blob: fc568910f9db8f7b79d385a4c38a78b9f77db064 [file] [log] [blame]
Ben Cheng00603072010-10-28 11:13:58 -07001/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "Dalvik.h"
18#include "Dataflow.h"
19#include "Loop.h"
20#include "libdex/DexOpcodes.h"
21
22/* Enter the node to the dfsOrder list then visit its successors */
23static void recordDFSPreOrder(CompilationUnit *cUnit, BasicBlock *block)
24{
25
26 if (block->visited) return;
27 block->visited = true;
28
29 /* Enqueue the block id */
30 dvmInsertGrowableList(&cUnit->dfsOrder, block->id);
31
32 if (block->taken) recordDFSPreOrder(cUnit, block->taken);
33 if (block->fallThrough) recordDFSPreOrder(cUnit, block->fallThrough);
34 if (block->successorBlockList.blockListType != kNotUsed) {
35 GrowableListIterator iterator;
36 dvmGrowableListIteratorInit(&block->successorBlockList.blocks,
37 &iterator);
38 while (true) {
39 BasicBlock *succBB =
40 (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
41 if (succBB == NULL) break;
42 recordDFSPreOrder(cUnit, succBB);
43 }
44 }
45 return;
46}
47
48/* Sort the blocks by the Depth-First-Search pre-order */
49static void computeDFSOrder(CompilationUnit *cUnit)
50{
51 /* Initialize the DFS order list */
52 dvmInitGrowableList(&cUnit->dfsOrder, cUnit->numBlocks);
53
54
55 dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
56 kAllNodes,
57 false /* isIterative */);
58
59 recordDFSPreOrder(cUnit, cUnit->entryBlock);
60 cUnit->numReachableBlocks = cUnit->dfsOrder.numUsed;
61}
62
63/*
64 * Mark block bit on the per-Dalvik register vector to denote that Dalvik
65 * register idx is defined in BasicBlock bb.
66 */
67static bool fillDefBlockMatrix(CompilationUnit *cUnit, BasicBlock *bb)
68{
69 if (bb->dataFlowInfo == NULL) return false;
70
71 BitVectorIterator iterator;
72
73 dvmBitVectorIteratorInit(bb->dataFlowInfo->defV, &iterator);
74 while (true) {
75 int idx = dvmBitVectorIteratorNext(&iterator);
76 if (idx == -1) break;
77 /* Block bb defines register idx */
78 dvmCompilerSetBit(cUnit->defBlockMatrix[idx], bb->id);
79 }
80 return true;
81}
82
83static void computeDefBlockMatrix(CompilationUnit *cUnit)
84{
85 int numRegisters = cUnit->numDalvikRegisters;
86 /* Allocate numDalvikRegisters bit vector pointers */
87 cUnit->defBlockMatrix = (BitVector **)
88 dvmCompilerNew(sizeof(BitVector *) * numRegisters, true);
89 int i;
90
91 /* Initialize numRegister vectors with numBlocks bits each */
92 for (i = 0; i < numRegisters; i++) {
93 cUnit->defBlockMatrix[i] = dvmCompilerAllocBitVector(cUnit->numBlocks,
94 false);
95 }
96 dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerFindLocalLiveIn,
97 kAllNodes,
98 false /* isIterative */);
99 dvmCompilerDataFlowAnalysisDispatcher(cUnit, fillDefBlockMatrix,
100 kAllNodes,
101 false /* isIterative */);
102
103 /*
104 * Also set the incoming parameters as defs in the entry block.
105 * Only need to handle the parameters for the outer method.
106 */
107 int inReg = cUnit->method->registersSize - cUnit->method->insSize;
108 for (; inReg < cUnit->method->registersSize; inReg++) {
109 dvmCompilerSetBit(cUnit->defBlockMatrix[inReg],
110 cUnit->entryBlock->id);
111 }
112}
113
114/* Compute the post-order traversal of the CFG */
115static void computeDomPostOrderTraversal(CompilationUnit *cUnit, BasicBlock *bb)
116{
117 BitVectorIterator bvIterator;
118 dvmBitVectorIteratorInit(bb->iDominated, &bvIterator);
119 GrowableList *blockList = &cUnit->blockList;
120
121 /* Iterate through the dominated blocks first */
122 while (true) {
123 int bbIdx = dvmBitVectorIteratorNext(&bvIterator);
124 if (bbIdx == -1) break;
125 BasicBlock *dominatedBB =
126 (BasicBlock *) dvmGrowableListGetElement(blockList, bbIdx);
127 computeDomPostOrderTraversal(cUnit, dominatedBB);
128 }
129
130 /* Enter the current block id */
131 dvmInsertGrowableList(&cUnit->domPostOrderTraversal, bb->id);
132
133 /* hacky loop detection */
134 if (bb->taken && dvmIsBitSet(bb->dominators, bb->taken->id)) {
135 cUnit->hasLoop = true;
136 }
137}
138
139/* Worker function to compute the dominance frontier */
140static bool computeDominanceFrontier(CompilationUnit *cUnit, BasicBlock *bb)
141{
142 GrowableList *blockList = &cUnit->blockList;
143
144 /* Calculate DF_local */
145 if (bb->taken && !dvmIsBitSet(bb->taken->dominators, bb->id)) {
146 dvmSetBit(bb->domFrontier, bb->taken->id);
147 }
148 if (bb->fallThrough &&
149 !dvmIsBitSet(bb->fallThrough->dominators, bb->id)) {
150 dvmSetBit(bb->domFrontier, bb->fallThrough->id);
151 }
152 if (bb->successorBlockList.blockListType != kNotUsed) {
153 GrowableListIterator iterator;
154 dvmGrowableListIteratorInit(&bb->successorBlockList.blocks,
155 &iterator);
156 while (true) {
157 BasicBlock *succBB =
158 (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
159 if (succBB == NULL) break;
160 if (!dvmIsBitSet(succBB->dominators, bb->id)) {
161 dvmSetBit(bb->domFrontier, succBB->id);
162 }
163 }
164 }
165
166 /* Calculate DF_up */
167 BitVectorIterator bvIterator;
168 dvmBitVectorIteratorInit(bb->iDominated, &bvIterator);
169 while (true) {
170 int dominatedIdx = dvmBitVectorIteratorNext(&bvIterator);
171 if (dominatedIdx == -1) break;
172 BasicBlock *dominatedBB = (BasicBlock *)
173 dvmGrowableListGetElement(blockList, dominatedIdx);
174 BitVectorIterator dfIterator;
175 dvmBitVectorIteratorInit(dominatedBB->domFrontier, &dfIterator);
176 while (true) {
177 int dfUpIdx = dvmBitVectorIteratorNext(&dfIterator);
178 if (dfUpIdx == -1) break;
179 BasicBlock *dfUpBlock = (BasicBlock *)
180 dvmGrowableListGetElement(blockList, dfUpIdx);
181 if (!dvmIsBitSet(dfUpBlock->dominators, bb->id)) {
182 dvmSetBit(bb->domFrontier, dfUpBlock->id);
183 }
184 }
185 }
186 if (cUnit->printMe) {
187 char blockName[BLOCK_NAME_LEN];
188 dvmGetBlockName(bb, blockName);
189 dvmDumpBlockBitVector(blockList, blockName, bb->domFrontier,
190 cUnit->numBlocks);
191 }
192
193 return true;
194}
195
196/* Worker function for initializing domination-related data structures */
197static bool initializeDominationInfo(CompilationUnit *cUnit, BasicBlock *bb)
198{
199 int numTotalBlocks = cUnit->blockList.numUsed;
200
201 bb->dominators = dvmCompilerAllocBitVector(numTotalBlocks,
202 false /* expandable */);
203 bb->iDominated = dvmCompilerAllocBitVector(numTotalBlocks,
204 false /* expandable */);
205 bb->domFrontier = dvmCompilerAllocBitVector(numTotalBlocks,
206 false /* expandable */);
207 /* Set all bits in the dominator vector */
208 dvmSetInitialBits(bb->dominators, numTotalBlocks);
209
210 return true;
211}
212
213/* Worker function to compute each block's dominators */
214static bool computeBlockDominators(CompilationUnit *cUnit, BasicBlock *bb)
215{
216 GrowableList *blockList = &cUnit->blockList;
217 int numTotalBlocks = blockList->numUsed;
218 BitVector *tempBlockV = cUnit->tempBlockV;
219 BitVectorIterator bvIterator;
220
221 /*
222 * The dominator of the entry block has been preset to itself and we need
223 * to skip the calculation here.
224 */
225 if (bb == cUnit->entryBlock) return false;
226
227 dvmSetInitialBits(tempBlockV, numTotalBlocks);
228
229 /* Iterate through the predecessors */
230 dvmBitVectorIteratorInit(bb->predecessors, &bvIterator);
231 while (true) {
232 int predIdx = dvmBitVectorIteratorNext(&bvIterator);
233 if (predIdx == -1) break;
234 BasicBlock *predBB = (BasicBlock *) dvmGrowableListGetElement(
235 blockList, predIdx);
236 /* tempBlockV = tempBlockV ^ dominators */
237 dvmIntersectBitVectors(tempBlockV, tempBlockV, predBB->dominators);
238 }
239 dvmSetBit(tempBlockV, bb->id);
240 if (dvmCompareBitVectors(tempBlockV, bb->dominators)) {
241 dvmCopyBitVector(bb->dominators, tempBlockV);
242 return true;
243 }
244 return false;
245}
246
247/* Worker function to compute the idom */
248static bool computeImmediateDominator(CompilationUnit *cUnit, BasicBlock *bb)
249{
250 GrowableList *blockList = &cUnit->blockList;
251 BitVector *tempBlockV = cUnit->tempBlockV;
252 BitVectorIterator bvIterator;
253 BasicBlock *iDom;
254
255 if (bb == cUnit->entryBlock) return false;
256
257 dvmCopyBitVector(tempBlockV, bb->dominators);
258 dvmClearBit(tempBlockV, bb->id);
259 dvmBitVectorIteratorInit(tempBlockV, &bvIterator);
260
261 /* Should not see any dead block */
262 assert(dvmCountSetBits(tempBlockV) != 0);
263 if (dvmCountSetBits(tempBlockV) == 1) {
264 iDom = (BasicBlock *) dvmGrowableListGetElement(
265 blockList, dvmBitVectorIteratorNext(&bvIterator));
266 bb->iDom = iDom;
267 } else {
268 int iDomIdx = dvmBitVectorIteratorNext(&bvIterator);
269 assert(iDomIdx != -1);
270 while (true) {
271 int nextDom = dvmBitVectorIteratorNext(&bvIterator);
272 if (nextDom == -1) break;
273 BasicBlock *nextDomBB = (BasicBlock *)
274 dvmGrowableListGetElement(blockList, nextDom);
275 /* iDom dominates nextDom - set new iDom */
276 if (dvmIsBitSet(nextDomBB->dominators, iDomIdx)) {
277 iDomIdx = nextDom;
278 }
279
280 }
281 iDom = (BasicBlock *) dvmGrowableListGetElement(blockList, iDomIdx);
282 /* Set the immediate dominator block for bb */
283 bb->iDom = iDom;
284 }
285 /* Add bb to the iDominated set of the immediate dominator block */
286 dvmCompilerSetBit(iDom->iDominated, bb->id);
287 return true;
288}
289
290/* Compute dominators, immediate dominator, and dominance fronter */
291static void computeDominators(CompilationUnit *cUnit)
292{
293 int numReachableBlocks = cUnit->numReachableBlocks;
294 int numTotalBlocks = cUnit->blockList.numUsed;
295
296 /* Initialize domination-related data structures */
297 dvmCompilerDataFlowAnalysisDispatcher(cUnit, initializeDominationInfo,
298 kReachableNodes,
299 false /* isIterative */);
300
301 /* Set the dominator for the root node */
302 dvmClearAllBits(cUnit->entryBlock->dominators);
303 dvmSetBit(cUnit->entryBlock->dominators, cUnit->entryBlock->id);
304
305 cUnit->tempBlockV = dvmCompilerAllocBitVector(numTotalBlocks,
306 false /* expandable */);
307 dvmCompilerDataFlowAnalysisDispatcher(cUnit, computeBlockDominators,
308 kPreOrderDFSTraversal,
309 true /* isIterative */);
310
311 cUnit->entryBlock->iDom = NULL;
312 dvmCompilerDataFlowAnalysisDispatcher(cUnit, computeImmediateDominator,
313 kReachableNodes,
314 false /* isIterative */);
315
316 /*
317 * Now go ahead and compute the post order traversal based on the
318 * iDominated sets.
319 */
320 dvmInitGrowableList(&cUnit->domPostOrderTraversal, numReachableBlocks);
321 computeDomPostOrderTraversal(cUnit, cUnit->entryBlock);
322 assert(cUnit->domPostOrderTraversal.numUsed ==
323 (unsigned) cUnit->numReachableBlocks);
324
325 /* Now compute the dominance frontier for each block */
326 dvmCompilerDataFlowAnalysisDispatcher(cUnit, computeDominanceFrontier,
327 kPostOrderDOMTraversal,
328 false /* isIterative */);
329}
330
331/*
332 * Perform dest U= src1 ^ ~src2
333 * This is probably not general enough to be placed in BitVector.[ch].
334 */
335static void computeSuccLiveIn(BitVector *dest,
336 const BitVector *src1,
337 const BitVector *src2)
338{
339 if (dest->storageSize != src1->storageSize ||
340 dest->storageSize != src2->storageSize ||
341 dest->expandable != src1->expandable ||
342 dest->expandable != src2->expandable) {
343 LOGE("Incompatible set properties");
344 dvmAbort();
345 }
346
347 int i;
348 for (i = 0; i < dest->storageSize; i++) {
349 dest->storage[i] |= src1->storage[i] & ~src2->storage[i];
350 }
351}
352
353/*
354 * Iterate through all successor blocks and propagate up the live-in sets.
355 * The calculated result is used for phi-node pruning - where we only need to
356 * insert a phi node if the variable is live-in to the block.
357 */
358static bool computeBlockLiveIns(CompilationUnit *cUnit, BasicBlock *bb)
359{
360 BitVector *tempDalvikRegisterV = cUnit->tempDalvikRegisterV;
361
362 if (bb->dataFlowInfo == NULL) return false;
363 dvmCopyBitVector(tempDalvikRegisterV, bb->dataFlowInfo->liveInV);
364 if (bb->taken && bb->taken->dataFlowInfo)
365 computeSuccLiveIn(tempDalvikRegisterV, bb->taken->dataFlowInfo->liveInV,
366 bb->dataFlowInfo->defV);
367 if (bb->fallThrough && bb->fallThrough->dataFlowInfo)
368 computeSuccLiveIn(tempDalvikRegisterV,
369 bb->fallThrough->dataFlowInfo->liveInV,
370 bb->dataFlowInfo->defV);
371 if (bb->successorBlockList.blockListType != kNotUsed) {
372 GrowableListIterator iterator;
373 dvmGrowableListIteratorInit(&bb->successorBlockList.blocks,
374 &iterator);
375 while (true) {
376 BasicBlock *succBB =
377 (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
378 if (succBB == NULL) break;
379 if (succBB->dataFlowInfo) {
380 computeSuccLiveIn(tempDalvikRegisterV,
381 succBB->dataFlowInfo->liveInV,
382 bb->dataFlowInfo->defV);
383 }
384 }
385 }
386 if (dvmCompareBitVectors(tempDalvikRegisterV, bb->dataFlowInfo->liveInV)) {
387 dvmCopyBitVector(bb->dataFlowInfo->liveInV, tempDalvikRegisterV);
388 return true;
389 }
390 return false;
391}
392
393/* Insert phi nodes to for each variable to the dominance frontiers */
394static void insertPhiNodes(CompilationUnit *cUnit)
395{
396 int dalvikReg;
397 const GrowableList *blockList = &cUnit->blockList;
398 BitVector *phiBlocks =
399 dvmCompilerAllocBitVector(cUnit->numDalvikRegisters, false);
400 BitVector *tmpBlocks =
401 dvmCompilerAllocBitVector(cUnit->numDalvikRegisters, false);
402 BitVector *inputBlocks =
403 dvmCompilerAllocBitVector(cUnit->numDalvikRegisters, false);
404
405 cUnit->tempDalvikRegisterV =
406 dvmCompilerAllocBitVector(cUnit->numDalvikRegisters, false);
407
408 dvmCompilerDataFlowAnalysisDispatcher(cUnit, computeBlockLiveIns,
409 kPostOrderDFSTraversal,
410 true /* isIterative */);
411
412 /* Iterate through each Dalvik register */
413 for (dalvikReg = 0; dalvikReg < cUnit->numDalvikRegisters; dalvikReg++) {
414 bool change;
415 BitVectorIterator iterator;
416
417 dvmCopyBitVector(inputBlocks, cUnit->defBlockMatrix[dalvikReg]);
418 dvmClearAllBits(phiBlocks);
419 /* Calculate the phi blocks for each Dalvik register */
420 do {
421 change = false;
422 dvmClearAllBits(tmpBlocks);
423 dvmBitVectorIteratorInit(inputBlocks, &iterator);
424 while (true) {
425 int idx = dvmBitVectorIteratorNext(&iterator);
426 if (idx == -1) break;
427 BasicBlock *defBB =
428 (BasicBlock *) dvmGrowableListGetElement(blockList, idx);
429 /* Merge the dominance frontier to tmpBlocks */
430 dvmUnifyBitVectors(tmpBlocks, tmpBlocks, defBB->domFrontier);
431 }
432 if (dvmCompareBitVectors(phiBlocks, tmpBlocks)) {
433 change = true;
434 dvmCopyBitVector(phiBlocks, tmpBlocks);
435
436 /*
437 * Iterate through the original blocks plus the new ones in
438 * the dominance frontier.
439 */
440 dvmCopyBitVector(inputBlocks, phiBlocks);
441 dvmUnifyBitVectors(inputBlocks, inputBlocks,
442 cUnit->defBlockMatrix[dalvikReg]);
443 }
444 } while (change);
445
446 /*
447 * Insert a phi node for dalvikReg in the phiBlocks if the Dalvik
448 * register is in the live-in set.
449 */
450 dvmBitVectorIteratorInit(phiBlocks, &iterator);
451 while (true) {
452 int idx = dvmBitVectorIteratorNext(&iterator);
453 if (idx == -1) break;
454 BasicBlock *phiBB =
455 (BasicBlock *) dvmGrowableListGetElement(blockList, idx);
456 /* Variable will be clobbered before being used - no need for phi */
457 if (!dvmIsBitSet(phiBB->dataFlowInfo->liveInV, dalvikReg)) continue;
458 MIR *phi = (MIR *) dvmCompilerNew(sizeof(MIR), true);
459 phi->dalvikInsn.opcode = kMirOpPhi;
460 phi->dalvikInsn.vA = dalvikReg;
461 phi->offset = phiBB->startOffset;
462 dvmCompilerPrependMIR(phiBB, phi);
463 }
464 }
465}
466
467/*
468 * Worker function to insert phi-operands with latest SSA names from
469 * predecessor blocks
470 */
471static bool insertPhiNodeOperands(CompilationUnit *cUnit, BasicBlock *bb)
472{
473 BitVector *ssaRegV = cUnit->tempSSARegisterV;
474 BitVectorIterator bvIterator;
475 GrowableList *blockList = &cUnit->blockList;
476 MIR *mir;
477
478 /* Phi nodes are at the beginning of each block */
479 for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
480 if (mir->dalvikInsn.opcode != kMirOpPhi) return true;
481 int ssaReg = mir->ssaRep->defs[0];
482 int encodedDalvikValue =
483 (int) dvmGrowableListGetElement(cUnit->ssaToDalvikMap, ssaReg);
484 int dalvikReg = DECODE_REG(encodedDalvikValue);
485
486 dvmClearAllBits(ssaRegV);
487
488 /* Iterate through the predecessors */
489 dvmBitVectorIteratorInit(bb->predecessors, &bvIterator);
490 while (true) {
491 int predIdx = dvmBitVectorIteratorNext(&bvIterator);
492 if (predIdx == -1) break;
493 BasicBlock *predBB = (BasicBlock *) dvmGrowableListGetElement(
494 blockList, predIdx);
495 int encodedSSAValue =
496 predBB->dataFlowInfo->dalvikToSSAMap[dalvikReg];
497 int ssaReg = DECODE_REG(encodedSSAValue);
498 dvmSetBit(ssaRegV, ssaReg);
499 }
500
501 /* Count the number of SSA registers for a Dalvik register */
502 int numUses = dvmCountSetBits(ssaRegV);
503 mir->ssaRep->numUses = numUses;
504 mir->ssaRep->uses =
505 (int *) dvmCompilerNew(sizeof(int) * numUses, false);
506 mir->ssaRep->fpUse =
507 (bool *) dvmCompilerNew(sizeof(bool) * numUses, false);
508
509 BitVectorIterator phiIterator;
510
511 dvmBitVectorIteratorInit(ssaRegV, &phiIterator);
512 int *usePtr = mir->ssaRep->uses;
513
514 /* Set the uses array for the phi node */
515 while (true) {
516 int ssaRegIdx = dvmBitVectorIteratorNext(&phiIterator);
517 if (ssaRegIdx == -1) break;
518 *usePtr++ = ssaRegIdx;
519 }
520 }
521
522 return true;
523}
524
525/* Perform SSA transformation for the whole method */
526void dvmCompilerMethodSSATransformation(CompilationUnit *cUnit)
527{
528 /* Compute the DFS order */
529 computeDFSOrder(cUnit);
530
531 /* Compute the dominator info */
532 computeDominators(cUnit);
533
534 /* Allocate data structures in preparation for SSA conversion */
535 dvmInitializeSSAConversion(cUnit);
536
537 /* Find out the "Dalvik reg def x block" relation */
538 computeDefBlockMatrix(cUnit);
539
540 /* Insert phi nodes to dominance frontiers for all variables */
541 insertPhiNodes(cUnit);
542
543 /* Rename register names by local defs and phi nodes */
544 dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerDoSSAConversion,
545 kPreOrderDFSTraversal,
546 false /* isIterative */);
547
548 /*
549 * Shared temp bit vector used by each block to count the number of defs
550 * from all the predecessor blocks.
551 */
552 cUnit->tempSSARegisterV = dvmCompilerAllocBitVector(cUnit->numSSARegs,
553 false);
554
555 /* Insert phi-operands with latest SSA names from predecessor blocks */
556 dvmCompilerDataFlowAnalysisDispatcher(cUnit, insertPhiNodeOperands,
557 kReachableNodes,
558 false /* isIterative */);
559}