| /* |
| * Copyright (C) 2008, 2009 The Android Open Source Project |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
| * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
| * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
| * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include <linux/auxvec.h> |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| #include <fcntl.h> |
| #include <errno.h> |
| #include <dlfcn.h> |
| #include <sys/stat.h> |
| |
| #include <pthread.h> |
| |
| #include <sys/mman.h> |
| |
| #include <sys/atomics.h> |
| |
| /* special private C library header - see Android.mk */ |
| #include <bionic_tls.h> |
| |
| #include "linker.h" |
| #include "linker_debug.h" |
| #include "linker_environ.h" |
| #include "linker_format.h" |
| |
| #define ALLOW_SYMBOLS_FROM_MAIN 1 |
| #define SO_MAX 128 |
| |
| /* Assume average path length of 64 and max 8 paths */ |
| #define LDPATH_BUFSIZE 512 |
| #define LDPATH_MAX 8 |
| |
| #define LDPRELOAD_BUFSIZE 512 |
| #define LDPRELOAD_MAX 8 |
| |
| /* >>> IMPORTANT NOTE - READ ME BEFORE MODIFYING <<< |
| * |
| * Do NOT use malloc() and friends or pthread_*() code here. |
| * Don't use printf() either; it's caused mysterious memory |
| * corruption in the past. |
| * The linker runs before we bring up libc and it's easiest |
| * to make sure it does not depend on any complex libc features |
| * |
| * open issues / todo: |
| * |
| * - are we doing everything we should for ARM_COPY relocations? |
| * - cleaner error reporting |
| * - after linking, set as much stuff as possible to READONLY |
| * and NOEXEC |
| * - linker hardcodes PAGE_SIZE and PAGE_MASK because the kernel |
| * headers provide versions that are negative... |
| * - allocate space for soinfo structs dynamically instead of |
| * having a hard limit (64) |
| */ |
| |
| |
| static int link_image(soinfo *si, unsigned wr_offset); |
| |
| static int socount = 0; |
| static soinfo sopool[SO_MAX]; |
| static soinfo *freelist = NULL; |
| static soinfo *solist = &libdl_info; |
| static soinfo *sonext = &libdl_info; |
| #if ALLOW_SYMBOLS_FROM_MAIN |
| static soinfo *somain; /* main process, always the one after libdl_info */ |
| #endif |
| |
| |
| static inline int validate_soinfo(soinfo *si) |
| { |
| return (si >= sopool && si < sopool + SO_MAX) || |
| si == &libdl_info; |
| } |
| |
| static char ldpaths_buf[LDPATH_BUFSIZE]; |
| static const char *ldpaths[LDPATH_MAX + 1]; |
| |
| static char ldpreloads_buf[LDPRELOAD_BUFSIZE]; |
| static const char *ldpreload_names[LDPRELOAD_MAX + 1]; |
| |
| static soinfo *preloads[LDPRELOAD_MAX + 1]; |
| |
| int debug_verbosity; |
| static int pid; |
| |
| /* This boolean is set if the program being loaded is setuid */ |
| static int program_is_setuid; |
| |
| #if STATS |
| struct _link_stats linker_stats; |
| #endif |
| |
| #if COUNT_PAGES |
| unsigned bitmask[4096]; |
| #endif |
| |
| #ifndef PT_ARM_EXIDX |
| #define PT_ARM_EXIDX 0x70000001 /* .ARM.exidx segment */ |
| #endif |
| |
| #define HOODLUM(name, ret, ...) \ |
| ret name __VA_ARGS__ \ |
| { \ |
| char errstr[] = "ERROR: " #name " called from the dynamic linker!\n"; \ |
| write(2, errstr, sizeof(errstr)); \ |
| abort(); \ |
| } |
| HOODLUM(malloc, void *, (size_t size)); |
| HOODLUM(free, void, (void *ptr)); |
| HOODLUM(realloc, void *, (void *ptr, size_t size)); |
| HOODLUM(calloc, void *, (size_t cnt, size_t size)); |
| |
| static char tmp_err_buf[768]; |
| static char __linker_dl_err_buf[768]; |
| #define DL_ERR(fmt, x...) \ |
| do { \ |
| format_buffer(__linker_dl_err_buf, sizeof(__linker_dl_err_buf), \ |
| "%s[%d]: " fmt, __func__, __LINE__, ##x); \ |
| ERROR(fmt "\n", ##x); \ |
| } while(0) |
| |
| const char *linker_get_error(void) |
| { |
| return (const char *)&__linker_dl_err_buf[0]; |
| } |
| |
| /* |
| * This function is an empty stub where GDB locates a breakpoint to get notified |
| * about linker activity. |
| */ |
| extern void __attribute__((noinline)) rtld_db_dlactivity(void); |
| |
| static struct r_debug _r_debug = {1, NULL, &rtld_db_dlactivity, |
| RT_CONSISTENT, 0}; |
| static struct link_map *r_debug_tail = 0; |
| |
| static pthread_mutex_t _r_debug_lock = PTHREAD_MUTEX_INITIALIZER; |
| |
| static void insert_soinfo_into_debug_map(soinfo * info) |
| { |
| struct link_map * map; |
| |
| /* Copy the necessary fields into the debug structure. |
| */ |
| map = &(info->linkmap); |
| map->l_addr = info->base; |
| map->l_name = (char*) info->name; |
| map->l_ld = (uintptr_t)info->dynamic; |
| |
| /* Stick the new library at the end of the list. |
| * gdb tends to care more about libc than it does |
| * about leaf libraries, and ordering it this way |
| * reduces the back-and-forth over the wire. |
| */ |
| if (r_debug_tail) { |
| r_debug_tail->l_next = map; |
| map->l_prev = r_debug_tail; |
| map->l_next = 0; |
| } else { |
| _r_debug.r_map = map; |
| map->l_prev = 0; |
| map->l_next = 0; |
| } |
| r_debug_tail = map; |
| } |
| |
| static void remove_soinfo_from_debug_map(soinfo * info) |
| { |
| struct link_map * map = &(info->linkmap); |
| |
| if (r_debug_tail == map) |
| r_debug_tail = map->l_prev; |
| |
| if (map->l_prev) map->l_prev->l_next = map->l_next; |
| if (map->l_next) map->l_next->l_prev = map->l_prev; |
| } |
| |
| void notify_gdb_of_load(soinfo * info) |
| { |
| if (info->flags & FLAG_EXE) { |
| // GDB already knows about the main executable |
| return; |
| } |
| |
| pthread_mutex_lock(&_r_debug_lock); |
| |
| _r_debug.r_state = RT_ADD; |
| rtld_db_dlactivity(); |
| |
| insert_soinfo_into_debug_map(info); |
| |
| _r_debug.r_state = RT_CONSISTENT; |
| rtld_db_dlactivity(); |
| |
| pthread_mutex_unlock(&_r_debug_lock); |
| } |
| |
| void notify_gdb_of_unload(soinfo * info) |
| { |
| if (info->flags & FLAG_EXE) { |
| // GDB already knows about the main executable |
| return; |
| } |
| |
| pthread_mutex_lock(&_r_debug_lock); |
| |
| _r_debug.r_state = RT_DELETE; |
| rtld_db_dlactivity(); |
| |
| remove_soinfo_from_debug_map(info); |
| |
| _r_debug.r_state = RT_CONSISTENT; |
| rtld_db_dlactivity(); |
| |
| pthread_mutex_unlock(&_r_debug_lock); |
| } |
| |
| void notify_gdb_of_libraries() |
| { |
| _r_debug.r_state = RT_ADD; |
| rtld_db_dlactivity(); |
| _r_debug.r_state = RT_CONSISTENT; |
| rtld_db_dlactivity(); |
| } |
| |
| static soinfo *alloc_info(const char *name) |
| { |
| soinfo *si; |
| |
| if(strlen(name) >= SOINFO_NAME_LEN) { |
| DL_ERR("%5d library name %s too long", pid, name); |
| return NULL; |
| } |
| |
| /* The freelist is populated when we call free_info(), which in turn is |
| done only by dlclose(), which is not likely to be used. |
| */ |
| if (!freelist) { |
| if(socount == SO_MAX) { |
| DL_ERR("%5d too many libraries when loading %s", pid, name); |
| return NULL; |
| } |
| freelist = sopool + socount++; |
| freelist->next = NULL; |
| } |
| |
| si = freelist; |
| freelist = freelist->next; |
| |
| /* Make sure we get a clean block of soinfo */ |
| memset(si, 0, sizeof(soinfo)); |
| strlcpy((char*) si->name, name, sizeof(si->name)); |
| sonext->next = si; |
| si->next = NULL; |
| si->refcount = 0; |
| sonext = si; |
| |
| TRACE("%5d name %s: allocated soinfo @ %p\n", pid, name, si); |
| return si; |
| } |
| |
| static void free_info(soinfo *si) |
| { |
| soinfo *prev = NULL, *trav; |
| |
| TRACE("%5d name %s: freeing soinfo @ %p\n", pid, si->name, si); |
| |
| for(trav = solist; trav != NULL; trav = trav->next){ |
| if (trav == si) |
| break; |
| prev = trav; |
| } |
| if (trav == NULL) { |
| /* si was not ni solist */ |
| DL_ERR("%5d name %s is not in solist!", pid, si->name); |
| return; |
| } |
| |
| /* prev will never be NULL, because the first entry in solist is |
| always the static libdl_info. |
| */ |
| prev->next = si->next; |
| if (si == sonext) sonext = prev; |
| si->next = freelist; |
| freelist = si; |
| } |
| |
| #ifndef LINKER_TEXT_BASE |
| #error "linker's makefile must define LINKER_TEXT_BASE" |
| #endif |
| #ifndef LINKER_AREA_SIZE |
| #error "linker's makefile must define LINKER_AREA_SIZE" |
| #endif |
| #define LINKER_BASE ((LINKER_TEXT_BASE) & 0xfff00000) |
| #define LINKER_TOP (LINKER_BASE + (LINKER_AREA_SIZE)) |
| |
| const char *addr_to_name(unsigned addr) |
| { |
| soinfo *si; |
| |
| for(si = solist; si != 0; si = si->next){ |
| if((addr >= si->base) && (addr < (si->base + si->size))) { |
| return si->name; |
| } |
| } |
| |
| if((addr >= LINKER_BASE) && (addr < LINKER_TOP)){ |
| return "linker"; |
| } |
| |
| return ""; |
| } |
| |
| /* For a given PC, find the .so that it belongs to. |
| * Returns the base address of the .ARM.exidx section |
| * for that .so, and the number of 8-byte entries |
| * in that section (via *pcount). |
| * |
| * Intended to be called by libc's __gnu_Unwind_Find_exidx(). |
| * |
| * This function is exposed via dlfcn.c and libdl.so. |
| */ |
| #ifdef ANDROID_ARM_LINKER |
| _Unwind_Ptr dl_unwind_find_exidx(_Unwind_Ptr pc, int *pcount) |
| { |
| soinfo *si; |
| unsigned addr = (unsigned)pc; |
| |
| if ((addr < LINKER_BASE) || (addr >= LINKER_TOP)) { |
| for (si = solist; si != 0; si = si->next){ |
| if ((addr >= si->base) && (addr < (si->base + si->size))) { |
| *pcount = si->ARM_exidx_count; |
| return (_Unwind_Ptr)(si->base + (unsigned long)si->ARM_exidx); |
| } |
| } |
| } |
| *pcount = 0; |
| return NULL; |
| } |
| #elif defined(ANDROID_X86_LINKER) |
| /* Here, we only have to provide a callback to iterate across all the |
| * loaded libraries. gcc_eh does the rest. */ |
| int |
| dl_iterate_phdr(int (*cb)(struct dl_phdr_info *info, size_t size, void *data), |
| void *data) |
| { |
| soinfo *si; |
| struct dl_phdr_info dl_info; |
| int rv = 0; |
| |
| for (si = solist; si != NULL; si = si->next) { |
| dl_info.dlpi_addr = si->linkmap.l_addr; |
| dl_info.dlpi_name = si->linkmap.l_name; |
| dl_info.dlpi_phdr = si->phdr; |
| dl_info.dlpi_phnum = si->phnum; |
| rv = cb(&dl_info, sizeof (struct dl_phdr_info), data); |
| if (rv != 0) |
| break; |
| } |
| return rv; |
| } |
| #endif |
| |
| static Elf32_Sym *_elf_lookup(soinfo *si, unsigned hash, const char *name) |
| { |
| Elf32_Sym *s; |
| Elf32_Sym *symtab = si->symtab; |
| const char *strtab = si->strtab; |
| unsigned n; |
| |
| TRACE_TYPE(LOOKUP, "%5d SEARCH %s in %s@0x%08x %08x %d\n", pid, |
| name, si->name, si->base, hash, hash % si->nbucket); |
| n = hash % si->nbucket; |
| |
| for(n = si->bucket[hash % si->nbucket]; n != 0; n = si->chain[n]){ |
| s = symtab + n; |
| if(strcmp(strtab + s->st_name, name)) continue; |
| |
| /* only concern ourselves with global and weak symbol definitions */ |
| switch(ELF32_ST_BIND(s->st_info)){ |
| case STB_GLOBAL: |
| case STB_WEAK: |
| /* no section == undefined */ |
| if(s->st_shndx == 0) continue; |
| |
| TRACE_TYPE(LOOKUP, "%5d FOUND %s in %s (%08x) %d\n", pid, |
| name, si->name, s->st_value, s->st_size); |
| return s; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static unsigned elfhash(const char *_name) |
| { |
| const unsigned char *name = (const unsigned char *) _name; |
| unsigned h = 0, g; |
| |
| while(*name) { |
| h = (h << 4) + *name++; |
| g = h & 0xf0000000; |
| h ^= g; |
| h ^= g >> 24; |
| } |
| return h; |
| } |
| |
| static Elf32_Sym * |
| _do_lookup(soinfo *si, const char *name, unsigned *base) |
| { |
| unsigned elf_hash = elfhash(name); |
| Elf32_Sym *s; |
| unsigned *d; |
| soinfo *lsi = si; |
| int i; |
| |
| /* Look for symbols in the local scope first (the object who is |
| * searching). This happens with C++ templates on i386 for some |
| * reason. |
| * |
| * Notes on weak symbols: |
| * The ELF specs are ambigious about treatment of weak definitions in |
| * dynamic linking. Some systems return the first definition found |
| * and some the first non-weak definition. This is system dependent. |
| * Here we return the first definition found for simplicity. */ |
| s = _elf_lookup(si, elf_hash, name); |
| if(s != NULL) |
| goto done; |
| |
| /* Next, look for it in the preloads list */ |
| for(i = 0; preloads[i] != NULL; i++) { |
| lsi = preloads[i]; |
| s = _elf_lookup(lsi, elf_hash, name); |
| if(s != NULL) |
| goto done; |
| } |
| |
| for(d = si->dynamic; *d; d += 2) { |
| if(d[0] == DT_NEEDED){ |
| lsi = (soinfo *)d[1]; |
| if (!validate_soinfo(lsi)) { |
| DL_ERR("%5d bad DT_NEEDED pointer in %s", |
| pid, si->name); |
| return NULL; |
| } |
| |
| DEBUG("%5d %s: looking up %s in %s\n", |
| pid, si->name, name, lsi->name); |
| s = _elf_lookup(lsi, elf_hash, name); |
| if ((s != NULL) && (s->st_shndx != SHN_UNDEF)) |
| goto done; |
| } |
| } |
| |
| #if ALLOW_SYMBOLS_FROM_MAIN |
| /* If we are resolving relocations while dlopen()ing a library, it's OK for |
| * the library to resolve a symbol that's defined in the executable itself, |
| * although this is rare and is generally a bad idea. |
| */ |
| if (somain) { |
| lsi = somain; |
| DEBUG("%5d %s: looking up %s in executable %s\n", |
| pid, si->name, name, lsi->name); |
| s = _elf_lookup(lsi, elf_hash, name); |
| } |
| #endif |
| |
| done: |
| if(s != NULL) { |
| TRACE_TYPE(LOOKUP, "%5d si %s sym %s s->st_value = 0x%08x, " |
| "found in %s, base = 0x%08x\n", |
| pid, si->name, name, s->st_value, lsi->name, lsi->base); |
| *base = lsi->base; |
| return s; |
| } |
| |
| return NULL; |
| } |
| |
| /* This is used by dl_sym(). It performs symbol lookup only within the |
| specified soinfo object and not in any of its dependencies. |
| */ |
| Elf32_Sym *lookup_in_library(soinfo *si, const char *name) |
| { |
| return _elf_lookup(si, elfhash(name), name); |
| } |
| |
| /* This is used by dl_sym(). It performs a global symbol lookup. |
| */ |
| Elf32_Sym *lookup(const char *name, soinfo **found, soinfo *start) |
| { |
| unsigned elf_hash = elfhash(name); |
| Elf32_Sym *s = NULL; |
| soinfo *si; |
| |
| if(start == NULL) { |
| start = solist; |
| } |
| |
| for(si = start; (s == NULL) && (si != NULL); si = si->next) |
| { |
| if(si->flags & FLAG_ERROR) |
| continue; |
| s = _elf_lookup(si, elf_hash, name); |
| if (s != NULL) { |
| *found = si; |
| break; |
| } |
| } |
| |
| if(s != NULL) { |
| TRACE_TYPE(LOOKUP, "%5d %s s->st_value = 0x%08x, " |
| "si->base = 0x%08x\n", pid, name, s->st_value, si->base); |
| return s; |
| } |
| |
| return NULL; |
| } |
| |
| soinfo *find_containing_library(const void *addr) |
| { |
| soinfo *si; |
| |
| for(si = solist; si != NULL; si = si->next) |
| { |
| if((unsigned)addr >= si->base && (unsigned)addr - si->base < si->size) { |
| return si; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| Elf32_Sym *find_containing_symbol(const void *addr, soinfo *si) |
| { |
| unsigned int i; |
| unsigned soaddr = (unsigned)addr - si->base; |
| |
| /* Search the library's symbol table for any defined symbol which |
| * contains this address */ |
| for(i=0; i<si->nchain; i++) { |
| Elf32_Sym *sym = &si->symtab[i]; |
| |
| if(sym->st_shndx != SHN_UNDEF && |
| soaddr >= sym->st_value && |
| soaddr < sym->st_value + sym->st_size) { |
| return sym; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| #if 0 |
| static void dump(soinfo *si) |
| { |
| Elf32_Sym *s = si->symtab; |
| unsigned n; |
| |
| for(n = 0; n < si->nchain; n++) { |
| TRACE("%5d %04d> %08x: %02x %04x %08x %08x %s\n", pid, n, s, |
| s->st_info, s->st_shndx, s->st_value, s->st_size, |
| si->strtab + s->st_name); |
| s++; |
| } |
| } |
| #endif |
| |
| static const char *sopaths[] = { |
| "/vendor/lib", |
| "/system/lib", |
| 0 |
| }; |
| |
| static int _open_lib(const char *name) |
| { |
| int fd; |
| struct stat filestat; |
| |
| if ((stat(name, &filestat) >= 0) && S_ISREG(filestat.st_mode)) { |
| if ((fd = open(name, O_RDONLY)) >= 0) |
| return fd; |
| } |
| |
| return -1; |
| } |
| |
| static int open_library(const char *name) |
| { |
| int fd; |
| char buf[512]; |
| const char **path; |
| int n; |
| |
| TRACE("[ %5d opening %s ]\n", pid, name); |
| |
| if(name == 0) return -1; |
| if(strlen(name) > 256) return -1; |
| |
| if ((name[0] == '/') && ((fd = _open_lib(name)) >= 0)) |
| return fd; |
| |
| for (path = ldpaths; *path; path++) { |
| n = format_buffer(buf, sizeof(buf), "%s/%s", *path, name); |
| if (n < 0 || n >= (int)sizeof(buf)) { |
| WARN("Ignoring very long library path: %s/%s\n", *path, name); |
| continue; |
| } |
| if ((fd = _open_lib(buf)) >= 0) |
| return fd; |
| } |
| for (path = sopaths; *path; path++) { |
| n = format_buffer(buf, sizeof(buf), "%s/%s", *path, name); |
| if (n < 0 || n >= (int)sizeof(buf)) { |
| WARN("Ignoring very long library path: %s/%s\n", *path, name); |
| continue; |
| } |
| if ((fd = _open_lib(buf)) >= 0) |
| return fd; |
| } |
| |
| return -1; |
| } |
| |
| /* temporary space for holding the first page of the shared lib |
| * which contains the elf header (with the pht). */ |
| static unsigned char __header[PAGE_SIZE]; |
| |
| typedef struct { |
| long mmap_addr; |
| char tag[4]; /* 'P', 'R', 'E', ' ' */ |
| } prelink_info_t; |
| |
| /* Returns the requested base address if the library is prelinked, |
| * and 0 otherwise. */ |
| static unsigned long |
| is_prelinked(int fd, const char *name) |
| { |
| off_t sz; |
| prelink_info_t info; |
| |
| sz = lseek(fd, -sizeof(prelink_info_t), SEEK_END); |
| if (sz < 0) { |
| DL_ERR("lseek() failed!"); |
| return 0; |
| } |
| |
| if (read(fd, &info, sizeof(info)) != sizeof(info)) { |
| WARN("Could not read prelink_info_t structure for `%s`\n", name); |
| return 0; |
| } |
| |
| if (strncmp(info.tag, "PRE ", 4)) { |
| WARN("`%s` is not a prelinked library\n", name); |
| return 0; |
| } |
| |
| return (unsigned long)info.mmap_addr; |
| } |
| |
| /* verify_elf_object |
| * Verifies if the object @ base is a valid ELF object |
| * |
| * Args: |
| * |
| * Returns: |
| * 0 on success |
| * -1 if no valid ELF object is found @ base. |
| */ |
| static int |
| verify_elf_object(void *base, const char *name) |
| { |
| Elf32_Ehdr *hdr = (Elf32_Ehdr *) base; |
| |
| if (hdr->e_ident[EI_MAG0] != ELFMAG0) return -1; |
| if (hdr->e_ident[EI_MAG1] != ELFMAG1) return -1; |
| if (hdr->e_ident[EI_MAG2] != ELFMAG2) return -1; |
| if (hdr->e_ident[EI_MAG3] != ELFMAG3) return -1; |
| |
| /* TODO: Should we verify anything else in the header? */ |
| #ifdef ANDROID_ARM_LINKER |
| if (hdr->e_machine != EM_ARM) return -1; |
| #elif defined(ANDROID_X86_LINKER) |
| if (hdr->e_machine != EM_386) return -1; |
| #endif |
| return 0; |
| } |
| |
| |
| /* get_lib_extents |
| * Retrieves the base (*base) address where the ELF object should be |
| * mapped and its overall memory size (*total_sz). |
| * |
| * Args: |
| * fd: Opened file descriptor for the library |
| * name: The name of the library |
| * _hdr: Pointer to the header page of the library |
| * total_sz: Total size of the memory that should be allocated for |
| * this library |
| * |
| * Returns: |
| * -1 if there was an error while trying to get the lib extents. |
| * The possible reasons are: |
| * - Could not determine if the library was prelinked. |
| * - The library provided is not a valid ELF object |
| * 0 if the library did not request a specific base offset (normal |
| * for non-prelinked libs) |
| * > 0 if the library requests a specific address to be mapped to. |
| * This indicates a pre-linked library. |
| */ |
| static unsigned |
| get_lib_extents(int fd, const char *name, void *__hdr, unsigned *total_sz) |
| { |
| unsigned req_base; |
| unsigned min_vaddr = 0xffffffff; |
| unsigned max_vaddr = 0; |
| unsigned char *_hdr = (unsigned char *)__hdr; |
| Elf32_Ehdr *ehdr = (Elf32_Ehdr *)_hdr; |
| Elf32_Phdr *phdr; |
| int cnt; |
| |
| TRACE("[ %5d Computing extents for '%s'. ]\n", pid, name); |
| if (verify_elf_object(_hdr, name) < 0) { |
| DL_ERR("%5d - %s is not a valid ELF object", pid, name); |
| return (unsigned)-1; |
| } |
| |
| req_base = (unsigned) is_prelinked(fd, name); |
| if (req_base == (unsigned)-1) |
| return -1; |
| else if (req_base != 0) { |
| TRACE("[ %5d - Prelinked library '%s' requesting base @ 0x%08x ]\n", |
| pid, name, req_base); |
| } else { |
| TRACE("[ %5d - Non-prelinked library '%s' found. ]\n", pid, name); |
| } |
| |
| phdr = (Elf32_Phdr *)(_hdr + ehdr->e_phoff); |
| |
| /* find the min/max p_vaddrs from all the PT_LOAD segments so we can |
| * get the range. */ |
| for (cnt = 0; cnt < ehdr->e_phnum; ++cnt, ++phdr) { |
| if (phdr->p_type == PT_LOAD) { |
| if ((phdr->p_vaddr + phdr->p_memsz) > max_vaddr) |
| max_vaddr = phdr->p_vaddr + phdr->p_memsz; |
| if (phdr->p_vaddr < min_vaddr) |
| min_vaddr = phdr->p_vaddr; |
| } |
| } |
| |
| if ((min_vaddr == 0xffffffff) && (max_vaddr == 0)) { |
| DL_ERR("%5d - No loadable segments found in %s.", pid, name); |
| return (unsigned)-1; |
| } |
| |
| /* truncate min_vaddr down to page boundary */ |
| min_vaddr &= ~PAGE_MASK; |
| |
| /* round max_vaddr up to the next page */ |
| max_vaddr = (max_vaddr + PAGE_SIZE - 1) & ~PAGE_MASK; |
| |
| *total_sz = (max_vaddr - min_vaddr); |
| return (unsigned)req_base; |
| } |
| |
| /* alloc_mem_region |
| * |
| * This function reserves a chunk of memory to be used for mapping in |
| * the shared library. We reserve the entire memory region here, and |
| * then the rest of the linker will relocate the individual loadable |
| * segments into the correct locations within this memory range. |
| * |
| * Args: |
| * si->base: The requested base of the allocation. If 0, a sane one will be |
| * chosen in the range LIBBASE <= base < LIBLAST. |
| * si->size: The size of the allocation. |
| * |
| * Returns: |
| * -1 on failure, and 0 on success. On success, si->base will contain |
| * the virtual address at which the library will be mapped. |
| */ |
| |
| static int reserve_mem_region(soinfo *si) |
| { |
| void *base = mmap((void *)si->base, si->size, PROT_READ | PROT_EXEC, |
| MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (base == MAP_FAILED) { |
| DL_ERR("%5d can NOT map (%sprelinked) library '%s' at 0x%08x " |
| "as requested, will try general pool: %d (%s)", |
| pid, (si->base ? "" : "non-"), si->name, si->base, |
| errno, strerror(errno)); |
| return -1; |
| } else if (base != (void *)si->base) { |
| DL_ERR("OOPS: %5d %sprelinked library '%s' mapped at 0x%08x, " |
| "not at 0x%08x", pid, (si->base ? "" : "non-"), |
| si->name, (unsigned)base, si->base); |
| munmap(base, si->size); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int |
| alloc_mem_region(soinfo *si) |
| { |
| if (si->base) { |
| /* Attempt to mmap a prelinked library. */ |
| return reserve_mem_region(si); |
| } |
| |
| /* This is not a prelinked library, so we use the kernel's default |
| allocator. |
| */ |
| |
| void *base = mmap(NULL, si->size, PROT_READ | PROT_EXEC, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (base == MAP_FAILED) { |
| DL_ERR("%5d mmap of library '%s' failed: %d (%s)\n", |
| pid, si->name, |
| errno, strerror(errno)); |
| goto err; |
| } |
| si->base = (unsigned) base; |
| PRINT("%5d mapped library '%s' to %08x via kernel allocator.\n", |
| pid, si->name, si->base); |
| return 0; |
| |
| err: |
| DL_ERR("OOPS: %5d cannot map library '%s'. no vspace available.", |
| pid, si->name); |
| return -1; |
| } |
| |
| #define MAYBE_MAP_FLAG(x,from,to) (((x) & (from)) ? (to) : 0) |
| #define PFLAGS_TO_PROT(x) (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \ |
| MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \ |
| MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE)) |
| /* load_segments |
| * |
| * This function loads all the loadable (PT_LOAD) segments into memory |
| * at their appropriate memory offsets off the base address. |
| * |
| * Args: |
| * fd: Open file descriptor to the library to load. |
| * header: Pointer to a header page that contains the ELF header. |
| * This is needed since we haven't mapped in the real file yet. |
| * si: ptr to soinfo struct describing the shared object. |
| * |
| * Returns: |
| * 0 on success, -1 on failure. |
| */ |
| static int |
| load_segments(int fd, void *header, soinfo *si) |
| { |
| Elf32_Ehdr *ehdr = (Elf32_Ehdr *)header; |
| Elf32_Phdr *phdr = (Elf32_Phdr *)((unsigned char *)header + ehdr->e_phoff); |
| unsigned char *base = (unsigned char *)si->base; |
| int cnt; |
| unsigned len; |
| unsigned char *tmp; |
| unsigned char *pbase; |
| unsigned char *extra_base; |
| unsigned extra_len; |
| unsigned total_sz = 0; |
| |
| si->wrprotect_start = 0xffffffff; |
| si->wrprotect_end = 0; |
| |
| TRACE("[ %5d - Begin loading segments for '%s' @ 0x%08x ]\n", |
| pid, si->name, (unsigned)si->base); |
| /* Now go through all the PT_LOAD segments and map them into memory |
| * at the appropriate locations. */ |
| for (cnt = 0; cnt < ehdr->e_phnum; ++cnt, ++phdr) { |
| if (phdr->p_type == PT_LOAD) { |
| DEBUG_DUMP_PHDR(phdr, "PT_LOAD", pid); |
| /* we want to map in the segment on a page boundary */ |
| tmp = base + (phdr->p_vaddr & (~PAGE_MASK)); |
| /* add the # of bytes we masked off above to the total length. */ |
| len = phdr->p_filesz + (phdr->p_vaddr & PAGE_MASK); |
| |
| TRACE("[ %d - Trying to load segment from '%s' @ 0x%08x " |
| "(0x%08x). p_vaddr=0x%08x p_offset=0x%08x ]\n", pid, si->name, |
| (unsigned)tmp, len, phdr->p_vaddr, phdr->p_offset); |
| pbase = mmap(tmp, len, PFLAGS_TO_PROT(phdr->p_flags), |
| MAP_PRIVATE | MAP_FIXED, fd, |
| phdr->p_offset & (~PAGE_MASK)); |
| if (pbase == MAP_FAILED) { |
| DL_ERR("%d failed to map segment from '%s' @ 0x%08x (0x%08x). " |
| "p_vaddr=0x%08x p_offset=0x%08x", pid, si->name, |
| (unsigned)tmp, len, phdr->p_vaddr, phdr->p_offset); |
| goto fail; |
| } |
| |
| /* If 'len' didn't end on page boundary, and it's a writable |
| * segment, zero-fill the rest. */ |
| if ((len & PAGE_MASK) && (phdr->p_flags & PF_W)) |
| memset((void *)(pbase + len), 0, PAGE_SIZE - (len & PAGE_MASK)); |
| |
| /* Check to see if we need to extend the map for this segment to |
| * cover the diff between filesz and memsz (i.e. for bss). |
| * |
| * base _+---------------------+ page boundary |
| * . . |
| * | | |
| * . . |
| * pbase _+---------------------+ page boundary |
| * | | |
| * . . |
| * base + p_vaddr _| | |
| * . \ \ . |
| * . | filesz | . |
| * pbase + len _| / | | |
| * <0 pad> . . . |
| * extra_base _+------------|--------+ page boundary |
| * / . . . |
| * | . . . |
| * | +------------|--------+ page boundary |
| * extra_len-> | | | | |
| * | . | memsz . |
| * | . | . |
| * \ _| / | |
| * . . |
| * | | |
| * _+---------------------+ page boundary |
| */ |
| tmp = (unsigned char *)(((unsigned)pbase + len + PAGE_SIZE - 1) & |
| (~PAGE_MASK)); |
| if (tmp < (base + phdr->p_vaddr + phdr->p_memsz)) { |
| extra_len = base + phdr->p_vaddr + phdr->p_memsz - tmp; |
| TRACE("[ %5d - Need to extend segment from '%s' @ 0x%08x " |
| "(0x%08x) ]\n", pid, si->name, (unsigned)tmp, extra_len); |
| /* map in the extra page(s) as anonymous into the range. |
| * This is probably not necessary as we already mapped in |
| * the entire region previously, but we just want to be |
| * sure. This will also set the right flags on the region |
| * (though we can probably accomplish the same thing with |
| * mprotect). |
| */ |
| extra_base = mmap((void *)tmp, extra_len, |
| PFLAGS_TO_PROT(phdr->p_flags), |
| MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, |
| -1, 0); |
| if (extra_base == MAP_FAILED) { |
| DL_ERR("[ %5d - failed to extend segment from '%s' @ 0x%08x" |
| " (0x%08x) ]", pid, si->name, (unsigned)tmp, |
| extra_len); |
| goto fail; |
| } |
| /* TODO: Check if we need to memset-0 this region. |
| * Anonymous mappings are zero-filled copy-on-writes, so we |
| * shouldn't need to. */ |
| TRACE("[ %5d - Segment from '%s' extended @ 0x%08x " |
| "(0x%08x)\n", pid, si->name, (unsigned)extra_base, |
| extra_len); |
| } |
| /* set the len here to show the full extent of the segment we |
| * just loaded, mostly for debugging */ |
| len = (((unsigned)base + phdr->p_vaddr + phdr->p_memsz + |
| PAGE_SIZE - 1) & (~PAGE_MASK)) - (unsigned)pbase; |
| TRACE("[ %5d - Successfully loaded segment from '%s' @ 0x%08x " |
| "(0x%08x). p_vaddr=0x%08x p_offset=0x%08x\n", pid, si->name, |
| (unsigned)pbase, len, phdr->p_vaddr, phdr->p_offset); |
| total_sz += len; |
| /* Make the section writable just in case we'll have to write to |
| * it during relocation (i.e. text segment). However, we will |
| * remember what range of addresses should be write protected. |
| * |
| */ |
| if (!(phdr->p_flags & PF_W)) { |
| if ((unsigned)pbase < si->wrprotect_start) |
| si->wrprotect_start = (unsigned)pbase; |
| if (((unsigned)pbase + len) > si->wrprotect_end) |
| si->wrprotect_end = (unsigned)pbase + len; |
| mprotect(pbase, len, |
| PFLAGS_TO_PROT(phdr->p_flags) | PROT_WRITE); |
| } |
| } else if (phdr->p_type == PT_DYNAMIC) { |
| DEBUG_DUMP_PHDR(phdr, "PT_DYNAMIC", pid); |
| /* this segment contains the dynamic linking information */ |
| si->dynamic = (unsigned *)(base + phdr->p_vaddr); |
| } else { |
| #ifdef ANDROID_ARM_LINKER |
| if (phdr->p_type == PT_ARM_EXIDX) { |
| DEBUG_DUMP_PHDR(phdr, "PT_ARM_EXIDX", pid); |
| /* exidx entries (used for stack unwinding) are 8 bytes each. |
| */ |
| si->ARM_exidx = (unsigned *)phdr->p_vaddr; |
| si->ARM_exidx_count = phdr->p_memsz / 8; |
| } |
| #endif |
| } |
| |
| } |
| |
| /* Sanity check */ |
| if (total_sz > si->size) { |
| DL_ERR("%5d - Total length (0x%08x) of mapped segments from '%s' is " |
| "greater than what was allocated (0x%08x). THIS IS BAD!", |
| pid, total_sz, si->name, si->size); |
| goto fail; |
| } |
| |
| TRACE("[ %5d - Finish loading segments for '%s' @ 0x%08x. " |
| "Total memory footprint: 0x%08x bytes ]\n", pid, si->name, |
| (unsigned)si->base, si->size); |
| return 0; |
| |
| fail: |
| /* We can just blindly unmap the entire region even though some things |
| * were mapped in originally with anonymous and others could have been |
| * been mapped in from the file before we failed. The kernel will unmap |
| * all the pages in the range, irrespective of how they got there. |
| */ |
| munmap((void *)si->base, si->size); |
| si->flags |= FLAG_ERROR; |
| return -1; |
| } |
| |
| /* TODO: Implement this to take care of the fact that Android ARM |
| * ELF objects shove everything into a single loadable segment that has the |
| * write bit set. wr_offset is then used to set non-(data|bss) pages to be |
| * non-writable. |
| */ |
| #if 0 |
| static unsigned |
| get_wr_offset(int fd, const char *name, Elf32_Ehdr *ehdr) |
| { |
| Elf32_Shdr *shdr_start; |
| Elf32_Shdr *shdr; |
| int shdr_sz = ehdr->e_shnum * sizeof(Elf32_Shdr); |
| int cnt; |
| unsigned wr_offset = 0xffffffff; |
| |
| shdr_start = mmap(0, shdr_sz, PROT_READ, MAP_PRIVATE, fd, |
| ehdr->e_shoff & (~PAGE_MASK)); |
| if (shdr_start == MAP_FAILED) { |
| WARN("%5d - Could not read section header info from '%s'. Will not " |
| "not be able to determine write-protect offset.\n", pid, name); |
| return (unsigned)-1; |
| } |
| |
| for(cnt = 0, shdr = shdr_start; cnt < ehdr->e_shnum; ++cnt, ++shdr) { |
| if ((shdr->sh_type != SHT_NULL) && (shdr->sh_flags & SHF_WRITE) && |
| (shdr->sh_addr < wr_offset)) { |
| wr_offset = shdr->sh_addr; |
| } |
| } |
| |
| munmap(shdr_start, shdr_sz); |
| return wr_offset; |
| } |
| #endif |
| |
| static soinfo * |
| load_library(const char *name) |
| { |
| int fd = open_library(name); |
| int cnt; |
| unsigned ext_sz; |
| unsigned req_base; |
| const char *bname; |
| soinfo *si = NULL; |
| Elf32_Ehdr *hdr; |
| |
| if(fd == -1) { |
| DL_ERR("Library '%s' not found", name); |
| return NULL; |
| } |
| |
| /* We have to read the ELF header to figure out what to do with this image |
| */ |
| if (lseek(fd, 0, SEEK_SET) < 0) { |
| DL_ERR("lseek() failed!"); |
| goto fail; |
| } |
| |
| if ((cnt = read(fd, &__header[0], PAGE_SIZE)) < 0) { |
| DL_ERR("read() failed!"); |
| goto fail; |
| } |
| |
| /* Parse the ELF header and get the size of the memory footprint for |
| * the library */ |
| req_base = get_lib_extents(fd, name, &__header[0], &ext_sz); |
| if (req_base == (unsigned)-1) |
| goto fail; |
| TRACE("[ %5d - '%s' (%s) wants base=0x%08x sz=0x%08x ]\n", pid, name, |
| (req_base ? "prelinked" : "not pre-linked"), req_base, ext_sz); |
| |
| /* Now configure the soinfo struct where we'll store all of our data |
| * for the ELF object. If the loading fails, we waste the entry, but |
| * same thing would happen if we failed during linking. Configuring the |
| * soinfo struct here is a lot more convenient. |
| */ |
| bname = strrchr(name, '/'); |
| si = alloc_info(bname ? bname + 1 : name); |
| if (si == NULL) |
| goto fail; |
| |
| /* Carve out a chunk of memory where we will map in the individual |
| * segments */ |
| si->base = req_base; |
| si->size = ext_sz; |
| si->flags = 0; |
| si->entry = 0; |
| si->dynamic = (unsigned *)-1; |
| if (alloc_mem_region(si) < 0) |
| goto fail; |
| |
| TRACE("[ %5d allocated memory for %s @ %p (0x%08x) ]\n", |
| pid, name, (void *)si->base, (unsigned) ext_sz); |
| |
| /* Now actually load the library's segments into right places in memory */ |
| if (load_segments(fd, &__header[0], si) < 0) { |
| goto fail; |
| } |
| |
| /* this might not be right. Technically, we don't even need this info |
| * once we go through 'load_segments'. */ |
| hdr = (Elf32_Ehdr *)si->base; |
| si->phdr = (Elf32_Phdr *)((unsigned char *)si->base + hdr->e_phoff); |
| si->phnum = hdr->e_phnum; |
| /**/ |
| |
| close(fd); |
| return si; |
| |
| fail: |
| if (si) free_info(si); |
| close(fd); |
| return NULL; |
| } |
| |
| static soinfo * |
| init_library(soinfo *si) |
| { |
| unsigned wr_offset = 0xffffffff; |
| |
| /* At this point we know that whatever is loaded @ base is a valid ELF |
| * shared library whose segments are properly mapped in. */ |
| TRACE("[ %5d init_library base=0x%08x sz=0x%08x name='%s') ]\n", |
| pid, si->base, si->size, si->name); |
| |
| if(link_image(si, wr_offset)) { |
| /* We failed to link. However, we can only restore libbase |
| ** if no additional libraries have moved it since we updated it. |
| */ |
| munmap((void *)si->base, si->size); |
| return NULL; |
| } |
| |
| return si; |
| } |
| |
| soinfo *find_library(const char *name) |
| { |
| soinfo *si; |
| const char *bname; |
| |
| #if ALLOW_SYMBOLS_FROM_MAIN |
| if (name == NULL) |
| return somain; |
| #else |
| if (name == NULL) |
| return NULL; |
| #endif |
| |
| bname = strrchr(name, '/'); |
| bname = bname ? bname + 1 : name; |
| |
| for(si = solist; si != 0; si = si->next){ |
| if(!strcmp(bname, si->name)) { |
| if(si->flags & FLAG_ERROR) { |
| DL_ERR("%5d '%s' failed to load previously", pid, bname); |
| return NULL; |
| } |
| if(si->flags & FLAG_LINKED) return si; |
| DL_ERR("OOPS: %5d recursive link to '%s'", pid, si->name); |
| return NULL; |
| } |
| } |
| |
| TRACE("[ %5d '%s' has not been loaded yet. Locating...]\n", pid, name); |
| si = load_library(name); |
| if(si == NULL) |
| return NULL; |
| return init_library(si); |
| } |
| |
| /* TODO: |
| * notify gdb of unload |
| * for non-prelinked libraries, find a way to decrement libbase |
| */ |
| static void call_destructors(soinfo *si); |
| unsigned unload_library(soinfo *si) |
| { |
| unsigned *d; |
| if (si->refcount == 1) { |
| TRACE("%5d unloading '%s'\n", pid, si->name); |
| call_destructors(si); |
| |
| for(d = si->dynamic; *d; d += 2) { |
| if(d[0] == DT_NEEDED){ |
| soinfo *lsi = (soinfo *)d[1]; |
| d[1] = 0; |
| if (validate_soinfo(lsi)) { |
| TRACE("%5d %s needs to unload %s\n", pid, |
| si->name, lsi->name); |
| unload_library(lsi); |
| } |
| else |
| DL_ERR("%5d %s: could not unload dependent library", |
| pid, si->name); |
| } |
| } |
| |
| munmap((char *)si->base, si->size); |
| notify_gdb_of_unload(si); |
| free_info(si); |
| si->refcount = 0; |
| } |
| else { |
| si->refcount--; |
| PRINT("%5d not unloading '%s', decrementing refcount to %d\n", |
| pid, si->name, si->refcount); |
| } |
| return si->refcount; |
| } |
| |
| /* TODO: don't use unsigned for addrs below. It works, but is not |
| * ideal. They should probably be either uint32_t, Elf32_Addr, or unsigned |
| * long. |
| */ |
| static int reloc_library(soinfo *si, Elf32_Rel *rel, unsigned count) |
| { |
| Elf32_Sym *symtab = si->symtab; |
| const char *strtab = si->strtab; |
| Elf32_Sym *s; |
| unsigned base; |
| Elf32_Rel *start = rel; |
| unsigned idx; |
| |
| for (idx = 0; idx < count; ++idx) { |
| unsigned type = ELF32_R_TYPE(rel->r_info); |
| unsigned sym = ELF32_R_SYM(rel->r_info); |
| unsigned reloc = (unsigned)(rel->r_offset + si->base); |
| unsigned sym_addr = 0; |
| char *sym_name = NULL; |
| |
| DEBUG("%5d Processing '%s' relocation at index %d\n", pid, |
| si->name, idx); |
| if(sym != 0) { |
| sym_name = (char *)(strtab + symtab[sym].st_name); |
| s = _do_lookup(si, sym_name, &base); |
| if(s == NULL) { |
| /* We only allow an undefined symbol if this is a weak |
| reference.. */ |
| s = &symtab[sym]; |
| if (ELF32_ST_BIND(s->st_info) != STB_WEAK) { |
| DL_ERR("%5d cannot locate '%s'...\n", pid, sym_name); |
| return -1; |
| } |
| |
| /* IHI0044C AAELF 4.5.1.1: |
| |
| Libraries are not searched to resolve weak references. |
| It is not an error for a weak reference to remain |
| unsatisfied. |
| |
| During linking, the value of an undefined weak reference is: |
| - Zero if the relocation type is absolute |
| - The address of the place if the relocation is pc-relative |
| - The address of nominial base address if the relocation |
| type is base-relative. |
| */ |
| |
| switch (type) { |
| #if defined(ANDROID_ARM_LINKER) |
| case R_ARM_JUMP_SLOT: |
| case R_ARM_GLOB_DAT: |
| case R_ARM_ABS32: |
| case R_ARM_RELATIVE: /* Don't care. */ |
| case R_ARM_NONE: /* Don't care. */ |
| #elif defined(ANDROID_X86_LINKER) |
| case R_386_JUMP_SLOT: |
| case R_386_GLOB_DAT: |
| case R_386_32: |
| case R_386_RELATIVE: /* Dont' care. */ |
| #endif /* ANDROID_*_LINKER */ |
| /* sym_addr was initialized to be zero above or relocation |
| code below does not care about value of sym_addr. |
| No need to do anything. */ |
| break; |
| |
| #if defined(ANDROID_X86_LINKER) |
| case R_386_PC32: |
| sym_addr = reloc; |
| break; |
| #endif /* ANDROID_X86_LINKER */ |
| |
| #if defined(ANDROID_ARM_LINKER) |
| case R_ARM_COPY: |
| /* Fall through. Can't really copy if weak symbol is |
| not found in run-time. */ |
| #endif /* ANDROID_ARM_LINKER */ |
| default: |
| DL_ERR("%5d unknown weak reloc type %d @ %p (%d)\n", |
| pid, type, rel, (int) (rel - start)); |
| return -1; |
| } |
| } else { |
| /* We got a definition. */ |
| #if 0 |
| if((base == 0) && (si->base != 0)){ |
| /* linking from libraries to main image is bad */ |
| DL_ERR("%5d cannot locate '%s'...", |
| pid, strtab + symtab[sym].st_name); |
| return -1; |
| } |
| #endif |
| sym_addr = (unsigned)(s->st_value + base); |
| } |
| COUNT_RELOC(RELOC_SYMBOL); |
| } else { |
| s = NULL; |
| } |
| |
| /* TODO: This is ugly. Split up the relocations by arch into |
| * different files. |
| */ |
| switch(type){ |
| #if defined(ANDROID_ARM_LINKER) |
| case R_ARM_JUMP_SLOT: |
| COUNT_RELOC(RELOC_ABSOLUTE); |
| MARK(rel->r_offset); |
| TRACE_TYPE(RELO, "%5d RELO JMP_SLOT %08x <- %08x %s\n", pid, |
| reloc, sym_addr, sym_name); |
| *((unsigned*)reloc) = sym_addr; |
| break; |
| case R_ARM_GLOB_DAT: |
| COUNT_RELOC(RELOC_ABSOLUTE); |
| MARK(rel->r_offset); |
| TRACE_TYPE(RELO, "%5d RELO GLOB_DAT %08x <- %08x %s\n", pid, |
| reloc, sym_addr, sym_name); |
| *((unsigned*)reloc) = sym_addr; |
| break; |
| case R_ARM_ABS32: |
| COUNT_RELOC(RELOC_ABSOLUTE); |
| MARK(rel->r_offset); |
| TRACE_TYPE(RELO, "%5d RELO ABS %08x <- %08x %s\n", pid, |
| reloc, sym_addr, sym_name); |
| *((unsigned*)reloc) += sym_addr; |
| break; |
| case R_ARM_REL32: |
| COUNT_RELOC(RELOC_RELATIVE); |
| MARK(rel->r_offset); |
| TRACE_TYPE(RELO, "%5d RELO REL32 %08x <- %08x - %08x %s\n", pid, |
| reloc, sym_addr, rel->r_offset, sym_name); |
| *((unsigned*)reloc) += sym_addr - rel->r_offset; |
| break; |
| #elif defined(ANDROID_X86_LINKER) |
| case R_386_JUMP_SLOT: |
| COUNT_RELOC(RELOC_ABSOLUTE); |
| MARK(rel->r_offset); |
| TRACE_TYPE(RELO, "%5d RELO JMP_SLOT %08x <- %08x %s\n", pid, |
| reloc, sym_addr, sym_name); |
| *((unsigned*)reloc) = sym_addr; |
| break; |
| case R_386_GLOB_DAT: |
| COUNT_RELOC(RELOC_ABSOLUTE); |
| MARK(rel->r_offset); |
| TRACE_TYPE(RELO, "%5d RELO GLOB_DAT %08x <- %08x %s\n", pid, |
| reloc, sym_addr, sym_name); |
| *((unsigned*)reloc) = sym_addr; |
| break; |
| #endif /* ANDROID_*_LINKER */ |
| |
| #if defined(ANDROID_ARM_LINKER) |
| case R_ARM_RELATIVE: |
| #elif defined(ANDROID_X86_LINKER) |
| case R_386_RELATIVE: |
| #endif /* ANDROID_*_LINKER */ |
| COUNT_RELOC(RELOC_RELATIVE); |
| MARK(rel->r_offset); |
| if(sym){ |
| DL_ERR("%5d odd RELATIVE form...", pid); |
| return -1; |
| } |
| TRACE_TYPE(RELO, "%5d RELO RELATIVE %08x <- +%08x\n", pid, |
| reloc, si->base); |
| *((unsigned*)reloc) += si->base; |
| break; |
| |
| #if defined(ANDROID_X86_LINKER) |
| case R_386_32: |
| COUNT_RELOC(RELOC_RELATIVE); |
| MARK(rel->r_offset); |
| |
| TRACE_TYPE(RELO, "%5d RELO R_386_32 %08x <- +%08x %s\n", pid, |
| reloc, sym_addr, sym_name); |
| *((unsigned *)reloc) += (unsigned)sym_addr; |
| break; |
| |
| case R_386_PC32: |
| COUNT_RELOC(RELOC_RELATIVE); |
| MARK(rel->r_offset); |
| TRACE_TYPE(RELO, "%5d RELO R_386_PC32 %08x <- " |
| "+%08x (%08x - %08x) %s\n", pid, reloc, |
| (sym_addr - reloc), sym_addr, reloc, sym_name); |
| *((unsigned *)reloc) += (unsigned)(sym_addr - reloc); |
| break; |
| #endif /* ANDROID_X86_LINKER */ |
| |
| #ifdef ANDROID_ARM_LINKER |
| case R_ARM_COPY: |
| COUNT_RELOC(RELOC_COPY); |
| MARK(rel->r_offset); |
| TRACE_TYPE(RELO, "%5d RELO %08x <- %d @ %08x %s\n", pid, |
| reloc, s->st_size, sym_addr, sym_name); |
| memcpy((void*)reloc, (void*)sym_addr, s->st_size); |
| break; |
| case R_ARM_NONE: |
| break; |
| #endif /* ANDROID_ARM_LINKER */ |
| |
| default: |
| DL_ERR("%5d unknown reloc type %d @ %p (%d)", |
| pid, type, rel, (int) (rel - start)); |
| return -1; |
| } |
| rel++; |
| } |
| return 0; |
| } |
| |
| /* Please read the "Initialization and Termination functions" functions. |
| * of the linker design note in bionic/linker/README.TXT to understand |
| * what the following code is doing. |
| * |
| * The important things to remember are: |
| * |
| * DT_PREINIT_ARRAY must be called first for executables, and should |
| * not appear in shared libraries. |
| * |
| * DT_INIT should be called before DT_INIT_ARRAY if both are present |
| * |
| * DT_FINI should be called after DT_FINI_ARRAY if both are present |
| * |
| * DT_FINI_ARRAY must be parsed in reverse order. |
| */ |
| |
| static void call_array(unsigned *ctor, int count, int reverse) |
| { |
| int n, inc = 1; |
| |
| if (reverse) { |
| ctor += (count-1); |
| inc = -1; |
| } |
| |
| for(n = count; n > 0; n--) { |
| TRACE("[ %5d Looking at %s *0x%08x == 0x%08x ]\n", pid, |
| reverse ? "dtor" : "ctor", |
| (unsigned)ctor, (unsigned)*ctor); |
| void (*func)() = (void (*)()) *ctor; |
| ctor += inc; |
| if(((int) func == 0) || ((int) func == -1)) continue; |
| TRACE("[ %5d Calling func @ 0x%08x ]\n", pid, (unsigned)func); |
| func(); |
| } |
| } |
| |
| static void call_constructors(soinfo *si) |
| { |
| if (si->flags & FLAG_EXE) { |
| TRACE("[ %5d Calling preinit_array @ 0x%08x [%d] for '%s' ]\n", |
| pid, (unsigned)si->preinit_array, si->preinit_array_count, |
| si->name); |
| call_array(si->preinit_array, si->preinit_array_count, 0); |
| TRACE("[ %5d Done calling preinit_array for '%s' ]\n", pid, si->name); |
| } else { |
| if (si->preinit_array) { |
| DL_ERR("%5d Shared library '%s' has a preinit_array table @ 0x%08x." |
| " This is INVALID.", pid, si->name, |
| (unsigned)si->preinit_array); |
| } |
| } |
| |
| if (si->init_func) { |
| TRACE("[ %5d Calling init_func @ 0x%08x for '%s' ]\n", pid, |
| (unsigned)si->init_func, si->name); |
| si->init_func(); |
| TRACE("[ %5d Done calling init_func for '%s' ]\n", pid, si->name); |
| } |
| |
| if (si->init_array) { |
| TRACE("[ %5d Calling init_array @ 0x%08x [%d] for '%s' ]\n", pid, |
| (unsigned)si->init_array, si->init_array_count, si->name); |
| call_array(si->init_array, si->init_array_count, 0); |
| TRACE("[ %5d Done calling init_array for '%s' ]\n", pid, si->name); |
| } |
| } |
| |
| |
| static void call_destructors(soinfo *si) |
| { |
| if (si->fini_array) { |
| TRACE("[ %5d Calling fini_array @ 0x%08x [%d] for '%s' ]\n", pid, |
| (unsigned)si->fini_array, si->fini_array_count, si->name); |
| call_array(si->fini_array, si->fini_array_count, 1); |
| TRACE("[ %5d Done calling fini_array for '%s' ]\n", pid, si->name); |
| } |
| |
| if (si->fini_func) { |
| TRACE("[ %5d Calling fini_func @ 0x%08x for '%s' ]\n", pid, |
| (unsigned)si->fini_func, si->name); |
| si->fini_func(); |
| TRACE("[ %5d Done calling fini_func for '%s' ]\n", pid, si->name); |
| } |
| } |
| |
| /* Force any of the closed stdin, stdout and stderr to be associated with |
| /dev/null. */ |
| static int nullify_closed_stdio (void) |
| { |
| int dev_null, i, status; |
| int return_value = 0; |
| |
| dev_null = open("/dev/null", O_RDWR); |
| if (dev_null < 0) { |
| DL_ERR("Cannot open /dev/null."); |
| return -1; |
| } |
| TRACE("[ %5d Opened /dev/null file-descriptor=%d]\n", pid, dev_null); |
| |
| /* If any of the stdio file descriptors is valid and not associated |
| with /dev/null, dup /dev/null to it. */ |
| for (i = 0; i < 3; i++) { |
| /* If it is /dev/null already, we are done. */ |
| if (i == dev_null) |
| continue; |
| |
| TRACE("[ %5d Nullifying stdio file descriptor %d]\n", pid, i); |
| /* The man page of fcntl does not say that fcntl(..,F_GETFL) |
| can be interrupted but we do this just to be safe. */ |
| do { |
| status = fcntl(i, F_GETFL); |
| } while (status < 0 && errno == EINTR); |
| |
| /* If file is openned, we are good. */ |
| if (status >= 0) |
| continue; |
| |
| /* The only error we allow is that the file descriptor does not |
| exist, in which case we dup /dev/null to it. */ |
| if (errno != EBADF) { |
| DL_ERR("nullify_stdio: unhandled error %s", strerror(errno)); |
| return_value = -1; |
| continue; |
| } |
| |
| /* Try dupping /dev/null to this stdio file descriptor and |
| repeat if there is a signal. Note that any errors in closing |
| the stdio descriptor are lost. */ |
| do { |
| status = dup2(dev_null, i); |
| } while (status < 0 && errno == EINTR); |
| |
| if (status < 0) { |
| DL_ERR("nullify_stdio: dup2 error %s", strerror(errno)); |
| return_value = -1; |
| continue; |
| } |
| } |
| |
| /* If /dev/null is not one of the stdio file descriptors, close it. */ |
| if (dev_null > 2) { |
| TRACE("[ %5d Closing /dev/null file-descriptor=%d]\n", pid, dev_null); |
| do { |
| status = close(dev_null); |
| } while (status < 0 && errno == EINTR); |
| |
| if (status < 0) { |
| DL_ERR("nullify_stdio: close error %s", strerror(errno)); |
| return_value = -1; |
| } |
| } |
| |
| return return_value; |
| } |
| |
| static int link_image(soinfo *si, unsigned wr_offset) |
| { |
| unsigned *d; |
| Elf32_Phdr *phdr = si->phdr; |
| int phnum = si->phnum; |
| |
| INFO("[ %5d linking %s ]\n", pid, si->name); |
| DEBUG("%5d si->base = 0x%08x si->flags = 0x%08x\n", pid, |
| si->base, si->flags); |
| |
| if (si->flags & FLAG_EXE) { |
| /* Locate the needed program segments (DYNAMIC/ARM_EXIDX) for |
| * linkage info if this is the executable. If this was a |
| * dynamic lib, that would have been done at load time. |
| * |
| * TODO: It's unfortunate that small pieces of this are |
| * repeated from the load_library routine. Refactor this just |
| * slightly to reuse these bits. |
| */ |
| si->size = 0; |
| for(; phnum > 0; --phnum, ++phdr) { |
| #ifdef ANDROID_ARM_LINKER |
| if(phdr->p_type == PT_ARM_EXIDX) { |
| /* exidx entries (used for stack unwinding) are 8 bytes each. |
| */ |
| si->ARM_exidx = (unsigned *)phdr->p_vaddr; |
| si->ARM_exidx_count = phdr->p_memsz / 8; |
| } |
| #endif |
| if (phdr->p_type == PT_LOAD) { |
| /* For the executable, we use the si->size field only in |
| dl_unwind_find_exidx(), so the meaning of si->size |
| is not the size of the executable; it is the last |
| virtual address of the loadable part of the executable; |
| since si->base == 0 for an executable, we use the |
| range [0, si->size) to determine whether a PC value |
| falls within the executable section. Of course, if |
| a value is below phdr->p_vaddr, it's not in the |
| executable section, but a) we shouldn't be asking for |
| such a value anyway, and b) if we have to provide |
| an EXIDX for such a value, then the executable's |
| EXIDX is probably the better choice. |
| */ |
| DEBUG_DUMP_PHDR(phdr, "PT_LOAD", pid); |
| if (phdr->p_vaddr + phdr->p_memsz > si->size) |
| si->size = phdr->p_vaddr + phdr->p_memsz; |
| /* try to remember what range of addresses should be write |
| * protected */ |
| if (!(phdr->p_flags & PF_W)) { |
| unsigned _end; |
| |
| if (phdr->p_vaddr < si->wrprotect_start) |
| si->wrprotect_start = phdr->p_vaddr; |
| _end = (((phdr->p_vaddr + phdr->p_memsz + PAGE_SIZE - 1) & |
| (~PAGE_MASK))); |
| if (_end > si->wrprotect_end) |
| si->wrprotect_end = _end; |
| } |
| } else if (phdr->p_type == PT_DYNAMIC) { |
| if (si->dynamic != (unsigned *)-1) { |
| DL_ERR("%5d multiple PT_DYNAMIC segments found in '%s'. " |
| "Segment at 0x%08x, previously one found at 0x%08x", |
| pid, si->name, si->base + phdr->p_vaddr, |
| (unsigned)si->dynamic); |
| goto fail; |
| } |
| DEBUG_DUMP_PHDR(phdr, "PT_DYNAMIC", pid); |
| si->dynamic = (unsigned *) (si->base + phdr->p_vaddr); |
| } |
| } |
| } |
| |
| if (si->dynamic == (unsigned *)-1) { |
| DL_ERR("%5d missing PT_DYNAMIC?!", pid); |
| goto fail; |
| } |
| |
| DEBUG("%5d dynamic = %p\n", pid, si->dynamic); |
| |
| /* extract useful information from dynamic section */ |
| for(d = si->dynamic; *d; d++){ |
| DEBUG("%5d d = %p, d[0] = 0x%08x d[1] = 0x%08x\n", pid, d, d[0], d[1]); |
| switch(*d++){ |
| case DT_HASH: |
| si->nbucket = ((unsigned *) (si->base + *d))[0]; |
| si->nchain = ((unsigned *) (si->base + *d))[1]; |
| si->bucket = (unsigned *) (si->base + *d + 8); |
| si->chain = (unsigned *) (si->base + *d + 8 + si->nbucket * 4); |
| break; |
| case DT_STRTAB: |
| si->strtab = (const char *) (si->base + *d); |
| break; |
| case DT_SYMTAB: |
| si->symtab = (Elf32_Sym *) (si->base + *d); |
| break; |
| case DT_PLTREL: |
| if(*d != DT_REL) { |
| DL_ERR("DT_RELA not supported"); |
| goto fail; |
| } |
| break; |
| case DT_JMPREL: |
| si->plt_rel = (Elf32_Rel*) (si->base + *d); |
| break; |
| case DT_PLTRELSZ: |
| si->plt_rel_count = *d / 8; |
| break; |
| case DT_REL: |
| si->rel = (Elf32_Rel*) (si->base + *d); |
| break; |
| case DT_RELSZ: |
| si->rel_count = *d / 8; |
| break; |
| case DT_PLTGOT: |
| /* Save this in case we decide to do lazy binding. We don't yet. */ |
| si->plt_got = (unsigned *)(si->base + *d); |
| break; |
| case DT_DEBUG: |
| // Set the DT_DEBUG entry to the addres of _r_debug for GDB |
| *d = (int) &_r_debug; |
| break; |
| case DT_RELA: |
| DL_ERR("%5d DT_RELA not supported", pid); |
| goto fail; |
| case DT_INIT: |
| si->init_func = (void (*)(void))(si->base + *d); |
| DEBUG("%5d %s constructors (init func) found at %p\n", |
| pid, si->name, si->init_func); |
| break; |
| case DT_FINI: |
| si->fini_func = (void (*)(void))(si->base + *d); |
| DEBUG("%5d %s destructors (fini func) found at %p\n", |
| pid, si->name, si->fini_func); |
| break; |
| case DT_INIT_ARRAY: |
| si->init_array = (unsigned *)(si->base + *d); |
| DEBUG("%5d %s constructors (init_array) found at %p\n", |
| pid, si->name, si->init_array); |
| break; |
| case DT_INIT_ARRAYSZ: |
| si->init_array_count = ((unsigned)*d) / sizeof(Elf32_Addr); |
| break; |
| case DT_FINI_ARRAY: |
| si->fini_array = (unsigned *)(si->base + *d); |
| DEBUG("%5d %s destructors (fini_array) found at %p\n", |
| pid, si->name, si->fini_array); |
| break; |
| case DT_FINI_ARRAYSZ: |
| si->fini_array_count = ((unsigned)*d) / sizeof(Elf32_Addr); |
| break; |
| case DT_PREINIT_ARRAY: |
| si->preinit_array = (unsigned *)(si->base + *d); |
| DEBUG("%5d %s constructors (preinit_array) found at %p\n", |
| pid, si->name, si->preinit_array); |
| break; |
| case DT_PREINIT_ARRAYSZ: |
| si->preinit_array_count = ((unsigned)*d) / sizeof(Elf32_Addr); |
| break; |
| case DT_TEXTREL: |
| /* TODO: make use of this. */ |
| /* this means that we might have to write into where the text |
| * segment was loaded during relocation... Do something with |
| * it. |
| */ |
| DEBUG("%5d Text segment should be writable during relocation.\n", |
| pid); |
| break; |
| } |
| } |
| |
| DEBUG("%5d si->base = 0x%08x, si->strtab = %p, si->symtab = %p\n", |
| pid, si->base, si->strtab, si->symtab); |
| |
| if((si->strtab == 0) || (si->symtab == 0)) { |
| DL_ERR("%5d missing essential tables", pid); |
| goto fail; |
| } |
| |
| /* if this is the main executable, then load all of the preloads now */ |
| if(si->flags & FLAG_EXE) { |
| int i; |
| memset(preloads, 0, sizeof(preloads)); |
| for(i = 0; ldpreload_names[i] != NULL; i++) { |
| soinfo *lsi = find_library(ldpreload_names[i]); |
| if(lsi == 0) { |
| strlcpy(tmp_err_buf, linker_get_error(), sizeof(tmp_err_buf)); |
| DL_ERR("%5d could not load needed library '%s' for '%s' (%s)", |
| pid, ldpreload_names[i], si->name, tmp_err_buf); |
| goto fail; |
| } |
| lsi->refcount++; |
| preloads[i] = lsi; |
| } |
| } |
| |
| for(d = si->dynamic; *d; d += 2) { |
| if(d[0] == DT_NEEDED){ |
| DEBUG("%5d %s needs %s\n", pid, si->name, si->strtab + d[1]); |
| soinfo *lsi = find_library(si->strtab + d[1]); |
| if(lsi == 0) { |
| strlcpy(tmp_err_buf, linker_get_error(), sizeof(tmp_err_buf)); |
| DL_ERR("%5d could not load needed library '%s' for '%s' (%s)", |
| pid, si->strtab + d[1], si->name, tmp_err_buf); |
| goto fail; |
| } |
| /* Save the soinfo of the loaded DT_NEEDED library in the payload |
| of the DT_NEEDED entry itself, so that we can retrieve the |
| soinfo directly later from the dynamic segment. This is a hack, |
| but it allows us to map from DT_NEEDED to soinfo efficiently |
| later on when we resolve relocations, trying to look up a symgol |
| with dlsym(). |
| */ |
| d[1] = (unsigned)lsi; |
| lsi->refcount++; |
| } |
| } |
| |
| if(si->plt_rel) { |
| DEBUG("[ %5d relocating %s plt ]\n", pid, si->name ); |
| if(reloc_library(si, si->plt_rel, si->plt_rel_count)) |
| goto fail; |
| } |
| if(si->rel) { |
| DEBUG("[ %5d relocating %s ]\n", pid, si->name ); |
| if(reloc_library(si, si->rel, si->rel_count)) |
| goto fail; |
| } |
| |
| si->flags |= FLAG_LINKED; |
| DEBUG("[ %5d finished linking %s ]\n", pid, si->name); |
| |
| #if 0 |
| /* This is the way that the old dynamic linker did protection of |
| * non-writable areas. It would scan section headers and find where |
| * .text ended (rather where .data/.bss began) and assume that this is |
| * the upper range of the non-writable area. This is too coarse, |
| * and is kept here for reference until we fully move away from single |
| * segment elf objects. See the code in get_wr_offset (also #if'd 0) |
| * that made this possible. |
| */ |
| if(wr_offset < 0xffffffff){ |
| mprotect((void*) si->base, wr_offset, PROT_READ | PROT_EXEC); |
| } |
| #else |
| /* TODO: Verify that this does the right thing in all cases, as it |
| * presently probably does not. It is possible that an ELF image will |
| * come with multiple read-only segments. What we ought to do is scan |
| * the program headers again and mprotect all the read-only segments. |
| * To prevent re-scanning the program header, we would have to build a |
| * list of loadable segments in si, and then scan that instead. */ |
| if (si->wrprotect_start != 0xffffffff && si->wrprotect_end != 0) { |
| mprotect((void *)si->wrprotect_start, |
| si->wrprotect_end - si->wrprotect_start, |
| PROT_READ | PROT_EXEC); |
| } |
| #endif |
| |
| /* If this is a SET?ID program, dup /dev/null to opened stdin, |
| stdout and stderr to close a security hole described in: |
| |
| ftp://ftp.freebsd.org/pub/FreeBSD/CERT/advisories/FreeBSD-SA-02:23.stdio.asc |
| |
| */ |
| if (program_is_setuid) |
| nullify_closed_stdio (); |
| notify_gdb_of_load(si); |
| call_constructors(si); |
| return 0; |
| |
| fail: |
| ERROR("failed to link %s\n", si->name); |
| si->flags |= FLAG_ERROR; |
| return -1; |
| } |
| |
| static void parse_library_path(const char *path, char *delim) |
| { |
| size_t len; |
| char *ldpaths_bufp = ldpaths_buf; |
| int i = 0; |
| |
| len = strlcpy(ldpaths_buf, path, sizeof(ldpaths_buf)); |
| |
| while (i < LDPATH_MAX && (ldpaths[i] = strsep(&ldpaths_bufp, delim))) { |
| if (*ldpaths[i] != '\0') |
| ++i; |
| } |
| |
| /* Forget the last path if we had to truncate; this occurs if the 2nd to |
| * last char isn't '\0' (i.e. not originally a delim). */ |
| if (i > 0 && len >= sizeof(ldpaths_buf) && |
| ldpaths_buf[sizeof(ldpaths_buf) - 2] != '\0') { |
| ldpaths[i - 1] = NULL; |
| } else { |
| ldpaths[i] = NULL; |
| } |
| } |
| |
| static void parse_preloads(const char *path, char *delim) |
| { |
| size_t len; |
| char *ldpreloads_bufp = ldpreloads_buf; |
| int i = 0; |
| |
| len = strlcpy(ldpreloads_buf, path, sizeof(ldpreloads_buf)); |
| |
| while (i < LDPRELOAD_MAX && (ldpreload_names[i] = strsep(&ldpreloads_bufp, delim))) { |
| if (*ldpreload_names[i] != '\0') { |
| ++i; |
| } |
| } |
| |
| /* Forget the last path if we had to truncate; this occurs if the 2nd to |
| * last char isn't '\0' (i.e. not originally a delim). */ |
| if (i > 0 && len >= sizeof(ldpreloads_buf) && |
| ldpreloads_buf[sizeof(ldpreloads_buf) - 2] != '\0') { |
| ldpreload_names[i - 1] = NULL; |
| } else { |
| ldpreload_names[i] = NULL; |
| } |
| } |
| |
| int main(int argc, char **argv) |
| { |
| return 0; |
| } |
| |
| #define ANDROID_TLS_SLOTS BIONIC_TLS_SLOTS |
| |
| static void * __tls_area[ANDROID_TLS_SLOTS]; |
| |
| unsigned __linker_init(unsigned **elfdata) |
| { |
| static soinfo linker_soinfo; |
| |
| int argc = (int) *elfdata; |
| char **argv = (char**) (elfdata + 1); |
| unsigned *vecs = (unsigned*) (argv + argc + 1); |
| unsigned *v; |
| soinfo *si; |
| struct link_map * map; |
| const char *ldpath_env = NULL; |
| const char *ldpreload_env = NULL; |
| |
| /* Setup a temporary TLS area that is used to get a working |
| * errno for system calls. |
| */ |
| __set_tls(__tls_area); |
| |
| pid = getpid(); |
| |
| #if TIMING |
| struct timeval t0, t1; |
| gettimeofday(&t0, 0); |
| #endif |
| |
| /* NOTE: we store the elfdata pointer on a special location |
| * of the temporary TLS area in order to pass it to |
| * the C Library's runtime initializer. |
| * |
| * The initializer must clear the slot and reset the TLS |
| * to point to a different location to ensure that no other |
| * shared library constructor can access it. |
| */ |
| __tls_area[TLS_SLOT_BIONIC_PREINIT] = elfdata; |
| |
| /* Initialize environment functions, and get to the ELF aux vectors table */ |
| vecs = linker_env_init(vecs); |
| |
| /* Check auxv for AT_SECURE first to see if program is setuid, setgid, |
| has file caps, or caused a SELinux/AppArmor domain transition. */ |
| for (v = vecs; v[0]; v += 2) { |
| if (v[0] == AT_SECURE) { |
| /* kernel told us whether to enable secure mode */ |
| program_is_setuid = v[1]; |
| goto sanitize; |
| } |
| } |
| |
| /* Kernel did not provide AT_SECURE - fall back on legacy test. */ |
| program_is_setuid = (getuid() != geteuid()) || (getgid() != getegid()); |
| |
| sanitize: |
| /* Sanitize environment if we're loading a setuid program */ |
| if (program_is_setuid) |
| linker_env_secure(); |
| |
| debugger_init(); |
| |
| /* Get a few environment variables */ |
| { |
| const char* env; |
| env = linker_env_get("DEBUG"); /* XXX: TODO: Change to LD_DEBUG */ |
| if (env) |
| debug_verbosity = atoi(env); |
| |
| /* Normally, these are cleaned by linker_env_secure, but the test |
| * against program_is_setuid doesn't cost us anything */ |
| if (!program_is_setuid) { |
| ldpath_env = linker_env_get("LD_LIBRARY_PATH"); |
| ldpreload_env = linker_env_get("LD_PRELOAD"); |
| } |
| } |
| |
| INFO("[ android linker & debugger ]\n"); |
| DEBUG("%5d elfdata @ 0x%08x\n", pid, (unsigned)elfdata); |
| |
| si = alloc_info(argv[0]); |
| if(si == 0) { |
| exit(-1); |
| } |
| |
| /* bootstrap the link map, the main exe always needs to be first */ |
| si->flags |= FLAG_EXE; |
| map = &(si->linkmap); |
| |
| map->l_addr = 0; |
| map->l_name = argv[0]; |
| map->l_prev = NULL; |
| map->l_next = NULL; |
| |
| _r_debug.r_map = map; |
| r_debug_tail = map; |
| |
| /* gdb expects the linker to be in the debug shared object list, |
| * and we need to make sure that the reported load address is zero. |
| * Without this, gdb gets the wrong idea of where rtld_db_dlactivity() |
| * is. Don't use alloc_info(), because the linker shouldn't |
| * be on the soinfo list. |
| */ |
| strlcpy((char*) linker_soinfo.name, "/system/bin/linker", sizeof linker_soinfo.name); |
| linker_soinfo.flags = 0; |
| linker_soinfo.base = 0; // This is the important part; must be zero. |
| insert_soinfo_into_debug_map(&linker_soinfo); |
| |
| /* extract information passed from the kernel */ |
| while(vecs[0] != 0){ |
| switch(vecs[0]){ |
| case AT_PHDR: |
| si->phdr = (Elf32_Phdr*) vecs[1]; |
| break; |
| case AT_PHNUM: |
| si->phnum = (int) vecs[1]; |
| break; |
| case AT_ENTRY: |
| si->entry = vecs[1]; |
| break; |
| } |
| vecs += 2; |
| } |
| |
| si->base = 0; |
| si->dynamic = (unsigned *)-1; |
| si->wrprotect_start = 0xffffffff; |
| si->wrprotect_end = 0; |
| si->refcount = 1; |
| |
| /* Use LD_LIBRARY_PATH if we aren't setuid/setgid */ |
| if (ldpath_env) |
| parse_library_path(ldpath_env, ":"); |
| |
| if (ldpreload_env) { |
| parse_preloads(ldpreload_env, " :"); |
| } |
| |
| if(link_image(si, 0)) { |
| char errmsg[] = "CANNOT LINK EXECUTABLE\n"; |
| write(2, __linker_dl_err_buf, strlen(__linker_dl_err_buf)); |
| write(2, errmsg, sizeof(errmsg)); |
| exit(-1); |
| } |
| |
| #if ALLOW_SYMBOLS_FROM_MAIN |
| /* Set somain after we've loaded all the libraries in order to prevent |
| * linking of symbols back to the main image, which is not set up at that |
| * point yet. |
| */ |
| somain = si; |
| #endif |
| |
| #if TIMING |
| gettimeofday(&t1,NULL); |
| PRINT("LINKER TIME: %s: %d microseconds\n", argv[0], (int) ( |
| (((long long)t1.tv_sec * 1000000LL) + (long long)t1.tv_usec) - |
| (((long long)t0.tv_sec * 1000000LL) + (long long)t0.tv_usec) |
| )); |
| #endif |
| #if STATS |
| PRINT("RELO STATS: %s: %d abs, %d rel, %d copy, %d symbol\n", argv[0], |
| linker_stats.reloc[RELOC_ABSOLUTE], |
| linker_stats.reloc[RELOC_RELATIVE], |
| linker_stats.reloc[RELOC_COPY], |
| linker_stats.reloc[RELOC_SYMBOL]); |
| #endif |
| #if COUNT_PAGES |
| { |
| unsigned n; |
| unsigned i; |
| unsigned count = 0; |
| for(n = 0; n < 4096; n++){ |
| if(bitmask[n]){ |
| unsigned x = bitmask[n]; |
| for(i = 0; i < 8; i++){ |
| if(x & 1) count++; |
| x >>= 1; |
| } |
| } |
| } |
| PRINT("PAGES MODIFIED: %s: %d (%dKB)\n", argv[0], count, count * 4); |
| } |
| #endif |
| |
| #if TIMING || STATS || COUNT_PAGES |
| fflush(stdout); |
| #endif |
| |
| TRACE("[ %5d Ready to execute '%s' @ 0x%08x ]\n", pid, si->name, |
| si->entry); |
| return si->entry; |
| } |