blob: 13e9f4a3ab26c9e05d05bf0b5a181bab6cb735d4 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef __LINUX_CPUMASK_H
2#define __LINUX_CPUMASK_H
3
4/*
5 * Cpumasks provide a bitmap suitable for representing the
6 * set of CPU's in a system, one bit position per CPU number.
7 *
8 * See detailed comments in the file linux/bitmap.h describing the
9 * data type on which these cpumasks are based.
10 *
11 * For details of cpumask_scnprintf() and cpumask_parse(),
12 * see bitmap_scnprintf() and bitmap_parse() in lib/bitmap.c.
13 * For details of cpulist_scnprintf() and cpulist_parse(), see
14 * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
Paul Jacksonfb5eeee2005-10-30 15:02:33 -080015 * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c
16 * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c.
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 *
18 * The available cpumask operations are:
19 *
20 * void cpu_set(cpu, mask) turn on bit 'cpu' in mask
21 * void cpu_clear(cpu, mask) turn off bit 'cpu' in mask
22 * void cpus_setall(mask) set all bits
23 * void cpus_clear(mask) clear all bits
24 * int cpu_isset(cpu, mask) true iff bit 'cpu' set in mask
25 * int cpu_test_and_set(cpu, mask) test and set bit 'cpu' in mask
26 *
27 * void cpus_and(dst, src1, src2) dst = src1 & src2 [intersection]
28 * void cpus_or(dst, src1, src2) dst = src1 | src2 [union]
29 * void cpus_xor(dst, src1, src2) dst = src1 ^ src2
30 * void cpus_andnot(dst, src1, src2) dst = src1 & ~src2
31 * void cpus_complement(dst, src) dst = ~src
32 *
33 * int cpus_equal(mask1, mask2) Does mask1 == mask2?
34 * int cpus_intersects(mask1, mask2) Do mask1 and mask2 intersect?
35 * int cpus_subset(mask1, mask2) Is mask1 a subset of mask2?
36 * int cpus_empty(mask) Is mask empty (no bits sets)?
37 * int cpus_full(mask) Is mask full (all bits sets)?
38 * int cpus_weight(mask) Hamming weigh - number of set bits
39 *
40 * void cpus_shift_right(dst, src, n) Shift right
41 * void cpus_shift_left(dst, src, n) Shift left
42 *
43 * int first_cpu(mask) Number lowest set bit, or NR_CPUS
44 * int next_cpu(cpu, mask) Next cpu past 'cpu', or NR_CPUS
45 *
46 * cpumask_t cpumask_of_cpu(cpu) Return cpumask with bit 'cpu' set
47 * CPU_MASK_ALL Initializer - all bits set
48 * CPU_MASK_NONE Initializer - no bits set
49 * unsigned long *cpus_addr(mask) Array of unsigned long's in mask
50 *
51 * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
52 * int cpumask_parse(ubuf, ulen, mask) Parse ascii string as cpumask
53 * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing
54 * int cpulist_parse(buf, map) Parse ascii string as cpulist
Paul Jacksonfb5eeee2005-10-30 15:02:33 -080055 * int cpu_remap(oldbit, old, new) newbit = map(old, new)(oldbit)
56 * int cpus_remap(dst, src, old, new) *dst = map(old, new)(src)
Linus Torvalds1da177e2005-04-16 15:20:36 -070057 *
58 * for_each_cpu_mask(cpu, mask) for-loop cpu over mask
59 *
60 * int num_online_cpus() Number of online CPUs
61 * int num_possible_cpus() Number of all possible CPUs
62 * int num_present_cpus() Number of present CPUs
63 *
64 * int cpu_online(cpu) Is some cpu online?
65 * int cpu_possible(cpu) Is some cpu possible?
66 * int cpu_present(cpu) Is some cpu present (can schedule)?
67 *
68 * int any_online_cpu(mask) First online cpu in mask
69 *
70 * for_each_cpu(cpu) for-loop cpu over cpu_possible_map
71 * for_each_online_cpu(cpu) for-loop cpu over cpu_online_map
72 * for_each_present_cpu(cpu) for-loop cpu over cpu_present_map
73 *
74 * Subtlety:
75 * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
76 * to generate slightly worse code. Note for example the additional
77 * 40 lines of assembly code compiling the "for each possible cpu"
78 * loops buried in the disk_stat_read() macros calls when compiling
79 * drivers/block/genhd.c (arch i386, CONFIG_SMP=y). So use a simple
80 * one-line #define for cpu_isset(), instead of wrapping an inline
81 * inside a macro, the way we do the other calls.
82 */
83
84#include <linux/kernel.h>
85#include <linux/threads.h>
86#include <linux/bitmap.h>
87#include <asm/bug.h>
88
89typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
90extern cpumask_t _unused_cpumask_arg_;
91
92#define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
93static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
94{
95 set_bit(cpu, dstp->bits);
96}
97
98#define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
99static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
100{
101 clear_bit(cpu, dstp->bits);
102}
103
104#define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
105static inline void __cpus_setall(cpumask_t *dstp, int nbits)
106{
107 bitmap_fill(dstp->bits, nbits);
108}
109
110#define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
111static inline void __cpus_clear(cpumask_t *dstp, int nbits)
112{
113 bitmap_zero(dstp->bits, nbits);
114}
115
116/* No static inline type checking - see Subtlety (1) above. */
117#define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
118
119#define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
120static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
121{
122 return test_and_set_bit(cpu, addr->bits);
123}
124
125#define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
126static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,
127 const cpumask_t *src2p, int nbits)
128{
129 bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
130}
131
132#define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
133static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,
134 const cpumask_t *src2p, int nbits)
135{
136 bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
137}
138
139#define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
140static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,
141 const cpumask_t *src2p, int nbits)
142{
143 bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
144}
145
146#define cpus_andnot(dst, src1, src2) \
147 __cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
148static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,
149 const cpumask_t *src2p, int nbits)
150{
151 bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
152}
153
154#define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
155static inline void __cpus_complement(cpumask_t *dstp,
156 const cpumask_t *srcp, int nbits)
157{
158 bitmap_complement(dstp->bits, srcp->bits, nbits);
159}
160
161#define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
162static inline int __cpus_equal(const cpumask_t *src1p,
163 const cpumask_t *src2p, int nbits)
164{
165 return bitmap_equal(src1p->bits, src2p->bits, nbits);
166}
167
168#define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
169static inline int __cpus_intersects(const cpumask_t *src1p,
170 const cpumask_t *src2p, int nbits)
171{
172 return bitmap_intersects(src1p->bits, src2p->bits, nbits);
173}
174
175#define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
176static inline int __cpus_subset(const cpumask_t *src1p,
177 const cpumask_t *src2p, int nbits)
178{
179 return bitmap_subset(src1p->bits, src2p->bits, nbits);
180}
181
182#define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
183static inline int __cpus_empty(const cpumask_t *srcp, int nbits)
184{
185 return bitmap_empty(srcp->bits, nbits);
186}
187
188#define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
189static inline int __cpus_full(const cpumask_t *srcp, int nbits)
190{
191 return bitmap_full(srcp->bits, nbits);
192}
193
194#define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
195static inline int __cpus_weight(const cpumask_t *srcp, int nbits)
196{
197 return bitmap_weight(srcp->bits, nbits);
198}
199
200#define cpus_shift_right(dst, src, n) \
201 __cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
202static inline void __cpus_shift_right(cpumask_t *dstp,
203 const cpumask_t *srcp, int n, int nbits)
204{
205 bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
206}
207
208#define cpus_shift_left(dst, src, n) \
209 __cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
210static inline void __cpus_shift_left(cpumask_t *dstp,
211 const cpumask_t *srcp, int n, int nbits)
212{
213 bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
214}
215
216#define first_cpu(src) __first_cpu(&(src), NR_CPUS)
217static inline int __first_cpu(const cpumask_t *srcp, int nbits)
218{
219 return min_t(int, nbits, find_first_bit(srcp->bits, nbits));
220}
221
222#define next_cpu(n, src) __next_cpu((n), &(src), NR_CPUS)
223static inline int __next_cpu(int n, const cpumask_t *srcp, int nbits)
224{
225 return min_t(int, nbits, find_next_bit(srcp->bits, nbits, n+1));
226}
227
228#define cpumask_of_cpu(cpu) \
229({ \
230 typeof(_unused_cpumask_arg_) m; \
231 if (sizeof(m) == sizeof(unsigned long)) { \
232 m.bits[0] = 1UL<<(cpu); \
233 } else { \
234 cpus_clear(m); \
235 cpu_set((cpu), m); \
236 } \
237 m; \
238})
239
240#define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
241
242#if NR_CPUS <= BITS_PER_LONG
243
244#define CPU_MASK_ALL \
245(cpumask_t) { { \
246 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
247} }
248
249#else
250
251#define CPU_MASK_ALL \
252(cpumask_t) { { \
253 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
254 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
255} }
256
257#endif
258
259#define CPU_MASK_NONE \
260(cpumask_t) { { \
261 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
262} }
263
264#define CPU_MASK_CPU0 \
265(cpumask_t) { { \
266 [0] = 1UL \
267} }
268
269#define cpus_addr(src) ((src).bits)
270
271#define cpumask_scnprintf(buf, len, src) \
272 __cpumask_scnprintf((buf), (len), &(src), NR_CPUS)
273static inline int __cpumask_scnprintf(char *buf, int len,
274 const cpumask_t *srcp, int nbits)
275{
276 return bitmap_scnprintf(buf, len, srcp->bits, nbits);
277}
278
279#define cpumask_parse(ubuf, ulen, dst) \
280 __cpumask_parse((ubuf), (ulen), &(dst), NR_CPUS)
281static inline int __cpumask_parse(const char __user *buf, int len,
282 cpumask_t *dstp, int nbits)
283{
284 return bitmap_parse(buf, len, dstp->bits, nbits);
285}
286
287#define cpulist_scnprintf(buf, len, src) \
288 __cpulist_scnprintf((buf), (len), &(src), NR_CPUS)
289static inline int __cpulist_scnprintf(char *buf, int len,
290 const cpumask_t *srcp, int nbits)
291{
292 return bitmap_scnlistprintf(buf, len, srcp->bits, nbits);
293}
294
295#define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS)
296static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits)
297{
298 return bitmap_parselist(buf, dstp->bits, nbits);
299}
300
Paul Jacksonfb5eeee2005-10-30 15:02:33 -0800301#define cpu_remap(oldbit, old, new) \
302 __cpu_remap((oldbit), &(old), &(new), NR_CPUS)
303static inline int __cpu_remap(int oldbit,
304 const cpumask_t *oldp, const cpumask_t *newp, int nbits)
305{
306 return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);
307}
308
309#define cpus_remap(dst, src, old, new) \
310 __cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS)
311static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp,
312 const cpumask_t *oldp, const cpumask_t *newp, int nbits)
313{
314 bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);
315}
316
Linus Torvalds1da177e2005-04-16 15:20:36 -0700317#if NR_CPUS > 1
318#define for_each_cpu_mask(cpu, mask) \
319 for ((cpu) = first_cpu(mask); \
320 (cpu) < NR_CPUS; \
321 (cpu) = next_cpu((cpu), (mask)))
322#else /* NR_CPUS == 1 */
323#define for_each_cpu_mask(cpu, mask) for ((cpu) = 0; (cpu) < 1; (cpu)++)
324#endif /* NR_CPUS */
325
326/*
327 * The following particular system cpumasks and operations manage
328 * possible, present and online cpus. Each of them is a fixed size
329 * bitmap of size NR_CPUS.
330 *
331 * #ifdef CONFIG_HOTPLUG_CPU
332 * cpu_possible_map - all NR_CPUS bits set
333 * cpu_present_map - has bit 'cpu' set iff cpu is populated
334 * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
335 * #else
336 * cpu_possible_map - has bit 'cpu' set iff cpu is populated
337 * cpu_present_map - copy of cpu_possible_map
338 * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
339 * #endif
340 *
341 * In either case, NR_CPUS is fixed at compile time, as the static
342 * size of these bitmaps. The cpu_possible_map is fixed at boot
343 * time, as the set of CPU id's that it is possible might ever
344 * be plugged in at anytime during the life of that system boot.
345 * The cpu_present_map is dynamic(*), representing which CPUs
346 * are currently plugged in. And cpu_online_map is the dynamic
347 * subset of cpu_present_map, indicating those CPUs available
348 * for scheduling.
349 *
350 * If HOTPLUG is enabled, then cpu_possible_map is forced to have
351 * all NR_CPUS bits set, otherwise it is just the set of CPUs that
352 * ACPI reports present at boot.
353 *
354 * If HOTPLUG is enabled, then cpu_present_map varies dynamically,
355 * depending on what ACPI reports as currently plugged in, otherwise
356 * cpu_present_map is just a copy of cpu_possible_map.
357 *
358 * (*) Well, cpu_present_map is dynamic in the hotplug case. If not
359 * hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
360 *
361 * Subtleties:
362 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
363 * assumption that their single CPU is online. The UP
364 * cpu_{online,possible,present}_maps are placebos. Changing them
365 * will have no useful affect on the following num_*_cpus()
366 * and cpu_*() macros in the UP case. This ugliness is a UP
367 * optimization - don't waste any instructions or memory references
368 * asking if you're online or how many CPUs there are if there is
369 * only one CPU.
370 * 2) Most SMP arch's #define some of these maps to be some
371 * other map specific to that arch. Therefore, the following
372 * must be #define macros, not inlines. To see why, examine
373 * the assembly code produced by the following. Note that
374 * set1() writes phys_x_map, but set2() writes x_map:
375 * int x_map, phys_x_map;
376 * #define set1(a) x_map = a
377 * inline void set2(int a) { x_map = a; }
378 * #define x_map phys_x_map
379 * main(){ set1(3); set2(5); }
380 */
381
382extern cpumask_t cpu_possible_map;
383extern cpumask_t cpu_online_map;
384extern cpumask_t cpu_present_map;
385
386#if NR_CPUS > 1
387#define num_online_cpus() cpus_weight(cpu_online_map)
388#define num_possible_cpus() cpus_weight(cpu_possible_map)
389#define num_present_cpus() cpus_weight(cpu_present_map)
390#define cpu_online(cpu) cpu_isset((cpu), cpu_online_map)
391#define cpu_possible(cpu) cpu_isset((cpu), cpu_possible_map)
392#define cpu_present(cpu) cpu_isset((cpu), cpu_present_map)
393#else
394#define num_online_cpus() 1
395#define num_possible_cpus() 1
396#define num_present_cpus() 1
397#define cpu_online(cpu) ((cpu) == 0)
398#define cpu_possible(cpu) ((cpu) == 0)
399#define cpu_present(cpu) ((cpu) == 0)
400#endif
401
402#define any_online_cpu(mask) \
403({ \
404 int cpu; \
405 for_each_cpu_mask(cpu, (mask)) \
406 if (cpu_online(cpu)) \
407 break; \
408 cpu; \
409})
410
411#define for_each_cpu(cpu) for_each_cpu_mask((cpu), cpu_possible_map)
412#define for_each_online_cpu(cpu) for_each_cpu_mask((cpu), cpu_online_map)
413#define for_each_present_cpu(cpu) for_each_cpu_mask((cpu), cpu_present_map)
414
David S. Millerc8923c62005-10-13 14:41:23 -0700415/* Find the highest possible smp_processor_id() */
Al Viro688ce172005-10-16 00:17:33 -0700416#define highest_possible_processor_id() \
417({ \
418 unsigned int cpu, highest = 0; \
419 for_each_cpu_mask(cpu, cpu_possible_map) \
420 highest = cpu; \
421 highest; \
422})
David S. Millerc8923c62005-10-13 14:41:23 -0700423
424
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425#endif /* __LINUX_CPUMASK_H */