| /* @(#)s_cos.c 5.1 93/09/24 */ |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| #ifndef lint |
| static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_cos.c,v 1.10 2005/10/24 14:08:36 bde Exp $"; |
| #endif |
| |
| /* cos(x) |
| * Return cosine function of x. |
| * |
| * kernel function: |
| * __kernel_sin ... sine function on [-pi/4,pi/4] |
| * __kernel_cos ... cosine function on [-pi/4,pi/4] |
| * __ieee754_rem_pio2 ... argument reduction routine |
| * |
| * Method. |
| * Let S,C and T denote the sin, cos and tan respectively on |
| * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
| * in [-pi/4 , +pi/4], and let n = k mod 4. |
| * We have |
| * |
| * n sin(x) cos(x) tan(x) |
| * ---------------------------------------------------------- |
| * 0 S C T |
| * 1 C -S -1/T |
| * 2 -S -C T |
| * 3 -C S -1/T |
| * ---------------------------------------------------------- |
| * |
| * Special cases: |
| * Let trig be any of sin, cos, or tan. |
| * trig(+-INF) is NaN, with signals; |
| * trig(NaN) is that NaN; |
| * |
| * Accuracy: |
| * TRIG(x) returns trig(x) nearly rounded |
| */ |
| |
| #include "math.h" |
| #include "math_private.h" |
| |
| double |
| cos(double x) |
| { |
| double y[2],z=0.0; |
| int32_t n, ix; |
| |
| /* High word of x. */ |
| GET_HIGH_WORD(ix,x); |
| |
| /* |x| ~< pi/4 */ |
| ix &= 0x7fffffff; |
| if(ix <= 0x3fe921fb) { |
| if(ix<0x3e400000) /* if x < 2**-27 */ |
| if(((int)x)==0) return 1.0; /* generate inexact */ |
| return __kernel_cos(x,z); |
| } |
| |
| /* cos(Inf or NaN) is NaN */ |
| else if (ix>=0x7ff00000) return x-x; |
| |
| /* argument reduction needed */ |
| else { |
| n = __ieee754_rem_pio2(x,y); |
| switch(n&3) { |
| case 0: return __kernel_cos(y[0],y[1]); |
| case 1: return -__kernel_sin(y[0],y[1],1); |
| case 2: return -__kernel_cos(y[0],y[1]); |
| default: |
| return __kernel_sin(y[0],y[1],1); |
| } |
| } |
| } |