Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * drivers/sbus/char/jsflash.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992 Linus Torvalds (drivers/char/mem.c) |
| 5 | * Copyright (C) 1997 Eddie C. Dost (drivers/sbus/char/flash.c) |
| 6 | * Copyright (C) 1997-2000 Pavel Machek <pavel@ucw.cz> (drivers/block/nbd.c) |
| 7 | * Copyright (C) 1999-2000 Pete Zaitcev |
| 8 | * |
| 9 | * This driver is used to program OS into a Flash SIMM on |
| 10 | * Krups and Espresso platforms. |
| 11 | * |
| 12 | * TODO: do not allow erase/programming if file systems are mounted. |
| 13 | * TODO: Erase/program both banks of a 8MB SIMM. |
| 14 | * |
| 15 | * It is anticipated that programming an OS Flash will be a routine |
| 16 | * procedure. In the same time it is exeedingly dangerous because |
| 17 | * a user can program its OBP flash with OS image and effectively |
| 18 | * kill the machine. |
| 19 | * |
| 20 | * This driver uses an interface different from Eddie's flash.c |
| 21 | * as a silly safeguard. |
| 22 | * |
| 23 | * XXX The flash.c manipulates page caching characteristics in a certain |
| 24 | * dubious way; also it assumes that remap_pfn_range() can remap |
| 25 | * PCI bus locations, which may be false. ioremap() must be used |
| 26 | * instead. We should discuss this. |
| 27 | */ |
| 28 | |
| 29 | #include <linux/module.h> |
| 30 | #include <linux/types.h> |
| 31 | #include <linux/errno.h> |
| 32 | #include <linux/miscdevice.h> |
| 33 | #include <linux/slab.h> |
| 34 | #include <linux/fcntl.h> |
| 35 | #include <linux/poll.h> |
| 36 | #include <linux/init.h> |
| 37 | #include <linux/string.h> |
| 38 | #include <linux/smp_lock.h> |
| 39 | #include <linux/genhd.h> |
| 40 | #include <linux/blkdev.h> |
| 41 | |
| 42 | #define MAJOR_NR JSFD_MAJOR |
| 43 | |
| 44 | #include <asm/uaccess.h> |
| 45 | #include <asm/pgtable.h> |
| 46 | #include <asm/io.h> |
| 47 | #include <asm/pcic.h> |
| 48 | #include <asm/oplib.h> |
| 49 | |
| 50 | #include <asm/jsflash.h> /* ioctl arguments. <linux/> ?? */ |
| 51 | #define JSFIDSZ (sizeof(struct jsflash_ident_arg)) |
| 52 | #define JSFPRGSZ (sizeof(struct jsflash_program_arg)) |
| 53 | |
| 54 | /* |
| 55 | * Our device numbers have no business in system headers. |
| 56 | * The only thing a user knows is the device name /dev/jsflash. |
| 57 | * |
| 58 | * Block devices are laid out like this: |
| 59 | * minor+0 - Bootstrap, for 8MB SIMM 0x20400000[0x800000] |
| 60 | * minor+1 - Filesystem to mount, normally 0x20400400[0x7ffc00] |
| 61 | * minor+2 - Whole flash area for any case... 0x20000000[0x01000000] |
| 62 | * Total 3 minors per flash device. |
| 63 | * |
| 64 | * It is easier to have static size vectors, so we define |
| 65 | * a total minor range JSF_MAX, which must cover all minors. |
| 66 | */ |
| 67 | /* character device */ |
| 68 | #define JSF_MINOR 178 /* 178 is registered with hpa */ |
| 69 | /* block device */ |
| 70 | #define JSF_MAX 3 /* 3 minors wasted total so far. */ |
| 71 | #define JSF_NPART 3 /* 3 minors per flash device */ |
| 72 | #define JSF_PART_BITS 2 /* 2 bits of minors to cover JSF_NPART */ |
| 73 | #define JSF_PART_MASK 0x3 /* 2 bits mask */ |
| 74 | |
| 75 | /* |
| 76 | * Access functions. |
| 77 | * We could ioremap(), but it's easier this way. |
| 78 | */ |
| 79 | static unsigned int jsf_inl(unsigned long addr) |
| 80 | { |
| 81 | unsigned long retval; |
| 82 | |
| 83 | __asm__ __volatile__("lda [%1] %2, %0\n\t" : |
| 84 | "=r" (retval) : |
| 85 | "r" (addr), "i" (ASI_M_BYPASS)); |
| 86 | return retval; |
| 87 | } |
| 88 | |
| 89 | static void jsf_outl(unsigned long addr, __u32 data) |
| 90 | { |
| 91 | |
| 92 | __asm__ __volatile__("sta %0, [%1] %2\n\t" : : |
| 93 | "r" (data), "r" (addr), "i" (ASI_M_BYPASS) : |
| 94 | "memory"); |
| 95 | } |
| 96 | |
| 97 | /* |
| 98 | * soft carrier |
| 99 | */ |
| 100 | |
| 101 | struct jsfd_part { |
| 102 | unsigned long dbase; |
| 103 | unsigned long dsize; |
| 104 | }; |
| 105 | |
| 106 | struct jsflash { |
| 107 | unsigned long base; |
| 108 | unsigned long size; |
| 109 | unsigned long busy; /* In use? */ |
| 110 | struct jsflash_ident_arg id; |
| 111 | /* int mbase; */ /* Minor base, typically zero */ |
| 112 | struct jsfd_part dv[JSF_NPART]; |
| 113 | }; |
| 114 | |
| 115 | /* |
| 116 | * We do not map normal memory or obio as a safety precaution. |
| 117 | * But offsets are real, for ease of userland programming. |
| 118 | */ |
| 119 | #define JSF_BASE_TOP 0x30000000 |
| 120 | #define JSF_BASE_ALL 0x20000000 |
| 121 | |
| 122 | #define JSF_BASE_JK 0x20400000 |
| 123 | |
| 124 | /* |
| 125 | */ |
| 126 | static struct gendisk *jsfd_disk[JSF_MAX]; |
| 127 | |
| 128 | /* |
| 129 | * Let's pretend we may have several of these... |
| 130 | */ |
| 131 | static struct jsflash jsf0; |
| 132 | |
| 133 | /* |
| 134 | * Wait for AMD to finish its embedded algorithm. |
| 135 | * We use the Toggle bit DQ6 (0x40) because it does not |
| 136 | * depend on the data value as /DATA bit DQ7 does. |
| 137 | * |
| 138 | * XXX Do we need any timeout here? So far it never hanged, beware broken hw. |
| 139 | */ |
| 140 | static void jsf_wait(unsigned long p) { |
| 141 | unsigned int x1, x2; |
| 142 | |
| 143 | for (;;) { |
| 144 | x1 = jsf_inl(p); |
| 145 | x2 = jsf_inl(p); |
| 146 | if ((x1 & 0x40404040) == (x2 & 0x40404040)) return; |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * Programming will only work if Flash is clean, |
| 152 | * we leave it to the programmer application. |
| 153 | * |
| 154 | * AMD must be programmed one byte at a time; |
| 155 | * thus, Simple Tech SIMM must be written 4 bytes at a time. |
| 156 | * |
| 157 | * Write waits for the chip to become ready after the write |
| 158 | * was finished. This is done so that application would read |
| 159 | * consistent data after the write is done. |
| 160 | */ |
| 161 | static void jsf_write4(unsigned long fa, u32 data) { |
| 162 | |
| 163 | jsf_outl(fa, 0xAAAAAAAA); /* Unlock 1 Write 1 */ |
| 164 | jsf_outl(fa, 0x55555555); /* Unlock 1 Write 2 */ |
| 165 | jsf_outl(fa, 0xA0A0A0A0); /* Byte Program */ |
| 166 | jsf_outl(fa, data); |
| 167 | |
| 168 | jsf_wait(fa); |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | */ |
| 173 | static void jsfd_read(char *buf, unsigned long p, size_t togo) { |
| 174 | union byte4 { |
| 175 | char s[4]; |
| 176 | unsigned int n; |
| 177 | } b; |
| 178 | |
| 179 | while (togo >= 4) { |
| 180 | togo -= 4; |
| 181 | b.n = jsf_inl(p); |
| 182 | memcpy(buf, b.s, 4); |
| 183 | p += 4; |
| 184 | buf += 4; |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | static void jsfd_do_request(request_queue_t *q) |
| 189 | { |
| 190 | struct request *req; |
| 191 | |
| 192 | while ((req = elv_next_request(q)) != NULL) { |
| 193 | struct jsfd_part *jdp = req->rq_disk->private_data; |
| 194 | unsigned long offset = req->sector << 9; |
| 195 | size_t len = req->current_nr_sectors << 9; |
| 196 | |
| 197 | if ((offset + len) > jdp->dsize) { |
| 198 | end_request(req, 0); |
| 199 | continue; |
| 200 | } |
| 201 | |
| 202 | if (rq_data_dir(req) != READ) { |
| 203 | printk(KERN_ERR "jsfd: write\n"); |
| 204 | end_request(req, 0); |
| 205 | continue; |
| 206 | } |
| 207 | |
| 208 | if ((jdp->dbase & 0xff000000) != 0x20000000) { |
| 209 | printk(KERN_ERR "jsfd: bad base %x\n", (int)jdp->dbase); |
| 210 | end_request(req, 0); |
| 211 | continue; |
| 212 | } |
| 213 | |
| 214 | jsfd_read(req->buffer, jdp->dbase + offset, len); |
| 215 | |
| 216 | end_request(req, 1); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | /* |
| 221 | * The memory devices use the full 32/64 bits of the offset, and so we cannot |
| 222 | * check against negative addresses: they are ok. The return value is weird, |
| 223 | * though, in that case (0). |
| 224 | * |
| 225 | * also note that seeking relative to the "end of file" isn't supported: |
| 226 | * it has no meaning, so it returns -EINVAL. |
| 227 | */ |
| 228 | static loff_t jsf_lseek(struct file * file, loff_t offset, int orig) |
| 229 | { |
| 230 | loff_t ret; |
| 231 | |
| 232 | lock_kernel(); |
| 233 | switch (orig) { |
| 234 | case 0: |
| 235 | file->f_pos = offset; |
| 236 | ret = file->f_pos; |
| 237 | break; |
| 238 | case 1: |
| 239 | file->f_pos += offset; |
| 240 | ret = file->f_pos; |
| 241 | break; |
| 242 | default: |
| 243 | ret = -EINVAL; |
| 244 | } |
| 245 | unlock_kernel(); |
| 246 | return ret; |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * OS SIMM Cannot be read in other size but a 32bits word. |
| 251 | */ |
| 252 | static ssize_t jsf_read(struct file * file, char * buf, |
| 253 | size_t togo, loff_t *ppos) |
| 254 | { |
| 255 | unsigned long p = *ppos; |
| 256 | char *tmp = buf; |
| 257 | |
| 258 | union byte4 { |
| 259 | char s[4]; |
| 260 | unsigned int n; |
| 261 | } b; |
| 262 | |
| 263 | if (p < JSF_BASE_ALL || p >= JSF_BASE_TOP) { |
| 264 | return 0; |
| 265 | } |
| 266 | |
| 267 | if ((p + togo) < p /* wrap */ |
| 268 | || (p + togo) >= JSF_BASE_TOP) { |
| 269 | togo = JSF_BASE_TOP - p; |
| 270 | } |
| 271 | |
| 272 | if (p < JSF_BASE_ALL && togo != 0) { |
| 273 | #if 0 /* __bzero XXX */ |
| 274 | size_t x = JSF_BASE_ALL - p; |
| 275 | if (x > togo) x = togo; |
| 276 | clear_user(tmp, x); |
| 277 | tmp += x; |
| 278 | p += x; |
| 279 | togo -= x; |
| 280 | #else |
| 281 | /* |
| 282 | * Implementation of clear_user() calls __bzero |
| 283 | * without regard to modversions, |
| 284 | * so we cannot build a module. |
| 285 | */ |
| 286 | return 0; |
| 287 | #endif |
| 288 | } |
| 289 | |
| 290 | while (togo >= 4) { |
| 291 | togo -= 4; |
| 292 | b.n = jsf_inl(p); |
| 293 | if (copy_to_user(tmp, b.s, 4)) |
| 294 | return -EFAULT; |
| 295 | tmp += 4; |
| 296 | p += 4; |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | * XXX Small togo may remain if 1 byte is ordered. |
| 301 | * It would be nice if we did a word size read and unpacked it. |
| 302 | */ |
| 303 | |
| 304 | *ppos = p; |
| 305 | return tmp-buf; |
| 306 | } |
| 307 | |
| 308 | static ssize_t jsf_write(struct file * file, const char * buf, |
| 309 | size_t count, loff_t *ppos) |
| 310 | { |
| 311 | return -ENOSPC; |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | */ |
| 316 | static int jsf_ioctl_erase(unsigned long arg) |
| 317 | { |
| 318 | unsigned long p; |
| 319 | |
| 320 | /* p = jsf0.base; hits wrong bank */ |
| 321 | p = 0x20400000; |
| 322 | |
| 323 | jsf_outl(p, 0xAAAAAAAA); /* Unlock 1 Write 1 */ |
| 324 | jsf_outl(p, 0x55555555); /* Unlock 1 Write 2 */ |
| 325 | jsf_outl(p, 0x80808080); /* Erase setup */ |
| 326 | jsf_outl(p, 0xAAAAAAAA); /* Unlock 2 Write 1 */ |
| 327 | jsf_outl(p, 0x55555555); /* Unlock 2 Write 2 */ |
| 328 | jsf_outl(p, 0x10101010); /* Chip erase */ |
| 329 | |
| 330 | #if 0 |
| 331 | /* |
| 332 | * This code is ok, except that counter based timeout |
| 333 | * has no place in this world. Let's just drop timeouts... |
| 334 | */ |
| 335 | { |
| 336 | int i; |
| 337 | __u32 x; |
| 338 | for (i = 0; i < 1000000; i++) { |
| 339 | x = jsf_inl(p); |
| 340 | if ((x & 0x80808080) == 0x80808080) break; |
| 341 | } |
| 342 | if ((x & 0x80808080) != 0x80808080) { |
| 343 | printk("jsf0: erase timeout with 0x%08x\n", x); |
| 344 | } else { |
| 345 | printk("jsf0: erase done with 0x%08x\n", x); |
| 346 | } |
| 347 | } |
| 348 | #else |
| 349 | jsf_wait(p); |
| 350 | #endif |
| 351 | |
| 352 | return 0; |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * Program a block of flash. |
| 357 | * Very simple because we can do it byte by byte anyway. |
| 358 | */ |
| 359 | static int jsf_ioctl_program(unsigned long arg) |
| 360 | { |
| 361 | struct jsflash_program_arg abuf; |
| 362 | char *uptr; |
| 363 | unsigned long p; |
| 364 | unsigned int togo; |
| 365 | union { |
| 366 | unsigned int n; |
| 367 | char s[4]; |
| 368 | } b; |
| 369 | |
| 370 | if (copy_from_user(&abuf, (char *)arg, JSFPRGSZ)) |
| 371 | return -EFAULT; |
| 372 | p = abuf.off; |
| 373 | togo = abuf.size; |
| 374 | if ((togo & 3) || (p & 3)) return -EINVAL; |
| 375 | |
| 376 | uptr = (char *) (unsigned long) abuf.data; |
| 377 | while (togo != 0) { |
| 378 | togo -= 4; |
| 379 | if (copy_from_user(&b.s[0], uptr, 4)) |
| 380 | return -EFAULT; |
| 381 | jsf_write4(p, b.n); |
| 382 | p += 4; |
| 383 | uptr += 4; |
| 384 | } |
| 385 | |
| 386 | return 0; |
| 387 | } |
| 388 | |
| 389 | static int jsf_ioctl(struct inode *inode, struct file *f, unsigned int cmd, |
| 390 | unsigned long arg) |
| 391 | { |
| 392 | int error = -ENOTTY; |
| 393 | |
| 394 | if (!capable(CAP_SYS_ADMIN)) |
| 395 | return -EPERM; |
| 396 | switch (cmd) { |
| 397 | case JSFLASH_IDENT: |
| 398 | if (copy_to_user((void *)arg, &jsf0.id, JSFIDSZ)) |
| 399 | return -EFAULT; |
| 400 | break; |
| 401 | case JSFLASH_ERASE: |
| 402 | error = jsf_ioctl_erase(arg); |
| 403 | break; |
| 404 | case JSFLASH_PROGRAM: |
| 405 | error = jsf_ioctl_program(arg); |
| 406 | break; |
| 407 | } |
| 408 | |
| 409 | return error; |
| 410 | } |
| 411 | |
| 412 | static int jsf_mmap(struct file * file, struct vm_area_struct * vma) |
| 413 | { |
| 414 | return -ENXIO; |
| 415 | } |
| 416 | |
| 417 | static int jsf_open(struct inode * inode, struct file * filp) |
| 418 | { |
| 419 | |
| 420 | if (jsf0.base == 0) return -ENXIO; |
| 421 | if (test_and_set_bit(0, (void *)&jsf0.busy) != 0) |
| 422 | return -EBUSY; |
| 423 | |
| 424 | return 0; /* XXX What security? */ |
| 425 | } |
| 426 | |
| 427 | static int jsf_release(struct inode *inode, struct file *file) |
| 428 | { |
| 429 | jsf0.busy = 0; |
| 430 | return 0; |
| 431 | } |
| 432 | |
| 433 | static struct file_operations jsf_fops = { |
| 434 | .owner = THIS_MODULE, |
| 435 | .llseek = jsf_lseek, |
| 436 | .read = jsf_read, |
| 437 | .write = jsf_write, |
| 438 | .ioctl = jsf_ioctl, |
| 439 | .mmap = jsf_mmap, |
| 440 | .open = jsf_open, |
| 441 | .release = jsf_release, |
| 442 | }; |
| 443 | |
| 444 | static struct miscdevice jsf_dev = { JSF_MINOR, "jsflash", &jsf_fops }; |
| 445 | |
| 446 | static struct block_device_operations jsfd_fops = { |
| 447 | .owner = THIS_MODULE, |
| 448 | }; |
| 449 | |
| 450 | static int jsflash_init(void) |
| 451 | { |
| 452 | int rc; |
| 453 | struct jsflash *jsf; |
| 454 | int node; |
| 455 | char banner[128]; |
| 456 | struct linux_prom_registers reg0; |
| 457 | |
| 458 | node = prom_getchild(prom_root_node); |
| 459 | node = prom_searchsiblings(node, "flash-memory"); |
| 460 | if (node != 0 && node != -1) { |
| 461 | if (prom_getproperty(node, "reg", |
| 462 | (char *)®0, sizeof(reg0)) == -1) { |
| 463 | printk("jsflash: no \"reg\" property\n"); |
| 464 | return -ENXIO; |
| 465 | } |
| 466 | if (reg0.which_io != 0) { |
| 467 | printk("jsflash: bus number nonzero: 0x%x:%x\n", |
| 468 | reg0.which_io, reg0.phys_addr); |
| 469 | return -ENXIO; |
| 470 | } |
| 471 | /* |
| 472 | * Flash may be somewhere else, for instance on Ebus. |
| 473 | * So, don't do the following check for IIep flash space. |
| 474 | */ |
| 475 | #if 0 |
| 476 | if ((reg0.phys_addr >> 24) != 0x20) { |
| 477 | printk("jsflash: suspicious address: 0x%x:%x\n", |
| 478 | reg0.which_io, reg0.phys_addr); |
| 479 | return -ENXIO; |
| 480 | } |
| 481 | #endif |
| 482 | if ((int)reg0.reg_size <= 0) { |
| 483 | printk("jsflash: bad size 0x%x\n", (int)reg0.reg_size); |
| 484 | return -ENXIO; |
| 485 | } |
| 486 | } else { |
| 487 | /* XXX Remove this code once PROLL ID12 got widespread */ |
| 488 | printk("jsflash: no /flash-memory node, use PROLL >= 12\n"); |
| 489 | prom_getproperty(prom_root_node, "banner-name", banner, 128); |
| 490 | if (strcmp (banner, "JavaStation-NC") != 0 && |
| 491 | strcmp (banner, "JavaStation-E") != 0) { |
| 492 | return -ENXIO; |
| 493 | } |
| 494 | reg0.which_io = 0; |
| 495 | reg0.phys_addr = 0x20400000; |
| 496 | reg0.reg_size = 0x00800000; |
| 497 | } |
| 498 | |
| 499 | /* Let us be really paranoid for modifications to probing code. */ |
| 500 | /* extern enum sparc_cpu sparc_cpu_model; */ /* in <asm/system.h> */ |
| 501 | if (sparc_cpu_model != sun4m) { |
| 502 | /* We must be on sun4m because we use MMU Bypass ASI. */ |
| 503 | return -ENXIO; |
| 504 | } |
| 505 | |
| 506 | if (jsf0.base == 0) { |
| 507 | jsf = &jsf0; |
| 508 | |
| 509 | jsf->base = reg0.phys_addr; |
| 510 | jsf->size = reg0.reg_size; |
| 511 | |
| 512 | /* XXX Redo the userland interface. */ |
| 513 | jsf->id.off = JSF_BASE_ALL; |
| 514 | jsf->id.size = 0x01000000; /* 16M - all segments */ |
| 515 | strcpy(jsf->id.name, "Krups_all"); |
| 516 | |
| 517 | jsf->dv[0].dbase = jsf->base; |
| 518 | jsf->dv[0].dsize = jsf->size; |
| 519 | jsf->dv[1].dbase = jsf->base + 1024; |
| 520 | jsf->dv[1].dsize = jsf->size - 1024; |
| 521 | jsf->dv[2].dbase = JSF_BASE_ALL; |
| 522 | jsf->dv[2].dsize = 0x01000000; |
| 523 | |
| 524 | printk("Espresso Flash @0x%lx [%d MB]\n", jsf->base, |
| 525 | (int) (jsf->size / (1024*1024))); |
| 526 | } |
| 527 | |
| 528 | if ((rc = misc_register(&jsf_dev)) != 0) { |
| 529 | printk(KERN_ERR "jsf: unable to get misc minor %d\n", |
| 530 | JSF_MINOR); |
| 531 | jsf0.base = 0; |
| 532 | return rc; |
| 533 | } |
| 534 | |
| 535 | return 0; |
| 536 | } |
| 537 | |
| 538 | static struct request_queue *jsf_queue; |
| 539 | |
| 540 | static int jsfd_init(void) |
| 541 | { |
| 542 | static DEFINE_SPINLOCK(lock); |
| 543 | struct jsflash *jsf; |
| 544 | struct jsfd_part *jdp; |
| 545 | int err; |
| 546 | int i; |
| 547 | |
| 548 | if (jsf0.base == 0) |
| 549 | return -ENXIO; |
| 550 | |
| 551 | err = -ENOMEM; |
| 552 | for (i = 0; i < JSF_MAX; i++) { |
| 553 | struct gendisk *disk = alloc_disk(1); |
| 554 | if (!disk) |
| 555 | goto out; |
| 556 | jsfd_disk[i] = disk; |
| 557 | } |
| 558 | |
| 559 | if (register_blkdev(JSFD_MAJOR, "jsfd")) { |
| 560 | err = -EIO; |
| 561 | goto out; |
| 562 | } |
| 563 | |
| 564 | jsf_queue = blk_init_queue(jsfd_do_request, &lock); |
| 565 | if (!jsf_queue) { |
| 566 | err = -ENOMEM; |
| 567 | unregister_blkdev(JSFD_MAJOR, "jsfd"); |
| 568 | goto out; |
| 569 | } |
| 570 | |
| 571 | for (i = 0; i < JSF_MAX; i++) { |
| 572 | struct gendisk *disk = jsfd_disk[i]; |
| 573 | if ((i & JSF_PART_MASK) >= JSF_NPART) continue; |
| 574 | jsf = &jsf0; /* actually, &jsfv[i >> JSF_PART_BITS] */ |
| 575 | jdp = &jsf->dv[i&JSF_PART_MASK]; |
| 576 | |
| 577 | disk->major = JSFD_MAJOR; |
| 578 | disk->first_minor = i; |
| 579 | sprintf(disk->disk_name, "jsfd%d", i); |
| 580 | disk->fops = &jsfd_fops; |
| 581 | set_capacity(disk, jdp->dsize >> 9); |
| 582 | disk->private_data = jdp; |
| 583 | disk->queue = jsf_queue; |
| 584 | add_disk(disk); |
| 585 | set_disk_ro(disk, 1); |
| 586 | } |
| 587 | return 0; |
| 588 | out: |
| 589 | while (i--) |
| 590 | put_disk(jsfd_disk[i]); |
| 591 | return err; |
| 592 | } |
| 593 | |
| 594 | MODULE_LICENSE("GPL"); |
| 595 | |
| 596 | static int __init jsflash_init_module(void) { |
| 597 | int rc; |
| 598 | |
| 599 | if ((rc = jsflash_init()) == 0) { |
| 600 | jsfd_init(); |
| 601 | return 0; |
| 602 | } |
| 603 | return rc; |
| 604 | } |
| 605 | |
| 606 | static void __exit jsflash_cleanup_module(void) |
| 607 | { |
| 608 | int i; |
| 609 | |
| 610 | for (i = 0; i < JSF_MAX; i++) { |
| 611 | if ((i & JSF_PART_MASK) >= JSF_NPART) continue; |
| 612 | del_gendisk(jsfd_disk[i]); |
| 613 | put_disk(jsfd_disk[i]); |
| 614 | } |
| 615 | if (jsf0.busy) |
| 616 | printk("jsf0: cleaning busy unit\n"); |
| 617 | jsf0.base = 0; |
| 618 | jsf0.busy = 0; |
| 619 | |
| 620 | misc_deregister(&jsf_dev); |
| 621 | if (unregister_blkdev(JSFD_MAJOR, "jsfd") != 0) |
| 622 | printk("jsfd: cleanup_module failed\n"); |
| 623 | blk_cleanup_queue(jsf_queue); |
| 624 | } |
| 625 | |
| 626 | module_init(jsflash_init_module); |
| 627 | module_exit(jsflash_cleanup_module); |