| /* | 
 |  * Copyright (C) 2014 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "ssa_liveness_analysis.h" | 
 |  | 
 | #include "code_generator.h" | 
 | #include "nodes.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | void SsaLivenessAnalysis::Analyze() { | 
 |   LinearizeGraph(); | 
 |   NumberInstructions(); | 
 |   ComputeLiveness(); | 
 | } | 
 |  | 
 | static bool IsLoopExit(HLoopInformation* current, HLoopInformation* to) { | 
 |   // `to` is either not part of a loop, or `current` is an inner loop of `to`. | 
 |   return to == nullptr || (current != to && current->IsIn(*to)); | 
 | } | 
 |  | 
 | static bool IsLoop(HLoopInformation* info) { | 
 |   return info != nullptr; | 
 | } | 
 |  | 
 | static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) { | 
 |   return first_loop == second_loop; | 
 | } | 
 |  | 
 | static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) { | 
 |   return (inner != outer) | 
 |       && (inner != nullptr) | 
 |       && (outer != nullptr) | 
 |       && inner->IsIn(*outer); | 
 | } | 
 |  | 
 | static void VisitBlockForLinearization(HBasicBlock* block, | 
 |                                        GrowableArray<HBasicBlock*>* order, | 
 |                                        ArenaBitVector* visited) { | 
 |   if (visited->IsBitSet(block->GetBlockId())) { | 
 |     return; | 
 |   } | 
 |   visited->SetBit(block->GetBlockId()); | 
 |   size_t number_of_successors = block->GetSuccessors().Size(); | 
 |   if (number_of_successors == 0) { | 
 |     // Nothing to do. | 
 |   } else if (number_of_successors == 1) { | 
 |     VisitBlockForLinearization(block->GetSuccessors().Get(0), order, visited); | 
 |   } else { | 
 |     DCHECK_EQ(number_of_successors, 2u); | 
 |     HBasicBlock* first_successor = block->GetSuccessors().Get(0); | 
 |     HBasicBlock* second_successor = block->GetSuccessors().Get(1); | 
 |     HLoopInformation* my_loop = block->GetLoopInformation(); | 
 |     HLoopInformation* first_loop = first_successor->GetLoopInformation(); | 
 |     HLoopInformation* second_loop = second_successor->GetLoopInformation(); | 
 |  | 
 |     if (!IsLoop(my_loop)) { | 
 |       // Nothing to do. Current order is fine. | 
 |     } else if (IsLoopExit(my_loop, second_loop) && InSameLoop(my_loop, first_loop)) { | 
 |       // Visit the loop exit first in post order. | 
 |       std::swap(first_successor, second_successor); | 
 |     } else if (IsInnerLoop(my_loop, first_loop) && !IsInnerLoop(my_loop, second_loop)) { | 
 |       // Visit the inner loop last in post order. | 
 |       std::swap(first_successor, second_successor); | 
 |     } | 
 |     VisitBlockForLinearization(first_successor, order, visited); | 
 |     VisitBlockForLinearization(second_successor, order, visited); | 
 |   } | 
 |   order->Add(block); | 
 | } | 
 |  | 
 | void SsaLivenessAnalysis::LinearizeGraph() { | 
 |   // For simplicity of the implementation, we create post linear order. The order for | 
 |   // computing live ranges is the reverse of that order. | 
 |   ArenaBitVector visited(graph_.GetArena(), graph_.GetBlocks().Size(), false); | 
 |   VisitBlockForLinearization(graph_.GetEntryBlock(), &linear_post_order_, &visited); | 
 | } | 
 |  | 
 | void SsaLivenessAnalysis::NumberInstructions() { | 
 |   int ssa_index = 0; | 
 |   size_t lifetime_position = 0; | 
 |   // Each instruction gets a lifetime position, and a block gets a lifetime | 
 |   // start and end position. Non-phi instructions have a distinct lifetime position than | 
 |   // the block they are in. Phi instructions have the lifetime start of their block as | 
 |   // lifetime position. | 
 |   // | 
 |   // Because the register allocator will insert moves in the graph, we need | 
 |   // to differentiate between the start and end of an instruction. Adding 2 to | 
 |   // the lifetime position for each instruction ensures the start of an | 
 |   // instruction is different than the end of the previous instruction. | 
 |   for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) { | 
 |     HBasicBlock* block = it.Current(); | 
 |     block->SetLifetimeStart(lifetime_position); | 
 |  | 
 |     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { | 
 |       HInstruction* current = it.Current(); | 
 |       current->Accept(codegen_->GetLocationBuilder()); | 
 |       LocationSummary* locations = current->GetLocations(); | 
 |       if (locations != nullptr && locations->Out().IsValid()) { | 
 |         instructions_from_ssa_index_.Add(current); | 
 |         current->SetSsaIndex(ssa_index++); | 
 |         current->SetLiveInterval( | 
 |             new (graph_.GetArena()) LiveInterval(graph_.GetArena(), current->GetType(), current)); | 
 |       } | 
 |       current->SetLifetimePosition(lifetime_position); | 
 |     } | 
 |     lifetime_position += 2; | 
 |  | 
 |     // Add a null marker to notify we are starting a block. | 
 |     instructions_from_lifetime_position_.Add(nullptr); | 
 |  | 
 |     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { | 
 |       HInstruction* current = it.Current(); | 
 |       current->Accept(codegen_->GetLocationBuilder()); | 
 |       LocationSummary* locations = current->GetLocations(); | 
 |       if (locations != nullptr && locations->Out().IsValid()) { | 
 |         instructions_from_ssa_index_.Add(current); | 
 |         current->SetSsaIndex(ssa_index++); | 
 |         current->SetLiveInterval( | 
 |             new (graph_.GetArena()) LiveInterval(graph_.GetArena(), current->GetType(), current)); | 
 |       } | 
 |       instructions_from_lifetime_position_.Add(current); | 
 |       current->SetLifetimePosition(lifetime_position); | 
 |       lifetime_position += 2; | 
 |     } | 
 |  | 
 |     block->SetLifetimeEnd(lifetime_position); | 
 |   } | 
 |   number_of_ssa_values_ = ssa_index; | 
 | } | 
 |  | 
 | void SsaLivenessAnalysis::ComputeLiveness() { | 
 |   for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) { | 
 |     HBasicBlock* block = it.Current(); | 
 |     block_infos_.Put( | 
 |         block->GetBlockId(), | 
 |         new (graph_.GetArena()) BlockInfo(graph_.GetArena(), *block, number_of_ssa_values_)); | 
 |   } | 
 |  | 
 |   // Compute the live ranges, as well as the initial live_in, live_out, and kill sets. | 
 |   // This method does not handle backward branches for the sets, therefore live_in | 
 |   // and live_out sets are not yet correct. | 
 |   ComputeLiveRanges(); | 
 |  | 
 |   // Do a fixed point calculation to take into account backward branches, | 
 |   // that will update live_in of loop headers, and therefore live_out and live_in | 
 |   // of blocks in the loop. | 
 |   ComputeLiveInAndLiveOutSets(); | 
 | } | 
 |  | 
 | void SsaLivenessAnalysis::ComputeLiveRanges() { | 
 |   // Do a post order visit, adding inputs of instructions live in the block where | 
 |   // that instruction is defined, and killing instructions that are being visited. | 
 |   for (HLinearPostOrderIterator it(*this); !it.Done(); it.Advance()) { | 
 |     HBasicBlock* block = it.Current(); | 
 |  | 
 |     BitVector* kill = GetKillSet(*block); | 
 |     BitVector* live_in = GetLiveInSet(*block); | 
 |  | 
 |     // Set phi inputs of successors of this block corresponding to this block | 
 |     // as live_in. | 
 |     for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) { | 
 |       HBasicBlock* successor = block->GetSuccessors().Get(i); | 
 |       live_in->Union(GetLiveInSet(*successor)); | 
 |       size_t phi_input_index = successor->GetPredecessorIndexOf(block); | 
 |       for (HInstructionIterator it(successor->GetPhis()); !it.Done(); it.Advance()) { | 
 |         HInstruction* phi = it.Current(); | 
 |         HInstruction* input = phi->InputAt(phi_input_index); | 
 |         input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block); | 
 |         // A phi input whose last user is the phi dies at the end of the predecessor block, | 
 |         // and not at the phi's lifetime position. | 
 |         live_in->SetBit(input->GetSsaIndex()); | 
 |       } | 
 |     } | 
 |  | 
 |     // Add a range that covers this block to all instructions live_in because of successors. | 
 |     for (uint32_t idx : live_in->Indexes()) { | 
 |       HInstruction* current = instructions_from_ssa_index_.Get(idx); | 
 |       current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd()); | 
 |     } | 
 |  | 
 |     for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { | 
 |       HInstruction* current = it.Current(); | 
 |       if (current->HasSsaIndex()) { | 
 |         // Kill the instruction and shorten its interval. | 
 |         kill->SetBit(current->GetSsaIndex()); | 
 |         live_in->ClearBit(current->GetSsaIndex()); | 
 |         current->GetLiveInterval()->SetFrom(current->GetLifetimePosition()); | 
 |       } | 
 |  | 
 |       // All inputs of an instruction must be live. | 
 |       for (size_t i = 0, e = current->InputCount(); i < e; ++i) { | 
 |         HInstruction* input = current->InputAt(i); | 
 |         // Some instructions 'inline' their inputs, that is they do not need | 
 |         // to be materialized. | 
 |         if (input->HasSsaIndex()) { | 
 |           live_in->SetBit(input->GetSsaIndex()); | 
 |           input->GetLiveInterval()->AddUse(current, i, false); | 
 |         } | 
 |       } | 
 |  | 
 |       if (current->HasEnvironment()) { | 
 |         // All instructions in the environment must be live. | 
 |         GrowableArray<HInstruction*>* environment = current->GetEnvironment()->GetVRegs(); | 
 |         for (size_t i = 0, e = environment->Size(); i < e; ++i) { | 
 |           HInstruction* instruction = environment->Get(i); | 
 |           if (instruction != nullptr) { | 
 |             DCHECK(instruction->HasSsaIndex()); | 
 |             live_in->SetBit(instruction->GetSsaIndex()); | 
 |             instruction->GetLiveInterval()->AddUse(current, i, true); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Kill phis defined in this block. | 
 |     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { | 
 |       HInstruction* current = it.Current(); | 
 |       if (current->HasSsaIndex()) { | 
 |         kill->SetBit(current->GetSsaIndex()); | 
 |         live_in->ClearBit(current->GetSsaIndex()); | 
 |         LiveInterval* interval = current->GetLiveInterval(); | 
 |         DCHECK((interval->GetFirstRange() == nullptr) | 
 |                || (interval->GetStart() == current->GetLifetimePosition())); | 
 |         interval->SetFrom(current->GetLifetimePosition()); | 
 |       } | 
 |     } | 
 |  | 
 |     if (block->IsLoopHeader()) { | 
 |       HBasicBlock* back_edge = block->GetLoopInformation()->GetBackEdges().Get(0); | 
 |       // For all live_in instructions at the loop header, we need to create a range | 
 |       // that covers the full loop. | 
 |       for (uint32_t idx : live_in->Indexes()) { | 
 |         HInstruction* current = instructions_from_ssa_index_.Get(idx); | 
 |         current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), | 
 |                                                  back_edge->GetLifetimeEnd()); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() { | 
 |   bool changed; | 
 |   do { | 
 |     changed = false; | 
 |  | 
 |     for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) { | 
 |       const HBasicBlock& block = *it.Current(); | 
 |  | 
 |       // The live_in set depends on the kill set (which does not | 
 |       // change in this loop), and the live_out set.  If the live_out | 
 |       // set does not change, there is no need to update the live_in set. | 
 |       if (UpdateLiveOut(block) && UpdateLiveIn(block)) { | 
 |         changed = true; | 
 |       } | 
 |     } | 
 |   } while (changed); | 
 | } | 
 |  | 
 | bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) { | 
 |   BitVector* live_out = GetLiveOutSet(block); | 
 |   bool changed = false; | 
 |   // The live_out set of a block is the union of live_in sets of its successors. | 
 |   for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) { | 
 |     HBasicBlock* successor = block.GetSuccessors().Get(i); | 
 |     if (live_out->Union(GetLiveInSet(*successor))) { | 
 |       changed = true; | 
 |     } | 
 |   } | 
 |   return changed; | 
 | } | 
 |  | 
 |  | 
 | bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) { | 
 |   BitVector* live_out = GetLiveOutSet(block); | 
 |   BitVector* kill = GetKillSet(block); | 
 |   BitVector* live_in = GetLiveInSet(block); | 
 |   // If live_out is updated (because of backward branches), we need to make | 
 |   // sure instructions in live_out are also in live_in, unless they are killed | 
 |   // by this block. | 
 |   return live_in->UnionIfNotIn(live_out, kill); | 
 | } | 
 |  | 
 | }  // namespace art |