Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Cryptographic API. |
| 3 | * |
| 4 | * Cipher operations. |
| 5 | * |
| 6 | * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify it |
| 9 | * under the terms of the GNU General Public License as published by the Free |
| 10 | * Software Foundation; either version 2 of the License, or (at your option) |
| 11 | * any later version. |
| 12 | * |
| 13 | */ |
| 14 | #include <linux/compiler.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/crypto.h> |
| 17 | #include <linux/errno.h> |
| 18 | #include <linux/mm.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/string.h> |
| 21 | #include <asm/scatterlist.h> |
| 22 | #include "internal.h" |
| 23 | #include "scatterwalk.h" |
| 24 | |
| 25 | typedef void (cryptfn_t)(void *, u8 *, const u8 *); |
| 26 | typedef void (procfn_t)(struct crypto_tfm *, u8 *, |
| 27 | u8*, cryptfn_t, void *); |
| 28 | |
| 29 | static inline void xor_64(u8 *a, const u8 *b) |
| 30 | { |
| 31 | ((u32 *)a)[0] ^= ((u32 *)b)[0]; |
| 32 | ((u32 *)a)[1] ^= ((u32 *)b)[1]; |
| 33 | } |
| 34 | |
| 35 | static inline void xor_128(u8 *a, const u8 *b) |
| 36 | { |
| 37 | ((u32 *)a)[0] ^= ((u32 *)b)[0]; |
| 38 | ((u32 *)a)[1] ^= ((u32 *)b)[1]; |
| 39 | ((u32 *)a)[2] ^= ((u32 *)b)[2]; |
| 40 | ((u32 *)a)[3] ^= ((u32 *)b)[3]; |
| 41 | } |
| 42 | |
| 43 | static inline void *prepare_src(struct scatter_walk *walk, int bsize, |
| 44 | void *tmp, int in_place) |
| 45 | { |
| 46 | void *src = walk->data; |
| 47 | int n = bsize; |
| 48 | |
| 49 | if (unlikely(scatterwalk_across_pages(walk, bsize))) { |
| 50 | src = tmp; |
| 51 | n = scatterwalk_copychunks(src, walk, bsize, 0); |
| 52 | } |
| 53 | scatterwalk_advance(walk, n); |
| 54 | return src; |
| 55 | } |
| 56 | |
| 57 | static inline void *prepare_dst(struct scatter_walk *walk, int bsize, |
| 58 | void *tmp, int in_place) |
| 59 | { |
| 60 | void *dst = walk->data; |
| 61 | |
| 62 | if (unlikely(scatterwalk_across_pages(walk, bsize)) || in_place) |
| 63 | dst = tmp; |
| 64 | return dst; |
| 65 | } |
| 66 | |
| 67 | static inline void complete_src(struct scatter_walk *walk, int bsize, |
| 68 | void *src, int in_place) |
| 69 | { |
| 70 | } |
| 71 | |
| 72 | static inline void complete_dst(struct scatter_walk *walk, int bsize, |
| 73 | void *dst, int in_place) |
| 74 | { |
| 75 | int n = bsize; |
| 76 | |
| 77 | if (unlikely(scatterwalk_across_pages(walk, bsize))) |
| 78 | n = scatterwalk_copychunks(dst, walk, bsize, 1); |
| 79 | else if (in_place) |
| 80 | memcpy(walk->data, dst, bsize); |
| 81 | scatterwalk_advance(walk, n); |
| 82 | } |
| 83 | |
| 84 | /* |
| 85 | * Generic encrypt/decrypt wrapper for ciphers, handles operations across |
| 86 | * multiple page boundaries by using temporary blocks. In user context, |
| 87 | * the kernel is given a chance to schedule us once per block. |
| 88 | */ |
| 89 | static int crypt(struct crypto_tfm *tfm, |
| 90 | struct scatterlist *dst, |
| 91 | struct scatterlist *src, |
| 92 | unsigned int nbytes, cryptfn_t crfn, |
| 93 | procfn_t prfn, void *info) |
| 94 | { |
| 95 | struct scatter_walk walk_in, walk_out; |
| 96 | const unsigned int bsize = crypto_tfm_alg_blocksize(tfm); |
| 97 | u8 tmp_src[bsize]; |
| 98 | u8 tmp_dst[bsize]; |
| 99 | |
| 100 | if (!nbytes) |
| 101 | return 0; |
| 102 | |
| 103 | if (nbytes % bsize) { |
| 104 | tfm->crt_flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN; |
| 105 | return -EINVAL; |
| 106 | } |
| 107 | |
| 108 | scatterwalk_start(&walk_in, src); |
| 109 | scatterwalk_start(&walk_out, dst); |
| 110 | |
| 111 | for(;;) { |
| 112 | u8 *src_p, *dst_p; |
| 113 | int in_place; |
| 114 | |
| 115 | scatterwalk_map(&walk_in, 0); |
| 116 | scatterwalk_map(&walk_out, 1); |
| 117 | |
| 118 | in_place = scatterwalk_samebuf(&walk_in, &walk_out); |
| 119 | |
| 120 | do { |
| 121 | src_p = prepare_src(&walk_in, bsize, tmp_src, |
| 122 | in_place); |
| 123 | dst_p = prepare_dst(&walk_out, bsize, tmp_dst, |
| 124 | in_place); |
| 125 | |
| 126 | prfn(tfm, dst_p, src_p, crfn, info); |
| 127 | |
| 128 | complete_src(&walk_in, bsize, src_p, in_place); |
| 129 | complete_dst(&walk_out, bsize, dst_p, in_place); |
| 130 | |
| 131 | nbytes -= bsize; |
| 132 | } while (nbytes && |
| 133 | !scatterwalk_across_pages(&walk_in, bsize) && |
| 134 | !scatterwalk_across_pages(&walk_out, bsize)); |
| 135 | |
| 136 | scatterwalk_done(&walk_in, 0, nbytes); |
| 137 | scatterwalk_done(&walk_out, 1, nbytes); |
| 138 | |
| 139 | if (!nbytes) |
| 140 | return 0; |
| 141 | |
| 142 | crypto_yield(tfm); |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | static void cbc_process_encrypt(struct crypto_tfm *tfm, u8 *dst, u8 *src, |
| 147 | cryptfn_t fn, void *info) |
| 148 | { |
| 149 | u8 *iv = info; |
| 150 | |
| 151 | tfm->crt_u.cipher.cit_xor_block(iv, src); |
| 152 | fn(crypto_tfm_ctx(tfm), dst, iv); |
| 153 | memcpy(iv, dst, crypto_tfm_alg_blocksize(tfm)); |
| 154 | } |
| 155 | |
| 156 | static void cbc_process_decrypt(struct crypto_tfm *tfm, u8 *dst, u8 *src, |
| 157 | cryptfn_t fn, void *info) |
| 158 | { |
| 159 | u8 *iv = info; |
| 160 | |
| 161 | fn(crypto_tfm_ctx(tfm), dst, src); |
| 162 | tfm->crt_u.cipher.cit_xor_block(dst, iv); |
| 163 | memcpy(iv, src, crypto_tfm_alg_blocksize(tfm)); |
| 164 | } |
| 165 | |
| 166 | static void ecb_process(struct crypto_tfm *tfm, u8 *dst, u8 *src, |
| 167 | cryptfn_t fn, void *info) |
| 168 | { |
| 169 | fn(crypto_tfm_ctx(tfm), dst, src); |
| 170 | } |
| 171 | |
| 172 | static int setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) |
| 173 | { |
| 174 | struct cipher_alg *cia = &tfm->__crt_alg->cra_cipher; |
| 175 | |
| 176 | if (keylen < cia->cia_min_keysize || keylen > cia->cia_max_keysize) { |
| 177 | tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
| 178 | return -EINVAL; |
| 179 | } else |
| 180 | return cia->cia_setkey(crypto_tfm_ctx(tfm), key, keylen, |
| 181 | &tfm->crt_flags); |
| 182 | } |
| 183 | |
| 184 | static int ecb_encrypt(struct crypto_tfm *tfm, |
| 185 | struct scatterlist *dst, |
| 186 | struct scatterlist *src, unsigned int nbytes) |
| 187 | { |
| 188 | return crypt(tfm, dst, src, nbytes, |
| 189 | tfm->__crt_alg->cra_cipher.cia_encrypt, |
| 190 | ecb_process, NULL); |
| 191 | } |
| 192 | |
| 193 | static int ecb_decrypt(struct crypto_tfm *tfm, |
| 194 | struct scatterlist *dst, |
| 195 | struct scatterlist *src, |
| 196 | unsigned int nbytes) |
| 197 | { |
| 198 | return crypt(tfm, dst, src, nbytes, |
| 199 | tfm->__crt_alg->cra_cipher.cia_decrypt, |
| 200 | ecb_process, NULL); |
| 201 | } |
| 202 | |
| 203 | static int cbc_encrypt(struct crypto_tfm *tfm, |
| 204 | struct scatterlist *dst, |
| 205 | struct scatterlist *src, |
| 206 | unsigned int nbytes) |
| 207 | { |
| 208 | return crypt(tfm, dst, src, nbytes, |
| 209 | tfm->__crt_alg->cra_cipher.cia_encrypt, |
| 210 | cbc_process_encrypt, tfm->crt_cipher.cit_iv); |
| 211 | } |
| 212 | |
| 213 | static int cbc_encrypt_iv(struct crypto_tfm *tfm, |
| 214 | struct scatterlist *dst, |
| 215 | struct scatterlist *src, |
| 216 | unsigned int nbytes, u8 *iv) |
| 217 | { |
| 218 | return crypt(tfm, dst, src, nbytes, |
| 219 | tfm->__crt_alg->cra_cipher.cia_encrypt, |
| 220 | cbc_process_encrypt, iv); |
| 221 | } |
| 222 | |
| 223 | static int cbc_decrypt(struct crypto_tfm *tfm, |
| 224 | struct scatterlist *dst, |
| 225 | struct scatterlist *src, |
| 226 | unsigned int nbytes) |
| 227 | { |
| 228 | return crypt(tfm, dst, src, nbytes, |
| 229 | tfm->__crt_alg->cra_cipher.cia_decrypt, |
| 230 | cbc_process_decrypt, tfm->crt_cipher.cit_iv); |
| 231 | } |
| 232 | |
| 233 | static int cbc_decrypt_iv(struct crypto_tfm *tfm, |
| 234 | struct scatterlist *dst, |
| 235 | struct scatterlist *src, |
| 236 | unsigned int nbytes, u8 *iv) |
| 237 | { |
| 238 | return crypt(tfm, dst, src, nbytes, |
| 239 | tfm->__crt_alg->cra_cipher.cia_decrypt, |
| 240 | cbc_process_decrypt, iv); |
| 241 | } |
| 242 | |
| 243 | static int nocrypt(struct crypto_tfm *tfm, |
| 244 | struct scatterlist *dst, |
| 245 | struct scatterlist *src, |
| 246 | unsigned int nbytes) |
| 247 | { |
| 248 | return -ENOSYS; |
| 249 | } |
| 250 | |
| 251 | static int nocrypt_iv(struct crypto_tfm *tfm, |
| 252 | struct scatterlist *dst, |
| 253 | struct scatterlist *src, |
| 254 | unsigned int nbytes, u8 *iv) |
| 255 | { |
| 256 | return -ENOSYS; |
| 257 | } |
| 258 | |
| 259 | int crypto_init_cipher_flags(struct crypto_tfm *tfm, u32 flags) |
| 260 | { |
| 261 | u32 mode = flags & CRYPTO_TFM_MODE_MASK; |
| 262 | |
| 263 | tfm->crt_cipher.cit_mode = mode ? mode : CRYPTO_TFM_MODE_ECB; |
| 264 | if (flags & CRYPTO_TFM_REQ_WEAK_KEY) |
| 265 | tfm->crt_flags = CRYPTO_TFM_REQ_WEAK_KEY; |
| 266 | |
| 267 | return 0; |
| 268 | } |
| 269 | |
| 270 | int crypto_init_cipher_ops(struct crypto_tfm *tfm) |
| 271 | { |
| 272 | int ret = 0; |
| 273 | struct cipher_tfm *ops = &tfm->crt_cipher; |
| 274 | |
| 275 | ops->cit_setkey = setkey; |
| 276 | |
| 277 | switch (tfm->crt_cipher.cit_mode) { |
| 278 | case CRYPTO_TFM_MODE_ECB: |
| 279 | ops->cit_encrypt = ecb_encrypt; |
| 280 | ops->cit_decrypt = ecb_decrypt; |
| 281 | break; |
| 282 | |
| 283 | case CRYPTO_TFM_MODE_CBC: |
| 284 | ops->cit_encrypt = cbc_encrypt; |
| 285 | ops->cit_decrypt = cbc_decrypt; |
| 286 | ops->cit_encrypt_iv = cbc_encrypt_iv; |
| 287 | ops->cit_decrypt_iv = cbc_decrypt_iv; |
| 288 | break; |
| 289 | |
| 290 | case CRYPTO_TFM_MODE_CFB: |
| 291 | ops->cit_encrypt = nocrypt; |
| 292 | ops->cit_decrypt = nocrypt; |
| 293 | ops->cit_encrypt_iv = nocrypt_iv; |
| 294 | ops->cit_decrypt_iv = nocrypt_iv; |
| 295 | break; |
| 296 | |
| 297 | case CRYPTO_TFM_MODE_CTR: |
| 298 | ops->cit_encrypt = nocrypt; |
| 299 | ops->cit_decrypt = nocrypt; |
| 300 | ops->cit_encrypt_iv = nocrypt_iv; |
| 301 | ops->cit_decrypt_iv = nocrypt_iv; |
| 302 | break; |
| 303 | |
| 304 | default: |
| 305 | BUG(); |
| 306 | } |
| 307 | |
| 308 | if (ops->cit_mode == CRYPTO_TFM_MODE_CBC) { |
| 309 | |
| 310 | switch (crypto_tfm_alg_blocksize(tfm)) { |
| 311 | case 8: |
| 312 | ops->cit_xor_block = xor_64; |
| 313 | break; |
| 314 | |
| 315 | case 16: |
| 316 | ops->cit_xor_block = xor_128; |
| 317 | break; |
| 318 | |
| 319 | default: |
| 320 | printk(KERN_WARNING "%s: block size %u not supported\n", |
| 321 | crypto_tfm_alg_name(tfm), |
| 322 | crypto_tfm_alg_blocksize(tfm)); |
| 323 | ret = -EINVAL; |
| 324 | goto out; |
| 325 | } |
| 326 | |
| 327 | ops->cit_ivsize = crypto_tfm_alg_blocksize(tfm); |
| 328 | ops->cit_iv = kmalloc(ops->cit_ivsize, GFP_KERNEL); |
| 329 | if (ops->cit_iv == NULL) |
| 330 | ret = -ENOMEM; |
| 331 | } |
| 332 | |
| 333 | out: |
| 334 | return ret; |
| 335 | } |
| 336 | |
| 337 | void crypto_exit_cipher_ops(struct crypto_tfm *tfm) |
| 338 | { |
| 339 | if (tfm->crt_cipher.cit_iv) |
| 340 | kfree(tfm->crt_cipher.cit_iv); |
| 341 | } |