| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include "linker_phdr.h" |
| |
| #include <errno.h> |
| #include <sys/mman.h> |
| |
| #include "linker.h" |
| #include "linker_debug.h" |
| |
| /** |
| TECHNICAL NOTE ON ELF LOADING. |
| |
| An ELF file's program header table contains one or more PT_LOAD |
| segments, which corresponds to portions of the file that need to |
| be mapped into the process' address space. |
| |
| Each loadable segment has the following important properties: |
| |
| p_offset -> segment file offset |
| p_filesz -> segment file size |
| p_memsz -> segment memory size (always >= p_filesz) |
| p_vaddr -> segment's virtual address |
| p_flags -> segment flags (e.g. readable, writable, executable) |
| |
| We will ignore the p_paddr and p_align fields of Elf32_Phdr for now. |
| |
| The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz) |
| ranges of virtual addresses. A few rules apply: |
| |
| - the virtual address ranges should not overlap. |
| |
| - if a segment's p_filesz is smaller than its p_memsz, the extra bytes |
| between them should always be initialized to 0. |
| |
| - ranges do not necessarily start or end at page boundaries. Two distinct |
| segments can have their start and end on the same page. In this case, the |
| page inherits the mapping flags of the latter segment. |
| |
| Finally, the real load addrs of each segment is not p_vaddr. Instead the |
| loader decides where to load the first segment, then will load all others |
| relative to the first one to respect the initial range layout. |
| |
| For example, consider the following list: |
| |
| [ offset:0, filesz:0x4000, memsz:0x4000, vaddr:0x30000 ], |
| [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ], |
| |
| This corresponds to two segments that cover these virtual address ranges: |
| |
| 0x30000...0x34000 |
| 0x40000...0x48000 |
| |
| If the loader decides to load the first segment at address 0xa0000000 |
| then the segments' load address ranges will be: |
| |
| 0xa0030000...0xa0034000 |
| 0xa0040000...0xa0048000 |
| |
| In other words, all segments must be loaded at an address that has the same |
| constant offset from their p_vaddr value. This offset is computed as the |
| difference between the first segment's load address, and its p_vaddr value. |
| |
| However, in practice, segments do _not_ start at page boundaries. Since we |
| can only memory-map at page boundaries, this means that the bias is |
| computed as: |
| |
| load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr) |
| |
| (NOTE: The value must be used as a 32-bit unsigned integer, to deal with |
| possible wrap around UINT32_MAX for possible large p_vaddr values). |
| |
| And that the phdr0_load_address must start at a page boundary, with |
| the segment's real content starting at: |
| |
| phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr) |
| |
| Note that ELF requires the following condition to make the mmap()-ing work: |
| |
| PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset) |
| |
| The load_bias must be added to any p_vaddr value read from the ELF file to |
| determine the corresponding memory address. |
| |
| **/ |
| |
| #define MAYBE_MAP_FLAG(x,from,to) (((x) & (from)) ? (to) : 0) |
| #define PFLAGS_TO_PROT(x) (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \ |
| MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \ |
| MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE)) |
| |
| ElfReader::ElfReader(const char* name, int fd) |
| : name_(name), fd_(fd), |
| phdr_num_(0), phdr_mmap_(NULL), phdr_table_(NULL), phdr_size_(0), |
| load_start_(NULL), load_size_(0), load_bias_(0), |
| loaded_phdr_(NULL) { |
| } |
| |
| ElfReader::~ElfReader() { |
| if (fd_ != -1) { |
| close(fd_); |
| } |
| if (phdr_mmap_ != NULL) { |
| munmap(phdr_mmap_, phdr_size_); |
| } |
| } |
| |
| bool ElfReader::Load() { |
| return ReadElfHeader() && |
| VerifyElfHeader() && |
| ReadProgramHeader() && |
| ReserveAddressSpace() && |
| LoadSegments() && |
| FindPhdr(); |
| } |
| |
| bool ElfReader::ReadElfHeader() { |
| ssize_t rc = TEMP_FAILURE_RETRY(read(fd_, &header_, sizeof(header_))); |
| if (rc < 0) { |
| DL_ERR("can't read file \"%s\": %s", name_, strerror(errno)); |
| return false; |
| } |
| if (rc != sizeof(header_)) { |
| DL_ERR("\"%s\" is too small to be an ELF executable", name_); |
| return false; |
| } |
| return true; |
| } |
| |
| bool ElfReader::VerifyElfHeader() { |
| if (header_.e_ident[EI_MAG0] != ELFMAG0 || |
| header_.e_ident[EI_MAG1] != ELFMAG1 || |
| header_.e_ident[EI_MAG2] != ELFMAG2 || |
| header_.e_ident[EI_MAG3] != ELFMAG3) { |
| DL_ERR("\"%s\" has bad ELF magic", name_); |
| return false; |
| } |
| |
| if (header_.e_ident[EI_CLASS] != ELFCLASS32) { |
| DL_ERR("\"%s\" not 32-bit: %d", name_, header_.e_ident[EI_CLASS]); |
| return false; |
| } |
| if (header_.e_ident[EI_DATA] != ELFDATA2LSB) { |
| DL_ERR("\"%s\" not little-endian: %d", name_, header_.e_ident[EI_DATA]); |
| return false; |
| } |
| |
| if (header_.e_type != ET_DYN) { |
| DL_ERR("\"%s\" has unexpected e_type: %d", name_, header_.e_type); |
| return false; |
| } |
| |
| if (header_.e_version != EV_CURRENT) { |
| DL_ERR("\"%s\" has unexpected e_version: %d", name_, header_.e_version); |
| return false; |
| } |
| |
| if (header_.e_machine != |
| #ifdef ANDROID_ARM_LINKER |
| EM_ARM |
| #elif defined(ANDROID_MIPS_LINKER) |
| EM_MIPS |
| #elif defined(ANDROID_X86_LINKER) |
| EM_386 |
| #endif |
| ) { |
| DL_ERR("\"%s\" has unexpected e_machine: %d", name_, header_.e_machine); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Loads the program header table from an ELF file into a read-only private |
| // anonymous mmap-ed block. |
| bool ElfReader::ReadProgramHeader() { |
| phdr_num_ = header_.e_phnum; |
| |
| // Like the kernel, we only accept program header tables that |
| // are smaller than 64KiB. |
| if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(Elf32_Phdr)) { |
| DL_ERR("\"%s\" has invalid e_phnum: %d", name_, phdr_num_); |
| return false; |
| } |
| |
| Elf32_Addr page_min = PAGE_START(header_.e_phoff); |
| Elf32_Addr page_max = PAGE_END(header_.e_phoff + (phdr_num_ * sizeof(Elf32_Phdr))); |
| Elf32_Addr page_offset = PAGE_OFFSET(header_.e_phoff); |
| |
| phdr_size_ = page_max - page_min; |
| |
| void* mmap_result = mmap(NULL, phdr_size_, PROT_READ, MAP_PRIVATE, fd_, page_min); |
| if (mmap_result == MAP_FAILED) { |
| DL_ERR("\"%s\" phdr mmap failed: %s", name_, strerror(errno)); |
| return false; |
| } |
| |
| phdr_mmap_ = mmap_result; |
| phdr_table_ = reinterpret_cast<Elf32_Phdr*>(reinterpret_cast<char*>(mmap_result) + page_offset); |
| return true; |
| } |
| |
| /* Returns the size of the extent of all the possibly non-contiguous |
| * loadable segments in an ELF program header table. This corresponds |
| * to the page-aligned size in bytes that needs to be reserved in the |
| * process' address space. If there are no loadable segments, 0 is |
| * returned. |
| * |
| * If out_min_vaddr or out_max_vaddr are non-NULL, they will be |
| * set to the minimum and maximum addresses of pages to be reserved, |
| * or 0 if there is nothing to load. |
| */ |
| size_t phdr_table_get_load_size(const Elf32_Phdr* phdr_table, |
| size_t phdr_count, |
| Elf32_Addr* out_min_vaddr, |
| Elf32_Addr* out_max_vaddr) |
| { |
| Elf32_Addr min_vaddr = 0xFFFFFFFFU; |
| Elf32_Addr max_vaddr = 0x00000000U; |
| |
| bool found_pt_load = false; |
| for (size_t i = 0; i < phdr_count; ++i) { |
| const Elf32_Phdr* phdr = &phdr_table[i]; |
| |
| if (phdr->p_type != PT_LOAD) { |
| continue; |
| } |
| found_pt_load = true; |
| |
| if (phdr->p_vaddr < min_vaddr) { |
| min_vaddr = phdr->p_vaddr; |
| } |
| |
| if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) { |
| max_vaddr = phdr->p_vaddr + phdr->p_memsz; |
| } |
| } |
| if (!found_pt_load) { |
| min_vaddr = 0x00000000U; |
| } |
| |
| min_vaddr = PAGE_START(min_vaddr); |
| max_vaddr = PAGE_END(max_vaddr); |
| |
| if (out_min_vaddr != NULL) { |
| *out_min_vaddr = min_vaddr; |
| } |
| if (out_max_vaddr != NULL) { |
| *out_max_vaddr = max_vaddr; |
| } |
| return max_vaddr - min_vaddr; |
| } |
| |
| // Reserve a virtual address range big enough to hold all loadable |
| // segments of a program header table. This is done by creating a |
| // private anonymous mmap() with PROT_NONE. |
| bool ElfReader::ReserveAddressSpace() { |
| Elf32_Addr min_vaddr; |
| load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr); |
| if (load_size_ == 0) { |
| DL_ERR("\"%s\" has no loadable segments", name_); |
| return false; |
| } |
| |
| uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr); |
| int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS; |
| void* start = mmap(addr, load_size_, PROT_NONE, mmap_flags, -1, 0); |
| if (start == MAP_FAILED) { |
| DL_ERR("couldn't reserve %d bytes of address space for \"%s\"", load_size_, name_); |
| return false; |
| } |
| |
| load_start_ = start; |
| load_bias_ = reinterpret_cast<uint8_t*>(start) - addr; |
| return true; |
| } |
| |
| // Map all loadable segments in process' address space. |
| // This assumes you already called phdr_table_reserve_memory to |
| // reserve the address space range for the library. |
| // TODO: assert assumption. |
| bool ElfReader::LoadSegments() { |
| for (size_t i = 0; i < phdr_num_; ++i) { |
| const Elf32_Phdr* phdr = &phdr_table_[i]; |
| |
| if (phdr->p_type != PT_LOAD) { |
| continue; |
| } |
| |
| // Segment addresses in memory. |
| Elf32_Addr seg_start = phdr->p_vaddr + load_bias_; |
| Elf32_Addr seg_end = seg_start + phdr->p_memsz; |
| |
| Elf32_Addr seg_page_start = PAGE_START(seg_start); |
| Elf32_Addr seg_page_end = PAGE_END(seg_end); |
| |
| Elf32_Addr seg_file_end = seg_start + phdr->p_filesz; |
| |
| // File offsets. |
| Elf32_Addr file_start = phdr->p_offset; |
| Elf32_Addr file_end = file_start + phdr->p_filesz; |
| |
| Elf32_Addr file_page_start = PAGE_START(file_start); |
| Elf32_Addr file_length = file_end - file_page_start; |
| |
| if (file_length != 0) { |
| void* seg_addr = mmap((void*)seg_page_start, |
| file_length, |
| PFLAGS_TO_PROT(phdr->p_flags), |
| MAP_FIXED|MAP_PRIVATE, |
| fd_, |
| file_page_start); |
| if (seg_addr == MAP_FAILED) { |
| DL_ERR("couldn't map \"%s\" segment %d: %s", name_, i, strerror(errno)); |
| return false; |
| } |
| } |
| |
| // if the segment is writable, and does not end on a page boundary, |
| // zero-fill it until the page limit. |
| if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) { |
| memset((void*)seg_file_end, 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end)); |
| } |
| |
| seg_file_end = PAGE_END(seg_file_end); |
| |
| // seg_file_end is now the first page address after the file |
| // content. If seg_end is larger, we need to zero anything |
| // between them. This is done by using a private anonymous |
| // map for all extra pages. |
| if (seg_page_end > seg_file_end) { |
| void* zeromap = mmap((void*)seg_file_end, |
| seg_page_end - seg_file_end, |
| PFLAGS_TO_PROT(phdr->p_flags), |
| MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE, |
| -1, |
| 0); |
| if (zeromap == MAP_FAILED) { |
| DL_ERR("couldn't zero fill \"%s\" gap: %s", name_, strerror(errno)); |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| /* Used internally. Used to set the protection bits of all loaded segments |
| * with optional extra flags (i.e. really PROT_WRITE). Used by |
| * phdr_table_protect_segments and phdr_table_unprotect_segments. |
| */ |
| static int |
| _phdr_table_set_load_prot(const Elf32_Phdr* phdr_table, |
| int phdr_count, |
| Elf32_Addr load_bias, |
| int extra_prot_flags) |
| { |
| const Elf32_Phdr* phdr = phdr_table; |
| const Elf32_Phdr* phdr_limit = phdr + phdr_count; |
| |
| for (; phdr < phdr_limit; phdr++) { |
| if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) |
| continue; |
| |
| Elf32_Addr seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; |
| Elf32_Addr seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; |
| |
| int ret = mprotect((void*)seg_page_start, |
| seg_page_end - seg_page_start, |
| PFLAGS_TO_PROT(phdr->p_flags) | extra_prot_flags); |
| if (ret < 0) { |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| /* Restore the original protection modes for all loadable segments. |
| * You should only call this after phdr_table_unprotect_segments and |
| * applying all relocations. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * Return: |
| * 0 on error, -1 on failure (error code in errno). |
| */ |
| int |
| phdr_table_protect_segments(const Elf32_Phdr* phdr_table, |
| int phdr_count, |
| Elf32_Addr load_bias) |
| { |
| return _phdr_table_set_load_prot(phdr_table, phdr_count, |
| load_bias, 0); |
| } |
| |
| /* Change the protection of all loaded segments in memory to writable. |
| * This is useful before performing relocations. Once completed, you |
| * will have to call phdr_table_protect_segments to restore the original |
| * protection flags on all segments. |
| * |
| * Note that some writable segments can also have their content turned |
| * to read-only by calling phdr_table_protect_gnu_relro. This is no |
| * performed here. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * Return: |
| * 0 on error, -1 on failure (error code in errno). |
| */ |
| int |
| phdr_table_unprotect_segments(const Elf32_Phdr* phdr_table, |
| int phdr_count, |
| Elf32_Addr load_bias) |
| { |
| return _phdr_table_set_load_prot(phdr_table, phdr_count, |
| load_bias, PROT_WRITE); |
| } |
| |
| /* Used internally by phdr_table_protect_gnu_relro and |
| * phdr_table_unprotect_gnu_relro. |
| */ |
| static int |
| _phdr_table_set_gnu_relro_prot(const Elf32_Phdr* phdr_table, |
| int phdr_count, |
| Elf32_Addr load_bias, |
| int prot_flags) |
| { |
| const Elf32_Phdr* phdr = phdr_table; |
| const Elf32_Phdr* phdr_limit = phdr + phdr_count; |
| |
| for (phdr = phdr_table; phdr < phdr_limit; phdr++) { |
| if (phdr->p_type != PT_GNU_RELRO) |
| continue; |
| |
| /* Tricky: what happens when the relro segment does not start |
| * or end at page boundaries?. We're going to be over-protective |
| * here and put every page touched by the segment as read-only. |
| * |
| * This seems to match Ian Lance Taylor's description of the |
| * feature at http://www.airs.com/blog/archives/189. |
| * |
| * Extract: |
| * Note that the current dynamic linker code will only work |
| * correctly if the PT_GNU_RELRO segment starts on a page |
| * boundary. This is because the dynamic linker rounds the |
| * p_vaddr field down to the previous page boundary. If |
| * there is anything on the page which should not be read-only, |
| * the program is likely to fail at runtime. So in effect the |
| * linker must only emit a PT_GNU_RELRO segment if it ensures |
| * that it starts on a page boundary. |
| */ |
| Elf32_Addr seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; |
| Elf32_Addr seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; |
| |
| int ret = mprotect((void*)seg_page_start, |
| seg_page_end - seg_page_start, |
| prot_flags); |
| if (ret < 0) { |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| /* Apply GNU relro protection if specified by the program header. This will |
| * turn some of the pages of a writable PT_LOAD segment to read-only, as |
| * specified by one or more PT_GNU_RELRO segments. This must be always |
| * performed after relocations. |
| * |
| * The areas typically covered are .got and .data.rel.ro, these are |
| * read-only from the program's POV, but contain absolute addresses |
| * that need to be relocated before use. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * Return: |
| * 0 on error, -1 on failure (error code in errno). |
| */ |
| int |
| phdr_table_protect_gnu_relro(const Elf32_Phdr* phdr_table, |
| int phdr_count, |
| Elf32_Addr load_bias) |
| { |
| return _phdr_table_set_gnu_relro_prot(phdr_table, |
| phdr_count, |
| load_bias, |
| PROT_READ); |
| } |
| |
| #ifdef ANDROID_ARM_LINKER |
| |
| # ifndef PT_ARM_EXIDX |
| # define PT_ARM_EXIDX 0x70000001 /* .ARM.exidx segment */ |
| # endif |
| |
| /* Return the address and size of the .ARM.exidx section in memory, |
| * if present. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * Output: |
| * arm_exidx -> address of table in memory (NULL on failure). |
| * arm_exidx_count -> number of items in table (0 on failure). |
| * Return: |
| * 0 on error, -1 on failure (_no_ error code in errno) |
| */ |
| int |
| phdr_table_get_arm_exidx(const Elf32_Phdr* phdr_table, |
| int phdr_count, |
| Elf32_Addr load_bias, |
| Elf32_Addr** arm_exidx, |
| unsigned* arm_exidx_count) |
| { |
| const Elf32_Phdr* phdr = phdr_table; |
| const Elf32_Phdr* phdr_limit = phdr + phdr_count; |
| |
| for (phdr = phdr_table; phdr < phdr_limit; phdr++) { |
| if (phdr->p_type != PT_ARM_EXIDX) |
| continue; |
| |
| *arm_exidx = (Elf32_Addr*)(load_bias + phdr->p_vaddr); |
| *arm_exidx_count = (unsigned)(phdr->p_memsz / 8); |
| return 0; |
| } |
| *arm_exidx = NULL; |
| *arm_exidx_count = 0; |
| return -1; |
| } |
| #endif /* ANDROID_ARM_LINKER */ |
| |
| /* Return the address and size of the ELF file's .dynamic section in memory, |
| * or NULL if missing. |
| * |
| * Input: |
| * phdr_table -> program header table |
| * phdr_count -> number of entries in tables |
| * load_bias -> load bias |
| * Output: |
| * dynamic -> address of table in memory (NULL on failure). |
| * dynamic_count -> number of items in table (0 on failure). |
| * dynamic_flags -> protection flags for section (unset on failure) |
| * Return: |
| * void |
| */ |
| void |
| phdr_table_get_dynamic_section(const Elf32_Phdr* phdr_table, |
| int phdr_count, |
| Elf32_Addr load_bias, |
| Elf32_Dyn** dynamic, |
| size_t* dynamic_count, |
| Elf32_Word* dynamic_flags) |
| { |
| const Elf32_Phdr* phdr = phdr_table; |
| const Elf32_Phdr* phdr_limit = phdr + phdr_count; |
| |
| for (phdr = phdr_table; phdr < phdr_limit; phdr++) { |
| if (phdr->p_type != PT_DYNAMIC) { |
| continue; |
| } |
| |
| *dynamic = reinterpret_cast<Elf32_Dyn*>(load_bias + phdr->p_vaddr); |
| if (dynamic_count) { |
| *dynamic_count = (unsigned)(phdr->p_memsz / 8); |
| } |
| if (dynamic_flags) { |
| *dynamic_flags = phdr->p_flags; |
| } |
| return; |
| } |
| *dynamic = NULL; |
| if (dynamic_count) { |
| *dynamic_count = 0; |
| } |
| } |
| |
| // Returns the address of the program header table as it appears in the loaded |
| // segments in memory. This is in contrast with 'phdr_table_' which |
| // is temporary and will be released before the library is relocated. |
| bool ElfReader::FindPhdr() { |
| const Elf32_Phdr* phdr_limit = phdr_table_ + phdr_num_; |
| |
| // If there is a PT_PHDR, use it directly. |
| for (const Elf32_Phdr* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { |
| if (phdr->p_type == PT_PHDR) { |
| return CheckPhdr(load_bias_ + phdr->p_vaddr); |
| } |
| } |
| |
| // Otherwise, check the first loadable segment. If its file offset |
| // is 0, it starts with the ELF header, and we can trivially find the |
| // loaded program header from it. |
| for (const Elf32_Phdr* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { |
| if (phdr->p_type == PT_LOAD) { |
| if (phdr->p_offset == 0) { |
| Elf32_Addr elf_addr = load_bias_ + phdr->p_vaddr; |
| const Elf32_Ehdr* ehdr = (const Elf32_Ehdr*)(void*)elf_addr; |
| Elf32_Addr offset = ehdr->e_phoff; |
| return CheckPhdr((Elf32_Addr)ehdr + offset); |
| } |
| break; |
| } |
| } |
| |
| DL_ERR("can't find loaded phdr for \"%s\"", name_); |
| return false; |
| } |
| |
| // Ensures that our program header is actually within a loadable |
| // segment. This should help catch badly-formed ELF files that |
| // would cause the linker to crash later when trying to access it. |
| bool ElfReader::CheckPhdr(Elf32_Addr loaded) { |
| const Elf32_Phdr* phdr_limit = phdr_table_ + phdr_num_; |
| Elf32_Addr loaded_end = loaded + (phdr_num_ * sizeof(Elf32_Phdr)); |
| for (Elf32_Phdr* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { |
| if (phdr->p_type != PT_LOAD) { |
| continue; |
| } |
| Elf32_Addr seg_start = phdr->p_vaddr + load_bias_; |
| Elf32_Addr seg_end = phdr->p_filesz + seg_start; |
| if (seg_start <= loaded && loaded_end <= seg_end) { |
| loaded_phdr_ = reinterpret_cast<const Elf32_Phdr*>(loaded); |
| return true; |
| } |
| } |
| DL_ERR("\"%s\" loaded phdr %x not in loadable segment", name_, loaded); |
| return false; |
| } |