| /* | 
 |  * Copyright (C) 2011 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "base/bit_vector-inl.h" | 
 | #include "compiler_internals.h" | 
 | #include "global_value_numbering.h" | 
 | #include "local_value_numbering.h" | 
 | #include "dataflow_iterator-inl.h" | 
 | #include "dex/global_value_numbering.h" | 
 | #include "dex/quick/dex_file_method_inliner.h" | 
 | #include "dex/quick/dex_file_to_method_inliner_map.h" | 
 | #include "stack.h" | 
 | #include "utils/scoped_arena_containers.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | static unsigned int Predecessors(BasicBlock* bb) { | 
 |   return bb->predecessors->Size(); | 
 | } | 
 |  | 
 | /* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */ | 
 | void MIRGraph::SetConstant(int32_t ssa_reg, int32_t value) { | 
 |   is_constant_v_->SetBit(ssa_reg); | 
 |   constant_values_[ssa_reg] = value; | 
 | } | 
 |  | 
 | void MIRGraph::SetConstantWide(int32_t ssa_reg, int64_t value) { | 
 |   is_constant_v_->SetBit(ssa_reg); | 
 |   is_constant_v_->SetBit(ssa_reg + 1); | 
 |   constant_values_[ssa_reg] = Low32Bits(value); | 
 |   constant_values_[ssa_reg + 1] = High32Bits(value); | 
 | } | 
 |  | 
 | void MIRGraph::DoConstantPropagation(BasicBlock* bb) { | 
 |   MIR* mir; | 
 |  | 
 |   for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { | 
 |     // Skip pass if BB has MIR without SSA representation. | 
 |     if (mir->ssa_rep == nullptr) { | 
 |        return; | 
 |     } | 
 |  | 
 |     uint64_t df_attributes = GetDataFlowAttributes(mir); | 
 |  | 
 |     MIR::DecodedInstruction* d_insn = &mir->dalvikInsn; | 
 |  | 
 |     if (!(df_attributes & DF_HAS_DEFS)) continue; | 
 |  | 
 |     /* Handle instructions that set up constants directly */ | 
 |     if (df_attributes & DF_SETS_CONST) { | 
 |       if (df_attributes & DF_DA) { | 
 |         int32_t vB = static_cast<int32_t>(d_insn->vB); | 
 |         switch (d_insn->opcode) { | 
 |           case Instruction::CONST_4: | 
 |           case Instruction::CONST_16: | 
 |           case Instruction::CONST: | 
 |             SetConstant(mir->ssa_rep->defs[0], vB); | 
 |             break; | 
 |           case Instruction::CONST_HIGH16: | 
 |             SetConstant(mir->ssa_rep->defs[0], vB << 16); | 
 |             break; | 
 |           case Instruction::CONST_WIDE_16: | 
 |           case Instruction::CONST_WIDE_32: | 
 |             SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB)); | 
 |             break; | 
 |           case Instruction::CONST_WIDE: | 
 |             SetConstantWide(mir->ssa_rep->defs[0], d_insn->vB_wide); | 
 |             break; | 
 |           case Instruction::CONST_WIDE_HIGH16: | 
 |             SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB) << 48); | 
 |             break; | 
 |           default: | 
 |             break; | 
 |         } | 
 |       } | 
 |       /* Handle instructions that set up constants directly */ | 
 |     } else if (df_attributes & DF_IS_MOVE) { | 
 |       int i; | 
 |  | 
 |       for (i = 0; i < mir->ssa_rep->num_uses; i++) { | 
 |         if (!is_constant_v_->IsBitSet(mir->ssa_rep->uses[i])) break; | 
 |       } | 
 |       /* Move a register holding a constant to another register */ | 
 |       if (i == mir->ssa_rep->num_uses) { | 
 |         SetConstant(mir->ssa_rep->defs[0], constant_values_[mir->ssa_rep->uses[0]]); | 
 |         if (df_attributes & DF_A_WIDE) { | 
 |           SetConstant(mir->ssa_rep->defs[1], constant_values_[mir->ssa_rep->uses[1]]); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   /* TODO: implement code to handle arithmetic operations */ | 
 | } | 
 |  | 
 | /* Advance to next strictly dominated MIR node in an extended basic block */ | 
 | MIR* MIRGraph::AdvanceMIR(BasicBlock** p_bb, MIR* mir) { | 
 |   BasicBlock* bb = *p_bb; | 
 |   if (mir != NULL) { | 
 |     mir = mir->next; | 
 |     if (mir == NULL) { | 
 |       bb = GetBasicBlock(bb->fall_through); | 
 |       if ((bb == NULL) || Predecessors(bb) != 1) { | 
 |         mir = NULL; | 
 |       } else { | 
 |       *p_bb = bb; | 
 |       mir = bb->first_mir_insn; | 
 |       } | 
 |     } | 
 |   } | 
 |   return mir; | 
 | } | 
 |  | 
 | /* | 
 |  * To be used at an invoke mir.  If the logically next mir node represents | 
 |  * a move-result, return it.  Else, return NULL.  If a move-result exists, | 
 |  * it is required to immediately follow the invoke with no intervening | 
 |  * opcodes or incoming arcs.  However, if the result of the invoke is not | 
 |  * used, a move-result may not be present. | 
 |  */ | 
 | MIR* MIRGraph::FindMoveResult(BasicBlock* bb, MIR* mir) { | 
 |   BasicBlock* tbb = bb; | 
 |   mir = AdvanceMIR(&tbb, mir); | 
 |   while (mir != NULL) { | 
 |     if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) || | 
 |         (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) || | 
 |         (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) { | 
 |       break; | 
 |     } | 
 |     // Keep going if pseudo op, otherwise terminate | 
 |     if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) { | 
 |       mir = AdvanceMIR(&tbb, mir); | 
 |     } else { | 
 |       mir = NULL; | 
 |     } | 
 |   } | 
 |   return mir; | 
 | } | 
 |  | 
 | BasicBlock* MIRGraph::NextDominatedBlock(BasicBlock* bb) { | 
 |   if (bb->block_type == kDead) { | 
 |     return NULL; | 
 |   } | 
 |   DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode) | 
 |       || (bb->block_type == kExitBlock)); | 
 |   BasicBlock* bb_taken = GetBasicBlock(bb->taken); | 
 |   BasicBlock* bb_fall_through = GetBasicBlock(bb->fall_through); | 
 |   if (((bb_fall_through == NULL) && (bb_taken != NULL)) && | 
 |       ((bb_taken->block_type == kDalvikByteCode) || (bb_taken->block_type == kExitBlock))) { | 
 |     // Follow simple unconditional branches. | 
 |     bb = bb_taken; | 
 |   } else { | 
 |     // Follow simple fallthrough | 
 |     bb = (bb_taken != NULL) ? NULL : bb_fall_through; | 
 |   } | 
 |   if (bb == NULL || (Predecessors(bb) != 1)) { | 
 |     return NULL; | 
 |   } | 
 |   DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock)); | 
 |   return bb; | 
 | } | 
 |  | 
 | static MIR* FindPhi(BasicBlock* bb, int ssa_name) { | 
 |   for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { | 
 |     if (static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) { | 
 |       for (int i = 0; i < mir->ssa_rep->num_uses; i++) { | 
 |         if (mir->ssa_rep->uses[i] == ssa_name) { | 
 |           return mir; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   return NULL; | 
 | } | 
 |  | 
 | static SelectInstructionKind SelectKind(MIR* mir) { | 
 |   switch (mir->dalvikInsn.opcode) { | 
 |     case Instruction::MOVE: | 
 |     case Instruction::MOVE_OBJECT: | 
 |     case Instruction::MOVE_16: | 
 |     case Instruction::MOVE_OBJECT_16: | 
 |     case Instruction::MOVE_FROM16: | 
 |     case Instruction::MOVE_OBJECT_FROM16: | 
 |       return kSelectMove; | 
 |     case Instruction::CONST: | 
 |     case Instruction::CONST_4: | 
 |     case Instruction::CONST_16: | 
 |       return kSelectConst; | 
 |     case Instruction::GOTO: | 
 |     case Instruction::GOTO_16: | 
 |     case Instruction::GOTO_32: | 
 |       return kSelectGoto; | 
 |     default: | 
 |       return kSelectNone; | 
 |   } | 
 | } | 
 |  | 
 | static constexpr ConditionCode kIfCcZConditionCodes[] = { | 
 |     kCondEq, kCondNe, kCondLt, kCondGe, kCondGt, kCondLe | 
 | }; | 
 |  | 
 | COMPILE_ASSERT(arraysize(kIfCcZConditionCodes) == Instruction::IF_LEZ - Instruction::IF_EQZ + 1, | 
 |                if_ccz_ccodes_size1); | 
 |  | 
 | static constexpr bool IsInstructionIfCcZ(Instruction::Code opcode) { | 
 |   return Instruction::IF_EQZ <= opcode && opcode <= Instruction::IF_LEZ; | 
 | } | 
 |  | 
 | static constexpr ConditionCode ConditionCodeForIfCcZ(Instruction::Code opcode) { | 
 |   return kIfCcZConditionCodes[opcode - Instruction::IF_EQZ]; | 
 | } | 
 |  | 
 | COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_EQZ) == kCondEq, check_if_eqz_ccode); | 
 | COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_NEZ) == kCondNe, check_if_nez_ccode); | 
 | COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LTZ) == kCondLt, check_if_ltz_ccode); | 
 | COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GEZ) == kCondGe, check_if_gez_ccode); | 
 | COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GTZ) == kCondGt, check_if_gtz_ccode); | 
 | COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LEZ) == kCondLe, check_if_lez_ccode); | 
 |  | 
 | int MIRGraph::GetSSAUseCount(int s_reg) { | 
 |   return raw_use_counts_.Get(s_reg); | 
 | } | 
 |  | 
 | size_t MIRGraph::GetNumBytesForSpecialTemps() const { | 
 |   // This logic is written with assumption that Method* is only special temp. | 
 |   DCHECK_EQ(max_available_special_compiler_temps_, 1u); | 
 |   return sizeof(StackReference<mirror::ArtMethod>); | 
 | } | 
 |  | 
 | size_t MIRGraph::GetNumAvailableVRTemps() { | 
 |   // First take into account all temps reserved for backend. | 
 |   if (max_available_non_special_compiler_temps_ < reserved_temps_for_backend_) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Calculate remaining ME temps available. | 
 |   size_t remaining_me_temps = max_available_non_special_compiler_temps_ - reserved_temps_for_backend_; | 
 |  | 
 |   if (num_non_special_compiler_temps_ >= remaining_me_temps) { | 
 |     return 0; | 
 |   } else { | 
 |     return remaining_me_temps - num_non_special_compiler_temps_; | 
 |   } | 
 | } | 
 |  | 
 | // FIXME - will probably need to revisit all uses of this, as type not defined. | 
 | static const RegLocation temp_loc = {kLocCompilerTemp, | 
 |                                      0, 1 /*defined*/, 0, 0, 0, 0, 0, 1 /*home*/, | 
 |                                      RegStorage(), INVALID_SREG, INVALID_SREG}; | 
 |  | 
 | CompilerTemp* MIRGraph::GetNewCompilerTemp(CompilerTempType ct_type, bool wide) { | 
 |   // Once the compiler temps have been committed, new ones cannot be requested anymore. | 
 |   DCHECK_EQ(compiler_temps_committed_, false); | 
 |   // Make sure that reserved for BE set is sane. | 
 |   DCHECK_LE(reserved_temps_for_backend_, max_available_non_special_compiler_temps_); | 
 |  | 
 |   bool verbose = cu_->verbose; | 
 |   const char* ct_type_str = nullptr; | 
 |  | 
 |   if (verbose) { | 
 |     switch (ct_type) { | 
 |       case kCompilerTempBackend: | 
 |         ct_type_str = "backend"; | 
 |         break; | 
 |       case kCompilerTempSpecialMethodPtr: | 
 |         ct_type_str = "method*"; | 
 |         break; | 
 |       case kCompilerTempVR: | 
 |         ct_type_str = "VR"; | 
 |         break; | 
 |       default: | 
 |         ct_type_str = "unknown"; | 
 |         break; | 
 |     } | 
 |     LOG(INFO) << "CompilerTemps: A compiler temp of type " << ct_type_str << " that is " | 
 |         << (wide ? "wide is being requested." : "not wide is being requested."); | 
 |   } | 
 |  | 
 |   CompilerTemp *compiler_temp = static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp), | 
 |                                                             kArenaAllocRegAlloc)); | 
 |  | 
 |   // Create the type of temp requested. Special temps need special handling because | 
 |   // they have a specific virtual register assignment. | 
 |   if (ct_type == kCompilerTempSpecialMethodPtr) { | 
 |     // This has a special location on stack which is 32-bit or 64-bit depending | 
 |     // on mode. However, we don't want to overlap with non-special section | 
 |     // and thus even for 64-bit, we allow only a non-wide temp to be requested. | 
 |     DCHECK_EQ(wide, false); | 
 |  | 
 |     // The vreg is always the first special temp for method ptr. | 
 |     compiler_temp->v_reg = GetFirstSpecialTempVR(); | 
 |  | 
 |   } else if (ct_type == kCompilerTempBackend) { | 
 |     requested_backend_temp_ = true; | 
 |  | 
 |     // Make sure that we are not exceeding temps reserved for BE. | 
 |     // Since VR temps cannot be requested once the BE temps are requested, we | 
 |     // allow reservation of VR temps as well for BE. We | 
 |     size_t available_temps = reserved_temps_for_backend_ + GetNumAvailableVRTemps(); | 
 |     if (available_temps <= 0 || (available_temps <= 1 && wide)) { | 
 |       if (verbose) { | 
 |         LOG(INFO) << "CompilerTemps: Not enough temp(s) of type " << ct_type_str << " are available."; | 
 |       } | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     // Update the remaining reserved temps since we have now used them. | 
 |     // Note that the code below is actually subtracting to remove them from reserve | 
 |     // once they have been claimed. It is careful to not go below zero. | 
 |     if (reserved_temps_for_backend_ >= 1) { | 
 |       reserved_temps_for_backend_--; | 
 |     } | 
 |     if (wide && reserved_temps_for_backend_ >= 1) { | 
 |       reserved_temps_for_backend_--; | 
 |     } | 
 |  | 
 |     // The new non-special compiler temp must receive a unique v_reg. | 
 |     compiler_temp->v_reg = GetFirstNonSpecialTempVR() + num_non_special_compiler_temps_; | 
 |     num_non_special_compiler_temps_++; | 
 |   } else if (ct_type == kCompilerTempVR) { | 
 |     // Once we start giving out BE temps, we don't allow anymore ME temps to be requested. | 
 |     // This is done in order to prevent problems with ssa since these structures are allocated | 
 |     // and managed by the ME. | 
 |     DCHECK_EQ(requested_backend_temp_, false); | 
 |  | 
 |     // There is a limit to the number of non-special temps so check to make sure it wasn't exceeded. | 
 |     size_t available_temps = GetNumAvailableVRTemps(); | 
 |     if (available_temps <= 0 || (available_temps <= 1 && wide)) { | 
 |       if (verbose) { | 
 |         LOG(INFO) << "CompilerTemps: Not enough temp(s) of type " << ct_type_str << " are available."; | 
 |       } | 
 |       return nullptr; | 
 |     } | 
 |  | 
 |     // The new non-special compiler temp must receive a unique v_reg. | 
 |     compiler_temp->v_reg = GetFirstNonSpecialTempVR() + num_non_special_compiler_temps_; | 
 |     num_non_special_compiler_temps_++; | 
 |   } else { | 
 |     UNIMPLEMENTED(FATAL) << "No handling for compiler temp type " << ct_type_str << "."; | 
 |   } | 
 |  | 
 |   // We allocate an sreg as well to make developer life easier. | 
 |   // However, if this is requested from an ME pass that will recalculate ssa afterwards, | 
 |   // this sreg is no longer valid. The caller should be aware of this. | 
 |   compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg); | 
 |  | 
 |   if (verbose) { | 
 |     LOG(INFO) << "CompilerTemps: New temp of type " << ct_type_str << " with v" << compiler_temp->v_reg | 
 |         << " and s" << compiler_temp->s_reg_low << " has been created."; | 
 |   } | 
 |  | 
 |   if (wide) { | 
 |     // Only non-special temps are handled as wide for now. | 
 |     // Note that the number of non special temps is incremented below. | 
 |     DCHECK(ct_type == kCompilerTempBackend || ct_type == kCompilerTempVR); | 
 |  | 
 |     // Ensure that the two registers are consecutive. | 
 |     int ssa_reg_low = compiler_temp->s_reg_low; | 
 |     int ssa_reg_high = AddNewSReg(compiler_temp->v_reg + 1); | 
 |     num_non_special_compiler_temps_++; | 
 |  | 
 |     if (verbose) { | 
 |       LOG(INFO) << "CompilerTemps: The wide part of temp of type " << ct_type_str << " is v" | 
 |           << compiler_temp->v_reg + 1 << " and s" << ssa_reg_high << "."; | 
 |     } | 
 |  | 
 |     if (reg_location_ != nullptr) { | 
 |       reg_location_[ssa_reg_high] = temp_loc; | 
 |       reg_location_[ssa_reg_high].high_word = true; | 
 |       reg_location_[ssa_reg_high].s_reg_low = ssa_reg_low; | 
 |       reg_location_[ssa_reg_high].wide = true; | 
 |     } | 
 |   } | 
 |  | 
 |   // If the register locations have already been allocated, add the information | 
 |   // about the temp. We will not overflow because they have been initialized | 
 |   // to support the maximum number of temps. For ME temps that have multiple | 
 |   // ssa versions, the structures below will be expanded on the post pass cleanup. | 
 |   if (reg_location_ != nullptr) { | 
 |     int ssa_reg_low = compiler_temp->s_reg_low; | 
 |     reg_location_[ssa_reg_low] = temp_loc; | 
 |     reg_location_[ssa_reg_low].s_reg_low = ssa_reg_low; | 
 |     reg_location_[ssa_reg_low].wide = wide; | 
 |   } | 
 |  | 
 |   return compiler_temp; | 
 | } | 
 |  | 
 | /* Do some MIR-level extended basic block optimizations */ | 
 | bool MIRGraph::BasicBlockOpt(BasicBlock* bb) { | 
 |   if (bb->block_type == kDead) { | 
 |     return true; | 
 |   } | 
 |   // Don't do a separate LVN if we did the GVN. | 
 |   bool use_lvn = bb->use_lvn && (cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u; | 
 |   std::unique_ptr<ScopedArenaAllocator> allocator; | 
 |   std::unique_ptr<GlobalValueNumbering> global_valnum; | 
 |   std::unique_ptr<LocalValueNumbering> local_valnum; | 
 |   if (use_lvn) { | 
 |     allocator.reset(ScopedArenaAllocator::Create(&cu_->arena_stack)); | 
 |     global_valnum.reset(new (allocator.get()) GlobalValueNumbering(cu_, allocator.get())); | 
 |     local_valnum.reset(new (allocator.get()) LocalValueNumbering(global_valnum.get(), bb->id, | 
 |                                                                  allocator.get())); | 
 |   } | 
 |   while (bb != NULL) { | 
 |     for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { | 
 |       // TUNING: use the returned value number for CSE. | 
 |       if (use_lvn) { | 
 |         local_valnum->GetValueNumber(mir); | 
 |       } | 
 |       // Look for interesting opcodes, skip otherwise | 
 |       Instruction::Code opcode = mir->dalvikInsn.opcode; | 
 |       switch (opcode) { | 
 |         case Instruction::CMPL_FLOAT: | 
 |         case Instruction::CMPL_DOUBLE: | 
 |         case Instruction::CMPG_FLOAT: | 
 |         case Instruction::CMPG_DOUBLE: | 
 |         case Instruction::CMP_LONG: | 
 |           if ((cu_->disable_opt & (1 << kBranchFusing)) != 0) { | 
 |             // Bitcode doesn't allow this optimization. | 
 |             break; | 
 |           } | 
 |           if (mir->next != NULL) { | 
 |             MIR* mir_next = mir->next; | 
 |             // Make sure result of cmp is used by next insn and nowhere else | 
 |             if (IsInstructionIfCcZ(mir_next->dalvikInsn.opcode) && | 
 |                 (mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) && | 
 |                 (GetSSAUseCount(mir->ssa_rep->defs[0]) == 1)) { | 
 |               mir_next->meta.ccode = ConditionCodeForIfCcZ(mir_next->dalvikInsn.opcode); | 
 |               switch (opcode) { | 
 |                 case Instruction::CMPL_FLOAT: | 
 |                   mir_next->dalvikInsn.opcode = | 
 |                       static_cast<Instruction::Code>(kMirOpFusedCmplFloat); | 
 |                   break; | 
 |                 case Instruction::CMPL_DOUBLE: | 
 |                   mir_next->dalvikInsn.opcode = | 
 |                       static_cast<Instruction::Code>(kMirOpFusedCmplDouble); | 
 |                   break; | 
 |                 case Instruction::CMPG_FLOAT: | 
 |                   mir_next->dalvikInsn.opcode = | 
 |                       static_cast<Instruction::Code>(kMirOpFusedCmpgFloat); | 
 |                   break; | 
 |                 case Instruction::CMPG_DOUBLE: | 
 |                   mir_next->dalvikInsn.opcode = | 
 |                       static_cast<Instruction::Code>(kMirOpFusedCmpgDouble); | 
 |                   break; | 
 |                 case Instruction::CMP_LONG: | 
 |                   mir_next->dalvikInsn.opcode = | 
 |                       static_cast<Instruction::Code>(kMirOpFusedCmpLong); | 
 |                   break; | 
 |                 default: LOG(ERROR) << "Unexpected opcode: " << opcode; | 
 |               } | 
 |               mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop); | 
 |               // Copy the SSA information that is relevant. | 
 |               mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses; | 
 |               mir_next->ssa_rep->uses = mir->ssa_rep->uses; | 
 |               mir_next->ssa_rep->fp_use = mir->ssa_rep->fp_use; | 
 |               mir_next->ssa_rep->num_defs = 0; | 
 |               mir->ssa_rep->num_uses = 0; | 
 |               mir->ssa_rep->num_defs = 0; | 
 |               // Copy in the decoded instruction information for potential SSA re-creation. | 
 |               mir_next->dalvikInsn.vA = mir->dalvikInsn.vB; | 
 |               mir_next->dalvikInsn.vB = mir->dalvikInsn.vC; | 
 |             } | 
 |           } | 
 |           break; | 
 |         case Instruction::GOTO: | 
 |         case Instruction::GOTO_16: | 
 |         case Instruction::GOTO_32: | 
 |         case Instruction::IF_EQ: | 
 |         case Instruction::IF_NE: | 
 |         case Instruction::IF_LT: | 
 |         case Instruction::IF_GE: | 
 |         case Instruction::IF_GT: | 
 |         case Instruction::IF_LE: | 
 |         case Instruction::IF_EQZ: | 
 |         case Instruction::IF_NEZ: | 
 |         case Instruction::IF_LTZ: | 
 |         case Instruction::IF_GEZ: | 
 |         case Instruction::IF_GTZ: | 
 |         case Instruction::IF_LEZ: | 
 |           // If we've got a backwards branch to return, no need to suspend check. | 
 |           if ((IsBackedge(bb, bb->taken) && GetBasicBlock(bb->taken)->dominates_return) || | 
 |               (IsBackedge(bb, bb->fall_through) && | 
 |                           GetBasicBlock(bb->fall_through)->dominates_return)) { | 
 |             mir->optimization_flags |= MIR_IGNORE_SUSPEND_CHECK; | 
 |             if (cu_->verbose) { | 
 |               LOG(INFO) << "Suppressed suspend check on branch to return at 0x" << std::hex | 
 |                         << mir->offset; | 
 |             } | 
 |           } | 
 |           break; | 
 |         default: | 
 |           break; | 
 |       } | 
 |       // Is this the select pattern? | 
 |       // TODO: flesh out support for Mips.  NOTE: llvm's select op doesn't quite work here. | 
 |       // TUNING: expand to support IF_xx compare & branches | 
 |       if (!cu_->compiler->IsPortable() && | 
 |           (cu_->instruction_set == kArm64 || cu_->instruction_set == kThumb2 || | 
 |            cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) && | 
 |           IsInstructionIfCcZ(mir->dalvikInsn.opcode)) { | 
 |         BasicBlock* ft = GetBasicBlock(bb->fall_through); | 
 |         DCHECK(ft != NULL); | 
 |         BasicBlock* ft_ft = GetBasicBlock(ft->fall_through); | 
 |         BasicBlock* ft_tk = GetBasicBlock(ft->taken); | 
 |  | 
 |         BasicBlock* tk = GetBasicBlock(bb->taken); | 
 |         DCHECK(tk != NULL); | 
 |         BasicBlock* tk_ft = GetBasicBlock(tk->fall_through); | 
 |         BasicBlock* tk_tk = GetBasicBlock(tk->taken); | 
 |  | 
 |         /* | 
 |          * In the select pattern, the taken edge goes to a block that unconditionally | 
 |          * transfers to the rejoin block and the fall_though edge goes to a block that | 
 |          * unconditionally falls through to the rejoin block. | 
 |          */ | 
 |         if ((tk_ft == NULL) && (ft_tk == NULL) && (tk_tk == ft_ft) && | 
 |             (Predecessors(tk) == 1) && (Predecessors(ft) == 1)) { | 
 |           /* | 
 |            * Okay - we have the basic diamond shape.  At the very least, we can eliminate the | 
 |            * suspend check on the taken-taken branch back to the join point. | 
 |            */ | 
 |           if (SelectKind(tk->last_mir_insn) == kSelectGoto) { | 
 |               tk->last_mir_insn->optimization_flags |= (MIR_IGNORE_SUSPEND_CHECK); | 
 |           } | 
 |  | 
 |           // TODO: Add logic for LONG. | 
 |           // Are the block bodies something we can handle? | 
 |           if ((ft->first_mir_insn == ft->last_mir_insn) && | 
 |               (tk->first_mir_insn != tk->last_mir_insn) && | 
 |               (tk->first_mir_insn->next == tk->last_mir_insn) && | 
 |               ((SelectKind(ft->first_mir_insn) == kSelectMove) || | 
 |               (SelectKind(ft->first_mir_insn) == kSelectConst)) && | 
 |               (SelectKind(ft->first_mir_insn) == SelectKind(tk->first_mir_insn)) && | 
 |               (SelectKind(tk->last_mir_insn) == kSelectGoto)) { | 
 |             // Almost there.  Are the instructions targeting the same vreg? | 
 |             MIR* if_true = tk->first_mir_insn; | 
 |             MIR* if_false = ft->first_mir_insn; | 
 |             // It's possible that the target of the select isn't used - skip those (rare) cases. | 
 |             MIR* phi = FindPhi(tk_tk, if_true->ssa_rep->defs[0]); | 
 |             if ((phi != NULL) && (if_true->dalvikInsn.vA == if_false->dalvikInsn.vA)) { | 
 |               /* | 
 |                * We'll convert the IF_EQZ/IF_NEZ to a SELECT.  We need to find the | 
 |                * Phi node in the merge block and delete it (while using the SSA name | 
 |                * of the merge as the target of the SELECT.  Delete both taken and | 
 |                * fallthrough blocks, and set fallthrough to merge block. | 
 |                * NOTE: not updating other dataflow info (no longer used at this point). | 
 |                * If this changes, need to update i_dom, etc. here (and in CombineBlocks). | 
 |                */ | 
 |               mir->meta.ccode = ConditionCodeForIfCcZ(mir->dalvikInsn.opcode); | 
 |               mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpSelect); | 
 |               bool const_form = (SelectKind(if_true) == kSelectConst); | 
 |               if ((SelectKind(if_true) == kSelectMove)) { | 
 |                 if (IsConst(if_true->ssa_rep->uses[0]) && | 
 |                     IsConst(if_false->ssa_rep->uses[0])) { | 
 |                     const_form = true; | 
 |                     if_true->dalvikInsn.vB = ConstantValue(if_true->ssa_rep->uses[0]); | 
 |                     if_false->dalvikInsn.vB = ConstantValue(if_false->ssa_rep->uses[0]); | 
 |                 } | 
 |               } | 
 |               if (const_form) { | 
 |                 /* | 
 |                  * TODO: If both constants are the same value, then instead of generating | 
 |                  * a select, we should simply generate a const bytecode. This should be | 
 |                  * considered after inlining which can lead to CFG of this form. | 
 |                  */ | 
 |                 // "true" set val in vB | 
 |                 mir->dalvikInsn.vB = if_true->dalvikInsn.vB; | 
 |                 // "false" set val in vC | 
 |                 mir->dalvikInsn.vC = if_false->dalvikInsn.vB; | 
 |               } else { | 
 |                 DCHECK_EQ(SelectKind(if_true), kSelectMove); | 
 |                 DCHECK_EQ(SelectKind(if_false), kSelectMove); | 
 |                 int* src_ssa = | 
 |                     static_cast<int*>(arena_->Alloc(sizeof(int) * 3, kArenaAllocDFInfo)); | 
 |                 src_ssa[0] = mir->ssa_rep->uses[0]; | 
 |                 src_ssa[1] = if_true->ssa_rep->uses[0]; | 
 |                 src_ssa[2] = if_false->ssa_rep->uses[0]; | 
 |                 mir->ssa_rep->uses = src_ssa; | 
 |                 mir->ssa_rep->num_uses = 3; | 
 |               } | 
 |               mir->ssa_rep->num_defs = 1; | 
 |               mir->ssa_rep->defs = | 
 |                   static_cast<int*>(arena_->Alloc(sizeof(int) * 1, kArenaAllocDFInfo)); | 
 |               mir->ssa_rep->fp_def = | 
 |                   static_cast<bool*>(arena_->Alloc(sizeof(bool) * 1, kArenaAllocDFInfo)); | 
 |               mir->ssa_rep->fp_def[0] = if_true->ssa_rep->fp_def[0]; | 
 |               // Match type of uses to def. | 
 |               mir->ssa_rep->fp_use = | 
 |                   static_cast<bool*>(arena_->Alloc(sizeof(bool) * mir->ssa_rep->num_uses, | 
 |                                                    kArenaAllocDFInfo)); | 
 |               for (int i = 0; i < mir->ssa_rep->num_uses; i++) { | 
 |                 mir->ssa_rep->fp_use[i] = mir->ssa_rep->fp_def[0]; | 
 |               } | 
 |               /* | 
 |                * There is usually a Phi node in the join block for our two cases.  If the | 
 |                * Phi node only contains our two cases as input, we will use the result | 
 |                * SSA name of the Phi node as our select result and delete the Phi.  If | 
 |                * the Phi node has more than two operands, we will arbitrarily use the SSA | 
 |                * name of the "true" path, delete the SSA name of the "false" path from the | 
 |                * Phi node (and fix up the incoming arc list). | 
 |                */ | 
 |               if (phi->ssa_rep->num_uses == 2) { | 
 |                 mir->ssa_rep->defs[0] = phi->ssa_rep->defs[0]; | 
 |                 phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop); | 
 |               } else { | 
 |                 int dead_def = if_false->ssa_rep->defs[0]; | 
 |                 int live_def = if_true->ssa_rep->defs[0]; | 
 |                 mir->ssa_rep->defs[0] = live_def; | 
 |                 BasicBlockId* incoming = phi->meta.phi_incoming; | 
 |                 for (int i = 0; i < phi->ssa_rep->num_uses; i++) { | 
 |                   if (phi->ssa_rep->uses[i] == live_def) { | 
 |                     incoming[i] = bb->id; | 
 |                   } | 
 |                 } | 
 |                 for (int i = 0; i < phi->ssa_rep->num_uses; i++) { | 
 |                   if (phi->ssa_rep->uses[i] == dead_def) { | 
 |                     int last_slot = phi->ssa_rep->num_uses - 1; | 
 |                     phi->ssa_rep->uses[i] = phi->ssa_rep->uses[last_slot]; | 
 |                     incoming[i] = incoming[last_slot]; | 
 |                   } | 
 |                 } | 
 |               } | 
 |               phi->ssa_rep->num_uses--; | 
 |               bb->taken = NullBasicBlockId; | 
 |               tk->block_type = kDead; | 
 |               for (MIR* tmir = ft->first_mir_insn; tmir != NULL; tmir = tmir->next) { | 
 |                 tmir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop); | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     bb = ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) ? NextDominatedBlock(bb) : NULL; | 
 |   } | 
 |   if (use_lvn && UNLIKELY(!global_valnum->Good())) { | 
 |     LOG(WARNING) << "LVN overflow in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Collect stats on number of checks removed */ | 
 | void MIRGraph::CountChecks(struct BasicBlock* bb) { | 
 |   if (bb->data_flow_info != NULL) { | 
 |     for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { | 
 |       if (mir->ssa_rep == NULL) { | 
 |         continue; | 
 |       } | 
 |       uint64_t df_attributes = GetDataFlowAttributes(mir); | 
 |       if (df_attributes & DF_HAS_NULL_CHKS) { | 
 |         checkstats_->null_checks++; | 
 |         if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) { | 
 |           checkstats_->null_checks_eliminated++; | 
 |         } | 
 |       } | 
 |       if (df_attributes & DF_HAS_RANGE_CHKS) { | 
 |         checkstats_->range_checks++; | 
 |         if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) { | 
 |           checkstats_->range_checks_eliminated++; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /* Try to make common case the fallthrough path. */ | 
 | bool MIRGraph::LayoutBlocks(BasicBlock* bb) { | 
 |   // TODO: For now, just looking for direct throws.  Consider generalizing for profile feedback. | 
 |   if (!bb->explicit_throw) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // If we visited it, we are done. | 
 |   if (bb->visited) { | 
 |     return false; | 
 |   } | 
 |   bb->visited = true; | 
 |  | 
 |   BasicBlock* walker = bb; | 
 |   while (true) { | 
 |     // Check termination conditions. | 
 |     if ((walker->block_type == kEntryBlock) || (Predecessors(walker) != 1)) { | 
 |       break; | 
 |     } | 
 |     BasicBlock* prev = GetBasicBlock(walker->predecessors->Get(0)); | 
 |  | 
 |     // If we visited the predecessor, we are done. | 
 |     if (prev->visited) { | 
 |       return false; | 
 |     } | 
 |     prev->visited = true; | 
 |  | 
 |     if (prev->conditional_branch) { | 
 |       if (GetBasicBlock(prev->fall_through) == walker) { | 
 |         // Already done - return. | 
 |         break; | 
 |       } | 
 |       DCHECK_EQ(walker, GetBasicBlock(prev->taken)); | 
 |       // Got one.  Flip it and exit. | 
 |       Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode; | 
 |       switch (opcode) { | 
 |         case Instruction::IF_EQ: opcode = Instruction::IF_NE; break; | 
 |         case Instruction::IF_NE: opcode = Instruction::IF_EQ; break; | 
 |         case Instruction::IF_LT: opcode = Instruction::IF_GE; break; | 
 |         case Instruction::IF_GE: opcode = Instruction::IF_LT; break; | 
 |         case Instruction::IF_GT: opcode = Instruction::IF_LE; break; | 
 |         case Instruction::IF_LE: opcode = Instruction::IF_GT; break; | 
 |         case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break; | 
 |         case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break; | 
 |         case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break; | 
 |         case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break; | 
 |         case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break; | 
 |         case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break; | 
 |         default: LOG(FATAL) << "Unexpected opcode " << opcode; | 
 |       } | 
 |       prev->last_mir_insn->dalvikInsn.opcode = opcode; | 
 |       BasicBlockId t_bb = prev->taken; | 
 |       prev->taken = prev->fall_through; | 
 |       prev->fall_through = t_bb; | 
 |       break; | 
 |     } | 
 |     walker = prev; | 
 |  | 
 |     if (walker->visited) { | 
 |       break; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /* Combine any basic blocks terminated by instructions that we now know can't throw */ | 
 | void MIRGraph::CombineBlocks(struct BasicBlock* bb) { | 
 |   // Loop here to allow combining a sequence of blocks | 
 |   while (true) { | 
 |     // Check termination conditions | 
 |     if ((bb->first_mir_insn == NULL) | 
 |         || (bb->data_flow_info == NULL) | 
 |         || (bb->block_type == kExceptionHandling) | 
 |         || (bb->block_type == kExitBlock) | 
 |         || (bb->block_type == kDead) | 
 |         || (bb->taken == NullBasicBlockId) | 
 |         || (GetBasicBlock(bb->taken)->block_type != kExceptionHandling) | 
 |         || (bb->successor_block_list_type != kNotUsed) | 
 |         || (static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) != kMirOpCheck)) { | 
 |       break; | 
 |     } | 
 |  | 
 |     // Test the kMirOpCheck instruction | 
 |     MIR* mir = bb->last_mir_insn; | 
 |     // Grab the attributes from the paired opcode | 
 |     MIR* throw_insn = mir->meta.throw_insn; | 
 |     uint64_t df_attributes = GetDataFlowAttributes(throw_insn); | 
 |     bool can_combine = true; | 
 |     if (df_attributes & DF_HAS_NULL_CHKS) { | 
 |       can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0); | 
 |     } | 
 |     if (df_attributes & DF_HAS_RANGE_CHKS) { | 
 |       can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0); | 
 |     } | 
 |     if (!can_combine) { | 
 |       break; | 
 |     } | 
 |     // OK - got one.  Combine | 
 |     BasicBlock* bb_next = GetBasicBlock(bb->fall_through); | 
 |     DCHECK(!bb_next->catch_entry); | 
 |     DCHECK_EQ(Predecessors(bb_next), 1U); | 
 |     // Overwrite the kOpCheck insn with the paired opcode | 
 |     DCHECK_EQ(bb_next->first_mir_insn, throw_insn); | 
 |     *bb->last_mir_insn = *throw_insn; | 
 |     // Use the successor info from the next block | 
 |     bb->successor_block_list_type = bb_next->successor_block_list_type; | 
 |     bb->successor_blocks = bb_next->successor_blocks; | 
 |     // Use the ending block linkage from the next block | 
 |     bb->fall_through = bb_next->fall_through; | 
 |     GetBasicBlock(bb->taken)->block_type = kDead;  // Kill the unused exception block | 
 |     bb->taken = bb_next->taken; | 
 |     // Include the rest of the instructions | 
 |     bb->last_mir_insn = bb_next->last_mir_insn; | 
 |     /* | 
 |      * If lower-half of pair of blocks to combine contained | 
 |      * a return or a conditional branch or an explicit throw, | 
 |      * move the flag to the newly combined block. | 
 |      */ | 
 |     bb->terminated_by_return = bb_next->terminated_by_return; | 
 |     bb->conditional_branch = bb_next->conditional_branch; | 
 |     bb->explicit_throw = bb_next->explicit_throw; | 
 |  | 
 |     /* | 
 |      * NOTE: we aren't updating all dataflow info here.  Should either make sure this pass | 
 |      * happens after uses of i_dominated, dom_frontier or update the dataflow info here. | 
 |      */ | 
 |  | 
 |     // Kill bb_next and remap now-dead id to parent | 
 |     bb_next->block_type = kDead; | 
 |     block_id_map_.Overwrite(bb_next->id, bb->id); | 
 |  | 
 |     // Now, loop back and see if we can keep going | 
 |   } | 
 | } | 
 |  | 
 | void MIRGraph::EliminateNullChecksAndInferTypesStart() { | 
 |   if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) { | 
 |     if (kIsDebugBuild) { | 
 |       AllNodesIterator iter(this); | 
 |       for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { | 
 |         CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr); | 
 |       } | 
 |     } | 
 |  | 
 |     DCHECK(temp_scoped_alloc_.get() == nullptr); | 
 |     temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack)); | 
 |     temp_bit_vector_size_ = GetNumSSARegs(); | 
 |     temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector( | 
 |         temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapTempSSARegisterV); | 
 |   } | 
 | } | 
 |  | 
 | /* | 
 |  * Eliminate unnecessary null checks for a basic block.   Also, while we're doing | 
 |  * an iterative walk go ahead and perform type and size inference. | 
 |  */ | 
 | bool MIRGraph::EliminateNullChecksAndInferTypes(BasicBlock* bb) { | 
 |   if (bb->data_flow_info == NULL) return false; | 
 |   bool infer_changed = false; | 
 |   bool do_nce = ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0); | 
 |  | 
 |   ArenaBitVector* ssa_regs_to_check = temp_bit_vector_; | 
 |   if (do_nce) { | 
 |     /* | 
 |      * Set initial state. Catch blocks don't need any special treatment. | 
 |      */ | 
 |     if (bb->block_type == kEntryBlock) { | 
 |       ssa_regs_to_check->ClearAllBits(); | 
 |       // Assume all ins are objects. | 
 |       for (uint16_t in_reg = GetFirstInVR(); | 
 |            in_reg < GetNumOfCodeVRs(); in_reg++) { | 
 |         ssa_regs_to_check->SetBit(in_reg); | 
 |       } | 
 |       if ((cu_->access_flags & kAccStatic) == 0) { | 
 |         // If non-static method, mark "this" as non-null | 
 |         int this_reg = GetFirstInVR(); | 
 |         ssa_regs_to_check->ClearBit(this_reg); | 
 |       } | 
 |     } else if (bb->predecessors->Size() == 1) { | 
 |       BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0)); | 
 |       // pred_bb must have already been processed at least once. | 
 |       DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr); | 
 |       ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v); | 
 |       if (pred_bb->block_type == kDalvikByteCode) { | 
 |         // Check to see if predecessor had an explicit null-check. | 
 |         MIR* last_insn = pred_bb->last_mir_insn; | 
 |         if (last_insn != nullptr) { | 
 |           Instruction::Code last_opcode = last_insn->dalvikInsn.opcode; | 
 |           if (last_opcode == Instruction::IF_EQZ) { | 
 |             if (pred_bb->fall_through == bb->id) { | 
 |               // The fall-through of a block following a IF_EQZ, set the vA of the IF_EQZ to show that | 
 |               // it can't be null. | 
 |               ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]); | 
 |             } | 
 |           } else if (last_opcode == Instruction::IF_NEZ) { | 
 |             if (pred_bb->taken == bb->id) { | 
 |               // The taken block following a IF_NEZ, set the vA of the IF_NEZ to show that it can't be | 
 |               // null. | 
 |               ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]); | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } else { | 
 |       // Starting state is union of all incoming arcs | 
 |       GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors); | 
 |       BasicBlock* pred_bb = GetBasicBlock(iter.Next()); | 
 |       CHECK(pred_bb != NULL); | 
 |       while (pred_bb->data_flow_info->ending_check_v == nullptr) { | 
 |         pred_bb = GetBasicBlock(iter.Next()); | 
 |         // At least one predecessor must have been processed before this bb. | 
 |         DCHECK(pred_bb != nullptr); | 
 |         DCHECK(pred_bb->data_flow_info != nullptr); | 
 |       } | 
 |       ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v); | 
 |       while (true) { | 
 |         pred_bb = GetBasicBlock(iter.Next()); | 
 |         if (!pred_bb) break; | 
 |         DCHECK(pred_bb->data_flow_info != nullptr); | 
 |         if (pred_bb->data_flow_info->ending_check_v == nullptr) { | 
 |           continue; | 
 |         } | 
 |         ssa_regs_to_check->Union(pred_bb->data_flow_info->ending_check_v); | 
 |       } | 
 |     } | 
 |     // At this point, ssa_regs_to_check shows which sregs have an object definition with | 
 |     // no intervening uses. | 
 |   } | 
 |  | 
 |   // Walk through the instruction in the block, updating as necessary | 
 |   for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { | 
 |     if (mir->ssa_rep == NULL) { | 
 |         continue; | 
 |     } | 
 |  | 
 |     // Propagate type info. | 
 |     infer_changed = InferTypeAndSize(bb, mir, infer_changed); | 
 |     if (!do_nce) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     uint64_t df_attributes = GetDataFlowAttributes(mir); | 
 |  | 
 |     // Might need a null check? | 
 |     if (df_attributes & DF_HAS_NULL_CHKS) { | 
 |       int src_idx; | 
 |       if (df_attributes & DF_NULL_CHK_1) { | 
 |         src_idx = 1; | 
 |       } else if (df_attributes & DF_NULL_CHK_2) { | 
 |         src_idx = 2; | 
 |       } else { | 
 |         src_idx = 0; | 
 |       } | 
 |       int src_sreg = mir->ssa_rep->uses[src_idx]; | 
 |       if (!ssa_regs_to_check->IsBitSet(src_sreg)) { | 
 |         // Eliminate the null check. | 
 |         mir->optimization_flags |= MIR_IGNORE_NULL_CHECK; | 
 |       } else { | 
 |         // Do the null check. | 
 |         mir->optimization_flags &= ~MIR_IGNORE_NULL_CHECK; | 
 |         // Mark s_reg as null-checked | 
 |         ssa_regs_to_check->ClearBit(src_sreg); | 
 |       } | 
 |     } | 
 |  | 
 |     if ((df_attributes & DF_A_WIDE) || | 
 |         (df_attributes & (DF_REF_A | DF_SETS_CONST | DF_NULL_TRANSFER)) == 0) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     /* | 
 |      * First, mark all object definitions as requiring null check. | 
 |      * Note: we can't tell if a CONST definition might be used as an object, so treat | 
 |      * them all as object definitions. | 
 |      */ | 
 |     if (((df_attributes & (DF_DA | DF_REF_A)) == (DF_DA | DF_REF_A)) || | 
 |         (df_attributes & DF_SETS_CONST))  { | 
 |       ssa_regs_to_check->SetBit(mir->ssa_rep->defs[0]); | 
 |     } | 
 |  | 
 |     // Now, remove mark from all object definitions we know are non-null. | 
 |     if (df_attributes & DF_NON_NULL_DST) { | 
 |       // Mark target of NEW* as non-null | 
 |       ssa_regs_to_check->ClearBit(mir->ssa_rep->defs[0]); | 
 |     } | 
 |  | 
 |     // Mark non-null returns from invoke-style NEW* | 
 |     if (df_attributes & DF_NON_NULL_RET) { | 
 |       MIR* next_mir = mir->next; | 
 |       // Next should be an MOVE_RESULT_OBJECT | 
 |       if (next_mir && | 
 |           next_mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) { | 
 |         // Mark as null checked | 
 |         ssa_regs_to_check->ClearBit(next_mir->ssa_rep->defs[0]); | 
 |       } else { | 
 |         if (next_mir) { | 
 |           LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode; | 
 |         } else if (bb->fall_through != NullBasicBlockId) { | 
 |           // Look in next basic block | 
 |           struct BasicBlock* next_bb = GetBasicBlock(bb->fall_through); | 
 |           for (MIR* tmir = next_bb->first_mir_insn; tmir != NULL; | 
 |             tmir =tmir->next) { | 
 |             if (MIR::DecodedInstruction::IsPseudoMirOp(tmir->dalvikInsn.opcode)) { | 
 |               continue; | 
 |             } | 
 |             // First non-pseudo should be MOVE_RESULT_OBJECT | 
 |             if (tmir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) { | 
 |               // Mark as null checked | 
 |               ssa_regs_to_check->ClearBit(tmir->ssa_rep->defs[0]); | 
 |             } else { | 
 |               LOG(WARNING) << "Unexpected op after new: " << tmir->dalvikInsn.opcode; | 
 |             } | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     /* | 
 |      * Propagate nullcheck state on register copies (including | 
 |      * Phi pseudo copies.  For the latter, nullcheck state is | 
 |      * the "or" of all the Phi's operands. | 
 |      */ | 
 |     if (df_attributes & (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)) { | 
 |       int tgt_sreg = mir->ssa_rep->defs[0]; | 
 |       int operands = (df_attributes & DF_NULL_TRANSFER_0) ? 1 : | 
 |           mir->ssa_rep->num_uses; | 
 |       bool needs_null_check = false; | 
 |       for (int i = 0; i < operands; i++) { | 
 |         needs_null_check |= ssa_regs_to_check->IsBitSet(mir->ssa_rep->uses[i]); | 
 |       } | 
 |       if (needs_null_check) { | 
 |         ssa_regs_to_check->SetBit(tgt_sreg); | 
 |       } else { | 
 |         ssa_regs_to_check->ClearBit(tgt_sreg); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Did anything change? | 
 |   bool nce_changed = false; | 
 |   if (do_nce) { | 
 |     if (bb->data_flow_info->ending_check_v == nullptr) { | 
 |       DCHECK(temp_scoped_alloc_.get() != nullptr); | 
 |       bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector( | 
 |           temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapNullCheck); | 
 |       nce_changed = ssa_regs_to_check->GetHighestBitSet() != -1; | 
 |       bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check); | 
 |     } else if (!ssa_regs_to_check->SameBitsSet(bb->data_flow_info->ending_check_v)) { | 
 |       nce_changed = true; | 
 |       bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check); | 
 |     } | 
 |   } | 
 |   return infer_changed | nce_changed; | 
 | } | 
 |  | 
 | void MIRGraph::EliminateNullChecksAndInferTypesEnd() { | 
 |   if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) { | 
 |     // Clean up temporaries. | 
 |     temp_bit_vector_size_ = 0u; | 
 |     temp_bit_vector_ = nullptr; | 
 |     AllNodesIterator iter(this); | 
 |     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { | 
 |       if (bb->data_flow_info != nullptr) { | 
 |         bb->data_flow_info->ending_check_v = nullptr; | 
 |       } | 
 |     } | 
 |     DCHECK(temp_scoped_alloc_.get() != nullptr); | 
 |     temp_scoped_alloc_.reset(); | 
 |   } | 
 | } | 
 |  | 
 | bool MIRGraph::EliminateClassInitChecksGate() { | 
 |   if ((cu_->disable_opt & (1 << kClassInitCheckElimination)) != 0 || | 
 |       !cu_->mir_graph->HasStaticFieldAccess()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (kIsDebugBuild) { | 
 |     AllNodesIterator iter(this); | 
 |     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { | 
 |       CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr); | 
 |     } | 
 |   } | 
 |  | 
 |   DCHECK(temp_scoped_alloc_.get() == nullptr); | 
 |   temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack)); | 
 |  | 
 |   // Each insn we use here has at least 2 code units, offset/2 will be a unique index. | 
 |   const size_t end = (cu_->code_item->insns_size_in_code_units_ + 1u) / 2u; | 
 |   temp_insn_data_ = static_cast<uint16_t*>( | 
 |       temp_scoped_alloc_->Alloc(end * sizeof(*temp_insn_data_), kArenaAllocGrowableArray)); | 
 |  | 
 |   uint32_t unique_class_count = 0u; | 
 |   { | 
 |     // Get unique_class_count and store indexes in temp_insn_data_ using a map on a nested | 
 |     // ScopedArenaAllocator. | 
 |  | 
 |     // Embed the map value in the entry to save space. | 
 |     struct MapEntry { | 
 |       // Map key: the class identified by the declaring dex file and type index. | 
 |       const DexFile* declaring_dex_file; | 
 |       uint16_t declaring_class_idx; | 
 |       // Map value: index into bit vectors of classes requiring initialization checks. | 
 |       uint16_t index; | 
 |     }; | 
 |     struct MapEntryComparator { | 
 |       bool operator()(const MapEntry& lhs, const MapEntry& rhs) const { | 
 |         if (lhs.declaring_class_idx != rhs.declaring_class_idx) { | 
 |           return lhs.declaring_class_idx < rhs.declaring_class_idx; | 
 |         } | 
 |         return lhs.declaring_dex_file < rhs.declaring_dex_file; | 
 |       } | 
 |     }; | 
 |  | 
 |     ScopedArenaAllocator allocator(&cu_->arena_stack); | 
 |     ScopedArenaSet<MapEntry, MapEntryComparator> class_to_index_map(MapEntryComparator(), | 
 |                                                                     allocator.Adapter()); | 
 |  | 
 |     // First, find all SGET/SPUTs that may need class initialization checks, record INVOKE_STATICs. | 
 |     AllNodesIterator iter(this); | 
 |     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { | 
 |       for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) { | 
 |         DCHECK(bb->data_flow_info != nullptr); | 
 |         if (mir->dalvikInsn.opcode >= Instruction::SGET && | 
 |             mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) { | 
 |           const MirSFieldLoweringInfo& field_info = GetSFieldLoweringInfo(mir); | 
 |           uint16_t index = 0xffffu; | 
 |           if (!field_info.IsInitialized()) { | 
 |             DCHECK_LT(class_to_index_map.size(), 0xffffu); | 
 |             MapEntry entry = { | 
 |                 // Treat unresolved fields as if each had its own class. | 
 |                 field_info.IsResolved() ? field_info.DeclaringDexFile() | 
 |                                         : nullptr, | 
 |                 field_info.IsResolved() ? field_info.DeclaringClassIndex() | 
 |                                         : field_info.FieldIndex(), | 
 |                 static_cast<uint16_t>(class_to_index_map.size()) | 
 |             }; | 
 |             index = class_to_index_map.insert(entry).first->index; | 
 |           } | 
 |           // Using offset/2 for index into temp_insn_data_. | 
 |           temp_insn_data_[mir->offset / 2u] = index; | 
 |         } | 
 |       } | 
 |     } | 
 |     unique_class_count = static_cast<uint32_t>(class_to_index_map.size()); | 
 |   } | 
 |  | 
 |   if (unique_class_count == 0u) { | 
 |     // All SGET/SPUTs refer to initialized classes. Nothing to do. | 
 |     temp_insn_data_ = nullptr; | 
 |     temp_scoped_alloc_.reset(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   temp_bit_vector_size_ = unique_class_count; | 
 |   temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector( | 
 |       temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck); | 
 |   DCHECK_GT(temp_bit_vector_size_, 0u); | 
 |   return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Eliminate unnecessary class initialization checks for a basic block. | 
 |  */ | 
 | bool MIRGraph::EliminateClassInitChecks(BasicBlock* bb) { | 
 |   DCHECK_EQ((cu_->disable_opt & (1 << kClassInitCheckElimination)), 0u); | 
 |   if (bb->data_flow_info == NULL) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   /* | 
 |    * Set initial state.  Catch blocks don't need any special treatment. | 
 |    */ | 
 |   ArenaBitVector* classes_to_check = temp_bit_vector_; | 
 |   DCHECK(classes_to_check != nullptr); | 
 |   if (bb->block_type == kEntryBlock) { | 
 |     classes_to_check->SetInitialBits(temp_bit_vector_size_); | 
 |   } else if (bb->predecessors->Size() == 1) { | 
 |     BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0)); | 
 |     // pred_bb must have already been processed at least once. | 
 |     DCHECK(pred_bb != nullptr); | 
 |     DCHECK(pred_bb->data_flow_info != nullptr); | 
 |     DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr); | 
 |     classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v); | 
 |   } else { | 
 |     // Starting state is union of all incoming arcs | 
 |     GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors); | 
 |     BasicBlock* pred_bb = GetBasicBlock(iter.Next()); | 
 |     DCHECK(pred_bb != NULL); | 
 |     DCHECK(pred_bb->data_flow_info != NULL); | 
 |     while (pred_bb->data_flow_info->ending_check_v == nullptr) { | 
 |       pred_bb = GetBasicBlock(iter.Next()); | 
 |       // At least one predecessor must have been processed before this bb. | 
 |       DCHECK(pred_bb != nullptr); | 
 |       DCHECK(pred_bb->data_flow_info != nullptr); | 
 |     } | 
 |     classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v); | 
 |     while (true) { | 
 |       pred_bb = GetBasicBlock(iter.Next()); | 
 |       if (!pred_bb) break; | 
 |       DCHECK(pred_bb->data_flow_info != nullptr); | 
 |       if (pred_bb->data_flow_info->ending_check_v == nullptr) { | 
 |         continue; | 
 |       } | 
 |       classes_to_check->Union(pred_bb->data_flow_info->ending_check_v); | 
 |     } | 
 |   } | 
 |   // At this point, classes_to_check shows which classes need clinit checks. | 
 |  | 
 |   // Walk through the instruction in the block, updating as necessary | 
 |   for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) { | 
 |     if (mir->dalvikInsn.opcode >= Instruction::SGET && | 
 |         mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) { | 
 |       uint16_t index = temp_insn_data_[mir->offset / 2u]; | 
 |       if (index != 0xffffu) { | 
 |         if (mir->dalvikInsn.opcode >= Instruction::SGET && | 
 |             mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) { | 
 |           if (!classes_to_check->IsBitSet(index)) { | 
 |             // Eliminate the class init check. | 
 |             mir->optimization_flags |= MIR_IGNORE_CLINIT_CHECK; | 
 |           } else { | 
 |             // Do the class init check. | 
 |             mir->optimization_flags &= ~MIR_IGNORE_CLINIT_CHECK; | 
 |           } | 
 |         } | 
 |         // Mark the class as initialized. | 
 |         classes_to_check->ClearBit(index); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Did anything change? | 
 |   bool changed = false; | 
 |   if (bb->data_flow_info->ending_check_v == nullptr) { | 
 |     DCHECK(temp_scoped_alloc_.get() != nullptr); | 
 |     DCHECK(bb->data_flow_info != nullptr); | 
 |     bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector( | 
 |         temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck); | 
 |     changed = classes_to_check->GetHighestBitSet() != -1; | 
 |     bb->data_flow_info->ending_check_v->Copy(classes_to_check); | 
 |   } else if (!classes_to_check->Equal(bb->data_flow_info->ending_check_v)) { | 
 |     changed = true; | 
 |     bb->data_flow_info->ending_check_v->Copy(classes_to_check); | 
 |   } | 
 |   return changed; | 
 | } | 
 |  | 
 | void MIRGraph::EliminateClassInitChecksEnd() { | 
 |   // Clean up temporaries. | 
 |   temp_bit_vector_size_ = 0u; | 
 |   temp_bit_vector_ = nullptr; | 
 |   AllNodesIterator iter(this); | 
 |   for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { | 
 |     if (bb->data_flow_info != nullptr) { | 
 |       bb->data_flow_info->ending_check_v = nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   DCHECK(temp_insn_data_ != nullptr); | 
 |   temp_insn_data_ = nullptr; | 
 |   DCHECK(temp_scoped_alloc_.get() != nullptr); | 
 |   temp_scoped_alloc_.reset(); | 
 | } | 
 |  | 
 | bool MIRGraph::ApplyGlobalValueNumberingGate() { | 
 |   if ((cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   DCHECK(temp_scoped_alloc_ == nullptr); | 
 |   temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack)); | 
 |   DCHECK(temp_gvn_ == nullptr); | 
 |   temp_gvn_.reset( | 
 |       new (temp_scoped_alloc_.get()) GlobalValueNumbering(cu_, temp_scoped_alloc_.get())); | 
 |   return true; | 
 | } | 
 |  | 
 | bool MIRGraph::ApplyGlobalValueNumbering(BasicBlock* bb) { | 
 |   DCHECK(temp_gvn_ != nullptr); | 
 |   LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb); | 
 |   if (lvn != nullptr) { | 
 |     for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) { | 
 |       lvn->GetValueNumber(mir); | 
 |     } | 
 |   } | 
 |   bool change = (lvn != nullptr) && temp_gvn_->FinishBasicBlock(bb); | 
 |   return change; | 
 | } | 
 |  | 
 | void MIRGraph::ApplyGlobalValueNumberingEnd() { | 
 |   // Perform modifications. | 
 |   if (temp_gvn_->Good()) { | 
 |     temp_gvn_->AllowModifications(); | 
 |     PreOrderDfsIterator iter(this); | 
 |     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { | 
 |       ScopedArenaAllocator allocator(&cu_->arena_stack);  // Reclaim memory after each LVN. | 
 |       LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb, &allocator); | 
 |       if (lvn != nullptr) { | 
 |         for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) { | 
 |           lvn->GetValueNumber(mir); | 
 |         } | 
 |         bool change = temp_gvn_->FinishBasicBlock(bb); | 
 |         DCHECK(!change) << PrettyMethod(cu_->method_idx, *cu_->dex_file); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     LOG(WARNING) << "GVN failed for " << PrettyMethod(cu_->method_idx, *cu_->dex_file); | 
 |   } | 
 |  | 
 |   DCHECK(temp_gvn_ != nullptr); | 
 |   temp_gvn_.reset(); | 
 |   DCHECK(temp_scoped_alloc_ != nullptr); | 
 |   temp_scoped_alloc_.reset(); | 
 | } | 
 |  | 
 | void MIRGraph::ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput) { | 
 |   uint32_t method_index = invoke->meta.method_lowering_info; | 
 |   if (temp_bit_vector_->IsBitSet(method_index)) { | 
 |     iget_or_iput->meta.ifield_lowering_info = temp_insn_data_[method_index]; | 
 |     DCHECK_EQ(field_idx, GetIFieldLoweringInfo(iget_or_iput).FieldIndex()); | 
 |     return; | 
 |   } | 
 |  | 
 |   const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(invoke); | 
 |   MethodReference target = method_info.GetTargetMethod(); | 
 |   DexCompilationUnit inlined_unit( | 
 |       cu_, cu_->class_loader, cu_->class_linker, *target.dex_file, | 
 |       nullptr /* code_item not used */, 0u /* class_def_idx not used */, target.dex_method_index, | 
 |       0u /* access_flags not used */, nullptr /* verified_method not used */); | 
 |   MirIFieldLoweringInfo inlined_field_info(field_idx); | 
 |   MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, &inlined_unit, &inlined_field_info, 1u); | 
 |   DCHECK(inlined_field_info.IsResolved()); | 
 |  | 
 |   uint32_t field_info_index = ifield_lowering_infos_.Size(); | 
 |   ifield_lowering_infos_.Insert(inlined_field_info); | 
 |   temp_bit_vector_->SetBit(method_index); | 
 |   temp_insn_data_[method_index] = field_info_index; | 
 |   iget_or_iput->meta.ifield_lowering_info = field_info_index; | 
 | } | 
 |  | 
 | bool MIRGraph::InlineSpecialMethodsGate() { | 
 |   if ((cu_->disable_opt & (1 << kSuppressMethodInlining)) != 0 || | 
 |       method_lowering_infos_.Size() == 0u) { | 
 |     return false; | 
 |   } | 
 |   if (cu_->compiler_driver->GetMethodInlinerMap() == nullptr) { | 
 |     // This isn't the Quick compiler. | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | void MIRGraph::InlineSpecialMethodsStart() { | 
 |   // Prepare for inlining getters/setters. Since we're inlining at most 1 IGET/IPUT from | 
 |   // each INVOKE, we can index the data by the MIR::meta::method_lowering_info index. | 
 |  | 
 |   DCHECK(temp_scoped_alloc_.get() == nullptr); | 
 |   temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack)); | 
 |   temp_bit_vector_size_ = method_lowering_infos_.Size(); | 
 |   temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector( | 
 |       temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapMisc); | 
 |   temp_bit_vector_->ClearAllBits(); | 
 |   temp_insn_data_ = static_cast<uint16_t*>(temp_scoped_alloc_->Alloc( | 
 |       temp_bit_vector_size_ * sizeof(*temp_insn_data_), kArenaAllocGrowableArray)); | 
 | } | 
 |  | 
 | void MIRGraph::InlineSpecialMethods(BasicBlock* bb) { | 
 |   if (bb->block_type != kDalvikByteCode) { | 
 |     return; | 
 |   } | 
 |   for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { | 
 |     if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) { | 
 |       continue; | 
 |     } | 
 |     if (!(mir->dalvikInsn.FlagsOf() & Instruction::kInvoke)) { | 
 |       continue; | 
 |     } | 
 |     const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(mir); | 
 |     if (!method_info.FastPath()) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     InvokeType sharp_type = method_info.GetSharpType(); | 
 |     if ((sharp_type != kDirect) && (sharp_type != kStatic)) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (sharp_type == kStatic) { | 
 |       bool needs_clinit = method_info.NeedsClassInitialization() && | 
 |           ((mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0); | 
 |       if (needs_clinit) { | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr); | 
 |     MethodReference target = method_info.GetTargetMethod(); | 
 |     if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(target.dex_file) | 
 |             ->GenInline(this, bb, mir, target.dex_method_index)) { | 
 |       if (cu_->verbose || cu_->print_pass) { | 
 |         LOG(INFO) << "SpecialMethodInliner: Inlined " << method_info.GetInvokeType() << " (" | 
 |             << sharp_type << ") call to \"" << PrettyMethod(target.dex_method_index, *target.dex_file) | 
 |             << "\" from \"" << PrettyMethod(cu_->method_idx, *cu_->dex_file) | 
 |             << "\" @0x" << std::hex << mir->offset; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MIRGraph::InlineSpecialMethodsEnd() { | 
 |   DCHECK(temp_insn_data_ != nullptr); | 
 |   temp_insn_data_ = nullptr; | 
 |   DCHECK(temp_bit_vector_ != nullptr); | 
 |   temp_bit_vector_ = nullptr; | 
 |   DCHECK(temp_scoped_alloc_.get() != nullptr); | 
 |   temp_scoped_alloc_.reset(); | 
 | } | 
 |  | 
 | void MIRGraph::DumpCheckStats() { | 
 |   Checkstats* stats = | 
 |       static_cast<Checkstats*>(arena_->Alloc(sizeof(Checkstats), kArenaAllocDFInfo)); | 
 |   checkstats_ = stats; | 
 |   AllNodesIterator iter(this); | 
 |   for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) { | 
 |     CountChecks(bb); | 
 |   } | 
 |   if (stats->null_checks > 0) { | 
 |     float eliminated = static_cast<float>(stats->null_checks_eliminated); | 
 |     float checks = static_cast<float>(stats->null_checks); | 
 |     LOG(INFO) << "Null Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " " | 
 |               << stats->null_checks_eliminated << " of " << stats->null_checks << " -> " | 
 |               << (eliminated/checks) * 100.0 << "%"; | 
 |     } | 
 |   if (stats->range_checks > 0) { | 
 |     float eliminated = static_cast<float>(stats->range_checks_eliminated); | 
 |     float checks = static_cast<float>(stats->range_checks); | 
 |     LOG(INFO) << "Range Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " " | 
 |               << stats->range_checks_eliminated << " of " << stats->range_checks << " -> " | 
 |               << (eliminated/checks) * 100.0 << "%"; | 
 |   } | 
 | } | 
 |  | 
 | bool MIRGraph::BuildExtendedBBList(struct BasicBlock* bb) { | 
 |   if (bb->visited) return false; | 
 |   if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode) | 
 |       || (bb->block_type == kExitBlock))) { | 
 |     // Ignore special blocks | 
 |     bb->visited = true; | 
 |     return false; | 
 |   } | 
 |   // Must be head of extended basic block. | 
 |   BasicBlock* start_bb = bb; | 
 |   extended_basic_blocks_.push_back(bb->id); | 
 |   bool terminated_by_return = false; | 
 |   bool do_local_value_numbering = false; | 
 |   // Visit blocks strictly dominated by this head. | 
 |   while (bb != NULL) { | 
 |     bb->visited = true; | 
 |     terminated_by_return |= bb->terminated_by_return; | 
 |     do_local_value_numbering |= bb->use_lvn; | 
 |     bb = NextDominatedBlock(bb); | 
 |   } | 
 |   if (terminated_by_return || do_local_value_numbering) { | 
 |     // Do lvn for all blocks in this extended set. | 
 |     bb = start_bb; | 
 |     while (bb != NULL) { | 
 |       bb->use_lvn = do_local_value_numbering; | 
 |       bb->dominates_return = terminated_by_return; | 
 |       bb = NextDominatedBlock(bb); | 
 |     } | 
 |   } | 
 |   return false;  // Not iterative - return value will be ignored | 
 | } | 
 |  | 
 | void MIRGraph::BasicBlockOptimization() { | 
 |   if ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) { | 
 |     ClearAllVisitedFlags(); | 
 |     PreOrderDfsIterator iter2(this); | 
 |     for (BasicBlock* bb = iter2.Next(); bb != NULL; bb = iter2.Next()) { | 
 |       BuildExtendedBBList(bb); | 
 |     } | 
 |     // Perform extended basic block optimizations. | 
 |     for (unsigned int i = 0; i < extended_basic_blocks_.size(); i++) { | 
 |       BasicBlockOpt(GetBasicBlock(extended_basic_blocks_[i])); | 
 |     } | 
 |   } else { | 
 |     PreOrderDfsIterator iter(this); | 
 |     for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) { | 
 |       BasicBlockOpt(bb); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace art |