| /* e_jnf.c -- float version of e_jn.c. |
| * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
| */ |
| |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| #ifndef lint |
| static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jnf.c,v 1.8 2002/05/28 18:15:04 alfred Exp $"; |
| #endif |
| |
| #include "math.h" |
| #include "math_private.h" |
| |
| static const float |
| invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ |
| two = 2.0000000000e+00, /* 0x40000000 */ |
| one = 1.0000000000e+00; /* 0x3F800000 */ |
| |
| static const float zero = 0.0000000000e+00; |
| |
| float |
| __ieee754_jnf(int n, float x) |
| { |
| int32_t i,hx,ix, sgn; |
| float a, b, temp, di; |
| float z, w; |
| |
| /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
| * Thus, J(-n,x) = J(n,-x) |
| */ |
| GET_FLOAT_WORD(hx,x); |
| ix = 0x7fffffff&hx; |
| /* if J(n,NaN) is NaN */ |
| if(ix>0x7f800000) return x+x; |
| if(n<0){ |
| n = -n; |
| x = -x; |
| hx ^= 0x80000000; |
| } |
| if(n==0) return(__ieee754_j0f(x)); |
| if(n==1) return(__ieee754_j1f(x)); |
| sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ |
| x = fabsf(x); |
| if(ix==0||ix>=0x7f800000) /* if x is 0 or inf */ |
| b = zero; |
| else if((float)n<=x) { |
| /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
| a = __ieee754_j0f(x); |
| b = __ieee754_j1f(x); |
| for(i=1;i<n;i++){ |
| temp = b; |
| b = b*((float)(i+i)/x) - a; /* avoid underflow */ |
| a = temp; |
| } |
| } else { |
| if(ix<0x30800000) { /* x < 2**-29 */ |
| /* x is tiny, return the first Taylor expansion of J(n,x) |
| * J(n,x) = 1/n!*(x/2)^n - ... |
| */ |
| if(n>33) /* underflow */ |
| b = zero; |
| else { |
| temp = x*(float)0.5; b = temp; |
| for (a=one,i=2;i<=n;i++) { |
| a *= (float)i; /* a = n! */ |
| b *= temp; /* b = (x/2)^n */ |
| } |
| b = b/a; |
| } |
| } else { |
| /* use backward recurrence */ |
| /* x x^2 x^2 |
| * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
| * 2n - 2(n+1) - 2(n+2) |
| * |
| * 1 1 1 |
| * (for large x) = ---- ------ ------ ..... |
| * 2n 2(n+1) 2(n+2) |
| * -- - ------ - ------ - |
| * x x x |
| * |
| * Let w = 2n/x and h=2/x, then the above quotient |
| * is equal to the continued fraction: |
| * 1 |
| * = ----------------------- |
| * 1 |
| * w - ----------------- |
| * 1 |
| * w+h - --------- |
| * w+2h - ... |
| * |
| * To determine how many terms needed, let |
| * Q(0) = w, Q(1) = w(w+h) - 1, |
| * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
| * When Q(k) > 1e4 good for single |
| * When Q(k) > 1e9 good for double |
| * When Q(k) > 1e17 good for quadruple |
| */ |
| /* determine k */ |
| float t,v; |
| float q0,q1,h,tmp; int32_t k,m; |
| w = (n+n)/(float)x; h = (float)2.0/(float)x; |
| q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1; |
| while(q1<(float)1.0e9) { |
| k += 1; z += h; |
| tmp = z*q1 - q0; |
| q0 = q1; |
| q1 = tmp; |
| } |
| m = n+n; |
| for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); |
| a = t; |
| b = one; |
| /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
| * Hence, if n*(log(2n/x)) > ... |
| * single 8.8722839355e+01 |
| * double 7.09782712893383973096e+02 |
| * long double 1.1356523406294143949491931077970765006170e+04 |
| * then recurrent value may overflow and the result is |
| * likely underflow to zero |
| */ |
| tmp = n; |
| v = two/x; |
| tmp = tmp*__ieee754_logf(fabsf(v*tmp)); |
| if(tmp<(float)8.8721679688e+01) { |
| for(i=n-1,di=(float)(i+i);i>0;i--){ |
| temp = b; |
| b *= di; |
| b = b/x - a; |
| a = temp; |
| di -= two; |
| } |
| } else { |
| for(i=n-1,di=(float)(i+i);i>0;i--){ |
| temp = b; |
| b *= di; |
| b = b/x - a; |
| a = temp; |
| di -= two; |
| /* scale b to avoid spurious overflow */ |
| if(b>(float)1e10) { |
| a /= b; |
| t /= b; |
| b = one; |
| } |
| } |
| } |
| b = (t*__ieee754_j0f(x)/b); |
| } |
| } |
| if(sgn==1) return -b; else return b; |
| } |
| |
| float |
| __ieee754_ynf(int n, float x) |
| { |
| int32_t i,hx,ix,ib; |
| int32_t sign; |
| float a, b, temp; |
| |
| GET_FLOAT_WORD(hx,x); |
| ix = 0x7fffffff&hx; |
| /* if Y(n,NaN) is NaN */ |
| if(ix>0x7f800000) return x+x; |
| if(ix==0) return -one/zero; |
| if(hx<0) return zero/zero; |
| sign = 1; |
| if(n<0){ |
| n = -n; |
| sign = 1 - ((n&1)<<1); |
| } |
| if(n==0) return(__ieee754_y0f(x)); |
| if(n==1) return(sign*__ieee754_y1f(x)); |
| if(ix==0x7f800000) return zero; |
| |
| a = __ieee754_y0f(x); |
| b = __ieee754_y1f(x); |
| /* quit if b is -inf */ |
| GET_FLOAT_WORD(ib,b); |
| for(i=1; i<n && (((uint32_t)ib) != 0xff800000); i++){ |
| temp = b; |
| b = ((float)(i+i)/x)*b - a; |
| GET_FLOAT_WORD(ib,b); |
| a = temp; |
| } |
| if(sign>0) return b; else return -b; |
| } |