| |
| /* @(#)e_hypot.c 1.3 95/01/18 */ |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| #ifndef lint |
| static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_hypot.c,v 1.9 2005/02/04 18:26:05 das Exp $"; |
| #endif |
| |
| /* __ieee754_hypot(x,y) |
| * |
| * Method : |
| * If (assume round-to-nearest) z=x*x+y*y |
| * has error less than sqrt(2)/2 ulp, than |
| * sqrt(z) has error less than 1 ulp (exercise). |
| * |
| * So, compute sqrt(x*x+y*y) with some care as |
| * follows to get the error below 1 ulp: |
| * |
| * Assume x>y>0; |
| * (if possible, set rounding to round-to-nearest) |
| * 1. if x > 2y use |
| * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y |
| * where x1 = x with lower 32 bits cleared, x2 = x-x1; else |
| * 2. if x <= 2y use |
| * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) |
| * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, |
| * y1= y with lower 32 bits chopped, y2 = y-y1. |
| * |
| * NOTE: scaling may be necessary if some argument is too |
| * large or too tiny |
| * |
| * Special cases: |
| * hypot(x,y) is INF if x or y is +INF or -INF; else |
| * hypot(x,y) is NAN if x or y is NAN. |
| * |
| * Accuracy: |
| * hypot(x,y) returns sqrt(x^2+y^2) with error less |
| * than 1 ulps (units in the last place) |
| */ |
| |
| #include "math.h" |
| #include "math_private.h" |
| |
| double |
| __ieee754_hypot(double x, double y) |
| { |
| double a=x,b=y,t1,t2,y1,y2,w; |
| int32_t j,k,ha,hb; |
| |
| GET_HIGH_WORD(ha,x); |
| ha &= 0x7fffffff; |
| GET_HIGH_WORD(hb,y); |
| hb &= 0x7fffffff; |
| if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} |
| SET_HIGH_WORD(a,ha); /* a <- |a| */ |
| SET_HIGH_WORD(b,hb); /* b <- |b| */ |
| if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */ |
| k=0; |
| if(ha > 0x5f300000) { /* a>2**500 */ |
| if(ha >= 0x7ff00000) { /* Inf or NaN */ |
| u_int32_t low; |
| w = a+b; /* for sNaN */ |
| GET_LOW_WORD(low,a); |
| if(((ha&0xfffff)|low)==0) w = a; |
| GET_LOW_WORD(low,b); |
| if(((hb^0x7ff00000)|low)==0) w = b; |
| return w; |
| } |
| /* scale a and b by 2**-600 */ |
| ha -= 0x25800000; hb -= 0x25800000; k += 600; |
| SET_HIGH_WORD(a,ha); |
| SET_HIGH_WORD(b,hb); |
| } |
| if(hb < 0x20b00000) { /* b < 2**-500 */ |
| if(hb <= 0x000fffff) { /* subnormal b or 0 */ |
| u_int32_t low; |
| GET_LOW_WORD(low,b); |
| if((hb|low)==0) return a; |
| t1=0; |
| SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */ |
| b *= t1; |
| a *= t1; |
| k -= 1022; |
| } else { /* scale a and b by 2^600 */ |
| ha += 0x25800000; /* a *= 2^600 */ |
| hb += 0x25800000; /* b *= 2^600 */ |
| k -= 600; |
| SET_HIGH_WORD(a,ha); |
| SET_HIGH_WORD(b,hb); |
| } |
| } |
| /* medium size a and b */ |
| w = a-b; |
| if (w>b) { |
| t1 = 0; |
| SET_HIGH_WORD(t1,ha); |
| t2 = a-t1; |
| w = sqrt(t1*t1-(b*(-b)-t2*(a+t1))); |
| } else { |
| a = a+a; |
| y1 = 0; |
| SET_HIGH_WORD(y1,hb); |
| y2 = b - y1; |
| t1 = 0; |
| SET_HIGH_WORD(t1,ha+0x00100000); |
| t2 = a - t1; |
| w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b))); |
| } |
| if(k!=0) { |
| u_int32_t high; |
| t1 = 1.0; |
| GET_HIGH_WORD(high,t1); |
| SET_HIGH_WORD(t1,high+(k<<20)); |
| return t1*w; |
| } else return w; |
| } |