| The Android Open Source Project | f6c3871 | 2009-03-03 19:28:47 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2008 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include <cutils/mspace.h> |
| 18 | #include <limits.h> // for INT_MAX |
| 19 | #include <sys/mman.h> |
| 20 | #include <errno.h> |
| 21 | |
| 22 | #include "Dalvik.h" |
| 23 | #include "alloc/Heap.h" |
| 24 | #include "alloc/HeapInternal.h" |
| 25 | #include "alloc/HeapSource.h" |
| 26 | #include "alloc/HeapBitmap.h" |
| 27 | |
| 28 | // TODO: find a real header file for these. |
| 29 | extern int dlmalloc_trim(size_t); |
| 30 | extern void dlmalloc_walk_free_pages(void(*)(void*, void*, void*), void*); |
| 31 | |
| 32 | static void snapIdealFootprint(void); |
| 33 | static void setIdealFootprint(size_t max); |
| 34 | |
| 35 | #ifndef PAGE_SIZE |
| 36 | #define PAGE_SIZE 4096 |
| 37 | #endif |
| 38 | #define ALIGN_UP_TO_PAGE_SIZE(p) \ |
| 39 | (((size_t)(p) + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1)) |
| 40 | #define ALIGN_DOWN_TO_PAGE_SIZE(p) \ |
| 41 | ((size_t)(p) & ~(PAGE_SIZE - 1)) |
| 42 | |
| 43 | #define HEAP_UTILIZATION_MAX 1024 |
| 44 | #define DEFAULT_HEAP_UTILIZATION 512 // Range 1..HEAP_UTILIZATION_MAX |
| 45 | #define HEAP_IDEAL_FREE (2 * 1024 * 1024) |
| 46 | #define HEAP_MIN_FREE (HEAP_IDEAL_FREE / 4) |
| 47 | |
| 48 | #define HS_BOILERPLATE() \ |
| 49 | do { \ |
| 50 | assert(gDvm.gcHeap != NULL); \ |
| 51 | assert(gDvm.gcHeap->heapSource != NULL); \ |
| 52 | assert(gHs == gDvm.gcHeap->heapSource); \ |
| 53 | } while (0) |
| 54 | |
| 55 | #define DEBUG_HEAP_SOURCE 0 |
| 56 | #if DEBUG_HEAP_SOURCE |
| 57 | #define HSTRACE(...) LOG(LOG_INFO, LOG_TAG "-hs", __VA_ARGS__) |
| 58 | #else |
| 59 | #define HSTRACE(...) /**/ |
| 60 | #endif |
| 61 | |
| 62 | /* |
| 63 | ======================================================= |
| 64 | ======================================================= |
| 65 | ======================================================= |
| 66 | |
| 67 | How will this be used? |
| 68 | allocating/freeing: Heap.c just wants to say "alloc(n)" and get a ptr |
| 69 | - if allocating in large doesn't work, try allocating from small |
| 70 | Heap.c will use HeapSource.h; HeapSource.c will do the right thing |
| 71 | between small and large |
| 72 | - some operations should be abstracted; put in a structure |
| 73 | |
| 74 | How do we manage the size trade-offs? |
| 75 | - keep mspace max footprint clamped to actual footprint |
| 76 | - if small-alloc returns null, adjust large vs. small ratio |
| 77 | - give small all available slack and retry |
| 78 | - success or fail, snap back to actual footprint and give rest to large |
| 79 | |
| 80 | managed as "small actual" + "large actual" + "delta to allowed total footprint" |
| 81 | - when allocating from one source or the other, give the delta to the |
| 82 | active source, but snap back afterwards |
| 83 | - that may not work so great for a gc heap, because small will always consume. |
| 84 | - but we need to use the memory, and the current max is the amount we |
| 85 | need to fill before a GC. |
| 86 | |
| 87 | Find a way to permanently steal pages from the middle of the heap |
| 88 | - segment tricks? |
| 89 | |
| 90 | Allocate String and char[] in a separate heap? |
| 91 | |
| 92 | Maybe avoid growing small heap, even if there's slack? Look at |
| 93 | live ratio of small heap after a gc; scale it based on that. |
| 94 | |
| 95 | ======================================================= |
| 96 | ======================================================= |
| 97 | ======================================================= |
| 98 | */ |
| 99 | |
| 100 | typedef struct { |
| 101 | /* The mspace to allocate from. |
| 102 | */ |
| 103 | mspace *msp; |
| 104 | |
| 105 | /* The bitmap that keeps track of where objects are in the heap. |
| 106 | */ |
| 107 | HeapBitmap objectBitmap; |
| 108 | |
| 109 | /* The largest size that this heap is allowed to grow to. |
| 110 | */ |
| 111 | size_t absoluteMaxSize; |
| 112 | |
| 113 | /* Number of bytes allocated from this mspace for objects, |
| 114 | * including any overhead. This value is NOT exact, and |
| 115 | * should only be used as an input for certain heuristics. |
| 116 | */ |
| 117 | size_t bytesAllocated; |
| 118 | |
| 119 | /* Number of objects currently allocated from this mspace. |
| 120 | */ |
| 121 | size_t objectsAllocated; |
| 122 | } Heap; |
| 123 | |
| 124 | struct HeapSource { |
| 125 | /* Target ideal heap utilization ratio; range 1..HEAP_UTILIZATION_MAX |
| 126 | */ |
| 127 | size_t targetUtilization; |
| 128 | |
| 129 | /* Requested minimum heap size, or zero if there is no minimum. |
| 130 | */ |
| 131 | size_t minimumSize; |
| 132 | |
| 133 | /* The starting heap size. |
| 134 | */ |
| 135 | size_t startSize; |
| 136 | |
| 137 | /* The largest that the heap source as a whole is allowed to grow. |
| 138 | */ |
| 139 | size_t absoluteMaxSize; |
| 140 | |
| 141 | /* The desired max size of the heap source as a whole. |
| 142 | */ |
| 143 | size_t idealSize; |
| 144 | |
| 145 | /* The maximum number of bytes allowed to be allocated from the |
| 146 | * active heap before a GC is forced. This is used to "shrink" the |
| 147 | * heap in lieu of actual compaction. |
| 148 | */ |
| 149 | size_t softLimit; |
| 150 | |
| 151 | /* The heaps; heaps[0] is always the active heap, |
| 152 | * which new objects should be allocated from. |
| 153 | */ |
| 154 | Heap heaps[HEAP_SOURCE_MAX_HEAP_COUNT]; |
| 155 | |
| 156 | /* The current number of heaps. |
| 157 | */ |
| 158 | size_t numHeaps; |
| 159 | |
| 160 | /* External allocation count. |
| 161 | */ |
| 162 | size_t externalBytesAllocated; |
| 163 | |
| 164 | /* The maximum number of external bytes that may be allocated. |
| 165 | */ |
| 166 | size_t externalLimit; |
| 167 | |
| 168 | /* True if zygote mode was active when the HeapSource was created. |
| 169 | */ |
| 170 | bool sawZygote; |
| 171 | }; |
| 172 | |
| 173 | #define hs2heap(hs_) (&((hs_)->heaps[0])) |
| 174 | |
| 175 | /* |
| 176 | * Returns true iff a soft limit is in effect for the active heap. |
| 177 | */ |
| 178 | static inline bool |
| 179 | softLimited(const HeapSource *hs) |
| 180 | { |
| 181 | /* softLimit will be either INT_MAX or the limit for the |
| 182 | * active mspace. idealSize can be greater than softLimit |
| 183 | * if there is more than one heap. If there is only one |
| 184 | * heap, a non-INT_MAX softLimit should always be the same |
| 185 | * as idealSize. |
| 186 | */ |
| 187 | return hs->softLimit <= hs->idealSize; |
| 188 | } |
| 189 | |
| 190 | /* |
| 191 | * Returns the current footprint of all heaps. If includeActive |
| 192 | * is false, don't count the heap at index 0. |
| 193 | */ |
| 194 | static inline size_t |
| 195 | oldHeapOverhead(const HeapSource *hs, bool includeActive) |
| 196 | { |
| 197 | size_t footprint = 0; |
| 198 | size_t i; |
| 199 | |
| 200 | if (includeActive) { |
| 201 | i = 0; |
| 202 | } else { |
| 203 | i = 1; |
| 204 | } |
| 205 | for (/* i = i */; i < hs->numHeaps; i++) { |
| 206 | //TODO: include size of bitmaps? If so, don't use bitsLen, listen to .max |
| 207 | footprint += mspace_footprint(hs->heaps[i].msp); |
| 208 | } |
| 209 | return footprint; |
| 210 | } |
| 211 | |
| 212 | /* |
| 213 | * Returns the heap that <ptr> could have come from, or NULL |
| 214 | * if it could not have come from any heap. |
| 215 | */ |
| 216 | static inline Heap * |
| 217 | ptr2heap(const HeapSource *hs, const void *ptr) |
| 218 | { |
| 219 | const size_t numHeaps = hs->numHeaps; |
| 220 | size_t i; |
| 221 | |
| 222 | //TODO: unroll this to HEAP_SOURCE_MAX_HEAP_COUNT |
| 223 | if (ptr != NULL) { |
| 224 | for (i = 0; i < numHeaps; i++) { |
| 225 | const Heap *const heap = &hs->heaps[i]; |
| 226 | |
| 227 | if (dvmHeapBitmapMayContainObject(&heap->objectBitmap, ptr)) { |
| 228 | return (Heap *)heap; |
| 229 | } |
| 230 | } |
| 231 | } |
| 232 | return NULL; |
| 233 | } |
| 234 | |
| 235 | /* |
| 236 | * Functions to update heapSource->bytesAllocated when an object |
| 237 | * is allocated or freed. mspace_usable_size() will give |
| 238 | * us a much more accurate picture of heap utilization than |
| 239 | * the requested byte sizes would. |
| 240 | * |
| 241 | * These aren't exact, and should not be treated as such. |
| 242 | */ |
| 243 | static inline void |
| 244 | countAllocation(Heap *heap, const void *ptr, bool isObj) |
| 245 | { |
| 246 | assert(heap->bytesAllocated < mspace_footprint(heap->msp)); |
| 247 | |
| 248 | heap->bytesAllocated += mspace_usable_size(heap->msp, ptr) + |
| 249 | HEAP_SOURCE_CHUNK_OVERHEAD; |
| 250 | if (isObj) { |
| 251 | heap->objectsAllocated++; |
| 252 | dvmHeapBitmapSetObjectBit(&heap->objectBitmap, ptr); |
| 253 | } |
| 254 | |
| 255 | assert(heap->bytesAllocated < mspace_footprint(heap->msp)); |
| 256 | } |
| 257 | |
| 258 | static inline void |
| 259 | countFree(Heap *heap, const void *ptr, bool isObj) |
| 260 | { |
| 261 | size_t delta; |
| 262 | |
| 263 | delta = mspace_usable_size(heap->msp, ptr) + HEAP_SOURCE_CHUNK_OVERHEAD; |
| 264 | assert(delta > 0); |
| 265 | if (delta < heap->bytesAllocated) { |
| 266 | heap->bytesAllocated -= delta; |
| 267 | } else { |
| 268 | heap->bytesAllocated = 0; |
| 269 | } |
| 270 | if (isObj) { |
| 271 | dvmHeapBitmapClearObjectBit(&heap->objectBitmap, ptr); |
| 272 | if (heap->objectsAllocated > 0) { |
| 273 | heap->objectsAllocated--; |
| 274 | } |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | static HeapSource *gHs = NULL; |
| 279 | |
| 280 | static mspace * |
| 281 | createMspace(size_t startSize, size_t absoluteMaxSize, size_t id) |
| 282 | { |
| 283 | mspace *msp; |
| 284 | char name[PATH_MAX]; |
| 285 | |
| 286 | /* If two ashmem regions have the same name, only one gets |
| 287 | * the name when looking at the maps. |
| 288 | */ |
| 289 | snprintf(name, sizeof(name)-1, "dalvik-heap%s/%zd", |
| 290 | gDvm.zygote ? "/zygote" : "", id); |
| 291 | name[sizeof(name)-1] = '\0'; |
| 292 | |
| 293 | /* Create an unlocked dlmalloc mspace to use as |
| 294 | * a small-object heap source. |
| 295 | * |
| 296 | * We start off reserving heapSizeStart/2 bytes but |
| 297 | * letting the heap grow to heapSizeStart. This saves |
| 298 | * memory in the case where a process uses even less |
| 299 | * than the starting size. |
| 300 | */ |
| 301 | LOGV_HEAP("Creating VM heap of size %u\n", startSize); |
| 302 | errno = 0; |
| 303 | msp = create_contiguous_mspace_with_name(startSize/2, |
| 304 | absoluteMaxSize, /*locked=*/false, name); |
| 305 | if (msp != NULL) { |
| 306 | /* Don't let the heap grow past the starting size without |
| 307 | * our intervention. |
| 308 | */ |
| 309 | mspace_set_max_allowed_footprint(msp, startSize); |
| 310 | } else { |
| 311 | /* There's no guarantee that errno has meaning when the call |
| 312 | * fails, but it often does. |
| 313 | */ |
| 314 | LOGE_HEAP("Can't create VM heap of size (%u,%u) (errno=%d)\n", |
| 315 | startSize/2, absoluteMaxSize, errno); |
| 316 | } |
| 317 | |
| 318 | return msp; |
| 319 | } |
| 320 | |
| 321 | static bool |
| 322 | addNewHeap(HeapSource *hs, mspace *msp, size_t mspAbsoluteMaxSize) |
| 323 | { |
| 324 | Heap heap; |
| 325 | |
| 326 | if (hs->numHeaps >= HEAP_SOURCE_MAX_HEAP_COUNT) { |
| 327 | LOGE("Attempt to create too many heaps (%zd >= %zd)\n", |
| 328 | hs->numHeaps, HEAP_SOURCE_MAX_HEAP_COUNT); |
| 329 | dvmAbort(); |
| 330 | return false; |
| 331 | } |
| 332 | |
| 333 | memset(&heap, 0, sizeof(heap)); |
| 334 | |
| 335 | if (msp != NULL) { |
| 336 | heap.msp = msp; |
| 337 | heap.absoluteMaxSize = mspAbsoluteMaxSize; |
| 338 | } else { |
| 339 | size_t overhead; |
| 340 | |
| 341 | overhead = oldHeapOverhead(hs, true); |
| 342 | if (overhead + HEAP_MIN_FREE >= hs->absoluteMaxSize) { |
| 343 | LOGE_HEAP("No room to create any more heaps " |
| 344 | "(%zd overhead, %zd max)\n", |
| 345 | overhead, hs->absoluteMaxSize); |
| 346 | return false; |
| 347 | } |
| 348 | heap.absoluteMaxSize = hs->absoluteMaxSize - overhead; |
| 349 | heap.msp = createMspace(HEAP_MIN_FREE, heap.absoluteMaxSize, |
| 350 | hs->numHeaps); |
| 351 | if (heap.msp == NULL) { |
| 352 | return false; |
| 353 | } |
| 354 | } |
| 355 | if (!dvmHeapBitmapInit(&heap.objectBitmap, |
| 356 | (void *)ALIGN_DOWN_TO_PAGE_SIZE(heap.msp), |
| 357 | heap.absoluteMaxSize, |
| 358 | "objects")) |
| 359 | { |
| 360 | LOGE_HEAP("Can't create objectBitmap\n"); |
| 361 | goto fail; |
| 362 | } |
| 363 | |
| 364 | /* Don't let the soon-to-be-old heap grow any further. |
| 365 | */ |
| 366 | if (hs->numHeaps > 0) { |
| 367 | mspace *msp = hs->heaps[0].msp; |
| 368 | mspace_set_max_allowed_footprint(msp, mspace_footprint(msp)); |
| 369 | } |
| 370 | |
| 371 | /* Put the new heap in the list, at heaps[0]. |
| 372 | * Shift existing heaps down. |
| 373 | */ |
| 374 | memmove(&hs->heaps[1], &hs->heaps[0], hs->numHeaps * sizeof(hs->heaps[0])); |
| 375 | hs->heaps[0] = heap; |
| 376 | hs->numHeaps++; |
| 377 | |
| 378 | return true; |
| 379 | |
| 380 | fail: |
| 381 | if (msp == NULL) { |
| 382 | destroy_contiguous_mspace(heap.msp); |
| 383 | } |
| 384 | return false; |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * Initializes the heap source; must be called before any other |
| 389 | * dvmHeapSource*() functions. Returns a GcHeap structure |
| 390 | * allocated from the heap source. |
| 391 | */ |
| 392 | GcHeap * |
| 393 | dvmHeapSourceStartup(size_t startSize, size_t absoluteMaxSize) |
| 394 | { |
| 395 | GcHeap *gcHeap; |
| 396 | HeapSource *hs; |
| 397 | Heap *heap; |
| 398 | mspace msp; |
| 399 | |
| 400 | assert(gHs == NULL); |
| 401 | |
| 402 | if (startSize > absoluteMaxSize) { |
| 403 | LOGE("Bad heap parameters (start=%d, max=%d)\n", |
| 404 | startSize, absoluteMaxSize); |
| 405 | return NULL; |
| 406 | } |
| 407 | |
| 408 | /* Create an unlocked dlmalloc mspace to use as |
| 409 | * the small object heap source. |
| 410 | */ |
| 411 | msp = createMspace(startSize, absoluteMaxSize, 0); |
| 412 | if (msp == NULL) { |
| 413 | return false; |
| 414 | } |
| 415 | |
| 416 | /* Allocate a descriptor from the heap we just created. |
| 417 | */ |
| 418 | gcHeap = mspace_malloc(msp, sizeof(*gcHeap)); |
| 419 | if (gcHeap == NULL) { |
| 420 | LOGE_HEAP("Can't allocate heap descriptor\n"); |
| 421 | goto fail; |
| 422 | } |
| 423 | memset(gcHeap, 0, sizeof(*gcHeap)); |
| 424 | |
| 425 | hs = mspace_malloc(msp, sizeof(*hs)); |
| 426 | if (hs == NULL) { |
| 427 | LOGE_HEAP("Can't allocate heap source\n"); |
| 428 | goto fail; |
| 429 | } |
| 430 | memset(hs, 0, sizeof(*hs)); |
| 431 | |
| 432 | hs->targetUtilization = DEFAULT_HEAP_UTILIZATION; |
| 433 | hs->minimumSize = 0; |
| 434 | hs->startSize = startSize; |
| 435 | hs->absoluteMaxSize = absoluteMaxSize; |
| 436 | hs->idealSize = startSize; |
| 437 | hs->softLimit = INT_MAX; // no soft limit at first |
| 438 | hs->numHeaps = 0; |
| 439 | hs->sawZygote = gDvm.zygote; |
| 440 | if (!addNewHeap(hs, msp, absoluteMaxSize)) { |
| 441 | LOGE_HEAP("Can't add initial heap\n"); |
| 442 | goto fail; |
| 443 | } |
| 444 | |
| 445 | gcHeap->heapSource = hs; |
| 446 | |
| 447 | countAllocation(hs2heap(hs), gcHeap, false); |
| 448 | countAllocation(hs2heap(hs), hs, false); |
| 449 | |
| 450 | gHs = hs; |
| 451 | return gcHeap; |
| 452 | |
| 453 | fail: |
| 454 | destroy_contiguous_mspace(msp); |
| 455 | return NULL; |
| 456 | } |
| 457 | |
| 458 | /* |
| 459 | * If the HeapSource was created while in zygote mode, this |
| 460 | * will create a new heap for post-zygote allocations. |
| 461 | * Having a separate heap should maximize the number of pages |
| 462 | * that a given app_process shares with the zygote process. |
| 463 | */ |
| 464 | bool |
| 465 | dvmHeapSourceStartupAfterZygote() |
| 466 | { |
| 467 | HeapSource *hs = gHs; // use a local to avoid the implicit "volatile" |
| 468 | |
| 469 | HS_BOILERPLATE(); |
| 470 | |
| 471 | assert(!gDvm.zygote); |
| 472 | |
| 473 | if (hs->sawZygote) { |
| 474 | /* Create a new heap for post-zygote allocations. |
| 475 | */ |
| 476 | return addNewHeap(hs, NULL, 0); |
| 477 | } |
| 478 | return true; |
| 479 | } |
| 480 | |
| 481 | /* |
| 482 | * This is called while in zygote mode, right before we fork() for the |
| 483 | * first time. We create a heap for all future zygote process allocations, |
| 484 | * in an attempt to avoid touching pages in the zygote heap. (This would |
| 485 | * probably be unnecessary if we had a compacting GC -- the source of our |
| 486 | * troubles is small allocations filling in the gaps from larger ones.) |
| 487 | */ |
| 488 | bool |
| 489 | dvmHeapSourceStartupBeforeFork() |
| 490 | { |
| 491 | HeapSource *hs = gHs; // use a local to avoid the implicit "volatile" |
| 492 | |
| 493 | HS_BOILERPLATE(); |
| 494 | |
| 495 | assert(gDvm.zygote); |
| 496 | |
| 497 | if (!gDvm.newZygoteHeapAllocated) { |
| 498 | /* Create a new heap for post-fork zygote allocations. We only |
| 499 | * try once, even if it fails. |
| 500 | */ |
| 501 | LOGI("Splitting out new zygote heap\n"); |
| 502 | gDvm.newZygoteHeapAllocated = true; |
| 503 | return addNewHeap(hs, NULL, 0); |
| 504 | } |
| 505 | return true; |
| 506 | } |
| 507 | |
| 508 | /* |
| 509 | * Tears down the heap source and frees any resources associated with it. |
| 510 | */ |
| 511 | void |
| 512 | dvmHeapSourceShutdown(GcHeap *gcHeap) |
| 513 | { |
| 514 | if (gcHeap != NULL && gcHeap->heapSource != NULL) { |
| 515 | HeapSource *hs; |
| 516 | size_t numHeaps; |
| 517 | size_t i; |
| 518 | |
| 519 | hs = gcHeap->heapSource; |
| 520 | gHs = NULL; |
| 521 | |
| 522 | /* Cache numHeaps because hs will be invalid after the last |
| 523 | * heap is freed. |
| 524 | */ |
| 525 | numHeaps = hs->numHeaps; |
| 526 | |
| 527 | for (i = 0; i < numHeaps; i++) { |
| 528 | Heap *heap = &hs->heaps[i]; |
| 529 | |
| 530 | dvmHeapBitmapDelete(&heap->objectBitmap); |
| 531 | destroy_contiguous_mspace(heap->msp); |
| 532 | } |
| 533 | /* The last heap is the original one, which contains the |
| 534 | * HeapSource object itself. |
| 535 | */ |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * Returns the requested value. If the per-heap stats are requested, fill |
| 541 | * them as well. |
| 542 | * |
| 543 | * Caller must hold the heap lock. |
| 544 | */ |
| 545 | size_t |
| 546 | dvmHeapSourceGetValue(enum HeapSourceValueSpec spec, size_t perHeapStats[], |
| 547 | size_t arrayLen) |
| 548 | { |
| 549 | HeapSource *hs = gHs; |
| 550 | size_t value = 0; |
| 551 | size_t total = 0; |
| 552 | size_t i; |
| 553 | |
| 554 | HS_BOILERPLATE(); |
| 555 | |
| 556 | switch (spec) { |
| 557 | case HS_EXTERNAL_BYTES_ALLOCATED: |
| 558 | return hs->externalBytesAllocated; |
| 559 | case HS_EXTERNAL_LIMIT: |
| 560 | return hs->externalLimit; |
| 561 | default: |
| 562 | // look at all heaps. |
| 563 | ; |
| 564 | } |
| 565 | |
| 566 | assert(arrayLen >= hs->numHeaps || perHeapStats == NULL); |
| 567 | for (i = 0; i < hs->numHeaps; i++) { |
| 568 | Heap *const heap = &hs->heaps[i]; |
| 569 | |
| 570 | switch (spec) { |
| 571 | case HS_FOOTPRINT: |
| 572 | value = mspace_footprint(heap->msp); |
| 573 | break; |
| 574 | case HS_ALLOWED_FOOTPRINT: |
| 575 | value = mspace_max_allowed_footprint(heap->msp); |
| 576 | break; |
| 577 | case HS_BYTES_ALLOCATED: |
| 578 | value = heap->bytesAllocated; |
| 579 | break; |
| 580 | case HS_OBJECTS_ALLOCATED: |
| 581 | value = heap->objectsAllocated; |
| 582 | break; |
| 583 | default: |
| 584 | // quiet gcc |
| 585 | break; |
| 586 | } |
| 587 | if (perHeapStats) { |
| 588 | perHeapStats[i] = value; |
| 589 | } |
| 590 | total += value; |
| 591 | } |
| 592 | return total; |
| 593 | } |
| 594 | |
| 595 | /* |
| 596 | * Writes shallow copies of the currently-used bitmaps into outBitmaps, |
| 597 | * returning the number of bitmaps written. Returns <0 if the array |
| 598 | * was not long enough. |
| 599 | */ |
| 600 | ssize_t |
| 601 | dvmHeapSourceGetObjectBitmaps(HeapBitmap outBitmaps[], size_t maxBitmaps) |
| 602 | { |
| 603 | HeapSource *hs = gHs; |
| 604 | |
| 605 | HS_BOILERPLATE(); |
| 606 | |
| 607 | if (maxBitmaps >= hs->numHeaps) { |
| 608 | size_t i; |
| 609 | |
| 610 | for (i = 0; i < hs->numHeaps; i++) { |
| 611 | outBitmaps[i] = hs->heaps[i].objectBitmap; |
| 612 | } |
| 613 | return i; |
| 614 | } |
| 615 | return -1; |
| 616 | } |
| 617 | |
| 618 | /* |
| 619 | * Replaces the object location HeapBitmaps with the elements of |
| 620 | * <objectBitmaps>. The elements of <objectBitmaps> are overwritten |
| 621 | * with shallow copies of the old bitmaps. |
| 622 | * |
| 623 | * Returns false if the number of bitmaps doesn't match the number |
| 624 | * of heaps. |
| 625 | */ |
| 626 | bool |
| 627 | dvmHeapSourceReplaceObjectBitmaps(HeapBitmap objectBitmaps[], size_t nBitmaps) |
| 628 | { |
| 629 | HeapSource *hs = gHs; |
| 630 | size_t i; |
| 631 | |
| 632 | HS_BOILERPLATE(); |
| 633 | |
| 634 | if (nBitmaps != hs->numHeaps) { |
| 635 | return false; |
| 636 | } |
| 637 | |
| 638 | for (i = 0; i < hs->numHeaps; i++) { |
| 639 | Heap *heap = &hs->heaps[i]; |
| 640 | HeapBitmap swap; |
| 641 | |
| 642 | swap = heap->objectBitmap; |
| 643 | heap->objectBitmap = objectBitmaps[i]; |
| 644 | objectBitmaps[i] = swap; |
| 645 | } |
| 646 | return true; |
| 647 | } |
| 648 | |
| 649 | /* |
| 650 | * Allocates <n> bytes of zeroed data. |
| 651 | */ |
| 652 | void * |
| 653 | dvmHeapSourceAlloc(size_t n) |
| 654 | { |
| 655 | HeapSource *hs = gHs; |
| 656 | Heap *heap; |
| 657 | void *ptr; |
| 658 | |
| 659 | HS_BOILERPLATE(); |
| 660 | heap = hs2heap(hs); |
| 661 | |
| 662 | if (heap->bytesAllocated + n <= hs->softLimit) { |
| 663 | // TODO: allocate large blocks (>64k?) as separate mmap regions so that |
| 664 | // they don't increase the high-water mark when they're freed. |
| 665 | // TODO: zero out large objects using madvise |
| 666 | ptr = mspace_calloc(heap->msp, 1, n); |
| 667 | if (ptr != NULL) { |
| 668 | countAllocation(heap, ptr, true); |
| 669 | } |
| 670 | } else { |
| 671 | /* This allocation would push us over the soft limit; |
| 672 | * act as if the heap is full. |
| 673 | */ |
| 674 | LOGV_HEAP("softLimit of %zd.%03zdMB hit for %zd-byte allocation\n", |
| 675 | FRACTIONAL_MB(hs->softLimit), n); |
| 676 | ptr = NULL; |
| 677 | } |
| 678 | return ptr; |
| 679 | } |
| 680 | |
| 681 | /* Remove any hard limits, try to allocate, and shrink back down. |
| 682 | * Last resort when trying to allocate an object. |
| 683 | */ |
| 684 | static void * |
| 685 | heapAllocAndGrow(HeapSource *hs, Heap *heap, size_t n) |
| 686 | { |
| 687 | void *ptr; |
| 688 | size_t max; |
| 689 | |
| 690 | /* Grow as much as possible, but don't let the real footprint |
| 691 | * plus external allocations go over the absolute max. |
| 692 | */ |
| 693 | max = heap->absoluteMaxSize; |
| 694 | if (max > hs->externalBytesAllocated) { |
| 695 | max -= hs->externalBytesAllocated; |
| 696 | |
| 697 | mspace_set_max_allowed_footprint(heap->msp, max); |
| 698 | ptr = dvmHeapSourceAlloc(n); |
| 699 | |
| 700 | /* Shrink back down as small as possible. Our caller may |
| 701 | * readjust max_allowed to a more appropriate value. |
| 702 | */ |
| 703 | mspace_set_max_allowed_footprint(heap->msp, |
| 704 | mspace_footprint(heap->msp)); |
| 705 | } else { |
| 706 | ptr = NULL; |
| 707 | } |
| 708 | |
| 709 | return ptr; |
| 710 | } |
| 711 | |
| 712 | /* |
| 713 | * Allocates <n> bytes of zeroed data, growing as much as possible |
| 714 | * if necessary. |
| 715 | */ |
| 716 | void * |
| 717 | dvmHeapSourceAllocAndGrow(size_t n) |
| 718 | { |
| 719 | HeapSource *hs = gHs; |
| 720 | Heap *heap; |
| 721 | void *ptr; |
| 722 | size_t oldIdealSize; |
| 723 | |
| 724 | HS_BOILERPLATE(); |
| 725 | heap = hs2heap(hs); |
| 726 | |
| 727 | ptr = dvmHeapSourceAlloc(n); |
| 728 | if (ptr != NULL) { |
| 729 | return ptr; |
| 730 | } |
| 731 | |
| 732 | oldIdealSize = hs->idealSize; |
| 733 | if (softLimited(hs)) { |
| 734 | /* We're soft-limited. Try removing the soft limit to |
| 735 | * see if we can allocate without actually growing. |
| 736 | */ |
| 737 | hs->softLimit = INT_MAX; |
| 738 | ptr = dvmHeapSourceAlloc(n); |
| 739 | if (ptr != NULL) { |
| 740 | /* Removing the soft limit worked; fix things up to |
| 741 | * reflect the new effective ideal size. |
| 742 | */ |
| 743 | snapIdealFootprint(); |
| 744 | return ptr; |
| 745 | } |
| 746 | // softLimit intentionally left at INT_MAX. |
| 747 | } |
| 748 | |
| 749 | /* We're not soft-limited. Grow the heap to satisfy the request. |
| 750 | * If this call fails, no footprints will have changed. |
| 751 | */ |
| 752 | ptr = heapAllocAndGrow(hs, heap, n); |
| 753 | if (ptr != NULL) { |
| 754 | /* The allocation succeeded. Fix up the ideal size to |
| 755 | * reflect any footprint modifications that had to happen. |
| 756 | */ |
| 757 | snapIdealFootprint(); |
| 758 | } else { |
| 759 | /* We just couldn't do it. Restore the original ideal size, |
| 760 | * fixing up softLimit if necessary. |
| 761 | */ |
| 762 | setIdealFootprint(oldIdealSize); |
| 763 | } |
| 764 | return ptr; |
| 765 | } |
| 766 | |
| 767 | /* |
| 768 | * Frees the memory pointed to by <ptr>, which may be NULL. |
| 769 | */ |
| 770 | void |
| 771 | dvmHeapSourceFree(void *ptr) |
| 772 | { |
| 773 | Heap *heap; |
| 774 | |
| 775 | HS_BOILERPLATE(); |
| 776 | |
| 777 | heap = ptr2heap(gHs, ptr); |
| 778 | if (heap != NULL) { |
| 779 | countFree(heap, ptr, true); |
| 780 | /* Only free objects that are in the active heap. |
| 781 | * Touching old heaps would pull pages into this process. |
| 782 | */ |
| 783 | if (heap == gHs->heaps) { |
| 784 | mspace_free(heap->msp, ptr); |
| 785 | } |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | /* |
| 790 | * Returns true iff <ptr> was allocated from the heap source. |
| 791 | */ |
| 792 | bool |
| 793 | dvmHeapSourceContains(const void *ptr) |
| 794 | { |
| 795 | Heap *heap; |
| 796 | |
| 797 | HS_BOILERPLATE(); |
| 798 | |
| 799 | heap = ptr2heap(gHs, ptr); |
| 800 | if (heap != NULL) { |
| 801 | return dvmHeapBitmapIsObjectBitSet(&heap->objectBitmap, ptr) != 0; |
| 802 | } |
| 803 | return false; |
| 804 | } |
| 805 | |
| 806 | /* |
| 807 | * Returns the value of the requested flag. |
| 808 | */ |
| 809 | bool |
| 810 | dvmHeapSourceGetPtrFlag(const void *ptr, enum HeapSourcePtrFlag flag) |
| 811 | { |
| 812 | if (ptr == NULL) { |
| 813 | return false; |
| 814 | } |
| 815 | |
| 816 | if (flag == HS_CONTAINS) { |
| 817 | return dvmHeapSourceContains(ptr); |
| 818 | } else if (flag == HS_ALLOCATED_IN_ZYGOTE) { |
| 819 | HeapSource *hs = gHs; |
| 820 | |
| 821 | HS_BOILERPLATE(); |
| 822 | |
| 823 | if (hs->sawZygote) { |
| 824 | Heap *heap; |
| 825 | |
| 826 | heap = ptr2heap(hs, ptr); |
| 827 | if (heap != NULL) { |
| 828 | /* If the object is not in the active heap, we assume that |
| 829 | * it was allocated as part of zygote. |
| 830 | */ |
| 831 | return heap != hs->heaps; |
| 832 | } |
| 833 | } |
| 834 | /* The pointer is outside of any known heap, or we are not |
| 835 | * running in zygote mode. |
| 836 | */ |
| 837 | return false; |
| 838 | } |
| 839 | |
| 840 | return false; |
| 841 | } |
| 842 | |
| 843 | /* |
| 844 | * Returns the number of usable bytes in an allocated chunk; the size |
| 845 | * may be larger than the size passed to dvmHeapSourceAlloc(). |
| 846 | */ |
| 847 | size_t |
| 848 | dvmHeapSourceChunkSize(const void *ptr) |
| 849 | { |
| 850 | Heap *heap; |
| 851 | |
| 852 | HS_BOILERPLATE(); |
| 853 | |
| 854 | heap = ptr2heap(gHs, ptr); |
| 855 | if (heap != NULL) { |
| 856 | return mspace_usable_size(heap->msp, ptr); |
| 857 | } |
| 858 | return 0; |
| 859 | } |
| 860 | |
| 861 | /* |
| 862 | * Returns the number of bytes that the heap source has allocated |
| 863 | * from the system using sbrk/mmap, etc. |
| 864 | * |
| 865 | * Caller must hold the heap lock. |
| 866 | */ |
| 867 | size_t |
| 868 | dvmHeapSourceFootprint() |
| 869 | { |
| 870 | HS_BOILERPLATE(); |
| 871 | |
| 872 | //TODO: include size of bitmaps? |
| 873 | return oldHeapOverhead(gHs, true); |
| 874 | } |
| 875 | |
| 876 | /* |
| 877 | * Return the real bytes used by old heaps and external memory |
| 878 | * plus the soft usage of the current heap. When a soft limit |
| 879 | * is in effect, this is effectively what it's compared against |
| 880 | * (though, in practice, it only looks at the current heap). |
| 881 | */ |
| 882 | static size_t |
| 883 | getSoftFootprint(bool includeActive) |
| 884 | { |
| 885 | HeapSource *hs = gHs; |
| 886 | size_t ret; |
| 887 | |
| 888 | HS_BOILERPLATE(); |
| 889 | |
| 890 | ret = oldHeapOverhead(hs, false) + hs->externalBytesAllocated; |
| 891 | if (includeActive) { |
| 892 | ret += hs->heaps[0].bytesAllocated; |
| 893 | } |
| 894 | |
| 895 | return ret; |
| 896 | } |
| 897 | |
| 898 | /* |
| 899 | * Gets the maximum number of bytes that the heap source is allowed |
| 900 | * to allocate from the system. |
| 901 | */ |
| 902 | size_t |
| 903 | dvmHeapSourceGetIdealFootprint() |
| 904 | { |
| 905 | HeapSource *hs = gHs; |
| 906 | |
| 907 | HS_BOILERPLATE(); |
| 908 | |
| 909 | return hs->idealSize; |
| 910 | } |
| 911 | |
| 912 | /* |
| 913 | * Sets the soft limit, handling any necessary changes to the allowed |
| 914 | * footprint of the active heap. |
| 915 | */ |
| 916 | static void |
| 917 | setSoftLimit(HeapSource *hs, size_t softLimit) |
| 918 | { |
| 919 | /* Compare against the actual footprint, rather than the |
| 920 | * max_allowed, because the heap may not have grown all the |
| 921 | * way to the allowed size yet. |
| 922 | */ |
| 923 | mspace *msp = hs->heaps[0].msp; |
| 924 | size_t currentHeapSize = mspace_footprint(msp); |
| 925 | if (softLimit < currentHeapSize) { |
| 926 | /* Don't let the heap grow any more, and impose a soft limit. |
| 927 | */ |
| 928 | mspace_set_max_allowed_footprint(msp, currentHeapSize); |
| 929 | hs->softLimit = softLimit; |
| 930 | } else { |
| 931 | /* Let the heap grow to the requested max, and remove any |
| 932 | * soft limit, if set. |
| 933 | */ |
| 934 | mspace_set_max_allowed_footprint(msp, softLimit); |
| 935 | hs->softLimit = INT_MAX; |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | /* |
| 940 | * Sets the maximum number of bytes that the heap source is allowed |
| 941 | * to allocate from the system. Clamps to the appropriate maximum |
| 942 | * value. |
| 943 | */ |
| 944 | static void |
| 945 | setIdealFootprint(size_t max) |
| 946 | { |
| 947 | HeapSource *hs = gHs; |
| 948 | #if DEBUG_HEAP_SOURCE |
| 949 | HeapSource oldHs = *hs; |
| 950 | mspace *msp = hs->heaps[0].msp; |
| 951 | size_t oldAllowedFootprint = |
| 952 | mspace_max_allowed_footprint(msp); |
| 953 | #endif |
| 954 | |
| 955 | HS_BOILERPLATE(); |
| 956 | |
| 957 | if (max > hs->absoluteMaxSize) { |
| 958 | LOGI_HEAP("Clamp target GC heap from %zd.%03zdMB to %u.%03uMB\n", |
| 959 | FRACTIONAL_MB(max), |
| 960 | FRACTIONAL_MB(hs->absoluteMaxSize)); |
| 961 | max = hs->absoluteMaxSize; |
| 962 | } else if (max < hs->minimumSize) { |
| 963 | max = hs->minimumSize; |
| 964 | } |
| 965 | |
| 966 | /* Convert max into a size that applies to the active heap. |
| 967 | * Old heaps and external allocations will count against the ideal size. |
| 968 | */ |
| 969 | size_t overhead = getSoftFootprint(false); |
| 970 | size_t activeMax; |
| 971 | if (overhead < max) { |
| 972 | activeMax = max - overhead; |
| 973 | } else { |
| 974 | activeMax = 0; |
| 975 | } |
| 976 | |
| 977 | setSoftLimit(hs, activeMax); |
| 978 | hs->idealSize = max; |
| 979 | |
| 980 | HSTRACE("IDEAL %zd->%zd (%d), soft %zd->%zd (%d), allowed %zd->%zd (%d), " |
| 981 | "ext %zd\n", |
| 982 | oldHs.idealSize, hs->idealSize, hs->idealSize - oldHs.idealSize, |
| 983 | oldHs.softLimit, hs->softLimit, hs->softLimit - oldHs.softLimit, |
| 984 | oldAllowedFootprint, mspace_max_allowed_footprint(msp), |
| 985 | mspace_max_allowed_footprint(msp) - oldAllowedFootprint, |
| 986 | hs->externalBytesAllocated); |
| 987 | |
| 988 | } |
| 989 | |
| 990 | /* |
| 991 | * Make the ideal footprint equal to the current footprint. |
| 992 | */ |
| 993 | static void |
| 994 | snapIdealFootprint() |
| 995 | { |
| 996 | HeapSource *hs = gHs; |
| 997 | |
| 998 | HS_BOILERPLATE(); |
| 999 | |
| 1000 | setIdealFootprint(getSoftFootprint(true)); |
| 1001 | } |
| 1002 | |
| 1003 | /* |
| 1004 | * Gets the current ideal heap utilization, represented as a number |
| 1005 | * between zero and one. |
| 1006 | */ |
| 1007 | float dvmGetTargetHeapUtilization() |
| 1008 | { |
| 1009 | HeapSource *hs = gHs; |
| 1010 | |
| 1011 | HS_BOILERPLATE(); |
| 1012 | |
| 1013 | return (float)hs->targetUtilization / (float)HEAP_UTILIZATION_MAX; |
| 1014 | } |
| 1015 | |
| 1016 | /* |
| 1017 | * Sets the new ideal heap utilization, represented as a number |
| 1018 | * between zero and one. |
| 1019 | */ |
| 1020 | void dvmSetTargetHeapUtilization(float newTarget) |
| 1021 | { |
| 1022 | HeapSource *hs = gHs; |
| 1023 | size_t newUtilization; |
| 1024 | |
| 1025 | HS_BOILERPLATE(); |
| 1026 | |
| 1027 | /* Clamp it to a reasonable range. |
| 1028 | */ |
| 1029 | // TODO: This may need some tuning. |
| 1030 | if (newTarget < 0.2) { |
| 1031 | newTarget = 0.2; |
| 1032 | } else if (newTarget > 0.8) { |
| 1033 | newTarget = 0.8; |
| 1034 | } |
| 1035 | |
| 1036 | hs->targetUtilization = |
| 1037 | (size_t)(newTarget * (float)HEAP_UTILIZATION_MAX); |
| 1038 | LOGV("Set heap target utilization to %zd/%d (%f)\n", |
| 1039 | hs->targetUtilization, HEAP_UTILIZATION_MAX, newTarget); |
| 1040 | } |
| 1041 | |
| 1042 | /* |
| 1043 | * If set is true, sets the new minimum heap size to size; always |
| 1044 | * returns the current (or previous) size. If size is negative, |
| 1045 | * removes the current minimum constraint (if present). |
| 1046 | */ |
| 1047 | size_t |
| 1048 | dvmMinimumHeapSize(size_t size, bool set) |
| 1049 | { |
| 1050 | HeapSource *hs = gHs; |
| 1051 | size_t oldMinimumSize; |
| 1052 | |
| 1053 | /* gHs caches an entry in gDvm.gcHeap; we need to hold the |
| 1054 | * heap lock if we're going to look at it. We also need the |
| 1055 | * lock for the call to setIdealFootprint(). |
| 1056 | */ |
| 1057 | dvmLockHeap(); |
| 1058 | |
| 1059 | HS_BOILERPLATE(); |
| 1060 | |
| 1061 | oldMinimumSize = hs->minimumSize; |
| 1062 | |
| 1063 | if (set) { |
| 1064 | /* Don't worry about external allocations right now. |
| 1065 | * setIdealFootprint() will take them into account when |
| 1066 | * minimumSize is used, and it's better to hold onto the |
| 1067 | * intended minimumSize than to clamp it arbitrarily based |
| 1068 | * on the current allocations. |
| 1069 | */ |
| 1070 | if (size > hs->absoluteMaxSize) { |
| 1071 | size = hs->absoluteMaxSize; |
| 1072 | } |
| 1073 | hs->minimumSize = size; |
| 1074 | if (size > hs->idealSize) { |
| 1075 | /* Force a snap to the minimum value, which we just set |
| 1076 | * and which setIdealFootprint() will take into consideration. |
| 1077 | */ |
| 1078 | setIdealFootprint(hs->idealSize); |
| 1079 | } |
| 1080 | /* Otherwise we'll just keep it in mind the next time |
| 1081 | * setIdealFootprint() is called. |
| 1082 | */ |
| 1083 | } |
| 1084 | |
| 1085 | dvmUnlockHeap(); |
| 1086 | |
| 1087 | return oldMinimumSize; |
| 1088 | } |
| 1089 | |
| 1090 | /* |
| 1091 | * Given the size of a live set, returns the ideal heap size given |
| 1092 | * the current target utilization and MIN/MAX values. |
| 1093 | * |
| 1094 | * targetUtilization is in the range 1..HEAP_UTILIZATION_MAX. |
| 1095 | */ |
| 1096 | static size_t |
| 1097 | getUtilizationTarget(const HeapSource *hs, |
| 1098 | size_t liveSize, size_t targetUtilization) |
| 1099 | { |
| 1100 | size_t targetSize; |
| 1101 | |
| 1102 | /* Use the current target utilization ratio to determine the |
| 1103 | * ideal heap size based on the size of the live set. |
| 1104 | */ |
| 1105 | targetSize = (liveSize / targetUtilization) * HEAP_UTILIZATION_MAX; |
| 1106 | |
| 1107 | /* Cap the amount of free space, though, so we don't end up |
| 1108 | * with, e.g., 8MB of free space when the live set size hits 8MB. |
| 1109 | */ |
| 1110 | if (targetSize > liveSize + HEAP_IDEAL_FREE) { |
| 1111 | targetSize = liveSize + HEAP_IDEAL_FREE; |
| 1112 | } else if (targetSize < liveSize + HEAP_MIN_FREE) { |
| 1113 | targetSize = liveSize + HEAP_MIN_FREE; |
| 1114 | } |
| 1115 | return targetSize; |
| 1116 | } |
| 1117 | |
| 1118 | /* |
| 1119 | * Given the current contents of the active heap, increase the allowed |
| 1120 | * heap footprint to match the target utilization ratio. This |
| 1121 | * should only be called immediately after a full mark/sweep. |
| 1122 | */ |
| 1123 | void dvmHeapSourceGrowForUtilization() |
| 1124 | { |
| 1125 | HeapSource *hs = gHs; |
| 1126 | Heap *heap; |
| 1127 | size_t targetHeapSize; |
| 1128 | size_t currentHeapUsed; |
| 1129 | size_t oldIdealSize; |
| 1130 | size_t newHeapMax; |
| 1131 | size_t overhead; |
| 1132 | |
| 1133 | HS_BOILERPLATE(); |
| 1134 | heap = hs2heap(hs); |
| 1135 | |
| 1136 | /* Use the current target utilization ratio to determine the |
| 1137 | * ideal heap size based on the size of the live set. |
| 1138 | * Note that only the active heap plays any part in this. |
| 1139 | * |
| 1140 | * Avoid letting the old heaps influence the target free size, |
| 1141 | * because they may be full of objects that aren't actually |
| 1142 | * in the working set. Just look at the allocated size of |
| 1143 | * the current heap. |
| 1144 | */ |
| 1145 | currentHeapUsed = heap->bytesAllocated; |
| 1146 | #define LET_EXTERNAL_INFLUENCE_UTILIZATION 1 |
| 1147 | #if LET_EXTERNAL_INFLUENCE_UTILIZATION |
| 1148 | /* This is a hack to deal with the side-effects of moving |
| 1149 | * bitmap data out of the Dalvik heap. Since the amount |
| 1150 | * of free space after a GC scales with the size of the |
| 1151 | * live set, many apps expected the large free space that |
| 1152 | * appeared along with megabytes' worth of bitmaps. When |
| 1153 | * the bitmaps were removed, the free size shrank significantly, |
| 1154 | * and apps started GCing constantly. This makes it so the |
| 1155 | * post-GC free space is the same size it would have been |
| 1156 | * if the bitmaps were still in the Dalvik heap. |
| 1157 | */ |
| 1158 | currentHeapUsed += hs->externalBytesAllocated; |
| 1159 | #endif |
| 1160 | targetHeapSize = |
| 1161 | getUtilizationTarget(hs, currentHeapUsed, hs->targetUtilization); |
| 1162 | #if LET_EXTERNAL_INFLUENCE_UTILIZATION |
| 1163 | currentHeapUsed -= hs->externalBytesAllocated; |
| 1164 | targetHeapSize -= hs->externalBytesAllocated; |
| 1165 | #endif |
| 1166 | |
| 1167 | /* The ideal size includes the old heaps; add overhead so that |
| 1168 | * it can be immediately subtracted again in setIdealFootprint(). |
| 1169 | * If the target heap size would exceed the max, setIdealFootprint() |
| 1170 | * will clamp it to a legal value. |
| 1171 | */ |
| 1172 | overhead = getSoftFootprint(false); |
| 1173 | oldIdealSize = hs->idealSize; |
| 1174 | setIdealFootprint(targetHeapSize + overhead); |
| 1175 | |
| 1176 | newHeapMax = mspace_max_allowed_footprint(heap->msp); |
| 1177 | if (softLimited(hs)) { |
| 1178 | LOGD_HEAP("GC old usage %zd.%zd%%; now " |
| 1179 | "%zd.%03zdMB used / %zd.%03zdMB soft max " |
| 1180 | "(%zd.%03zdMB over, " |
| 1181 | "%zd.%03zdMB ext, " |
| 1182 | "%zd.%03zdMB real max)\n", |
| 1183 | FRACTIONAL_PCT(currentHeapUsed, oldIdealSize), |
| 1184 | FRACTIONAL_MB(currentHeapUsed), |
| 1185 | FRACTIONAL_MB(hs->softLimit), |
| 1186 | FRACTIONAL_MB(overhead), |
| 1187 | FRACTIONAL_MB(hs->externalBytesAllocated), |
| 1188 | FRACTIONAL_MB(newHeapMax)); |
| 1189 | } else { |
| 1190 | LOGD_HEAP("GC old usage %zd.%zd%%; now " |
| 1191 | "%zd.%03zdMB used / %zd.%03zdMB real max " |
| 1192 | "(%zd.%03zdMB over, " |
| 1193 | "%zd.%03zdMB ext)\n", |
| 1194 | FRACTIONAL_PCT(currentHeapUsed, oldIdealSize), |
| 1195 | FRACTIONAL_MB(currentHeapUsed), |
| 1196 | FRACTIONAL_MB(newHeapMax), |
| 1197 | FRACTIONAL_MB(overhead), |
| 1198 | FRACTIONAL_MB(hs->externalBytesAllocated)); |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | /* |
| 1203 | * Return free pages to the system. |
| 1204 | * TODO: move this somewhere else, especially the native heap part. |
| 1205 | */ |
| 1206 | |
| 1207 | static void releasePagesInRange(void *start, void *end, void *nbytes) |
| 1208 | { |
| 1209 | /* Linux requires that the madvise() start address is page-aligned. |
| 1210 | * We also align the end address. |
| 1211 | */ |
| 1212 | start = (void *)ALIGN_UP_TO_PAGE_SIZE(start); |
| 1213 | end = (void *)((size_t)end & ~(PAGE_SIZE - 1)); |
| 1214 | if (start < end) { |
| 1215 | size_t length = (char *)end - (char *)start; |
| 1216 | madvise(start, length, MADV_DONTNEED); |
| 1217 | *(size_t *)nbytes += length; |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | /* |
| 1222 | * Return unused memory to the system if possible. |
| 1223 | */ |
| 1224 | void |
| 1225 | dvmHeapSourceTrim(size_t bytesTrimmed[], size_t arrayLen) |
| 1226 | { |
| 1227 | HeapSource *hs = gHs; |
| 1228 | size_t nativeBytes, heapBytes; |
| 1229 | size_t i; |
| 1230 | |
| 1231 | HS_BOILERPLATE(); |
| 1232 | |
| 1233 | assert(arrayLen >= hs->numHeaps); |
| 1234 | |
| 1235 | heapBytes = 0; |
| 1236 | for (i = 0; i < hs->numHeaps; i++) { |
| 1237 | Heap *heap = &hs->heaps[i]; |
| 1238 | |
| 1239 | /* Return the wilderness chunk to the system. |
| 1240 | */ |
| 1241 | mspace_trim(heap->msp, 0); |
| 1242 | |
| 1243 | /* Return any whole free pages to the system. |
| 1244 | */ |
| 1245 | bytesTrimmed[i] = 0; |
| 1246 | mspace_walk_free_pages(heap->msp, releasePagesInRange, |
| 1247 | &bytesTrimmed[i]); |
| 1248 | heapBytes += bytesTrimmed[i]; |
| 1249 | } |
| 1250 | |
| 1251 | /* Same for the native heap. |
| 1252 | */ |
| 1253 | dlmalloc_trim(0); |
| 1254 | nativeBytes = 0; |
| 1255 | dlmalloc_walk_free_pages(releasePagesInRange, &nativeBytes); |
| 1256 | |
| 1257 | LOGD_HEAP("madvised %zd (GC) + %zd (native) = %zd total bytes\n", |
| 1258 | heapBytes, nativeBytes, heapBytes + nativeBytes); |
| 1259 | } |
| 1260 | |
| 1261 | /* |
| 1262 | * Walks over the heap source and passes every allocated and |
| 1263 | * free chunk to the callback. |
| 1264 | */ |
| 1265 | void |
| 1266 | dvmHeapSourceWalk(void(*callback)(const void *chunkptr, size_t chunklen, |
| 1267 | const void *userptr, size_t userlen, |
| 1268 | void *arg), |
| 1269 | void *arg) |
| 1270 | { |
| 1271 | HeapSource *hs = gHs; |
| 1272 | size_t i; |
| 1273 | |
| 1274 | HS_BOILERPLATE(); |
| 1275 | |
| 1276 | /* Walk the heaps from oldest to newest. |
| 1277 | */ |
| 1278 | //TODO: do this in address order |
| 1279 | for (i = hs->numHeaps; i > 0; --i) { |
| 1280 | mspace_walk_heap(hs->heaps[i-1].msp, callback, arg); |
| 1281 | } |
| 1282 | } |
| 1283 | |
| 1284 | /* |
| 1285 | * Gets the number of heaps available in the heap source. |
| 1286 | * |
| 1287 | * Caller must hold the heap lock, because gHs caches a field |
| 1288 | * in gDvm.gcHeap. |
| 1289 | */ |
| 1290 | size_t |
| 1291 | dvmHeapSourceGetNumHeaps() |
| 1292 | { |
| 1293 | HeapSource *hs = gHs; |
| 1294 | |
| 1295 | HS_BOILERPLATE(); |
| 1296 | |
| 1297 | return hs->numHeaps; |
| 1298 | } |
| 1299 | |
| 1300 | |
| 1301 | /* |
| 1302 | * External allocation tracking |
| 1303 | * |
| 1304 | * In some situations, memory outside of the heap is tied to the |
| 1305 | * lifetime of objects in the heap. Since that memory is kept alive |
| 1306 | * by heap objects, it should provide memory pressure that can influence |
| 1307 | * GCs. |
| 1308 | */ |
| 1309 | |
| 1310 | |
| 1311 | static bool |
| 1312 | externalAllocPossible(const HeapSource *hs, size_t n) |
| 1313 | { |
| 1314 | const Heap *heap; |
| 1315 | size_t currentHeapSize; |
| 1316 | |
| 1317 | /* Make sure that this allocation is even possible. |
| 1318 | * Don't let the external size plus the actual heap size |
| 1319 | * go over the absolute max. This essentially treats |
| 1320 | * external allocations as part of the active heap. |
| 1321 | * |
| 1322 | * Note that this will fail "mysteriously" if there's |
| 1323 | * a small softLimit but a large heap footprint. |
| 1324 | */ |
| 1325 | heap = hs2heap(hs); |
| 1326 | currentHeapSize = mspace_max_allowed_footprint(heap->msp); |
| 1327 | if (currentHeapSize + hs->externalBytesAllocated + n <= |
| 1328 | heap->absoluteMaxSize) |
| 1329 | { |
| 1330 | return true; |
| 1331 | } |
| 1332 | HSTRACE("externalAllocPossible(): " |
| 1333 | "footprint %zu + extAlloc %zu + n %zu >= max %zu (space for %zu)\n", |
| 1334 | currentHeapSize, hs->externalBytesAllocated, n, |
| 1335 | heap->absoluteMaxSize, |
| 1336 | heap->absoluteMaxSize - |
| 1337 | (currentHeapSize + hs->externalBytesAllocated)); |
| 1338 | return false; |
| 1339 | } |
| 1340 | |
| 1341 | #define EXTERNAL_TARGET_UTILIZATION 820 // 80% |
| 1342 | |
| 1343 | /* |
| 1344 | * Tries to update the internal count of externally-allocated memory. |
| 1345 | * If there's enough room for that memory, returns true. If not, returns |
| 1346 | * false and does not update the count. |
| 1347 | * |
| 1348 | * The caller must ensure externalAllocPossible(hs, n) == true. |
| 1349 | */ |
| 1350 | static bool |
| 1351 | externalAlloc(HeapSource *hs, size_t n, bool grow) |
| 1352 | { |
| 1353 | Heap *heap; |
| 1354 | size_t currentHeapSize; |
| 1355 | size_t newTotal; |
| 1356 | size_t max; |
| 1357 | bool grew; |
| 1358 | |
| 1359 | assert(hs->externalLimit >= hs->externalBytesAllocated); |
| 1360 | |
| 1361 | HSTRACE("externalAlloc(%zd%s)\n", n, grow ? ", grow" : ""); |
| 1362 | assert(externalAllocPossible(hs, n)); // The caller must ensure this. |
| 1363 | |
| 1364 | /* External allocations have their own "free space" that they |
| 1365 | * can allocate from without causing a GC. |
| 1366 | */ |
| 1367 | if (hs->externalBytesAllocated + n <= hs->externalLimit) { |
| 1368 | hs->externalBytesAllocated += n; |
| 1369 | #if defined(WITH_PROFILER) && PROFILE_EXTERNAL_ALLOCATIONS |
| 1370 | if (gDvm.allocProf.enabled) { |
| 1371 | Thread* self = dvmThreadSelf(); |
| 1372 | gDvm.allocProf.externalAllocCount++; |
| 1373 | gDvm.allocProf.externalAllocSize += n; |
| 1374 | if (self != NULL) { |
| 1375 | self->allocProf.externalAllocCount++; |
| 1376 | self->allocProf.externalAllocSize += n; |
| 1377 | } |
| 1378 | } |
| 1379 | #endif |
| 1380 | return true; |
| 1381 | } |
| 1382 | if (!grow) { |
| 1383 | return false; |
| 1384 | } |
| 1385 | |
| 1386 | /* GROW */ |
| 1387 | hs->externalBytesAllocated += n; |
| 1388 | hs->externalLimit = getUtilizationTarget(hs, |
| 1389 | hs->externalBytesAllocated, EXTERNAL_TARGET_UTILIZATION); |
| 1390 | HSTRACE("EXTERNAL grow limit to %zd\n", hs->externalLimit); |
| 1391 | return true; |
| 1392 | } |
| 1393 | |
| 1394 | static void |
| 1395 | gcForExternalAlloc(bool collectSoftReferences) |
| 1396 | { |
| 1397 | #ifdef WITH_PROFILER // even if !PROFILE_EXTERNAL_ALLOCATIONS |
| 1398 | if (gDvm.allocProf.enabled) { |
| 1399 | Thread* self = dvmThreadSelf(); |
| 1400 | gDvm.allocProf.gcCount++; |
| 1401 | if (self != NULL) { |
| 1402 | self->allocProf.gcCount++; |
| 1403 | } |
| 1404 | } |
| 1405 | #endif |
| 1406 | dvmCollectGarbageInternal(collectSoftReferences); |
| 1407 | } |
| 1408 | |
| 1409 | /* |
| 1410 | * Updates the internal count of externally-allocated memory. If there's |
| 1411 | * enough room for that memory, returns true. If not, returns false and |
| 1412 | * does not update the count. |
| 1413 | * |
| 1414 | * May cause a GC as a side-effect. |
| 1415 | */ |
| 1416 | bool |
| 1417 | dvmTrackExternalAllocation(size_t n) |
| 1418 | { |
| 1419 | HeapSource *hs = gHs; |
| 1420 | size_t overhead; |
| 1421 | bool ret = false; |
| 1422 | |
| 1423 | /* gHs caches an entry in gDvm.gcHeap; we need to hold the |
| 1424 | * heap lock if we're going to look at it. |
| 1425 | */ |
| 1426 | dvmLockHeap(); |
| 1427 | |
| 1428 | HS_BOILERPLATE(); |
| 1429 | assert(hs->externalLimit >= hs->externalBytesAllocated); |
| 1430 | |
| 1431 | if (!externalAllocPossible(hs, n)) { |
| 1432 | LOGE_HEAP("%zd-byte external allocation " |
| 1433 | "too large for this process.\n", n); |
| 1434 | goto out; |
| 1435 | } |
| 1436 | |
| 1437 | /* Try "allocating" using the existing "free space". |
| 1438 | */ |
| 1439 | HSTRACE("EXTERNAL alloc %zu (%zu < %zu)\n", |
| 1440 | n, hs->externalBytesAllocated, hs->externalLimit); |
| 1441 | if (externalAlloc(hs, n, false)) { |
| 1442 | ret = true; |
| 1443 | goto out; |
| 1444 | } |
| 1445 | |
| 1446 | /* The "allocation" failed. Free up some space by doing |
| 1447 | * a full garbage collection. This may grow the heap source |
| 1448 | * if the live set is sufficiently large. |
| 1449 | */ |
| 1450 | HSTRACE("EXTERNAL alloc %zd: GC 1\n", n); |
| 1451 | gcForExternalAlloc(false); // don't collect SoftReferences |
| 1452 | if (externalAlloc(hs, n, false)) { |
| 1453 | ret = true; |
| 1454 | goto out; |
| 1455 | } |
| 1456 | |
| 1457 | /* Even that didn't work; this is an exceptional state. |
| 1458 | * Try harder, growing the heap source if necessary. |
| 1459 | */ |
| 1460 | HSTRACE("EXTERNAL alloc %zd: frag\n", n); |
| 1461 | ret = externalAlloc(hs, n, true); |
| 1462 | dvmHeapSizeChanged(); |
| 1463 | if (ret) { |
| 1464 | goto out; |
| 1465 | } |
| 1466 | |
| 1467 | /* We couldn't even grow enough to satisfy the request. |
| 1468 | * Try one last GC, collecting SoftReferences this time. |
| 1469 | */ |
| 1470 | HSTRACE("EXTERNAL alloc %zd: GC 2\n", n); |
| 1471 | gcForExternalAlloc(true); // collect SoftReferences |
| 1472 | ret = externalAlloc(hs, n, true); |
| 1473 | dvmHeapSizeChanged(); |
| 1474 | if (!ret) { |
| 1475 | LOGE_HEAP("Out of external memory on a %zu-byte allocation.\n", n); |
| 1476 | } |
| 1477 | |
| 1478 | #if defined(WITH_PROFILER) && PROFILE_EXTERNAL_ALLOCATIONS |
| 1479 | if (gDvm.allocProf.enabled) { |
| 1480 | Thread* self = dvmThreadSelf(); |
| 1481 | gDvm.allocProf.failedExternalAllocCount++; |
| 1482 | gDvm.allocProf.failedExternalAllocSize += n; |
| 1483 | if (self != NULL) { |
| 1484 | self->allocProf.failedExternalAllocCount++; |
| 1485 | self->allocProf.failedExternalAllocSize += n; |
| 1486 | } |
| 1487 | } |
| 1488 | #endif |
| 1489 | |
| 1490 | out: |
| 1491 | dvmUnlockHeap(); |
| 1492 | |
| 1493 | return ret; |
| 1494 | } |
| 1495 | |
| 1496 | /* |
| 1497 | * Reduces the internal count of externally-allocated memory. |
| 1498 | */ |
| 1499 | void |
| 1500 | dvmTrackExternalFree(size_t n) |
| 1501 | { |
| 1502 | HeapSource *hs = gHs; |
| 1503 | size_t newIdealSize; |
| 1504 | size_t newExternalLimit; |
| 1505 | size_t oldExternalBytesAllocated; |
| 1506 | |
| 1507 | HSTRACE("EXTERNAL free %zu (%zu < %zu)\n", |
| 1508 | n, hs->externalBytesAllocated, hs->externalLimit); |
| 1509 | |
| 1510 | /* gHs caches an entry in gDvm.gcHeap; we need to hold the |
| 1511 | * heap lock if we're going to look at it. |
| 1512 | */ |
| 1513 | dvmLockHeap(); |
| 1514 | |
| 1515 | HS_BOILERPLATE(); |
| 1516 | assert(hs->externalLimit >= hs->externalBytesAllocated); |
| 1517 | |
| 1518 | oldExternalBytesAllocated = hs->externalBytesAllocated; |
| 1519 | if (n <= hs->externalBytesAllocated) { |
| 1520 | hs->externalBytesAllocated -= n; |
| 1521 | } else { |
| 1522 | n = hs->externalBytesAllocated; |
| 1523 | hs->externalBytesAllocated = 0; |
| 1524 | } |
| 1525 | |
| 1526 | #if defined(WITH_PROFILER) && PROFILE_EXTERNAL_ALLOCATIONS |
| 1527 | if (gDvm.allocProf.enabled) { |
| 1528 | Thread* self = dvmThreadSelf(); |
| 1529 | gDvm.allocProf.externalFreeCount++; |
| 1530 | gDvm.allocProf.externalFreeSize += n; |
| 1531 | if (self != NULL) { |
| 1532 | self->allocProf.externalFreeCount++; |
| 1533 | self->allocProf.externalFreeSize += n; |
| 1534 | } |
| 1535 | } |
| 1536 | #endif |
| 1537 | |
| 1538 | /* Shrink as quickly as we can. |
| 1539 | */ |
| 1540 | newExternalLimit = getUtilizationTarget(hs, |
| 1541 | hs->externalBytesAllocated, EXTERNAL_TARGET_UTILIZATION); |
| 1542 | if (newExternalLimit < oldExternalBytesAllocated) { |
| 1543 | /* Make sure that the remaining free space is at least |
| 1544 | * big enough to allocate something of the size that was |
| 1545 | * just freed. This makes it more likely that |
| 1546 | * externalFree(N); externalAlloc(N); |
| 1547 | * will work without causing a GC. |
| 1548 | */ |
| 1549 | HSTRACE("EXTERNAL free preserved %zu extra free bytes\n", |
| 1550 | oldExternalBytesAllocated - newExternalLimit); |
| 1551 | newExternalLimit = oldExternalBytesAllocated; |
| 1552 | } |
| 1553 | if (newExternalLimit < hs->externalLimit) { |
| 1554 | hs->externalLimit = newExternalLimit; |
| 1555 | } |
| 1556 | |
| 1557 | dvmUnlockHeap(); |
| 1558 | } |
| 1559 | |
| 1560 | /* |
| 1561 | * Returns the number of externally-allocated bytes being tracked by |
| 1562 | * dvmTrackExternalAllocation/Free(). |
| 1563 | */ |
| 1564 | size_t |
| 1565 | dvmGetExternalBytesAllocated() |
| 1566 | { |
| 1567 | const HeapSource *hs = gHs; |
| 1568 | size_t ret; |
| 1569 | |
| 1570 | /* gHs caches an entry in gDvm.gcHeap; we need to hold the |
| 1571 | * heap lock if we're going to look at it. We also need the |
| 1572 | * lock for the call to setIdealFootprint(). |
| 1573 | */ |
| 1574 | dvmLockHeap(); |
| 1575 | HS_BOILERPLATE(); |
| 1576 | ret = hs->externalBytesAllocated; |
| 1577 | dvmUnlockHeap(); |
| 1578 | |
| 1579 | return ret; |
| 1580 | } |