| 1166 | * default bad block table function (nand_default_bbt). */ |
| 1167 | #define NAND_USE_FLASH_BBT 0x00010000 |
| 1168 | /* The hw ecc generator provides a syndrome instead a ecc value on read |
| 1169 | * This can only work if we have the ecc bytes directly behind the |
| 1170 | * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */ |
| 1171 | #define NAND_HWECC_SYNDROME 0x00020000 |
| 1172 | </programlisting> |
| 1173 | </para> |
| 1174 | </sect2> |
| 1175 | </sect1> |
| 1176 | |
| 1177 | <sect1> |
| 1178 | <title>ECC selection constants</title> |
| 1179 | <para> |
| 1180 | Use these constants to select the ECC algorithm. |
| 1181 | <programlisting> |
| 1182 | /* No ECC. Usage is not recommended ! */ |
| 1183 | #define NAND_ECC_NONE 0 |
| 1184 | /* Software ECC 3 byte ECC per 256 Byte data */ |
| 1185 | #define NAND_ECC_SOFT 1 |
| 1186 | /* Hardware ECC 3 byte ECC per 256 Byte data */ |
| 1187 | #define NAND_ECC_HW3_256 2 |
| 1188 | /* Hardware ECC 3 byte ECC per 512 Byte data */ |
| 1189 | #define NAND_ECC_HW3_512 3 |
| 1190 | /* Hardware ECC 6 byte ECC per 512 Byte data */ |
| 1191 | #define NAND_ECC_HW6_512 4 |
| 1192 | /* Hardware ECC 6 byte ECC per 512 Byte data */ |
| 1193 | #define NAND_ECC_HW8_512 6 |
| 1194 | </programlisting> |
| 1195 | </para> |
| 1196 | </sect1> |
| 1197 | |
| 1198 | <sect1> |
| 1199 | <title>Hardware control related constants</title> |
| 1200 | <para> |
| 1201 | These constants describe the requested hardware access function when |
| 1202 | the boardspecific hardware control function is called |
| 1203 | <programlisting> |
| 1204 | /* Select the chip by setting nCE to low */ |
| 1205 | #define NAND_CTL_SETNCE 1 |
| 1206 | /* Deselect the chip by setting nCE to high */ |
| 1207 | #define NAND_CTL_CLRNCE 2 |
| 1208 | /* Select the command latch by setting CLE to high */ |
| 1209 | #define NAND_CTL_SETCLE 3 |
| 1210 | /* Deselect the command latch by setting CLE to low */ |
| 1211 | #define NAND_CTL_CLRCLE 4 |
| 1212 | /* Select the address latch by setting ALE to high */ |
| 1213 | #define NAND_CTL_SETALE 5 |
| 1214 | /* Deselect the address latch by setting ALE to low */ |
| 1215 | #define NAND_CTL_CLRALE 6 |
| 1216 | /* Set write protection by setting WP to high. Not used! */ |
| 1217 | #define NAND_CTL_SETWP 7 |
| 1218 | /* Clear write protection by setting WP to low. Not used! */ |
| 1219 | #define NAND_CTL_CLRWP 8 |
| 1220 | </programlisting> |
| 1221 | </para> |
| 1222 | </sect1> |
| 1223 | |
| 1224 | <sect1> |
| 1225 | <title>Bad block table related constants</title> |
| 1226 | <para> |
| 1227 | These constants describe the options used for bad block |
| 1228 | table descriptors. |
| 1229 | <programlisting> |
| 1230 | /* Options for the bad block table descriptors */ |
| 1231 | |
| 1232 | /* The number of bits used per block in the bbt on the device */ |
| 1233 | #define NAND_BBT_NRBITS_MSK 0x0000000F |
| 1234 | #define NAND_BBT_1BIT 0x00000001 |
| 1235 | #define NAND_BBT_2BIT 0x00000002 |
| 1236 | #define NAND_BBT_4BIT 0x00000004 |
| 1237 | #define NAND_BBT_8BIT 0x00000008 |
| 1238 | /* The bad block table is in the last good block of the device */ |
| 1239 | #define NAND_BBT_LASTBLOCK 0x00000010 |
| 1240 | /* The bbt is at the given page, else we must scan for the bbt */ |
| 1241 | #define NAND_BBT_ABSPAGE 0x00000020 |
| 1242 | /* The bbt is at the given page, else we must scan for the bbt */ |
| 1243 | #define NAND_BBT_SEARCH 0x00000040 |
| 1244 | /* bbt is stored per chip on multichip devices */ |
| 1245 | #define NAND_BBT_PERCHIP 0x00000080 |
| 1246 | /* bbt has a version counter at offset veroffs */ |
| 1247 | #define NAND_BBT_VERSION 0x00000100 |
| 1248 | /* Create a bbt if none axists */ |
| 1249 | #define NAND_BBT_CREATE 0x00000200 |
| 1250 | /* Search good / bad pattern through all pages of a block */ |
| 1251 | #define NAND_BBT_SCANALLPAGES 0x00000400 |
| 1252 | /* Scan block empty during good / bad block scan */ |
| 1253 | #define NAND_BBT_SCANEMPTY 0x00000800 |
| 1254 | /* Write bbt if neccecary */ |
| 1255 | #define NAND_BBT_WRITE 0x00001000 |
| 1256 | /* Read and write back block contents when writing bbt */ |
| 1257 | #define NAND_BBT_SAVECONTENT 0x00002000 |
| 1258 | </programlisting> |
| 1259 | </para> |
| 1260 | </sect1> |
| 1261 | |
| 1262 | </chapter> |
| 1263 | |
| 1264 | <chapter id="structs"> |
| 1265 | <title>Structures</title> |
| 1266 | <para> |
| 1267 | This chapter contains the autogenerated documentation of the structures which are |
| 1268 | used in the NAND driver and might be relevant for a driver developer. Each |
| 1269 | struct member has a short description which is marked with an [XXX] identifier. |
| 1270 | See the chapter "Documentation hints" for an explanation. |
| 1271 | </para> |
| 1272 | !Iinclude/linux/mtd/nand.h |
| 1273 | </chapter> |
| 1274 | |
| 1275 | <chapter id="pubfunctions"> |
| 1276 | <title>Public Functions Provided</title> |
| 1277 | <para> |
| 1278 | This chapter contains the autogenerated documentation of the NAND kernel API functions |
| 1279 | which are exported. Each function has a short description which is marked with an [XXX] identifier. |
| 1280 | See the chapter "Documentation hints" for an explanation. |
| 1281 | </para> |
| 1282 | !Edrivers/mtd/nand/nand_base.c |
| 1283 | !Edrivers/mtd/nand/nand_bbt.c |
| 1284 | !Edrivers/mtd/nand/nand_ecc.c |
| 1285 | </chapter> |
| 1286 | |
| 1287 | <chapter id="intfunctions"> |
| 1288 | <title>Internal Functions Provided</title> |
| 1289 | <para> |
| 1290 | This chapter contains the autogenerated documentation of the NAND driver internal functions. |
| 1291 | Each function has a short description which is marked with an [XXX] identifier. |
| 1292 | See the chapter "Documentation hints" for an explanation. |
| 1293 | The functions marked with [DEFAULT] might be relevant for a board driver developer. |
| 1294 | </para> |
| 1295 | !Idrivers/mtd/nand/nand_base.c |
| 1296 | !Idrivers/mtd/nand/nand_bbt.c |
Randy Dunlap | 844d3b4 | 2006-06-28 21:48:27 -0700 | [diff] [blame] | 1297 | <!-- No internal functions for kernel-doc: |
| 1298 | X!Idrivers/mtd/nand/nand_ecc.c |
| 1299 | --> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1300 | </chapter> |
| 1301 | |
| 1302 | <chapter id="credits"> |
| 1303 | <title>Credits</title> |
| 1304 | <para> |
| 1305 | The following people have contributed to the NAND driver: |
| 1306 | <orderedlist> |
| 1307 | <listitem><para>Steven J. Hill<email>sjhill@realitydiluted.com</email></para></listitem> |
| 1308 | <listitem><para>David Woodhouse<email>dwmw2@infradead.org</email></para></listitem> |
| 1309 | <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem> |
| 1310 | </orderedlist> |
| 1311 | A lot of users have provided bugfixes, improvements and helping hands for testing. |
| 1312 | Thanks a lot. |
| 1313 | </para> |
| 1314 | <para> |
| 1315 | The following people have contributed to this document: |
| 1316 | <orderedlist> |
| 1317 | <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem> |
| 1318 | </orderedlist> |
| 1319 | </para> |
| 1320 | </chapter> |
| 1321 | </book> |