blob: 712ae47af0bf5f23a4b32ea0497dd2f6e8272085 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
Christoph Lameter930fc452005-10-29 18:15:41 -07008 * Numa awareness, Christoph Lameter, SGI, June 2005
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 */
10
Nick Piggindb64fe02008-10-18 20:27:03 -070011#include <linux/vmalloc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070012#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/slab.h>
16#include <linux/spinlock.h>
17#include <linux/interrupt.h>
Christoph Lametera10aa572008-04-28 02:12:40 -070018#include <linux/seq_file.h>
Thomas Gleixner3ac7fe52008-04-30 00:55:01 -070019#include <linux/debugobjects.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include <linux/vmalloc.h>
Christoph Lameter23016962008-04-28 02:12:42 -070021#include <linux/kallsyms.h>
Nick Piggindb64fe02008-10-18 20:27:03 -070022#include <linux/list.h>
23#include <linux/rbtree.h>
24#include <linux/radix-tree.h>
25#include <linux/rcupdate.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070026
Nick Piggindb64fe02008-10-18 20:27:03 -070027#include <asm/atomic.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070028#include <asm/uaccess.h>
29#include <asm/tlbflush.h>
30
31
Nick Piggindb64fe02008-10-18 20:27:03 -070032/*** Page table manipulation functions ***/
Adrian Bunkb2213852006-09-25 23:31:02 -070033
Linus Torvalds1da177e2005-04-16 15:20:36 -070034static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
35{
36 pte_t *pte;
37
38 pte = pte_offset_kernel(pmd, addr);
39 do {
40 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
41 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
42 } while (pte++, addr += PAGE_SIZE, addr != end);
43}
44
Nick Piggindb64fe02008-10-18 20:27:03 -070045static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
Linus Torvalds1da177e2005-04-16 15:20:36 -070046{
47 pmd_t *pmd;
48 unsigned long next;
49
50 pmd = pmd_offset(pud, addr);
51 do {
52 next = pmd_addr_end(addr, end);
53 if (pmd_none_or_clear_bad(pmd))
54 continue;
55 vunmap_pte_range(pmd, addr, next);
56 } while (pmd++, addr = next, addr != end);
57}
58
Nick Piggindb64fe02008-10-18 20:27:03 -070059static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
Linus Torvalds1da177e2005-04-16 15:20:36 -070060{
61 pud_t *pud;
62 unsigned long next;
63
64 pud = pud_offset(pgd, addr);
65 do {
66 next = pud_addr_end(addr, end);
67 if (pud_none_or_clear_bad(pud))
68 continue;
69 vunmap_pmd_range(pud, addr, next);
70 } while (pud++, addr = next, addr != end);
71}
72
Nick Piggindb64fe02008-10-18 20:27:03 -070073static void vunmap_page_range(unsigned long addr, unsigned long end)
Linus Torvalds1da177e2005-04-16 15:20:36 -070074{
75 pgd_t *pgd;
76 unsigned long next;
Linus Torvalds1da177e2005-04-16 15:20:36 -070077
78 BUG_ON(addr >= end);
79 pgd = pgd_offset_k(addr);
80 flush_cache_vunmap(addr, end);
81 do {
82 next = pgd_addr_end(addr, end);
83 if (pgd_none_or_clear_bad(pgd))
84 continue;
85 vunmap_pud_range(pgd, addr, next);
86 } while (pgd++, addr = next, addr != end);
Linus Torvalds1da177e2005-04-16 15:20:36 -070087}
88
89static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
Nick Piggindb64fe02008-10-18 20:27:03 -070090 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
Linus Torvalds1da177e2005-04-16 15:20:36 -070091{
92 pte_t *pte;
93
Nick Piggindb64fe02008-10-18 20:27:03 -070094 /*
95 * nr is a running index into the array which helps higher level
96 * callers keep track of where we're up to.
97 */
98
Hugh Dickins872fec12005-10-29 18:16:21 -070099 pte = pte_alloc_kernel(pmd, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700100 if (!pte)
101 return -ENOMEM;
102 do {
Nick Piggindb64fe02008-10-18 20:27:03 -0700103 struct page *page = pages[*nr];
104
105 if (WARN_ON(!pte_none(*pte)))
106 return -EBUSY;
107 if (WARN_ON(!page))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108 return -ENOMEM;
109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
Nick Piggindb64fe02008-10-18 20:27:03 -0700110 (*nr)++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111 } while (pte++, addr += PAGE_SIZE, addr != end);
112 return 0;
113}
114
Nick Piggindb64fe02008-10-18 20:27:03 -0700115static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700117{
118 pmd_t *pmd;
119 unsigned long next;
120
121 pmd = pmd_alloc(&init_mm, pud, addr);
122 if (!pmd)
123 return -ENOMEM;
124 do {
125 next = pmd_addr_end(addr, end);
Nick Piggindb64fe02008-10-18 20:27:03 -0700126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700127 return -ENOMEM;
128 } while (pmd++, addr = next, addr != end);
129 return 0;
130}
131
Nick Piggindb64fe02008-10-18 20:27:03 -0700132static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700134{
135 pud_t *pud;
136 unsigned long next;
137
138 pud = pud_alloc(&init_mm, pgd, addr);
139 if (!pud)
140 return -ENOMEM;
141 do {
142 next = pud_addr_end(addr, end);
Nick Piggindb64fe02008-10-18 20:27:03 -0700143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700144 return -ENOMEM;
145 } while (pud++, addr = next, addr != end);
146 return 0;
147}
148
Nick Piggindb64fe02008-10-18 20:27:03 -0700149/*
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
152 *
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 */
155static int vmap_page_range(unsigned long addr, unsigned long end,
156 pgprot_t prot, struct page **pages)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700157{
158 pgd_t *pgd;
159 unsigned long next;
Nick Piggindb64fe02008-10-18 20:27:03 -0700160 int err = 0;
161 int nr = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162
163 BUG_ON(addr >= end);
164 pgd = pgd_offset_k(addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165 do {
166 next = pgd_addr_end(addr, end);
Nick Piggindb64fe02008-10-18 20:27:03 -0700167 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700168 if (err)
169 break;
170 } while (pgd++, addr = next, addr != end);
Nick Piggindb64fe02008-10-18 20:27:03 -0700171 flush_cache_vmap(addr, end);
172
173 if (unlikely(err))
174 return err;
175 return nr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176}
177
Christoph Lameter48667e72008-02-04 22:28:31 -0800178/*
Nick Piggindb64fe02008-10-18 20:27:03 -0700179 * Walk a vmap address to the struct page it maps.
Christoph Lameter48667e72008-02-04 22:28:31 -0800180 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -0800181struct page *vmalloc_to_page(const void *vmalloc_addr)
Christoph Lameter48667e72008-02-04 22:28:31 -0800182{
183 unsigned long addr = (unsigned long) vmalloc_addr;
184 struct page *page = NULL;
185 pgd_t *pgd = pgd_offset_k(addr);
Christoph Lameter48667e72008-02-04 22:28:31 -0800186
Ingo Molnar7aa413d2008-06-19 13:28:11 +0200187 /*
188 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
189 * architectures that do not vmalloc module space
190 */
Jiri Slaby59ea7462008-06-12 13:56:40 +0200191 VIRTUAL_BUG_ON(!is_vmalloc_addr(vmalloc_addr) &&
192 !is_module_address(addr));
193
Christoph Lameter48667e72008-02-04 22:28:31 -0800194 if (!pgd_none(*pgd)) {
Nick Piggindb64fe02008-10-18 20:27:03 -0700195 pud_t *pud = pud_offset(pgd, addr);
Christoph Lameter48667e72008-02-04 22:28:31 -0800196 if (!pud_none(*pud)) {
Nick Piggindb64fe02008-10-18 20:27:03 -0700197 pmd_t *pmd = pmd_offset(pud, addr);
Christoph Lameter48667e72008-02-04 22:28:31 -0800198 if (!pmd_none(*pmd)) {
Nick Piggindb64fe02008-10-18 20:27:03 -0700199 pte_t *ptep, pte;
200
Christoph Lameter48667e72008-02-04 22:28:31 -0800201 ptep = pte_offset_map(pmd, addr);
202 pte = *ptep;
203 if (pte_present(pte))
204 page = pte_page(pte);
205 pte_unmap(ptep);
206 }
207 }
208 }
209 return page;
210}
211EXPORT_SYMBOL(vmalloc_to_page);
212
213/*
214 * Map a vmalloc()-space virtual address to the physical page frame number.
215 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -0800216unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
Christoph Lameter48667e72008-02-04 22:28:31 -0800217{
218 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
219}
220EXPORT_SYMBOL(vmalloc_to_pfn);
221
Nick Piggindb64fe02008-10-18 20:27:03 -0700222
223/*** Global kva allocator ***/
224
225#define VM_LAZY_FREE 0x01
226#define VM_LAZY_FREEING 0x02
227#define VM_VM_AREA 0x04
228
229struct vmap_area {
230 unsigned long va_start;
231 unsigned long va_end;
232 unsigned long flags;
233 struct rb_node rb_node; /* address sorted rbtree */
234 struct list_head list; /* address sorted list */
235 struct list_head purge_list; /* "lazy purge" list */
236 void *private;
237 struct rcu_head rcu_head;
238};
239
240static DEFINE_SPINLOCK(vmap_area_lock);
241static struct rb_root vmap_area_root = RB_ROOT;
242static LIST_HEAD(vmap_area_list);
243
244static struct vmap_area *__find_vmap_area(unsigned long addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700245{
Nick Piggindb64fe02008-10-18 20:27:03 -0700246 struct rb_node *n = vmap_area_root.rb_node;
247
248 while (n) {
249 struct vmap_area *va;
250
251 va = rb_entry(n, struct vmap_area, rb_node);
252 if (addr < va->va_start)
253 n = n->rb_left;
254 else if (addr > va->va_start)
255 n = n->rb_right;
256 else
257 return va;
258 }
259
260 return NULL;
261}
262
263static void __insert_vmap_area(struct vmap_area *va)
264{
265 struct rb_node **p = &vmap_area_root.rb_node;
266 struct rb_node *parent = NULL;
267 struct rb_node *tmp;
268
269 while (*p) {
270 struct vmap_area *tmp;
271
272 parent = *p;
273 tmp = rb_entry(parent, struct vmap_area, rb_node);
274 if (va->va_start < tmp->va_end)
275 p = &(*p)->rb_left;
276 else if (va->va_end > tmp->va_start)
277 p = &(*p)->rb_right;
278 else
279 BUG();
280 }
281
282 rb_link_node(&va->rb_node, parent, p);
283 rb_insert_color(&va->rb_node, &vmap_area_root);
284
285 /* address-sort this list so it is usable like the vmlist */
286 tmp = rb_prev(&va->rb_node);
287 if (tmp) {
288 struct vmap_area *prev;
289 prev = rb_entry(tmp, struct vmap_area, rb_node);
290 list_add_rcu(&va->list, &prev->list);
291 } else
292 list_add_rcu(&va->list, &vmap_area_list);
293}
294
295static void purge_vmap_area_lazy(void);
296
297/*
298 * Allocate a region of KVA of the specified size and alignment, within the
299 * vstart and vend.
300 */
301static struct vmap_area *alloc_vmap_area(unsigned long size,
302 unsigned long align,
303 unsigned long vstart, unsigned long vend,
304 int node, gfp_t gfp_mask)
305{
306 struct vmap_area *va;
307 struct rb_node *n;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700308 unsigned long addr;
Nick Piggindb64fe02008-10-18 20:27:03 -0700309 int purged = 0;
310
311 BUG_ON(size & ~PAGE_MASK);
312
313 addr = ALIGN(vstart, align);
314
315 va = kmalloc_node(sizeof(struct vmap_area),
316 gfp_mask & GFP_RECLAIM_MASK, node);
317 if (unlikely(!va))
318 return ERR_PTR(-ENOMEM);
319
320retry:
321 spin_lock(&vmap_area_lock);
322 /* XXX: could have a last_hole cache */
323 n = vmap_area_root.rb_node;
324 if (n) {
325 struct vmap_area *first = NULL;
326
327 do {
328 struct vmap_area *tmp;
329 tmp = rb_entry(n, struct vmap_area, rb_node);
330 if (tmp->va_end >= addr) {
331 if (!first && tmp->va_start < addr + size)
332 first = tmp;
333 n = n->rb_left;
334 } else {
335 first = tmp;
336 n = n->rb_right;
337 }
338 } while (n);
339
340 if (!first)
341 goto found;
342
343 if (first->va_end < addr) {
344 n = rb_next(&first->rb_node);
345 if (n)
346 first = rb_entry(n, struct vmap_area, rb_node);
347 else
348 goto found;
349 }
350
351 while (addr + size >= first->va_start && addr + size <= vend) {
352 addr = ALIGN(first->va_end + PAGE_SIZE, align);
353
354 n = rb_next(&first->rb_node);
355 if (n)
356 first = rb_entry(n, struct vmap_area, rb_node);
357 else
358 goto found;
359 }
360 }
361found:
362 if (addr + size > vend) {
363 spin_unlock(&vmap_area_lock);
364 if (!purged) {
365 purge_vmap_area_lazy();
366 purged = 1;
367 goto retry;
368 }
369 if (printk_ratelimit())
370 printk(KERN_WARNING "vmap allocation failed: "
371 "use vmalloc=<size> to increase size.\n");
372 return ERR_PTR(-EBUSY);
373 }
374
375 BUG_ON(addr & (align-1));
376
377 va->va_start = addr;
378 va->va_end = addr + size;
379 va->flags = 0;
380 __insert_vmap_area(va);
381 spin_unlock(&vmap_area_lock);
382
383 return va;
384}
385
386static void rcu_free_va(struct rcu_head *head)
387{
388 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
389
390 kfree(va);
391}
392
393static void __free_vmap_area(struct vmap_area *va)
394{
395 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
396 rb_erase(&va->rb_node, &vmap_area_root);
397 RB_CLEAR_NODE(&va->rb_node);
398 list_del_rcu(&va->list);
399
400 call_rcu(&va->rcu_head, rcu_free_va);
401}
402
403/*
404 * Free a region of KVA allocated by alloc_vmap_area
405 */
406static void free_vmap_area(struct vmap_area *va)
407{
408 spin_lock(&vmap_area_lock);
409 __free_vmap_area(va);
410 spin_unlock(&vmap_area_lock);
411}
412
413/*
414 * Clear the pagetable entries of a given vmap_area
415 */
416static void unmap_vmap_area(struct vmap_area *va)
417{
418 vunmap_page_range(va->va_start, va->va_end);
419}
420
421/*
422 * lazy_max_pages is the maximum amount of virtual address space we gather up
423 * before attempting to purge with a TLB flush.
424 *
425 * There is a tradeoff here: a larger number will cover more kernel page tables
426 * and take slightly longer to purge, but it will linearly reduce the number of
427 * global TLB flushes that must be performed. It would seem natural to scale
428 * this number up linearly with the number of CPUs (because vmapping activity
429 * could also scale linearly with the number of CPUs), however it is likely
430 * that in practice, workloads might be constrained in other ways that mean
431 * vmap activity will not scale linearly with CPUs. Also, I want to be
432 * conservative and not introduce a big latency on huge systems, so go with
433 * a less aggressive log scale. It will still be an improvement over the old
434 * code, and it will be simple to change the scale factor if we find that it
435 * becomes a problem on bigger systems.
436 */
437static unsigned long lazy_max_pages(void)
438{
439 unsigned int log;
440
441 log = fls(num_online_cpus());
442
443 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
444}
445
446static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
447
448/*
449 * Purges all lazily-freed vmap areas.
450 *
451 * If sync is 0 then don't purge if there is already a purge in progress.
452 * If force_flush is 1, then flush kernel TLBs between *start and *end even
453 * if we found no lazy vmap areas to unmap (callers can use this to optimise
454 * their own TLB flushing).
455 * Returns with *start = min(*start, lowest purged address)
456 * *end = max(*end, highest purged address)
457 */
458static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
459 int sync, int force_flush)
460{
461 static DEFINE_SPINLOCK(purge_lock);
462 LIST_HEAD(valist);
463 struct vmap_area *va;
464 int nr = 0;
465
466 /*
467 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
468 * should not expect such behaviour. This just simplifies locking for
469 * the case that isn't actually used at the moment anyway.
470 */
471 if (!sync && !force_flush) {
472 if (!spin_trylock(&purge_lock))
473 return;
474 } else
475 spin_lock(&purge_lock);
476
477 rcu_read_lock();
478 list_for_each_entry_rcu(va, &vmap_area_list, list) {
479 if (va->flags & VM_LAZY_FREE) {
480 if (va->va_start < *start)
481 *start = va->va_start;
482 if (va->va_end > *end)
483 *end = va->va_end;
484 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
485 unmap_vmap_area(va);
486 list_add_tail(&va->purge_list, &valist);
487 va->flags |= VM_LAZY_FREEING;
488 va->flags &= ~VM_LAZY_FREE;
489 }
490 }
491 rcu_read_unlock();
492
493 if (nr) {
494 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
495 atomic_sub(nr, &vmap_lazy_nr);
496 }
497
498 if (nr || force_flush)
499 flush_tlb_kernel_range(*start, *end);
500
501 if (nr) {
502 spin_lock(&vmap_area_lock);
503 list_for_each_entry(va, &valist, purge_list)
504 __free_vmap_area(va);
505 spin_unlock(&vmap_area_lock);
506 }
507 spin_unlock(&purge_lock);
508}
509
510/*
511 * Kick off a purge of the outstanding lazy areas.
512 */
513static void purge_vmap_area_lazy(void)
514{
515 unsigned long start = ULONG_MAX, end = 0;
516
517 __purge_vmap_area_lazy(&start, &end, 0, 0);
518}
519
520/*
521 * Free and unmap a vmap area
522 */
523static void free_unmap_vmap_area(struct vmap_area *va)
524{
525 va->flags |= VM_LAZY_FREE;
526 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
527 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
528 purge_vmap_area_lazy();
529}
530
531static struct vmap_area *find_vmap_area(unsigned long addr)
532{
533 struct vmap_area *va;
534
535 spin_lock(&vmap_area_lock);
536 va = __find_vmap_area(addr);
537 spin_unlock(&vmap_area_lock);
538
539 return va;
540}
541
542static void free_unmap_vmap_area_addr(unsigned long addr)
543{
544 struct vmap_area *va;
545
546 va = find_vmap_area(addr);
547 BUG_ON(!va);
548 free_unmap_vmap_area(va);
549}
550
551
552/*** Per cpu kva allocator ***/
553
554/*
555 * vmap space is limited especially on 32 bit architectures. Ensure there is
556 * room for at least 16 percpu vmap blocks per CPU.
557 */
558/*
559 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
560 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
561 * instead (we just need a rough idea)
562 */
563#if BITS_PER_LONG == 32
564#define VMALLOC_SPACE (128UL*1024*1024)
565#else
566#define VMALLOC_SPACE (128UL*1024*1024*1024)
567#endif
568
569#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
570#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
571#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
572#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
573#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
574#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
575#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
576 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
577 VMALLOC_PAGES / NR_CPUS / 16))
578
579#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
580
581struct vmap_block_queue {
582 spinlock_t lock;
583 struct list_head free;
584 struct list_head dirty;
585 unsigned int nr_dirty;
586};
587
588struct vmap_block {
589 spinlock_t lock;
590 struct vmap_area *va;
591 struct vmap_block_queue *vbq;
592 unsigned long free, dirty;
593 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
594 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
595 union {
596 struct {
597 struct list_head free_list;
598 struct list_head dirty_list;
599 };
600 struct rcu_head rcu_head;
601 };
602};
603
604/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
605static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
606
607/*
608 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
609 * in the free path. Could get rid of this if we change the API to return a
610 * "cookie" from alloc, to be passed to free. But no big deal yet.
611 */
612static DEFINE_SPINLOCK(vmap_block_tree_lock);
613static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
614
615/*
616 * We should probably have a fallback mechanism to allocate virtual memory
617 * out of partially filled vmap blocks. However vmap block sizing should be
618 * fairly reasonable according to the vmalloc size, so it shouldn't be a
619 * big problem.
620 */
621
622static unsigned long addr_to_vb_idx(unsigned long addr)
623{
624 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
625 addr /= VMAP_BLOCK_SIZE;
626 return addr;
627}
628
629static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
630{
631 struct vmap_block_queue *vbq;
632 struct vmap_block *vb;
633 struct vmap_area *va;
634 unsigned long vb_idx;
635 int node, err;
636
637 node = numa_node_id();
638
639 vb = kmalloc_node(sizeof(struct vmap_block),
640 gfp_mask & GFP_RECLAIM_MASK, node);
641 if (unlikely(!vb))
642 return ERR_PTR(-ENOMEM);
643
644 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
645 VMALLOC_START, VMALLOC_END,
646 node, gfp_mask);
647 if (unlikely(IS_ERR(va))) {
648 kfree(vb);
649 return ERR_PTR(PTR_ERR(va));
650 }
651
652 err = radix_tree_preload(gfp_mask);
653 if (unlikely(err)) {
654 kfree(vb);
655 free_vmap_area(va);
656 return ERR_PTR(err);
657 }
658
659 spin_lock_init(&vb->lock);
660 vb->va = va;
661 vb->free = VMAP_BBMAP_BITS;
662 vb->dirty = 0;
663 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
664 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
665 INIT_LIST_HEAD(&vb->free_list);
666 INIT_LIST_HEAD(&vb->dirty_list);
667
668 vb_idx = addr_to_vb_idx(va->va_start);
669 spin_lock(&vmap_block_tree_lock);
670 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
671 spin_unlock(&vmap_block_tree_lock);
672 BUG_ON(err);
673 radix_tree_preload_end();
674
675 vbq = &get_cpu_var(vmap_block_queue);
676 vb->vbq = vbq;
677 spin_lock(&vbq->lock);
678 list_add(&vb->free_list, &vbq->free);
679 spin_unlock(&vbq->lock);
680 put_cpu_var(vmap_cpu_blocks);
681
682 return vb;
683}
684
685static void rcu_free_vb(struct rcu_head *head)
686{
687 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
688
689 kfree(vb);
690}
691
692static void free_vmap_block(struct vmap_block *vb)
693{
694 struct vmap_block *tmp;
695 unsigned long vb_idx;
696
697 spin_lock(&vb->vbq->lock);
698 if (!list_empty(&vb->free_list))
699 list_del(&vb->free_list);
700 if (!list_empty(&vb->dirty_list))
701 list_del(&vb->dirty_list);
702 spin_unlock(&vb->vbq->lock);
703
704 vb_idx = addr_to_vb_idx(vb->va->va_start);
705 spin_lock(&vmap_block_tree_lock);
706 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
707 spin_unlock(&vmap_block_tree_lock);
708 BUG_ON(tmp != vb);
709
710 free_unmap_vmap_area(vb->va);
711 call_rcu(&vb->rcu_head, rcu_free_vb);
712}
713
714static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
715{
716 struct vmap_block_queue *vbq;
717 struct vmap_block *vb;
718 unsigned long addr = 0;
719 unsigned int order;
720
721 BUG_ON(size & ~PAGE_MASK);
722 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
723 order = get_order(size);
724
725again:
726 rcu_read_lock();
727 vbq = &get_cpu_var(vmap_block_queue);
728 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
729 int i;
730
731 spin_lock(&vb->lock);
732 i = bitmap_find_free_region(vb->alloc_map,
733 VMAP_BBMAP_BITS, order);
734
735 if (i >= 0) {
736 addr = vb->va->va_start + (i << PAGE_SHIFT);
737 BUG_ON(addr_to_vb_idx(addr) !=
738 addr_to_vb_idx(vb->va->va_start));
739 vb->free -= 1UL << order;
740 if (vb->free == 0) {
741 spin_lock(&vbq->lock);
742 list_del_init(&vb->free_list);
743 spin_unlock(&vbq->lock);
744 }
745 spin_unlock(&vb->lock);
746 break;
747 }
748 spin_unlock(&vb->lock);
749 }
750 put_cpu_var(vmap_cpu_blocks);
751 rcu_read_unlock();
752
753 if (!addr) {
754 vb = new_vmap_block(gfp_mask);
755 if (IS_ERR(vb))
756 return vb;
757 goto again;
758 }
759
760 return (void *)addr;
761}
762
763static void vb_free(const void *addr, unsigned long size)
764{
765 unsigned long offset;
766 unsigned long vb_idx;
767 unsigned int order;
768 struct vmap_block *vb;
769
770 BUG_ON(size & ~PAGE_MASK);
771 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
772 order = get_order(size);
773
774 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
775
776 vb_idx = addr_to_vb_idx((unsigned long)addr);
777 rcu_read_lock();
778 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
779 rcu_read_unlock();
780 BUG_ON(!vb);
781
782 spin_lock(&vb->lock);
783 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
784 if (!vb->dirty) {
785 spin_lock(&vb->vbq->lock);
786 list_add(&vb->dirty_list, &vb->vbq->dirty);
787 spin_unlock(&vb->vbq->lock);
788 }
789 vb->dirty += 1UL << order;
790 if (vb->dirty == VMAP_BBMAP_BITS) {
791 BUG_ON(vb->free || !list_empty(&vb->free_list));
792 spin_unlock(&vb->lock);
793 free_vmap_block(vb);
794 } else
795 spin_unlock(&vb->lock);
796}
797
798/**
799 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
800 *
801 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
802 * to amortize TLB flushing overheads. What this means is that any page you
803 * have now, may, in a former life, have been mapped into kernel virtual
804 * address by the vmap layer and so there might be some CPUs with TLB entries
805 * still referencing that page (additional to the regular 1:1 kernel mapping).
806 *
807 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
808 * be sure that none of the pages we have control over will have any aliases
809 * from the vmap layer.
810 */
811void vm_unmap_aliases(void)
812{
813 unsigned long start = ULONG_MAX, end = 0;
814 int cpu;
815 int flush = 0;
816
817 for_each_possible_cpu(cpu) {
818 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
819 struct vmap_block *vb;
820
821 rcu_read_lock();
822 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
823 int i;
824
825 spin_lock(&vb->lock);
826 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
827 while (i < VMAP_BBMAP_BITS) {
828 unsigned long s, e;
829 int j;
830 j = find_next_zero_bit(vb->dirty_map,
831 VMAP_BBMAP_BITS, i);
832
833 s = vb->va->va_start + (i << PAGE_SHIFT);
834 e = vb->va->va_start + (j << PAGE_SHIFT);
835 vunmap_page_range(s, e);
836 flush = 1;
837
838 if (s < start)
839 start = s;
840 if (e > end)
841 end = e;
842
843 i = j;
844 i = find_next_bit(vb->dirty_map,
845 VMAP_BBMAP_BITS, i);
846 }
847 spin_unlock(&vb->lock);
848 }
849 rcu_read_unlock();
850 }
851
852 __purge_vmap_area_lazy(&start, &end, 1, flush);
853}
854EXPORT_SYMBOL_GPL(vm_unmap_aliases);
855
856/**
857 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
858 * @mem: the pointer returned by vm_map_ram
859 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
860 */
861void vm_unmap_ram(const void *mem, unsigned int count)
862{
863 unsigned long size = count << PAGE_SHIFT;
864 unsigned long addr = (unsigned long)mem;
865
866 BUG_ON(!addr);
867 BUG_ON(addr < VMALLOC_START);
868 BUG_ON(addr > VMALLOC_END);
869 BUG_ON(addr & (PAGE_SIZE-1));
870
871 debug_check_no_locks_freed(mem, size);
872
873 if (likely(count <= VMAP_MAX_ALLOC))
874 vb_free(mem, size);
875 else
876 free_unmap_vmap_area_addr(addr);
877}
878EXPORT_SYMBOL(vm_unmap_ram);
879
880/**
881 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
882 * @pages: an array of pointers to the pages to be mapped
883 * @count: number of pages
884 * @node: prefer to allocate data structures on this node
885 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
886 * @returns: a pointer to the address that has been mapped, or NULL on failure
887 */
888void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
889{
890 unsigned long size = count << PAGE_SHIFT;
891 unsigned long addr;
892 void *mem;
893
894 if (likely(count <= VMAP_MAX_ALLOC)) {
895 mem = vb_alloc(size, GFP_KERNEL);
896 if (IS_ERR(mem))
897 return NULL;
898 addr = (unsigned long)mem;
899 } else {
900 struct vmap_area *va;
901 va = alloc_vmap_area(size, PAGE_SIZE,
902 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
903 if (IS_ERR(va))
904 return NULL;
905
906 addr = va->va_start;
907 mem = (void *)addr;
908 }
909 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
910 vm_unmap_ram(mem, count);
911 return NULL;
912 }
913 return mem;
914}
915EXPORT_SYMBOL(vm_map_ram);
916
917void __init vmalloc_init(void)
918{
919 int i;
920
921 for_each_possible_cpu(i) {
922 struct vmap_block_queue *vbq;
923
924 vbq = &per_cpu(vmap_block_queue, i);
925 spin_lock_init(&vbq->lock);
926 INIT_LIST_HEAD(&vbq->free);
927 INIT_LIST_HEAD(&vbq->dirty);
928 vbq->nr_dirty = 0;
929 }
930}
931
932void unmap_kernel_range(unsigned long addr, unsigned long size)
933{
934 unsigned long end = addr + size;
935 vunmap_page_range(addr, end);
936 flush_tlb_kernel_range(addr, end);
937}
938
939int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
940{
941 unsigned long addr = (unsigned long)area->addr;
942 unsigned long end = addr + area->size - PAGE_SIZE;
943 int err;
944
945 err = vmap_page_range(addr, end, prot, *pages);
946 if (err > 0) {
947 *pages += err;
948 err = 0;
949 }
950
951 return err;
952}
953EXPORT_SYMBOL_GPL(map_vm_area);
954
955/*** Old vmalloc interfaces ***/
956DEFINE_RWLOCK(vmlist_lock);
957struct vm_struct *vmlist;
958
959static struct vm_struct *__get_vm_area_node(unsigned long size,
960 unsigned long flags, unsigned long start, unsigned long end,
961 int node, gfp_t gfp_mask, void *caller)
962{
963 static struct vmap_area *va;
964 struct vm_struct *area;
965 struct vm_struct *tmp, **p;
966 unsigned long align = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700967
Giridhar Pemmasani52fd24c2006-10-28 10:38:34 -0700968 BUG_ON(in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -0700969 if (flags & VM_IOREMAP) {
970 int bit = fls(size);
971
972 if (bit > IOREMAP_MAX_ORDER)
973 bit = IOREMAP_MAX_ORDER;
974 else if (bit < PAGE_SHIFT)
975 bit = PAGE_SHIFT;
976
977 align = 1ul << bit;
978 }
Nick Piggindb64fe02008-10-18 20:27:03 -0700979
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980 size = PAGE_ALIGN(size);
OGAWA Hirofumi31be8302006-11-16 01:19:29 -0800981 if (unlikely(!size))
982 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700983
Christoph Lameter6cb06222007-10-16 01:25:41 -0700984 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700985 if (unlikely(!area))
986 return NULL;
987
Linus Torvalds1da177e2005-04-16 15:20:36 -0700988 /*
989 * We always allocate a guard page.
990 */
991 size += PAGE_SIZE;
992
Nick Piggindb64fe02008-10-18 20:27:03 -0700993 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
994 if (IS_ERR(va)) {
995 kfree(area);
996 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700997 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700998
999 area->flags = flags;
Nick Piggindb64fe02008-10-18 20:27:03 -07001000 area->addr = (void *)va->va_start;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001001 area->size = size;
1002 area->pages = NULL;
1003 area->nr_pages = 0;
1004 area->phys_addr = 0;
Christoph Lameter23016962008-04-28 02:12:42 -07001005 area->caller = caller;
Nick Piggindb64fe02008-10-18 20:27:03 -07001006 va->private = area;
1007 va->flags |= VM_VM_AREA;
1008
1009 write_lock(&vmlist_lock);
1010 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1011 if (tmp->addr >= area->addr)
1012 break;
1013 }
1014 area->next = *p;
1015 *p = area;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016 write_unlock(&vmlist_lock);
1017
1018 return area;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019}
1020
Christoph Lameter930fc452005-10-29 18:15:41 -07001021struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1022 unsigned long start, unsigned long end)
1023{
Christoph Lameter23016962008-04-28 02:12:42 -07001024 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1025 __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001026}
Rusty Russell5992b6d2007-07-19 01:49:21 -07001027EXPORT_SYMBOL_GPL(__get_vm_area);
Christoph Lameter930fc452005-10-29 18:15:41 -07001028
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029/**
Simon Arlott183ff222007-10-20 01:27:18 +02001030 * get_vm_area - reserve a contiguous kernel virtual area
Linus Torvalds1da177e2005-04-16 15:20:36 -07001031 * @size: size of the area
1032 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1033 *
1034 * Search an area of @size in the kernel virtual mapping area,
1035 * and reserved it for out purposes. Returns the area descriptor
1036 * on success or %NULL on failure.
1037 */
1038struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1039{
Christoph Lameter23016962008-04-28 02:12:42 -07001040 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1041 -1, GFP_KERNEL, __builtin_return_address(0));
1042}
1043
1044struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1045 void *caller)
1046{
1047 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1048 -1, GFP_KERNEL, caller);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001049}
1050
Giridhar Pemmasani52fd24c2006-10-28 10:38:34 -07001051struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1052 int node, gfp_t gfp_mask)
Christoph Lameter930fc452005-10-29 18:15:41 -07001053{
Giridhar Pemmasani52fd24c2006-10-28 10:38:34 -07001054 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
Christoph Lameter23016962008-04-28 02:12:42 -07001055 gfp_mask, __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001056}
1057
Nick Piggindb64fe02008-10-18 20:27:03 -07001058static struct vm_struct *find_vm_area(const void *addr)
Nick Piggin83342312006-06-23 02:03:20 -07001059{
Nick Piggindb64fe02008-10-18 20:27:03 -07001060 struct vmap_area *va;
Nick Piggin83342312006-06-23 02:03:20 -07001061
Nick Piggindb64fe02008-10-18 20:27:03 -07001062 va = find_vmap_area((unsigned long)addr);
1063 if (va && va->flags & VM_VM_AREA)
1064 return va->private;
Nick Piggin83342312006-06-23 02:03:20 -07001065
Andi Kleen7856dfe2005-05-20 14:27:57 -07001066 return NULL;
Andi Kleen7856dfe2005-05-20 14:27:57 -07001067}
1068
Linus Torvalds1da177e2005-04-16 15:20:36 -07001069/**
Simon Arlott183ff222007-10-20 01:27:18 +02001070 * remove_vm_area - find and remove a continuous kernel virtual area
Linus Torvalds1da177e2005-04-16 15:20:36 -07001071 * @addr: base address
1072 *
1073 * Search for the kernel VM area starting at @addr, and remove it.
1074 * This function returns the found VM area, but using it is NOT safe
Andi Kleen7856dfe2005-05-20 14:27:57 -07001075 * on SMP machines, except for its size or flags.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001076 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -08001077struct vm_struct *remove_vm_area(const void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001078{
Nick Piggindb64fe02008-10-18 20:27:03 -07001079 struct vmap_area *va;
1080
1081 va = find_vmap_area((unsigned long)addr);
1082 if (va && va->flags & VM_VM_AREA) {
1083 struct vm_struct *vm = va->private;
1084 struct vm_struct *tmp, **p;
1085 free_unmap_vmap_area(va);
1086 vm->size -= PAGE_SIZE;
1087
1088 write_lock(&vmlist_lock);
1089 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1090 ;
1091 *p = tmp->next;
1092 write_unlock(&vmlist_lock);
1093
1094 return vm;
1095 }
1096 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001097}
1098
Christoph Lameterb3bdda02008-02-04 22:28:32 -08001099static void __vunmap(const void *addr, int deallocate_pages)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001100{
1101 struct vm_struct *area;
1102
1103 if (!addr)
1104 return;
1105
1106 if ((PAGE_SIZE-1) & (unsigned long)addr) {
Arjan van de Ven4c8573e2008-07-25 19:45:37 -07001107 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001108 return;
1109 }
1110
1111 area = remove_vm_area(addr);
1112 if (unlikely(!area)) {
Arjan van de Ven4c8573e2008-07-25 19:45:37 -07001113 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -07001114 addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001115 return;
1116 }
1117
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07001118 debug_check_no_locks_freed(addr, area->size);
Thomas Gleixner3ac7fe52008-04-30 00:55:01 -07001119 debug_check_no_obj_freed(addr, area->size);
Ingo Molnar9a11b49a2006-07-03 00:24:33 -07001120
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121 if (deallocate_pages) {
1122 int i;
1123
1124 for (i = 0; i < area->nr_pages; i++) {
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001125 struct page *page = area->pages[i];
1126
1127 BUG_ON(!page);
1128 __free_page(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001129 }
1130
Jan Kiszka8757d5f2006-07-14 00:23:56 -07001131 if (area->flags & VM_VPAGES)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001132 vfree(area->pages);
1133 else
1134 kfree(area->pages);
1135 }
1136
1137 kfree(area);
1138 return;
1139}
1140
1141/**
1142 * vfree - release memory allocated by vmalloc()
Linus Torvalds1da177e2005-04-16 15:20:36 -07001143 * @addr: memory base address
1144 *
Simon Arlott183ff222007-10-20 01:27:18 +02001145 * Free the virtually continuous memory area starting at @addr, as
Pekka Enberg80e93ef2005-09-09 13:10:16 -07001146 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1147 * NULL, no operation is performed.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001148 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07001149 * Must not be called in interrupt context.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001150 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -08001151void vfree(const void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001152{
1153 BUG_ON(in_interrupt());
1154 __vunmap(addr, 1);
1155}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001156EXPORT_SYMBOL(vfree);
1157
1158/**
1159 * vunmap - release virtual mapping obtained by vmap()
Linus Torvalds1da177e2005-04-16 15:20:36 -07001160 * @addr: memory base address
1161 *
1162 * Free the virtually contiguous memory area starting at @addr,
1163 * which was created from the page array passed to vmap().
1164 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07001165 * Must not be called in interrupt context.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001166 */
Christoph Lameterb3bdda02008-02-04 22:28:32 -08001167void vunmap(const void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001168{
1169 BUG_ON(in_interrupt());
1170 __vunmap(addr, 0);
1171}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001172EXPORT_SYMBOL(vunmap);
1173
1174/**
1175 * vmap - map an array of pages into virtually contiguous space
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176 * @pages: array of page pointers
1177 * @count: number of pages to map
1178 * @flags: vm_area->flags
1179 * @prot: page protection for the mapping
1180 *
1181 * Maps @count pages from @pages into contiguous kernel virtual
1182 * space.
1183 */
1184void *vmap(struct page **pages, unsigned int count,
1185 unsigned long flags, pgprot_t prot)
1186{
1187 struct vm_struct *area;
1188
1189 if (count > num_physpages)
1190 return NULL;
1191
Christoph Lameter23016962008-04-28 02:12:42 -07001192 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1193 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001194 if (!area)
1195 return NULL;
Christoph Lameter23016962008-04-28 02:12:42 -07001196
Linus Torvalds1da177e2005-04-16 15:20:36 -07001197 if (map_vm_area(area, prot, &pages)) {
1198 vunmap(area->addr);
1199 return NULL;
1200 }
1201
1202 return area->addr;
1203}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001204EXPORT_SYMBOL(vmap);
1205
Nick Piggindb64fe02008-10-18 20:27:03 -07001206static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1207 int node, void *caller);
Adrian Bunke31d9eb2008-02-04 22:29:09 -08001208static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
Christoph Lameter23016962008-04-28 02:12:42 -07001209 pgprot_t prot, int node, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001210{
1211 struct page **pages;
1212 unsigned int nr_pages, array_size, i;
1213
1214 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1215 array_size = (nr_pages * sizeof(struct page *));
1216
1217 area->nr_pages = nr_pages;
1218 /* Please note that the recursion is strictly bounded. */
Jan Kiszka8757d5f2006-07-14 00:23:56 -07001219 if (array_size > PAGE_SIZE) {
Christoph Lameter94f60302007-07-17 04:03:29 -07001220 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
Christoph Lameter23016962008-04-28 02:12:42 -07001221 PAGE_KERNEL, node, caller);
Jan Kiszka8757d5f2006-07-14 00:23:56 -07001222 area->flags |= VM_VPAGES;
Andrew Morton286e1ea2006-10-17 00:09:57 -07001223 } else {
1224 pages = kmalloc_node(array_size,
Christoph Lameter6cb06222007-10-16 01:25:41 -07001225 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
Andrew Morton286e1ea2006-10-17 00:09:57 -07001226 node);
1227 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001228 area->pages = pages;
Christoph Lameter23016962008-04-28 02:12:42 -07001229 area->caller = caller;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001230 if (!area->pages) {
1231 remove_vm_area(area->addr);
1232 kfree(area);
1233 return NULL;
1234 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001235
1236 for (i = 0; i < area->nr_pages; i++) {
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001237 struct page *page;
1238
Christoph Lameter930fc452005-10-29 18:15:41 -07001239 if (node < 0)
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001240 page = alloc_page(gfp_mask);
Christoph Lameter930fc452005-10-29 18:15:41 -07001241 else
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001242 page = alloc_pages_node(node, gfp_mask, 0);
1243
1244 if (unlikely(!page)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001245 /* Successfully allocated i pages, free them in __vunmap() */
1246 area->nr_pages = i;
1247 goto fail;
1248 }
Christoph Lameterbf53d6f2008-02-04 22:28:34 -08001249 area->pages[i] = page;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001250 }
1251
1252 if (map_vm_area(area, prot, &pages))
1253 goto fail;
1254 return area->addr;
1255
1256fail:
1257 vfree(area->addr);
1258 return NULL;
1259}
1260
Christoph Lameter930fc452005-10-29 18:15:41 -07001261void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1262{
Christoph Lameter23016962008-04-28 02:12:42 -07001263 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1264 __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001265}
1266
Linus Torvalds1da177e2005-04-16 15:20:36 -07001267/**
Christoph Lameter930fc452005-10-29 18:15:41 -07001268 * __vmalloc_node - allocate virtually contiguous memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07001269 * @size: allocation size
1270 * @gfp_mask: flags for the page level allocator
1271 * @prot: protection mask for the allocated pages
Randy Dunlapd44e0782005-11-07 01:01:10 -08001272 * @node: node to use for allocation or -1
Randy Dunlapc85d1942008-05-01 04:34:48 -07001273 * @caller: caller's return address
Linus Torvalds1da177e2005-04-16 15:20:36 -07001274 *
1275 * Allocate enough pages to cover @size from the page level
1276 * allocator with @gfp_mask flags. Map them into contiguous
1277 * kernel virtual space, using a pagetable protection of @prot.
1278 */
Adrian Bunkb2213852006-09-25 23:31:02 -07001279static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
Christoph Lameter23016962008-04-28 02:12:42 -07001280 int node, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001281{
1282 struct vm_struct *area;
1283
1284 size = PAGE_ALIGN(size);
1285 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1286 return NULL;
1287
Christoph Lameter23016962008-04-28 02:12:42 -07001288 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1289 node, gfp_mask, caller);
1290
Linus Torvalds1da177e2005-04-16 15:20:36 -07001291 if (!area)
1292 return NULL;
1293
Christoph Lameter23016962008-04-28 02:12:42 -07001294 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001295}
1296
Christoph Lameter930fc452005-10-29 18:15:41 -07001297void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1298{
Christoph Lameter23016962008-04-28 02:12:42 -07001299 return __vmalloc_node(size, gfp_mask, prot, -1,
1300 __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001301}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001302EXPORT_SYMBOL(__vmalloc);
1303
1304/**
1305 * vmalloc - allocate virtually contiguous memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07001306 * @size: allocation size
Linus Torvalds1da177e2005-04-16 15:20:36 -07001307 * Allocate enough pages to cover @size from the page level
1308 * allocator and map them into contiguous kernel virtual space.
1309 *
Michael Opdenackerc1c88972006-10-03 23:21:02 +02001310 * For tight control over page level allocator and protection flags
Linus Torvalds1da177e2005-04-16 15:20:36 -07001311 * use __vmalloc() instead.
1312 */
1313void *vmalloc(unsigned long size)
1314{
Christoph Lameter23016962008-04-28 02:12:42 -07001315 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1316 -1, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001317}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001318EXPORT_SYMBOL(vmalloc);
1319
Christoph Lameter930fc452005-10-29 18:15:41 -07001320/**
Rolf Eike Beeread04082006-09-27 01:50:13 -07001321 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1322 * @size: allocation size
Nick Piggin83342312006-06-23 02:03:20 -07001323 *
Rolf Eike Beeread04082006-09-27 01:50:13 -07001324 * The resulting memory area is zeroed so it can be mapped to userspace
1325 * without leaking data.
Nick Piggin83342312006-06-23 02:03:20 -07001326 */
1327void *vmalloc_user(unsigned long size)
1328{
1329 struct vm_struct *area;
1330 void *ret;
1331
1332 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001333 if (ret) {
Nick Piggindb64fe02008-10-18 20:27:03 -07001334 area = find_vm_area(ret);
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001335 area->flags |= VM_USERMAP;
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001336 }
Nick Piggin83342312006-06-23 02:03:20 -07001337 return ret;
1338}
1339EXPORT_SYMBOL(vmalloc_user);
1340
1341/**
Christoph Lameter930fc452005-10-29 18:15:41 -07001342 * vmalloc_node - allocate memory on a specific node
Christoph Lameter930fc452005-10-29 18:15:41 -07001343 * @size: allocation size
Randy Dunlapd44e0782005-11-07 01:01:10 -08001344 * @node: numa node
Christoph Lameter930fc452005-10-29 18:15:41 -07001345 *
1346 * Allocate enough pages to cover @size from the page level
1347 * allocator and map them into contiguous kernel virtual space.
1348 *
Michael Opdenackerc1c88972006-10-03 23:21:02 +02001349 * For tight control over page level allocator and protection flags
Christoph Lameter930fc452005-10-29 18:15:41 -07001350 * use __vmalloc() instead.
1351 */
1352void *vmalloc_node(unsigned long size, int node)
1353{
Christoph Lameter23016962008-04-28 02:12:42 -07001354 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1355 node, __builtin_return_address(0));
Christoph Lameter930fc452005-10-29 18:15:41 -07001356}
1357EXPORT_SYMBOL(vmalloc_node);
1358
Pavel Pisa4dc3b162005-05-01 08:59:25 -07001359#ifndef PAGE_KERNEL_EXEC
1360# define PAGE_KERNEL_EXEC PAGE_KERNEL
1361#endif
1362
Linus Torvalds1da177e2005-04-16 15:20:36 -07001363/**
1364 * vmalloc_exec - allocate virtually contiguous, executable memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07001365 * @size: allocation size
1366 *
1367 * Kernel-internal function to allocate enough pages to cover @size
1368 * the page level allocator and map them into contiguous and
1369 * executable kernel virtual space.
1370 *
Michael Opdenackerc1c88972006-10-03 23:21:02 +02001371 * For tight control over page level allocator and protection flags
Linus Torvalds1da177e2005-04-16 15:20:36 -07001372 * use __vmalloc() instead.
1373 */
1374
Linus Torvalds1da177e2005-04-16 15:20:36 -07001375void *vmalloc_exec(unsigned long size)
1376{
1377 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
1378}
1379
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001380#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
Benjamin Herrenschmidt7ac674f2007-07-19 01:49:10 -07001381#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001382#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
Benjamin Herrenschmidt7ac674f2007-07-19 01:49:10 -07001383#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001384#else
1385#define GFP_VMALLOC32 GFP_KERNEL
1386#endif
1387
Linus Torvalds1da177e2005-04-16 15:20:36 -07001388/**
1389 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001390 * @size: allocation size
1391 *
1392 * Allocate enough 32bit PA addressable pages to cover @size from the
1393 * page level allocator and map them into contiguous kernel virtual space.
1394 */
1395void *vmalloc_32(unsigned long size)
1396{
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001397 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001398}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399EXPORT_SYMBOL(vmalloc_32);
1400
Nick Piggin83342312006-06-23 02:03:20 -07001401/**
Rolf Eike Beeread04082006-09-27 01:50:13 -07001402 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
Nick Piggin83342312006-06-23 02:03:20 -07001403 * @size: allocation size
Rolf Eike Beeread04082006-09-27 01:50:13 -07001404 *
1405 * The resulting memory area is 32bit addressable and zeroed so it can be
1406 * mapped to userspace without leaking data.
Nick Piggin83342312006-06-23 02:03:20 -07001407 */
1408void *vmalloc_32_user(unsigned long size)
1409{
1410 struct vm_struct *area;
1411 void *ret;
1412
Andi Kleen0d08e0d2007-05-02 19:27:12 +02001413 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001414 if (ret) {
Nick Piggindb64fe02008-10-18 20:27:03 -07001415 area = find_vm_area(ret);
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001416 area->flags |= VM_USERMAP;
Eric Dumazet2b4ac442006-11-10 12:27:48 -08001417 }
Nick Piggin83342312006-06-23 02:03:20 -07001418 return ret;
1419}
1420EXPORT_SYMBOL(vmalloc_32_user);
1421
Linus Torvalds1da177e2005-04-16 15:20:36 -07001422long vread(char *buf, char *addr, unsigned long count)
1423{
1424 struct vm_struct *tmp;
1425 char *vaddr, *buf_start = buf;
1426 unsigned long n;
1427
1428 /* Don't allow overflow */
1429 if ((unsigned long) addr + count < count)
1430 count = -(unsigned long) addr;
1431
1432 read_lock(&vmlist_lock);
1433 for (tmp = vmlist; tmp; tmp = tmp->next) {
1434 vaddr = (char *) tmp->addr;
1435 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1436 continue;
1437 while (addr < vaddr) {
1438 if (count == 0)
1439 goto finished;
1440 *buf = '\0';
1441 buf++;
1442 addr++;
1443 count--;
1444 }
1445 n = vaddr + tmp->size - PAGE_SIZE - addr;
1446 do {
1447 if (count == 0)
1448 goto finished;
1449 *buf = *addr;
1450 buf++;
1451 addr++;
1452 count--;
1453 } while (--n > 0);
1454 }
1455finished:
1456 read_unlock(&vmlist_lock);
1457 return buf - buf_start;
1458}
1459
1460long vwrite(char *buf, char *addr, unsigned long count)
1461{
1462 struct vm_struct *tmp;
1463 char *vaddr, *buf_start = buf;
1464 unsigned long n;
1465
1466 /* Don't allow overflow */
1467 if ((unsigned long) addr + count < count)
1468 count = -(unsigned long) addr;
1469
1470 read_lock(&vmlist_lock);
1471 for (tmp = vmlist; tmp; tmp = tmp->next) {
1472 vaddr = (char *) tmp->addr;
1473 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1474 continue;
1475 while (addr < vaddr) {
1476 if (count == 0)
1477 goto finished;
1478 buf++;
1479 addr++;
1480 count--;
1481 }
1482 n = vaddr + tmp->size - PAGE_SIZE - addr;
1483 do {
1484 if (count == 0)
1485 goto finished;
1486 *addr = *buf;
1487 buf++;
1488 addr++;
1489 count--;
1490 } while (--n > 0);
1491 }
1492finished:
1493 read_unlock(&vmlist_lock);
1494 return buf - buf_start;
1495}
Nick Piggin83342312006-06-23 02:03:20 -07001496
1497/**
1498 * remap_vmalloc_range - map vmalloc pages to userspace
Nick Piggin83342312006-06-23 02:03:20 -07001499 * @vma: vma to cover (map full range of vma)
1500 * @addr: vmalloc memory
1501 * @pgoff: number of pages into addr before first page to map
Randy Dunlap76824862008-03-19 17:00:40 -07001502 *
1503 * Returns: 0 for success, -Exxx on failure
Nick Piggin83342312006-06-23 02:03:20 -07001504 *
1505 * This function checks that addr is a valid vmalloc'ed area, and
1506 * that it is big enough to cover the vma. Will return failure if
1507 * that criteria isn't met.
1508 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08001509 * Similar to remap_pfn_range() (see mm/memory.c)
Nick Piggin83342312006-06-23 02:03:20 -07001510 */
1511int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1512 unsigned long pgoff)
1513{
1514 struct vm_struct *area;
1515 unsigned long uaddr = vma->vm_start;
1516 unsigned long usize = vma->vm_end - vma->vm_start;
Nick Piggin83342312006-06-23 02:03:20 -07001517
1518 if ((PAGE_SIZE-1) & (unsigned long)addr)
1519 return -EINVAL;
1520
Nick Piggindb64fe02008-10-18 20:27:03 -07001521 area = find_vm_area(addr);
Nick Piggin83342312006-06-23 02:03:20 -07001522 if (!area)
Nick Piggindb64fe02008-10-18 20:27:03 -07001523 return -EINVAL;
Nick Piggin83342312006-06-23 02:03:20 -07001524
1525 if (!(area->flags & VM_USERMAP))
Nick Piggindb64fe02008-10-18 20:27:03 -07001526 return -EINVAL;
Nick Piggin83342312006-06-23 02:03:20 -07001527
1528 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
Nick Piggindb64fe02008-10-18 20:27:03 -07001529 return -EINVAL;
Nick Piggin83342312006-06-23 02:03:20 -07001530
1531 addr += pgoff << PAGE_SHIFT;
1532 do {
1533 struct page *page = vmalloc_to_page(addr);
Nick Piggindb64fe02008-10-18 20:27:03 -07001534 int ret;
1535
Nick Piggin83342312006-06-23 02:03:20 -07001536 ret = vm_insert_page(vma, uaddr, page);
1537 if (ret)
1538 return ret;
1539
1540 uaddr += PAGE_SIZE;
1541 addr += PAGE_SIZE;
1542 usize -= PAGE_SIZE;
1543 } while (usize > 0);
1544
1545 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1546 vma->vm_flags |= VM_RESERVED;
1547
Nick Piggindb64fe02008-10-18 20:27:03 -07001548 return 0;
Nick Piggin83342312006-06-23 02:03:20 -07001549}
1550EXPORT_SYMBOL(remap_vmalloc_range);
1551
Christoph Hellwig1eeb66a2007-05-08 00:27:03 -07001552/*
1553 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1554 * have one.
1555 */
1556void __attribute__((weak)) vmalloc_sync_all(void)
1557{
1558}
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07001559
1560
Martin Schwidefsky2f569af2008-02-08 04:22:04 -08001561static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07001562{
1563 /* apply_to_page_range() does all the hard work. */
1564 return 0;
1565}
1566
1567/**
1568 * alloc_vm_area - allocate a range of kernel address space
1569 * @size: size of the area
Randy Dunlap76824862008-03-19 17:00:40 -07001570 *
1571 * Returns: NULL on failure, vm_struct on success
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07001572 *
1573 * This function reserves a range of kernel address space, and
1574 * allocates pagetables to map that range. No actual mappings
1575 * are created. If the kernel address space is not shared
1576 * between processes, it syncs the pagetable across all
1577 * processes.
1578 */
1579struct vm_struct *alloc_vm_area(size_t size)
1580{
1581 struct vm_struct *area;
1582
Christoph Lameter23016962008-04-28 02:12:42 -07001583 area = get_vm_area_caller(size, VM_IOREMAP,
1584 __builtin_return_address(0));
Jeremy Fitzhardinge5f4352f2007-07-17 18:37:04 -07001585 if (area == NULL)
1586 return NULL;
1587
1588 /*
1589 * This ensures that page tables are constructed for this region
1590 * of kernel virtual address space and mapped into init_mm.
1591 */
1592 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1593 area->size, f, NULL)) {
1594 free_vm_area(area);
1595 return NULL;
1596 }
1597
1598 /* Make sure the pagetables are constructed in process kernel
1599 mappings */
1600 vmalloc_sync_all();
1601
1602 return area;
1603}
1604EXPORT_SYMBOL_GPL(alloc_vm_area);
1605
1606void free_vm_area(struct vm_struct *area)
1607{
1608 struct vm_struct *ret;
1609 ret = remove_vm_area(area->addr);
1610 BUG_ON(ret != area);
1611 kfree(area);
1612}
1613EXPORT_SYMBOL_GPL(free_vm_area);
Christoph Lametera10aa572008-04-28 02:12:40 -07001614
1615
1616#ifdef CONFIG_PROC_FS
1617static void *s_start(struct seq_file *m, loff_t *pos)
1618{
1619 loff_t n = *pos;
1620 struct vm_struct *v;
1621
1622 read_lock(&vmlist_lock);
1623 v = vmlist;
1624 while (n > 0 && v) {
1625 n--;
1626 v = v->next;
1627 }
1628 if (!n)
1629 return v;
1630
1631 return NULL;
1632
1633}
1634
1635static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1636{
1637 struct vm_struct *v = p;
1638
1639 ++*pos;
1640 return v->next;
1641}
1642
1643static void s_stop(struct seq_file *m, void *p)
1644{
1645 read_unlock(&vmlist_lock);
1646}
1647
Eric Dumazeta47a1262008-07-23 21:27:38 -07001648static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1649{
1650 if (NUMA_BUILD) {
1651 unsigned int nr, *counters = m->private;
1652
1653 if (!counters)
1654 return;
1655
1656 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1657
1658 for (nr = 0; nr < v->nr_pages; nr++)
1659 counters[page_to_nid(v->pages[nr])]++;
1660
1661 for_each_node_state(nr, N_HIGH_MEMORY)
1662 if (counters[nr])
1663 seq_printf(m, " N%u=%u", nr, counters[nr]);
1664 }
1665}
1666
Christoph Lametera10aa572008-04-28 02:12:40 -07001667static int s_show(struct seq_file *m, void *p)
1668{
1669 struct vm_struct *v = p;
1670
1671 seq_printf(m, "0x%p-0x%p %7ld",
1672 v->addr, v->addr + v->size, v->size);
1673
Christoph Lameter23016962008-04-28 02:12:42 -07001674 if (v->caller) {
1675 char buff[2 * KSYM_NAME_LEN];
1676
1677 seq_putc(m, ' ');
1678 sprint_symbol(buff, (unsigned long)v->caller);
1679 seq_puts(m, buff);
1680 }
1681
Christoph Lametera10aa572008-04-28 02:12:40 -07001682 if (v->nr_pages)
1683 seq_printf(m, " pages=%d", v->nr_pages);
1684
1685 if (v->phys_addr)
1686 seq_printf(m, " phys=%lx", v->phys_addr);
1687
1688 if (v->flags & VM_IOREMAP)
1689 seq_printf(m, " ioremap");
1690
1691 if (v->flags & VM_ALLOC)
1692 seq_printf(m, " vmalloc");
1693
1694 if (v->flags & VM_MAP)
1695 seq_printf(m, " vmap");
1696
1697 if (v->flags & VM_USERMAP)
1698 seq_printf(m, " user");
1699
1700 if (v->flags & VM_VPAGES)
1701 seq_printf(m, " vpages");
1702
Eric Dumazeta47a1262008-07-23 21:27:38 -07001703 show_numa_info(m, v);
Christoph Lametera10aa572008-04-28 02:12:40 -07001704 seq_putc(m, '\n');
1705 return 0;
1706}
1707
1708const struct seq_operations vmalloc_op = {
1709 .start = s_start,
1710 .next = s_next,
1711 .stop = s_stop,
1712 .show = s_show,
1713};
1714#endif
1715