blob: 9d03a98a4fa3009ea04496d117649a0203a68a16 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * PowerPC memory management structures
3 *
4 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
5 * PPC64 rework.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#ifndef _PPC64_MMU_H_
14#define _PPC64_MMU_H_
15
16#include <linux/config.h>
17#include <asm/page.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070018
David Gibson1f8d4192005-05-05 16:15:13 -070019/*
20 * Segment table
21 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070022
23#define STE_ESID_V 0x80
24#define STE_ESID_KS 0x20
25#define STE_ESID_KP 0x10
26#define STE_ESID_N 0x08
27
28#define STE_VSID_SHIFT 12
29
David Gibson1f8d4192005-05-05 16:15:13 -070030/* Location of cpu0's segment table */
31#define STAB0_PAGE 0x9
32#define STAB0_PHYS_ADDR (STAB0_PAGE<<PAGE_SHIFT)
33#define STAB0_VIRT_ADDR (KERNELBASE+STAB0_PHYS_ADDR)
Linus Torvalds1da177e2005-04-16 15:20:36 -070034
David Gibson1f8d4192005-05-05 16:15:13 -070035/*
36 * SLB
37 */
38
39#define SLB_NUM_BOLTED 3
40#define SLB_CACHE_ENTRIES 8
41
42/* Bits in the SLB ESID word */
43#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
44
45/* Bits in the SLB VSID word */
46#define SLB_VSID_SHIFT 12
47#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
48#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
49#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
Arnd Bergmannfef1c772005-06-23 09:43:37 +100050#define SLB_VSID_L ASM_CONST(0x0000000000000100) /* largepage */
David Gibson1f8d4192005-05-05 16:15:13 -070051#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
Arnd Bergmannfef1c772005-06-23 09:43:37 +100052#define SLB_VSID_LS ASM_CONST(0x0000000000000070) /* size of largepage */
53
David Gibson1f8d4192005-05-05 16:15:13 -070054#define SLB_VSID_KERNEL (SLB_VSID_KP|SLB_VSID_C)
55#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS)
56
57/*
58 * Hash table
59 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070060
61#define HPTES_PER_GROUP 8
62
David Gibson1f8d4192005-05-05 16:15:13 -070063/* Values for PP (assumes Ks=0, Kp=1) */
64/* pp0 will always be 0 for linux */
65#define PP_RWXX 0 /* Supervisor read/write, User none */
66#define PP_RWRX 1 /* Supervisor read/write, User read */
67#define PP_RWRW 2 /* Supervisor read/write, User read/write */
68#define PP_RXRX 3 /* Supervisor read, User read */
69
70#ifndef __ASSEMBLY__
71
72/* Hardware Page Table Entry */
Linus Torvalds1da177e2005-04-16 15:20:36 -070073typedef struct {
74 unsigned long avpn:57; /* vsid | api == avpn */
75 unsigned long : 2; /* Software use */
76 unsigned long bolted: 1; /* HPTE is "bolted" */
77 unsigned long lock: 1; /* lock on pSeries SMP */
78 unsigned long l: 1; /* Virtual page is large (L=1) or 4 KB (L=0) */
79 unsigned long h: 1; /* Hash function identifier */
80 unsigned long v: 1; /* Valid (v=1) or invalid (v=0) */
81} Hpte_dword0;
82
83typedef struct {
84 unsigned long pp0: 1; /* Page protection bit 0 */
85 unsigned long ts: 1; /* Tag set bit */
86 unsigned long rpn: 50; /* Real page number */
87 unsigned long : 2; /* Reserved */
88 unsigned long ac: 1; /* Address compare */
89 unsigned long r: 1; /* Referenced */
90 unsigned long c: 1; /* Changed */
91 unsigned long w: 1; /* Write-thru cache mode */
92 unsigned long i: 1; /* Cache inhibited */
93 unsigned long m: 1; /* Memory coherence required */
94 unsigned long g: 1; /* Guarded */
95 unsigned long n: 1; /* No-execute */
96 unsigned long pp: 2; /* Page protection bits 1:2 */
97} Hpte_dword1;
98
99typedef struct {
100 char padding[6]; /* padding */
101 unsigned long : 6; /* padding */
102 unsigned long flags: 10; /* HPTE flags */
103} Hpte_dword1_flags;
104
105typedef struct {
106 union {
107 unsigned long dword0;
108 Hpte_dword0 dw0;
109 } dw0;
110
111 union {
112 unsigned long dword1;
113 Hpte_dword1 dw1;
114 Hpte_dword1_flags flags;
115 } dw1;
116} HPTE;
117
Linus Torvalds1da177e2005-04-16 15:20:36 -0700118extern HPTE * htab_address;
119extern unsigned long htab_hash_mask;
120
121static inline unsigned long hpt_hash(unsigned long vpn, int large)
122{
123 unsigned long vsid;
124 unsigned long page;
125
126 if (large) {
127 vsid = vpn >> 4;
128 page = vpn & 0xf;
129 } else {
130 vsid = vpn >> 16;
131 page = vpn & 0xffff;
132 }
133
134 return (vsid & 0x7fffffffffUL) ^ page;
135}
136
137static inline void __tlbie(unsigned long va, int large)
138{
139 /* clear top 16 bits, non SLS segment */
140 va &= ~(0xffffULL << 48);
141
142 if (large) {
143 va &= HPAGE_MASK;
144 asm volatile("tlbie %0,1" : : "r"(va) : "memory");
145 } else {
146 va &= PAGE_MASK;
147 asm volatile("tlbie %0,0" : : "r"(va) : "memory");
148 }
149}
150
151static inline void tlbie(unsigned long va, int large)
152{
153 asm volatile("ptesync": : :"memory");
154 __tlbie(va, large);
155 asm volatile("eieio; tlbsync; ptesync": : :"memory");
156}
157
158static inline void __tlbiel(unsigned long va)
159{
160 /* clear top 16 bits, non SLS segment */
161 va &= ~(0xffffULL << 48);
162 va &= PAGE_MASK;
163
164 /*
165 * Thanks to Alan Modra we are now able to use machine specific
166 * assembly instructions (like tlbiel) by using the gas -many flag.
167 * However we have to support older toolchains so for the moment
168 * we hardwire it.
169 */
170#if 0
171 asm volatile("tlbiel %0" : : "r"(va) : "memory");
172#else
173 asm volatile(".long 0x7c000224 | (%0 << 11)" : : "r"(va) : "memory");
174#endif
175}
176
177static inline void tlbiel(unsigned long va)
178{
179 asm volatile("ptesync": : :"memory");
180 __tlbiel(va);
181 asm volatile("ptesync": : :"memory");
182}
183
184/*
185 * Handle a fault by adding an HPTE. If the address can't be determined
186 * to be valid via Linux page tables, return 1. If handled return 0
187 */
188extern int __hash_page(unsigned long ea, unsigned long access,
189 unsigned long vsid, pte_t *ptep, unsigned long trap,
190 int local);
191
192extern void htab_finish_init(void);
193
David Gibson1f8d4192005-05-05 16:15:13 -0700194extern void hpte_init_native(void);
195extern void hpte_init_lpar(void);
196extern void hpte_init_iSeries(void);
197
198extern long pSeries_lpar_hpte_insert(unsigned long hpte_group,
199 unsigned long va, unsigned long prpn,
200 int secondary, unsigned long hpteflags,
201 int bolted, int large);
202extern long native_hpte_insert(unsigned long hpte_group, unsigned long va,
203 unsigned long prpn, int secondary,
204 unsigned long hpteflags, int bolted, int large);
205
Linus Torvalds1da177e2005-04-16 15:20:36 -0700206#endif /* __ASSEMBLY__ */
207
208/*
David Gibson1f8d4192005-05-05 16:15:13 -0700209 * VSID allocation
210 *
211 * We first generate a 36-bit "proto-VSID". For kernel addresses this
212 * is equal to the ESID, for user addresses it is:
213 * (context << 15) | (esid & 0x7fff)
214 *
215 * The two forms are distinguishable because the top bit is 0 for user
216 * addresses, whereas the top two bits are 1 for kernel addresses.
217 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
218 * now.
219 *
220 * The proto-VSIDs are then scrambled into real VSIDs with the
221 * multiplicative hash:
222 *
223 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
224 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
225 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
226 *
227 * This scramble is only well defined for proto-VSIDs below
228 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
229 * reserved. VSID_MULTIPLIER is prime, so in particular it is
230 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
231 * Because the modulus is 2^n-1 we can compute it efficiently without
232 * a divide or extra multiply (see below).
233 *
234 * This scheme has several advantages over older methods:
235 *
236 * - We have VSIDs allocated for every kernel address
237 * (i.e. everything above 0xC000000000000000), except the very top
238 * segment, which simplifies several things.
239 *
240 * - We allow for 15 significant bits of ESID and 20 bits of
241 * context for user addresses. i.e. 8T (43 bits) of address space for
242 * up to 1M contexts (although the page table structure and context
243 * allocation will need changes to take advantage of this).
244 *
245 * - The scramble function gives robust scattering in the hash
246 * table (at least based on some initial results). The previous
247 * method was more susceptible to pathological cases giving excessive
248 * hash collisions.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249 */
David Gibson1f8d4192005-05-05 16:15:13 -0700250/*
251 * WARNING - If you change these you must make sure the asm
252 * implementations in slb_allocate (slb_low.S), do_stab_bolted
253 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
254 *
255 * You'll also need to change the precomputed VSID values in head.S
256 * which are used by the iSeries firmware.
257 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258
259#define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
260#define VSID_BITS 36
261#define VSID_MODULUS ((1UL<<VSID_BITS)-1)
262
263#define CONTEXT_BITS 20
264#define USER_ESID_BITS 15
265
266/*
267 * This macro generates asm code to compute the VSID scramble
268 * function. Used in slb_allocate() and do_stab_bolted. The function
269 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
270 *
271 * rt = register continaing the proto-VSID and into which the
272 * VSID will be stored
273 * rx = scratch register (clobbered)
274 *
275 * - rt and rx must be different registers
276 * - The answer will end up in the low 36 bits of rt. The higher
277 * bits may contain other garbage, so you may need to mask the
278 * result.
279 */
280#define ASM_VSID_SCRAMBLE(rt, rx) \
281 lis rx,VSID_MULTIPLIER@h; \
282 ori rx,rx,VSID_MULTIPLIER@l; \
283 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
284 \
285 srdi rx,rt,VSID_BITS; \
286 clrldi rt,rt,(64-VSID_BITS); \
287 add rt,rt,rx; /* add high and low bits */ \
288 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
289 * 2^36-1+2^28-1. That in particular means that if r3 >= \
290 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
291 * the bit clear, r3 already has the answer we want, if it \
292 * doesn't, the answer is the low 36 bits of r3+1. So in all \
293 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
294 addi rx,rt,1; \
295 srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
296 add rt,rt,rx
297
David Gibson1f8d4192005-05-05 16:15:13 -0700298
299#ifndef __ASSEMBLY__
300
301typedef unsigned long mm_context_id_t;
302
303typedef struct {
304 mm_context_id_t id;
305#ifdef CONFIG_HUGETLB_PAGE
306 pgd_t *huge_pgdir;
307 u16 htlb_segs; /* bitmask */
308#endif
309} mm_context_t;
310
311
312static inline unsigned long vsid_scramble(unsigned long protovsid)
313{
314#if 0
315 /* The code below is equivalent to this function for arguments
316 * < 2^VSID_BITS, which is all this should ever be called
317 * with. However gcc is not clever enough to compute the
318 * modulus (2^n-1) without a second multiply. */
319 return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
320#else /* 1 */
321 unsigned long x;
322
323 x = protovsid * VSID_MULTIPLIER;
324 x = (x >> VSID_BITS) + (x & VSID_MODULUS);
325 return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
326#endif /* 1 */
327}
328
329/* This is only valid for addresses >= KERNELBASE */
330static inline unsigned long get_kernel_vsid(unsigned long ea)
331{
332 return vsid_scramble(ea >> SID_SHIFT);
333}
334
335/* This is only valid for user addresses (which are below 2^41) */
336static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
337{
338 return vsid_scramble((context << USER_ESID_BITS)
339 | (ea >> SID_SHIFT));
340}
341
342#endif /* __ASSEMBLY */
343
Linus Torvalds1da177e2005-04-16 15:20:36 -0700344#endif /* _PPC64_MMU_H_ */