blob: 3ed247b80662cd07c5f871d914285159d01b5274 [file] [log] [blame]
Oskar Schirmer8759ef32009-06-11 14:51:15 +01001/*
2 * rational fractions
3 *
4 * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <os@emlix.com>
5 *
6 * helper functions when coping with rational numbers
7 */
8
9#include <linux/rational.h>
Sascha Hauer7ee3aebe2010-01-08 14:42:47 -080010#include <linux/module.h>
Oskar Schirmer8759ef32009-06-11 14:51:15 +010011
12/*
13 * calculate best rational approximation for a given fraction
14 * taking into account restricted register size, e.g. to find
15 * appropriate values for a pll with 5 bit denominator and
16 * 8 bit numerator register fields, trying to set up with a
17 * frequency ratio of 3.1415, one would say:
18 *
19 * rational_best_approximation(31415, 10000,
20 * (1 << 8) - 1, (1 << 5) - 1, &n, &d);
21 *
22 * you may look at given_numerator as a fixed point number,
23 * with the fractional part size described in given_denominator.
24 *
25 * for theoretical background, see:
26 * http://en.wikipedia.org/wiki/Continued_fraction
27 */
28
29void rational_best_approximation(
30 unsigned long given_numerator, unsigned long given_denominator,
31 unsigned long max_numerator, unsigned long max_denominator,
32 unsigned long *best_numerator, unsigned long *best_denominator)
33{
34 unsigned long n, d, n0, d0, n1, d1;
35 n = given_numerator;
36 d = given_denominator;
37 n0 = d1 = 0;
38 n1 = d0 = 1;
39 for (;;) {
40 unsigned long t, a;
41 if ((n1 > max_numerator) || (d1 > max_denominator)) {
42 n1 = n0;
43 d1 = d0;
44 break;
45 }
46 if (d == 0)
47 break;
48 t = d;
49 a = n / d;
50 d = n % d;
51 n = t;
52 t = n0 + a * n1;
53 n0 = n1;
54 n1 = t;
55 t = d0 + a * d1;
56 d0 = d1;
57 d1 = t;
58 }
59 *best_numerator = n1;
60 *best_denominator = d1;
61}
62
63EXPORT_SYMBOL(rational_best_approximation);