Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * This routine clears to zero a linear memory buffer in user space. |
| 3 | * |
| 4 | * Inputs: |
| 5 | * in0: address of buffer |
| 6 | * in1: length of buffer in bytes |
| 7 | * Outputs: |
| 8 | * r8: number of bytes that didn't get cleared due to a fault |
| 9 | * |
| 10 | * Copyright (C) 1998, 1999, 2001 Hewlett-Packard Co |
| 11 | * Stephane Eranian <eranian@hpl.hp.com> |
| 12 | */ |
| 13 | |
| 14 | #include <asm/asmmacro.h> |
| 15 | |
| 16 | // |
| 17 | // arguments |
| 18 | // |
| 19 | #define buf r32 |
| 20 | #define len r33 |
| 21 | |
| 22 | // |
| 23 | // local registers |
| 24 | // |
| 25 | #define cnt r16 |
| 26 | #define buf2 r17 |
| 27 | #define saved_lc r18 |
| 28 | #define saved_pfs r19 |
| 29 | #define tmp r20 |
| 30 | #define len2 r21 |
| 31 | #define len3 r22 |
| 32 | |
| 33 | // |
| 34 | // Theory of operations: |
| 35 | // - we check whether or not the buffer is small, i.e., less than 17 |
| 36 | // in which case we do the byte by byte loop. |
| 37 | // |
| 38 | // - Otherwise we go progressively from 1 byte store to 8byte store in |
| 39 | // the head part, the body is a 16byte store loop and we finish we the |
| 40 | // tail for the last 15 bytes. |
| 41 | // The good point about this breakdown is that the long buffer handling |
| 42 | // contains only 2 branches. |
| 43 | // |
| 44 | // The reason for not using shifting & masking for both the head and the |
| 45 | // tail is to stay semantically correct. This routine is not supposed |
| 46 | // to write bytes outside of the buffer. While most of the time this would |
| 47 | // be ok, we can't tolerate a mistake. A classical example is the case |
| 48 | // of multithreaded code were to the extra bytes touched is actually owned |
| 49 | // by another thread which runs concurrently to ours. Another, less likely, |
| 50 | // example is with device drivers where reading an I/O mapped location may |
| 51 | // have side effects (same thing for writing). |
| 52 | // |
| 53 | |
| 54 | GLOBAL_ENTRY(__do_clear_user) |
| 55 | .prologue |
| 56 | .save ar.pfs, saved_pfs |
| 57 | alloc saved_pfs=ar.pfs,2,0,0,0 |
| 58 | cmp.eq p6,p0=r0,len // check for zero length |
| 59 | .save ar.lc, saved_lc |
| 60 | mov saved_lc=ar.lc // preserve ar.lc (slow) |
| 61 | .body |
| 62 | ;; // avoid WAW on CFM |
| 63 | adds tmp=-1,len // br.ctop is repeat/until |
| 64 | mov ret0=len // return value is length at this point |
| 65 | (p6) br.ret.spnt.many rp |
| 66 | ;; |
| 67 | cmp.lt p6,p0=16,len // if len > 16 then long memset |
| 68 | mov ar.lc=tmp // initialize lc for small count |
| 69 | (p6) br.cond.dptk .long_do_clear |
| 70 | ;; // WAR on ar.lc |
| 71 | // |
| 72 | // worst case 16 iterations, avg 8 iterations |
| 73 | // |
| 74 | // We could have played with the predicates to use the extra |
| 75 | // M slot for 2 stores/iteration but the cost the initialization |
| 76 | // the various counters compared to how long the loop is supposed |
| 77 | // to last on average does not make this solution viable. |
| 78 | // |
| 79 | 1: |
| 80 | EX( .Lexit1, st1 [buf]=r0,1 ) |
| 81 | adds len=-1,len // countdown length using len |
| 82 | br.cloop.dptk 1b |
| 83 | ;; // avoid RAW on ar.lc |
| 84 | // |
| 85 | // .Lexit4: comes from byte by byte loop |
| 86 | // len contains bytes left |
| 87 | .Lexit1: |
| 88 | mov ret0=len // faster than using ar.lc |
| 89 | mov ar.lc=saved_lc |
| 90 | br.ret.sptk.many rp // end of short clear_user |
| 91 | |
| 92 | |
| 93 | // |
| 94 | // At this point we know we have more than 16 bytes to copy |
| 95 | // so we focus on alignment (no branches required) |
| 96 | // |
| 97 | // The use of len/len2 for countdown of the number of bytes left |
| 98 | // instead of ret0 is due to the fact that the exception code |
| 99 | // changes the values of r8. |
| 100 | // |
| 101 | .long_do_clear: |
| 102 | tbit.nz p6,p0=buf,0 // odd alignment (for long_do_clear) |
| 103 | ;; |
| 104 | EX( .Lexit3, (p6) st1 [buf]=r0,1 ) // 1-byte aligned |
| 105 | (p6) adds len=-1,len;; // sync because buf is modified |
| 106 | tbit.nz p6,p0=buf,1 |
| 107 | ;; |
| 108 | EX( .Lexit3, (p6) st2 [buf]=r0,2 ) // 2-byte aligned |
| 109 | (p6) adds len=-2,len;; |
| 110 | tbit.nz p6,p0=buf,2 |
| 111 | ;; |
| 112 | EX( .Lexit3, (p6) st4 [buf]=r0,4 ) // 4-byte aligned |
| 113 | (p6) adds len=-4,len;; |
| 114 | tbit.nz p6,p0=buf,3 |
| 115 | ;; |
| 116 | EX( .Lexit3, (p6) st8 [buf]=r0,8 ) // 8-byte aligned |
| 117 | (p6) adds len=-8,len;; |
| 118 | shr.u cnt=len,4 // number of 128-bit (2x64bit) words |
| 119 | ;; |
| 120 | cmp.eq p6,p0=r0,cnt |
| 121 | adds tmp=-1,cnt |
| 122 | (p6) br.cond.dpnt .dotail // we have less than 16 bytes left |
| 123 | ;; |
| 124 | adds buf2=8,buf // setup second base pointer |
| 125 | mov ar.lc=tmp |
| 126 | ;; |
| 127 | |
| 128 | // |
| 129 | // 16bytes/iteration core loop |
| 130 | // |
| 131 | // The second store can never generate a fault because |
| 132 | // we come into the loop only when we are 16-byte aligned. |
| 133 | // This means that if we cross a page then it will always be |
| 134 | // in the first store and never in the second. |
| 135 | // |
| 136 | // |
| 137 | // We need to keep track of the remaining length. A possible (optimistic) |
| 138 | // way would be to use ar.lc and derive how many byte were left by |
| 139 | // doing : left= 16*ar.lc + 16. this would avoid the addition at |
| 140 | // every iteration. |
| 141 | // However we need to keep the synchronization point. A template |
| 142 | // M;;MB does not exist and thus we can keep the addition at no |
| 143 | // extra cycle cost (use a nop slot anyway). It also simplifies the |
| 144 | // (unlikely) error recovery code |
| 145 | // |
| 146 | |
| 147 | 2: EX(.Lexit3, st8 [buf]=r0,16 ) |
| 148 | ;; // needed to get len correct when error |
| 149 | st8 [buf2]=r0,16 |
| 150 | adds len=-16,len |
| 151 | br.cloop.dptk 2b |
| 152 | ;; |
| 153 | mov ar.lc=saved_lc |
| 154 | // |
| 155 | // tail correction based on len only |
| 156 | // |
| 157 | // We alternate the use of len3,len2 to allow parallelism and correct |
| 158 | // error handling. We also reuse p6/p7 to return correct value. |
| 159 | // The addition of len2/len3 does not cost anything more compared to |
| 160 | // the regular memset as we had empty slots. |
| 161 | // |
| 162 | .dotail: |
| 163 | mov len2=len // for parallelization of error handling |
| 164 | mov len3=len |
| 165 | tbit.nz p6,p0=len,3 |
| 166 | ;; |
| 167 | EX( .Lexit2, (p6) st8 [buf]=r0,8 ) // at least 8 bytes |
| 168 | (p6) adds len3=-8,len2 |
| 169 | tbit.nz p7,p6=len,2 |
| 170 | ;; |
| 171 | EX( .Lexit2, (p7) st4 [buf]=r0,4 ) // at least 4 bytes |
| 172 | (p7) adds len2=-4,len3 |
| 173 | tbit.nz p6,p7=len,1 |
| 174 | ;; |
| 175 | EX( .Lexit2, (p6) st2 [buf]=r0,2 ) // at least 2 bytes |
| 176 | (p6) adds len3=-2,len2 |
| 177 | tbit.nz p7,p6=len,0 |
| 178 | ;; |
| 179 | EX( .Lexit2, (p7) st1 [buf]=r0 ) // only 1 byte left |
| 180 | mov ret0=r0 // success |
| 181 | br.ret.sptk.many rp // end of most likely path |
| 182 | |
| 183 | // |
| 184 | // Outlined error handling code |
| 185 | // |
| 186 | |
| 187 | // |
| 188 | // .Lexit3: comes from core loop, need restore pr/lc |
| 189 | // len contains bytes left |
| 190 | // |
| 191 | // |
| 192 | // .Lexit2: |
| 193 | // if p6 -> coming from st8 or st2 : len2 contains what's left |
| 194 | // if p7 -> coming from st4 or st1 : len3 contains what's left |
| 195 | // We must restore lc/pr even though might not have been used. |
| 196 | .Lexit2: |
| 197 | .pred.rel "mutex", p6, p7 |
| 198 | (p6) mov len=len2 |
| 199 | (p7) mov len=len3 |
| 200 | ;; |
| 201 | // |
| 202 | // .Lexit4: comes from head, need not restore pr/lc |
| 203 | // len contains bytes left |
| 204 | // |
| 205 | .Lexit3: |
| 206 | mov ret0=len |
| 207 | mov ar.lc=saved_lc |
| 208 | br.ret.sptk.many rp |
| 209 | END(__do_clear_user) |