blob: a0601d78b1fb5f94277f31eddc092ebc2c59d79e [file] [log] [blame]
The Android Open Source Projectf6c38712009-03-03 19:28:47 -08001/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "Dalvik.h"
18#include "alloc/HeapBitmap.h"
19#include "alloc/HeapInternal.h"
20#include "alloc/HeapSource.h"
21#include "alloc/MarkSweep.h"
22#include <limits.h> // for ULONG_MAX
23#include <sys/mman.h> // for madvise(), mmap()
24#include <cutils/ashmem.h>
25
26#define GC_DEBUG_PARANOID 2
27#define GC_DEBUG_BASIC 1
28#define GC_DEBUG_OFF 0
29#define GC_DEBUG(l) (GC_DEBUG_LEVEL >= (l))
30
31#if 1
32#define GC_DEBUG_LEVEL GC_DEBUG_PARANOID
33#else
34#define GC_DEBUG_LEVEL GC_DEBUG_OFF
35#endif
36
37#define VERBOSE_GC 0
38
39#define GC_LOG_TAG LOG_TAG "-gc"
40
41#if LOG_NDEBUG
42#define LOGV_GC(...) ((void)0)
43#define LOGD_GC(...) ((void)0)
44#else
45#define LOGV_GC(...) LOG(LOG_VERBOSE, GC_LOG_TAG, __VA_ARGS__)
46#define LOGD_GC(...) LOG(LOG_DEBUG, GC_LOG_TAG, __VA_ARGS__)
47#endif
48
49#if VERBOSE_GC
50#define LOGVV_GC(...) LOGV_GC(__VA_ARGS__)
51#else
52#define LOGVV_GC(...) ((void)0)
53#endif
54
55#define LOGI_GC(...) LOG(LOG_INFO, GC_LOG_TAG, __VA_ARGS__)
56#define LOGW_GC(...) LOG(LOG_WARN, GC_LOG_TAG, __VA_ARGS__)
57#define LOGE_GC(...) LOG(LOG_ERROR, GC_LOG_TAG, __VA_ARGS__)
58
59#define LOG_SCAN(...) LOGV_GC("SCAN: " __VA_ARGS__)
60#define LOG_MARK(...) LOGV_GC("MARK: " __VA_ARGS__)
61#define LOG_SWEEP(...) LOGV_GC("SWEEP: " __VA_ARGS__)
62#define LOG_REF(...) LOGV_GC("REF: " __VA_ARGS__)
63
64#define LOGV_SCAN(...) LOGVV_GC("SCAN: " __VA_ARGS__)
65#define LOGV_MARK(...) LOGVV_GC("MARK: " __VA_ARGS__)
66#define LOGV_SWEEP(...) LOGVV_GC("SWEEP: " __VA_ARGS__)
67#define LOGV_REF(...) LOGVV_GC("REF: " __VA_ARGS__)
68
69#if WITH_OBJECT_HEADERS
70u2 gGeneration = 0;
71static const Object *gMarkParent = NULL;
72#endif
73
74#ifndef PAGE_SIZE
75#define PAGE_SIZE 4096
76#endif
77#define ALIGN_UP_TO_PAGE_SIZE(p) \
78 (((size_t)(p) + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1))
79
80/* Do not cast the result of this to a boolean; the only set bit
81 * may be > 1<<8.
82 */
83static inline long isMarked(const DvmHeapChunk *hc, const GcMarkContext *ctx)
84 __attribute__((always_inline));
85static inline long isMarked(const DvmHeapChunk *hc, const GcMarkContext *ctx)
86{
87 return dvmHeapBitmapIsObjectBitSetInList(ctx->bitmaps, ctx->numBitmaps, hc);
88}
89
90static bool
91createMarkStack(GcMarkStack *stack)
92{
93 const Object **limit;
94 size_t size;
95 int fd;
96
97 /* Create a stack big enough for the worst possible case,
98 * where the heap is perfectly full of the smallest object.
99 * TODO: be better about memory usage; use a smaller stack with
100 * overflow detection and recovery.
101 */
102 size = dvmHeapSourceGetIdealFootprint() * sizeof(Object*) /
103 (sizeof(Object) + HEAP_SOURCE_CHUNK_OVERHEAD);
104 size = ALIGN_UP_TO_PAGE_SIZE(size);
105 fd = ashmem_create_region("dalvik-heap-markstack", size);
106 if (fd < 0) {
107 LOGE_GC("Could not create %d-byte ashmem mark stack\n", size);
108 return false;
109 }
110 limit = (const Object **)mmap(NULL, size, PROT_READ | PROT_WRITE,
111 MAP_PRIVATE, fd, 0);
112 close(fd);
113 if (limit == MAP_FAILED) {
114 LOGE_GC("Could not mmap %d-byte ashmem mark stack\n", size);
115 return false;
116 }
117
118 memset(stack, 0, sizeof(*stack));
119 stack->limit = limit;
120 stack->base = (const Object **)((uintptr_t)limit + size);
121 stack->top = stack->base;
122
123 return true;
124}
125
126static void
127destroyMarkStack(GcMarkStack *stack)
128{
129 munmap((char *)stack->limit,
130 (uintptr_t)stack->base - (uintptr_t)stack->limit);
131 memset(stack, 0, sizeof(*stack));
132}
133
134#define MARK_STACK_PUSH(stack, obj) \
135 do { \
136 *--(stack).top = (obj); \
137 } while (false)
138
139bool
140dvmHeapBeginMarkStep()
141{
142 GcMarkContext *mc = &gDvm.gcHeap->markContext;
143 HeapBitmap objectBitmaps[HEAP_SOURCE_MAX_HEAP_COUNT];
144 size_t numBitmaps;
145
146 if (!createMarkStack(&mc->stack)) {
147 return false;
148 }
149
150 numBitmaps = dvmHeapSourceGetObjectBitmaps(objectBitmaps,
151 HEAP_SOURCE_MAX_HEAP_COUNT);
152 if (numBitmaps <= 0) {
153 return false;
154 }
155
156 /* Create mark bitmaps that cover the same ranges as the
157 * current object bitmaps.
158 */
159 if (!dvmHeapBitmapInitListFromTemplates(mc->bitmaps, objectBitmaps,
160 numBitmaps, "mark"))
161 {
162 return false;
163 }
164
165 mc->numBitmaps = numBitmaps;
166 mc->finger = NULL;
167
168#if WITH_OBJECT_HEADERS
169 gGeneration++;
170#endif
171
172 return true;
173}
174
175static long setAndReturnMarkBit(GcMarkContext *ctx, const DvmHeapChunk *hc)
176 __attribute__((always_inline));
177static long
178setAndReturnMarkBit(GcMarkContext *ctx, const DvmHeapChunk *hc)
179{
180 return dvmHeapBitmapSetAndReturnObjectBitInList(ctx->bitmaps,
181 ctx->numBitmaps, hc);
182}
183
184static void _markObjectNonNullCommon(const Object *obj, GcMarkContext *ctx,
185 bool checkFinger, bool forceStack)
186 __attribute__((always_inline));
187static void
188_markObjectNonNullCommon(const Object *obj, GcMarkContext *ctx,
189 bool checkFinger, bool forceStack)
190{
191 DvmHeapChunk *hc;
192
193 assert(obj != NULL);
194
195#if GC_DEBUG(GC_DEBUG_PARANOID)
196//TODO: make sure we're locked
197 assert(obj != (Object *)gDvm.unlinkedJavaLangClass);
198 assert(dvmIsValidObject(obj));
199#endif
200
201 hc = ptr2chunk(obj);
202 if (!setAndReturnMarkBit(ctx, hc)) {
203 /* This object was not previously marked.
204 */
205 if (forceStack || (checkFinger && (void *)hc < ctx->finger)) {
206 /* This object will need to go on the mark stack.
207 */
208 MARK_STACK_PUSH(ctx->stack, obj);
209 }
210
211#if WITH_OBJECT_HEADERS
212 if (hc->scanGeneration != hc->markGeneration) {
213 LOGE("markObject(0x%08x): wasn't scanned last time\n", (uint)obj);
214 dvmAbort();
215 }
216 if (hc->markGeneration == gGeneration) {
217 LOGE("markObject(0x%08x): already marked this generation\n",
218 (uint)obj);
219 dvmAbort();
220 }
221 hc->oldMarkGeneration = hc->markGeneration;
222 hc->markGeneration = gGeneration;
223 hc->markFingerOld = hc->markFinger;
224 hc->markFinger = ctx->finger;
225 if (gMarkParent != NULL) {
226 hc->parentOld = hc->parent;
227 hc->parent = gMarkParent;
228 } else {
229 hc->parent = (const Object *)((uintptr_t)hc->parent | 1);
230 }
231 hc->markCount++;
232#endif
233#if WITH_HPROF
234 if (gDvm.gcHeap->hprofContext != NULL) {
235 hprofMarkRootObject(gDvm.gcHeap->hprofContext, obj, 0);
236 }
237#endif
238#if DVM_TRACK_HEAP_MARKING
239 gDvm.gcHeap->markCount++;
240 gDvm.gcHeap->markSize += dvmHeapSourceChunkSize((void *)hc) +
241 HEAP_SOURCE_CHUNK_OVERHEAD;
242#endif
243
244 /* obj->clazz can be NULL if we catch an object between
245 * dvmMalloc() and DVM_OBJECT_INIT(). This is ok.
246 */
247 LOGV_MARK("0x%08x %s\n", (uint)obj,
248 obj->clazz == NULL ? "<null class>" : obj->clazz->name);
249 }
250}
251
252/* Used to mark objects when recursing. Recursion is done by moving
253 * the finger across the bitmaps in address order and marking child
254 * objects. Any newly-marked objects whose addresses are lower than
255 * the finger won't be visited by the bitmap scan, so those objects
256 * need to be added to the mark stack.
257 */
258static void
259markObjectNonNull(const Object *obj, GcMarkContext *ctx)
260{
261 _markObjectNonNullCommon(obj, ctx, true, false);
262}
263
264#define markObject(obj, ctx) \
265 do { \
266 Object *MO_obj_ = (Object *)(obj); \
267 if (MO_obj_ != NULL) { \
268 markObjectNonNull(MO_obj_, (ctx)); \
269 } \
270 } while (false)
271
272/* If the object hasn't already been marked, mark it and
273 * schedule it to be scanned for references.
274 *
275 * obj may not be NULL. The macro dvmMarkObject() should
276 * be used in situations where a reference may be NULL.
277 *
278 * This function may only be called when marking the root
279 * set. When recursing, use the internal markObject[NonNull]().
280 */
281void
282dvmMarkObjectNonNull(const Object *obj)
283{
284 _markObjectNonNullCommon(obj, &gDvm.gcHeap->markContext, false, false);
285}
286
287/* Mark the set of root objects.
288 *
289 * Things we need to scan:
290 * - System classes defined by root classloader
291 * - For each thread:
292 * - Interpreted stack, from top to "curFrame"
293 * - Dalvik registers (args + local vars)
294 * - JNI local references
295 * - Automatic VM local references (TrackedAlloc)
296 * - Associated Thread/VMThread object
297 * - ThreadGroups (could track & start with these instead of working
298 * upward from Threads)
299 * - Exception currently being thrown, if present
300 * - JNI global references
301 * - Interned string table
302 * - Primitive classes
303 * - Special objects
304 * - gDvm.outOfMemoryObj
305 * - Objects allocated with ALLOC_NO_GC
306 * - Objects pending finalization (but not yet finalized)
307 * - Objects in debugger object registry
308 *
309 * Don't need:
310 * - Native stack (for in-progress stuff in the VM)
311 * - The TrackedAlloc stuff watches all native VM references.
312 */
313void dvmHeapMarkRootSet()
314{
315 HeapRefTable *refs;
316 GcHeap *gcHeap;
317 Object **op;
318
319 gcHeap = gDvm.gcHeap;
320
321 HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_STICKY_CLASS, 0);
322
323 LOG_SCAN("root class loader\n");
324 dvmGcScanRootClassLoader();
325 LOG_SCAN("primitive classes\n");
326 dvmGcScanPrimitiveClasses();
327
328 /* dvmGcScanRootThreadGroups() sets a bunch of
329 * different scan states internally.
330 */
331 HPROF_CLEAR_GC_SCAN_STATE();
332
333 LOG_SCAN("root thread groups\n");
334 dvmGcScanRootThreadGroups();
335
336 HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_INTERNED_STRING, 0);
337
338 LOG_SCAN("interned strings\n");
339 dvmGcScanInternedStrings();
340
341 HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_JNI_GLOBAL, 0);
342
343 LOG_SCAN("JNI global refs\n");
344 dvmGcMarkJniGlobalRefs();
345
346 HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_REFERENCE_CLEANUP, 0);
347
348 LOG_SCAN("pending reference operations\n");
349 dvmHeapMarkLargeTableRefs(gcHeap->referenceOperations, true);
350
351 HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_FINALIZING, 0);
352
353 LOG_SCAN("pending finalizations\n");
354 dvmHeapMarkLargeTableRefs(gcHeap->pendingFinalizationRefs, false);
355
356 HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_DEBUGGER, 0);
357
358 LOG_SCAN("debugger refs\n");
359 dvmGcMarkDebuggerRefs();
360
361 HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_VM_INTERNAL, 0);
362
363 /* Mark all ALLOC_NO_GC objects.
364 */
365 LOG_SCAN("ALLOC_NO_GC objects\n");
366 refs = &gcHeap->nonCollectableRefs;
367 op = refs->table;
368 while ((uintptr_t)op < (uintptr_t)refs->nextEntry) {
369 dvmMarkObjectNonNull(*(op++));
370 }
371
372 /* Mark any special objects we have sitting around.
373 */
374 LOG_SCAN("special objects\n");
375 dvmMarkObjectNonNull(gDvm.outOfMemoryObj);
376 dvmMarkObjectNonNull(gDvm.internalErrorObj);
377//TODO: scan object references sitting in gDvm; use pointer begin & end
378
379 HPROF_CLEAR_GC_SCAN_STATE();
380}
381
382/*
383 * Nothing past this point is allowed to use dvmMarkObject*().
384 * Scanning/recursion must use markObject*(), which takes the
385 * finger into account.
386 */
387#define dvmMarkObjectNonNull __dont_use_dvmMarkObjectNonNull__
388
389
390/* Mark all of a ClassObject's interfaces.
391 */
392static void markInterfaces(const ClassObject *clazz, GcMarkContext *ctx)
393{
394 ClassObject **interfaces;
395 int interfaceCount;
396 int i;
397
398 /* Mark all interfaces.
399 */
400 interfaces = clazz->interfaces;
401 interfaceCount = clazz->interfaceCount;
402 for (i = 0; i < interfaceCount; i++) {
403 markObjectNonNull((Object *)*interfaces, ctx);
404 interfaces++;
405 }
406}
407
408/* Mark all objects referred to by a ClassObject's static fields.
409 */
410static void scanStaticFields(const ClassObject *clazz, GcMarkContext *ctx)
411{
412 StaticField *f;
413 int i;
414
415 //TODO: Optimize this with a bit vector or something
416 f = clazz->sfields;
417 for (i = 0; i < clazz->sfieldCount; i++) {
418 char c = f->field.signature[0];
419 if (c == '[' || c == 'L') {
420 /* It's an array or class reference.
421 */
422 markObject((Object *)f->value.l, ctx);
423 }
424 f++;
425 }
426}
427
428/* Mark all objects referred to by a DataObject's instance fields.
429 */
430static void scanInstanceFields(const DataObject *obj, ClassObject *clazz,
431 GcMarkContext *ctx)
432{
433//TODO: Optimize this by avoiding walking the superclass chain
434 while (clazz != NULL) {
435 InstField *f;
436 int i;
437
438 /* All of the fields that contain object references
439 * are guaranteed to be at the beginning of the ifields list.
440 */
441 f = clazz->ifields;
442 for (i = 0; i < clazz->ifieldRefCount; i++) {
443 /* Mark the array or object reference.
444 * May be NULL.
445 *
446 * Note that, per the comment on struct InstField,
447 * f->byteOffset is the offset from the beginning of
448 * obj, not the offset into obj->instanceData.
449 */
450 markObject(dvmGetFieldObject((Object*)obj, f->byteOffset), ctx);
451 f++;
452 }
453
454 /* This will be NULL when we hit java.lang.Object
455 */
456 clazz = clazz->super;
457 }
458}
459
460/* Mark all objects referred to by the array's contents.
461 */
462static void scanObjectArray(const ArrayObject *array, GcMarkContext *ctx)
463{
464 Object **contents;
465 u4 length;
466 u4 i;
467
468 contents = (Object **)array->contents;
469 length = array->length;
470
471 for (i = 0; i < length; i++) {
472 markObject(*contents, ctx); // may be NULL
473 contents++;
474 }
475}
476
477/* Mark all objects referred to by the ClassObject.
478 */
479static void scanClassObject(const ClassObject *clazz, GcMarkContext *ctx)
480{
481 LOGV_SCAN("---------> %s\n", clazz->name);
482
483 if (IS_CLASS_FLAG_SET(clazz, CLASS_ISARRAY)) {
484 /* We're an array; mark the class object of the contents
485 * of the array.
486 *
487 * Note that we won't necessarily reach the array's element
488 * class by scanning the array contents; the array may be
489 * zero-length, or may only contain null objects.
490 */
491 markObjectNonNull((Object *)clazz->elementClass, ctx);
492 }
493
494 /* We scan these explicitly in case the only remaining
495 * reference to a particular class object is via a data
496 * object; we may not be guaranteed to reach all
497 * live class objects via a classloader.
498 */
499 markObject((Object *)clazz->super, ctx); // may be NULL (java.lang.Object)
500 markObject(clazz->classLoader, ctx); // may be NULL
501
502 scanStaticFields(clazz, ctx);
503 markInterfaces(clazz, ctx);
504}
505
506/* Mark all objects that obj refers to.
507 *
508 * Called on every object in markList.
509 */
510static void scanObject(const Object *obj, GcMarkContext *ctx)
511{
512 ClassObject *clazz;
513
514 assert(dvmIsValidObject(obj));
515 LOGV_SCAN("0x%08x %s\n", (uint)obj, obj->clazz->name);
516
517#if WITH_HPROF
518 if (gDvm.gcHeap->hprofContext != NULL) {
519 hprofDumpHeapObject(gDvm.gcHeap->hprofContext, obj);
520 }
521#endif
522
523 /* Get and mark the class object for this particular instance.
524 */
525 clazz = obj->clazz;
526 if (clazz == NULL) {
527 /* This can happen if we catch an object between
528 * dvmMalloc() and DVM_OBJECT_INIT(). The object
529 * won't contain any references yet, so we can
530 * just skip it.
531 */
532 return;
533 } else if (clazz == gDvm.unlinkedJavaLangClass) {
534 /* This class hasn't been linked yet. We're guaranteed
535 * that the object doesn't contain any references that
536 * aren't already tracked, so we can skip scanning it.
537 *
538 * NOTE: unlinkedJavaLangClass is not on the heap, so
539 * it's very important that we don't try marking it.
540 */
541 return;
542 }
543#if WITH_OBJECT_HEADERS
544 gMarkParent = obj;
545 if (ptr2chunk(obj)->scanGeneration == gGeneration) {
546 LOGE("object 0x%08x was already scanned this generation\n",
547 (uintptr_t)obj);
548 dvmAbort();
549 }
550 ptr2chunk(obj)->oldScanGeneration = ptr2chunk(obj)->scanGeneration;
551 ptr2chunk(obj)->scanGeneration = gGeneration;
552 ptr2chunk(obj)->scanCount++;
553#endif
554
555 assert(dvmIsValidObject((Object *)clazz));
556 markObjectNonNull((Object *)clazz, ctx);
557
558 /* Mark any references in this object.
559 */
560 if (IS_CLASS_FLAG_SET(clazz, CLASS_ISARRAY)) {
561 /* It's an array object.
562 */
563 if (IS_CLASS_FLAG_SET(clazz, CLASS_ISOBJECTARRAY)) {
564 /* It's an array of object references.
565 */
566 scanObjectArray((ArrayObject *)obj, ctx);
567 }
568 // else there's nothing else to scan
569 } else {
570 /* It's a DataObject-compatible object.
571 */
572 scanInstanceFields((DataObject *)obj, clazz, ctx);
573
574 if (IS_CLASS_FLAG_SET(clazz, CLASS_ISREFERENCE)) {
575 GcHeap *gcHeap = gDvm.gcHeap;
576 Object *referent;
577
578 /* It's a subclass of java/lang/ref/Reference.
579 * The fields in this class have been arranged
580 * such that scanInstanceFields() did not actually
581 * mark the "referent" field; we need to handle
582 * it specially.
583 *
584 * If the referent already has a strong mark (isMarked(referent)),
585 * we don't care about its reference status.
586 */
587 referent = dvmGetFieldObject(obj,
588 gDvm.offJavaLangRefReference_referent);
589 if (referent != NULL &&
590 !isMarked(ptr2chunk(referent), &gcHeap->markContext))
591 {
592 u4 refFlags;
593
594 if (gcHeap->markAllReferents) {
595 LOG_REF("Hard-marking a reference\n");
596
597 /* Don't bother with normal reference-following
598 * behavior, just mark the referent. This should
599 * only be used when following objects that just
600 * became scheduled for finalization.
601 */
602 markObjectNonNull(referent, ctx);
603 goto skip_reference;
604 }
605
606 /* See if this reference was handled by a previous GC.
607 */
608 if (dvmGetFieldObject(obj,
609 gDvm.offJavaLangRefReference_vmData) ==
610 SCHEDULED_REFERENCE_MAGIC)
611 {
612 LOG_REF("Skipping scheduled reference\n");
613
614 /* Don't reschedule it, but make sure that its
615 * referent doesn't get collected (in case it's
616 * a PhantomReference and wasn't cleared automatically).
617 */
618 //TODO: Mark these after handling all new refs of
619 // this strength, in case the new refs refer
620 // to the same referent. Not a very common
621 // case, though.
622 markObjectNonNull(referent, ctx);
623 goto skip_reference;
624 }
625
626 /* Find out what kind of reference is pointing
627 * to referent.
628 */
629 refFlags = GET_CLASS_FLAG_GROUP(clazz,
630 CLASS_ISREFERENCE |
631 CLASS_ISWEAKREFERENCE |
632 CLASS_ISPHANTOMREFERENCE);
633
634 /* We use the vmData field of Reference objects
635 * as a next pointer in a singly-linked list.
636 * That way, we don't need to allocate any memory
637 * while we're doing a GC.
638 */
639#define ADD_REF_TO_LIST(list, ref) \
640 do { \
641 Object *ARTL_ref_ = (/*de-const*/Object *)(ref); \
642 dvmSetFieldObject(ARTL_ref_, \
643 gDvm.offJavaLangRefReference_vmData, list); \
644 list = ARTL_ref_; \
645 } while (false)
646
647 /* At this stage, we just keep track of all of
648 * the live references that we've seen. Later,
649 * we'll walk through each of these lists and
650 * deal with the referents.
651 */
652 if (refFlags == CLASS_ISREFERENCE) {
653 /* It's a soft reference. Depending on the state,
654 * we'll attempt to collect all of them, some of
655 * them, or none of them.
656 */
657 if (gcHeap->softReferenceCollectionState ==
658 SR_COLLECT_NONE)
659 {
660 sr_collect_none:
661 markObjectNonNull(referent, ctx);
662 } else if (gcHeap->softReferenceCollectionState ==
663 SR_COLLECT_ALL)
664 {
665 sr_collect_all:
666 ADD_REF_TO_LIST(gcHeap->softReferences, obj);
667 } else {
668 /* We'll only try to collect half of the
669 * referents.
670 */
671 if (gcHeap->softReferenceColor++ & 1) {
672 goto sr_collect_none;
673 }
674 goto sr_collect_all;
675 }
676 } else {
677 /* It's a weak or phantom reference.
678 * Clearing CLASS_ISREFERENCE will reveal which.
679 */
680 refFlags &= ~CLASS_ISREFERENCE;
681 if (refFlags == CLASS_ISWEAKREFERENCE) {
682 ADD_REF_TO_LIST(gcHeap->weakReferences, obj);
683 } else if (refFlags == CLASS_ISPHANTOMREFERENCE) {
684 ADD_REF_TO_LIST(gcHeap->phantomReferences, obj);
685 } else {
686 assert(!"Unknown reference type");
687 }
688 }
689#undef ADD_REF_TO_LIST
690 }
691 }
692
693 skip_reference:
694 /* If this is a class object, mark various other things that
695 * its internals point to.
696 *
697 * All class objects are instances of java.lang.Class,
698 * including the java.lang.Class class object.
699 */
700 if (clazz == gDvm.classJavaLangClass) {
701 scanClassObject((ClassObject *)obj, ctx);
702 }
703 }
704
705#if WITH_OBJECT_HEADERS
706 gMarkParent = NULL;
707#endif
708}
709
710static void
711processMarkStack(GcMarkContext *ctx)
712{
713 const Object **const base = ctx->stack.base;
714
715 /* Scan anything that's on the mark stack.
716 * We can't use the bitmaps anymore, so use
717 * a finger that points past the end of them.
718 */
719 ctx->finger = (void *)ULONG_MAX;
720 while (ctx->stack.top != base) {
721 scanObject(*ctx->stack.top++, ctx);
722 }
723}
724
725#ifndef NDEBUG
726static uintptr_t gLastFinger = 0;
727#endif
728
729static bool
730scanBitmapCallback(size_t numPtrs, void **ptrs, const void *finger, void *arg)
731{
732 GcMarkContext *ctx = (GcMarkContext *)arg;
733 size_t i;
734
735#ifndef NDEBUG
736 assert((uintptr_t)finger >= gLastFinger);
737 gLastFinger = (uintptr_t)finger;
738#endif
739
740 ctx->finger = finger;
741 for (i = 0; i < numPtrs; i++) {
742 /* The pointers we're getting back are DvmHeapChunks,
743 * not Objects.
744 */
745 scanObject(chunk2ptr(*ptrs++), ctx);
746 }
747
748 return true;
749}
750
751/* Given bitmaps with the root set marked, find and mark all
752 * reachable objects. When this returns, the entire set of
753 * live objects will be marked and the mark stack will be empty.
754 */
755void dvmHeapScanMarkedObjects()
756{
757 GcMarkContext *ctx = &gDvm.gcHeap->markContext;
758
759 assert(ctx->finger == NULL);
760
761 /* The bitmaps currently have bits set for the root set.
762 * Walk across the bitmaps and scan each object.
763 */
764#ifndef NDEBUG
765 gLastFinger = 0;
766#endif
767 dvmHeapBitmapWalkList(ctx->bitmaps, ctx->numBitmaps,
768 scanBitmapCallback, ctx);
769
770 /* We've walked the mark bitmaps. Scan anything that's
771 * left on the mark stack.
772 */
773 processMarkStack(ctx);
774
775 LOG_SCAN("done with marked objects\n");
776}
777
778/** @return true if we need to schedule a call to clear().
779 */
780static bool clearReference(Object *reference)
781{
782 /* This is what the default implementation of Reference.clear()
783 * does. We're required to clear all references to a given
784 * referent atomically, so we can't pop in and out of interp
785 * code each time.
786 *
787 * Also, someone may have subclassed one of the basic Reference
788 * types, overriding clear(). We can't trust the clear()
789 * implementation to call super.clear(); we cannot let clear()
790 * resurrect the referent. If we clear it here, we can safely
791 * call any overriding implementations.
792 */
793 dvmSetFieldObject(reference,
794 gDvm.offJavaLangRefReference_referent, NULL);
795
796#if FANCY_REFERENCE_SUBCLASS
797 /* See if clear() has actually been overridden. If so,
798 * we need to schedule a call to it before calling enqueue().
799 */
800 if (reference->clazz->vtable[gDvm.voffJavaLangRefReference_clear]->clazz !=
801 gDvm.classJavaLangRefReference)
802 {
803 /* clear() has been overridden; return true to indicate
804 * that we need to schedule a call to the real clear()
805 * implementation.
806 */
807 return true;
808 }
809#endif
810
811 return false;
812}
813
814/** @return true if we need to schedule a call to enqueue().
815 */
816static bool enqueueReference(Object *reference)
817{
818#if FANCY_REFERENCE_SUBCLASS
819 /* See if this reference class has overridden enqueue();
820 * if not, we can take a shortcut.
821 */
822 if (reference->clazz->vtable[gDvm.voffJavaLangRefReference_enqueue]->clazz
823 == gDvm.classJavaLangRefReference)
824#endif
825 {
826 Object *queue = dvmGetFieldObject(reference,
827 gDvm.offJavaLangRefReference_queue);
828 Object *queueNext = dvmGetFieldObject(reference,
829 gDvm.offJavaLangRefReference_queueNext);
830 if (queue == NULL || queueNext != NULL) {
831 /* There is no queue, or the reference has already
832 * been enqueued. The Reference.enqueue() method
833 * will do nothing even if we call it.
834 */
835 return false;
836 }
837 }
838
839 /* We need to call enqueue(), but if we called it from
840 * here we'd probably deadlock. Schedule a call.
841 */
842 return true;
843}
844
845/* All objects for stronger reference levels have been
846 * marked before this is called.
847 */
848void dvmHeapHandleReferences(Object *refListHead, enum RefType refType)
849{
850 Object *reference;
851 GcMarkContext *markContext = &gDvm.gcHeap->markContext;
852 const int offVmData = gDvm.offJavaLangRefReference_vmData;
853 const int offReferent = gDvm.offJavaLangRefReference_referent;
854 bool workRequired = false;
855
856size_t numCleared = 0;
857size_t numEnqueued = 0;
858 reference = refListHead;
859 while (reference != NULL) {
860 Object *next;
861 Object *referent;
862
863 /* Pull the interesting fields out of the Reference object.
864 */
865 next = dvmGetFieldObject(reference, offVmData);
866 referent = dvmGetFieldObject(reference, offReferent);
867
868 //TODO: when handling REF_PHANTOM, unlink any references
869 // that fail this initial if(). We need to re-walk
870 // the list, and it would be nice to avoid the extra
871 // work.
872 if (referent != NULL && !isMarked(ptr2chunk(referent), markContext)) {
873 bool schedClear, schedEnqueue;
874
875 /* This is the strongest reference that refers to referent.
876 * Do the right thing.
877 */
878 switch (refType) {
879 case REF_SOFT:
880 case REF_WEAK:
881 schedClear = clearReference(reference);
882 schedEnqueue = enqueueReference(reference);
883 break;
884 case REF_PHANTOM:
885 /* PhantomReferences are not cleared automatically.
886 * Until someone clears it (or the reference itself
887 * is collected), the referent must remain alive.
888 *
889 * It's necessary to fully mark the referent because
890 * it will still be present during the next GC, and
891 * all objects that it points to must be valid.
892 * (The referent will be marked outside of this loop,
893 * after handing all references of this strength, in
894 * case multiple references point to the same object.)
895 */
896 schedClear = false;
897
898 /* A PhantomReference is only useful with a
899 * queue, but since it's possible to create one
900 * without a queue, we need to check.
901 */
902 schedEnqueue = enqueueReference(reference);
903 break;
904 default:
905 assert(!"Bad reference type");
906 schedClear = false;
907 schedEnqueue = false;
908 break;
909 }
910numCleared += schedClear ? 1 : 0;
911numEnqueued += schedEnqueue ? 1 : 0;
912
913 if (schedClear || schedEnqueue) {
914 uintptr_t workBits;
915
916 /* Stuff the clear/enqueue bits in the bottom of
917 * the pointer. Assumes that objects are 8-byte
918 * aligned.
919 *
920 * Note that we are adding the *Reference* (which
921 * is by definition already marked at this point) to
922 * this list; we're not adding the referent (which
923 * has already been cleared).
924 */
925 assert(((intptr_t)reference & 3) == 0);
926 assert(((WORKER_CLEAR | WORKER_ENQUEUE) & ~3) == 0);
927 workBits = (schedClear ? WORKER_CLEAR : 0) |
928 (schedEnqueue ? WORKER_ENQUEUE : 0);
929 if (!dvmHeapAddRefToLargeTable(
930 &gDvm.gcHeap->referenceOperations,
931 (Object *)((uintptr_t)reference | workBits)))
932 {
933 LOGE_HEAP("dvmMalloc(): no room for any more "
934 "reference operations\n");
935 dvmAbort();
936 }
937 workRequired = true;
938 }
939
940 if (refType != REF_PHANTOM) {
941 /* Let later GCs know not to reschedule this reference.
942 */
943 dvmSetFieldObject(reference, offVmData,
944 SCHEDULED_REFERENCE_MAGIC);
945 } // else this is handled later for REF_PHANTOM
946
947 } // else there was a stronger reference to the referent.
948
949 reference = next;
950 }
951#define refType2str(r) \
952 ((r) == REF_SOFT ? "soft" : ( \
953 (r) == REF_WEAK ? "weak" : ( \
954 (r) == REF_PHANTOM ? "phantom" : "UNKNOWN" )))
955LOGD_HEAP("dvmHeapHandleReferences(): cleared %zd, enqueued %zd %s references\n", numCleared, numEnqueued, refType2str(refType));
956
957 /* Walk though the reference list again, and mark any non-clear/marked
958 * referents. Only PhantomReferences can have non-clear referents
959 * at this point.
960 */
961 if (refType == REF_PHANTOM) {
962 bool scanRequired = false;
963
964 HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_REFERENCE_CLEANUP, 0);
965 reference = refListHead;
966 while (reference != NULL) {
967 Object *next;
968 Object *referent;
969
970 /* Pull the interesting fields out of the Reference object.
971 */
972 next = dvmGetFieldObject(reference, offVmData);
973 referent = dvmGetFieldObject(reference, offReferent);
974
975 if (referent != NULL && !isMarked(ptr2chunk(referent), markContext)) {
976 markObjectNonNull(referent, markContext);
977 scanRequired = true;
978
979 /* Let later GCs know not to reschedule this reference.
980 */
981 dvmSetFieldObject(reference, offVmData,
982 SCHEDULED_REFERENCE_MAGIC);
983 }
984
985 reference = next;
986 }
987 HPROF_CLEAR_GC_SCAN_STATE();
988
989 if (scanRequired) {
990 processMarkStack(markContext);
991 }
992 }
993
994 if (workRequired) {
995 dvmSignalHeapWorker(false);
996 }
997}
998
999
1000/* Find unreachable objects that need to be finalized,
1001 * and schedule them for finalization.
1002 */
1003void dvmHeapScheduleFinalizations()
1004{
1005 HeapRefTable newPendingRefs;
1006 LargeHeapRefTable *finRefs = gDvm.gcHeap->finalizableRefs;
1007 Object **ref;
1008 Object **lastRef;
1009 size_t totalPendCount;
1010 GcMarkContext *markContext = &gDvm.gcHeap->markContext;
1011
1012 /*
1013 * All reachable objects have been marked.
1014 * Any unmarked finalizable objects need to be finalized.
1015 */
1016
1017 /* Create a table that the new pending refs will
1018 * be added to.
1019 */
1020 if (!dvmHeapInitHeapRefTable(&newPendingRefs, 128)) {
1021 //TODO: mark all finalizable refs and hope that
1022 // we can schedule them next time. Watch out,
1023 // because we may be expecting to free up space
1024 // by calling finalizers.
1025 LOGE_GC("dvmHeapScheduleFinalizations(): no room for "
1026 "pending finalizations\n");
1027 dvmAbort();
1028 }
1029
1030 /* Walk through finalizableRefs and move any unmarked references
1031 * to the list of new pending refs.
1032 */
1033 totalPendCount = 0;
1034 while (finRefs != NULL) {
1035 Object **gapRef;
1036 size_t newPendCount = 0;
1037
1038 gapRef = ref = finRefs->refs.table;
1039 lastRef = finRefs->refs.nextEntry;
1040 while (ref < lastRef) {
1041 DvmHeapChunk *hc;
1042
1043 hc = ptr2chunk(*ref);
1044 if (!isMarked(hc, markContext)) {
1045 if (!dvmHeapAddToHeapRefTable(&newPendingRefs, *ref)) {
1046 //TODO: add the current table and allocate
1047 // a new, smaller one.
1048 LOGE_GC("dvmHeapScheduleFinalizations(): "
1049 "no room for any more pending finalizations: %zd\n",
1050 dvmHeapNumHeapRefTableEntries(&newPendingRefs));
1051 dvmAbort();
1052 }
1053 newPendCount++;
1054 } else {
1055 /* This ref is marked, so will remain on finalizableRefs.
1056 */
1057 if (newPendCount > 0) {
1058 /* Copy it up to fill the holes.
1059 */
1060 *gapRef++ = *ref;
1061 } else {
1062 /* No holes yet; don't bother copying.
1063 */
1064 gapRef++;
1065 }
1066 }
1067 ref++;
1068 }
1069 finRefs->refs.nextEntry = gapRef;
1070 //TODO: if the table is empty when we're done, free it.
1071 totalPendCount += newPendCount;
1072 finRefs = finRefs->next;
1073 }
1074 LOGD_GC("dvmHeapScheduleFinalizations(): %zd finalizers triggered.\n",
1075 totalPendCount);
1076 if (totalPendCount == 0) {
1077 /* No objects required finalization.
1078 * Free the empty temporary table.
1079 */
1080 dvmClearReferenceTable(&newPendingRefs);
1081 return;
1082 }
1083
1084 /* Add the new pending refs to the main list.
1085 */
1086 if (!dvmHeapAddTableToLargeTable(&gDvm.gcHeap->pendingFinalizationRefs,
1087 &newPendingRefs))
1088 {
1089 LOGE_GC("dvmHeapScheduleFinalizations(): can't insert new "
1090 "pending finalizations\n");
1091 dvmAbort();
1092 }
1093
1094 //TODO: try compacting the main list with a memcpy loop
1095
1096 /* Mark the refs we just moved; we don't want them or their
1097 * children to get swept yet.
1098 */
1099 ref = newPendingRefs.table;
1100 lastRef = newPendingRefs.nextEntry;
1101 assert(ref < lastRef);
1102 HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_FINALIZING, 0);
1103 while (ref < lastRef) {
1104 markObjectNonNull(*ref, markContext);
1105 ref++;
1106 }
1107 HPROF_CLEAR_GC_SCAN_STATE();
1108
1109 /* Set markAllReferents so that we don't collect referents whose
1110 * only references are in final-reachable objects.
1111 * TODO: eventually provide normal reference behavior by properly
1112 * marking these references.
1113 */
1114 gDvm.gcHeap->markAllReferents = true;
1115 processMarkStack(markContext);
1116 gDvm.gcHeap->markAllReferents = false;
1117
1118 dvmSignalHeapWorker(false);
1119}
1120
1121void dvmHeapFinishMarkStep()
1122{
1123 HeapBitmap *markBitmap;
1124 HeapBitmap objectBitmap;
1125 GcMarkContext *markContext;
1126
1127 markContext = &gDvm.gcHeap->markContext;
1128
1129 /* The sweep step freed every object that appeared in the
1130 * HeapSource bitmaps that didn't appear in the mark bitmaps.
1131 * The new state of the HeapSource is exactly the final
1132 * mark bitmaps, so swap them in.
1133 *
1134 * The old bitmaps will be swapped into the context so that
1135 * we can clean them up.
1136 */
1137 dvmHeapSourceReplaceObjectBitmaps(markContext->bitmaps,
1138 markContext->numBitmaps);
1139
1140 /* Clean up the old HeapSource bitmaps and anything else associated
1141 * with the marking process.
1142 */
1143 dvmHeapBitmapDeleteList(markContext->bitmaps, markContext->numBitmaps);
1144 destroyMarkStack(&markContext->stack);
1145
1146 memset(markContext, 0, sizeof(*markContext));
1147}
1148
1149#if WITH_HPROF && WITH_HPROF_UNREACHABLE
1150static bool
1151hprofUnreachableBitmapCallback(size_t numPtrs, void **ptrs,
1152 const void *finger, void *arg)
1153{
1154 hprof_context_t *hctx = (hprof_context_t *)arg;
1155 size_t i;
1156
1157 for (i = 0; i < numPtrs; i++) {
1158 Object *obj;
1159
1160 /* The pointers we're getting back are DvmHeapChunks, not
1161 * Objects.
1162 */
1163 obj = (Object *)chunk2ptr(*ptrs++);
1164
1165 hprofMarkRootObject(hctx, obj, 0);
1166 hprofDumpHeapObject(hctx, obj);
1167 }
1168
1169 return true;
1170}
1171
1172static void
1173hprofDumpUnmarkedObjects(const HeapBitmap markBitmaps[],
1174 const HeapBitmap objectBitmaps[], size_t numBitmaps)
1175{
1176 hprof_context_t *hctx = gDvm.gcHeap->hprofContext;
1177 if (hctx == NULL) {
1178 return;
1179 }
1180
1181 LOGI("hprof: dumping unreachable objects\n");
1182
1183 HPROF_SET_GC_SCAN_STATE(HPROF_UNREACHABLE, 0);
1184
1185 dvmHeapBitmapXorWalkLists(markBitmaps, objectBitmaps, numBitmaps,
1186 hprofUnreachableBitmapCallback, hctx);
1187
1188 HPROF_CLEAR_GC_SCAN_STATE();
1189}
1190#endif
1191
1192static bool
1193sweepBitmapCallback(size_t numPtrs, void **ptrs, const void *finger, void *arg)
1194{
1195 const ClassObject *const classJavaLangClass = gDvm.classJavaLangClass;
1196 size_t i;
1197
1198 for (i = 0; i < numPtrs; i++) {
1199 DvmHeapChunk *hc;
1200 Object *obj;
1201
1202 /* The pointers we're getting back are DvmHeapChunks, not
1203 * Objects.
1204 */
1205 hc = (DvmHeapChunk *)*ptrs++;
1206 obj = (Object *)chunk2ptr(hc);
1207
1208#if WITH_OBJECT_HEADERS
1209 if (hc->markGeneration == gGeneration) {
1210 LOGE("sweeping marked object: 0x%08x\n", (uint)obj);
1211 dvmAbort();
1212 }
1213#endif
1214
1215 /* Free the monitor associated with the object.
1216 */
1217 dvmFreeObjectMonitor(obj);
1218
1219 /* NOTE: Dereferencing clazz is dangerous. If obj was the last
1220 * one to reference its class object, the class object could be
1221 * on the sweep list, and could already have been swept, leaving
1222 * us with a stale pointer.
1223 */
1224 LOGV_SWEEP("FREE: 0x%08x %s\n", (uint)obj, obj->clazz->name);
1225
1226 /* This assumes that java.lang.Class will never go away.
1227 * If it can, and we were the last reference to it, it
1228 * could have already been swept. However, even in that case,
1229 * gDvm.classJavaLangClass should still have a useful
1230 * value.
1231 */
1232 if (obj->clazz == classJavaLangClass) {
1233 LOGV_SWEEP("---------------> %s\n", ((ClassObject *)obj)->name);
1234 /* dvmFreeClassInnards() may have already been called,
1235 * but it's safe to call on the same ClassObject twice.
1236 */
1237 dvmFreeClassInnards((ClassObject *)obj);
1238 }
1239
1240#if 0
1241 /* Overwrite the to-be-freed object to make stale references
1242 * more obvious.
1243 */
1244 {
1245 int chunklen;
1246 ClassObject *clazz = obj->clazz;
1247#if WITH_OBJECT_HEADERS
1248 DvmHeapChunk chunk = *hc;
1249 chunk.header = ~OBJECT_HEADER | 1;
1250#endif
1251 chunklen = dvmHeapSourceChunkSize(hc);
1252 memset(hc, 0xa5, chunklen);
1253 obj->clazz = (ClassObject *)((uintptr_t)clazz ^ 0xffffffff);
1254#if WITH_OBJECT_HEADERS
1255 *hc = chunk;
1256#endif
1257 }
1258#endif
1259
1260//TODO: provide a heapsource function that takes a list of pointers to free
1261// and call it outside of this loop.
1262 dvmHeapSourceFree(hc);
1263 }
1264
1265 return true;
1266}
1267
1268/* A function suitable for passing to dvmHashForeachRemove()
1269 * to clear out any unmarked objects. Clears the low bits
1270 * of the pointer because the intern table may set them.
1271 */
1272static int isUnmarkedObject(void *object)
1273{
1274 return !isMarked(ptr2chunk((uintptr_t)object & ~(HB_OBJECT_ALIGNMENT-1)),
1275 &gDvm.gcHeap->markContext);
1276}
1277
1278/* Walk through the list of objects that haven't been
1279 * marked and free them.
1280 */
1281void
1282dvmHeapSweepUnmarkedObjects(int *numFreed, size_t *sizeFreed)
1283{
1284 const HeapBitmap *markBitmaps;
1285 const GcMarkContext *markContext;
1286 HeapBitmap objectBitmaps[HEAP_SOURCE_MAX_HEAP_COUNT];
1287 size_t origObjectsAllocated;
1288 size_t origBytesAllocated;
1289 size_t numBitmaps;
1290
1291 /* All reachable objects have been marked.
1292 * Detach any unreachable interned strings before
1293 * we sweep.
1294 */
1295 dvmGcDetachDeadInternedStrings(isUnmarkedObject);
1296
1297 /* Free any known objects that are not marked.
1298 */
1299 origObjectsAllocated = dvmHeapSourceGetValue(HS_OBJECTS_ALLOCATED, NULL, 0);
1300 origBytesAllocated = dvmHeapSourceGetValue(HS_BYTES_ALLOCATED, NULL, 0);
1301
1302 markContext = &gDvm.gcHeap->markContext;
1303 markBitmaps = markContext->bitmaps;
1304 numBitmaps = dvmHeapSourceGetObjectBitmaps(objectBitmaps,
1305 HEAP_SOURCE_MAX_HEAP_COUNT);
1306#ifndef NDEBUG
1307 if (numBitmaps != markContext->numBitmaps) {
1308 LOGE("heap bitmap count mismatch: %zd != %zd\n",
1309 numBitmaps, markContext->numBitmaps);
1310 dvmAbort();
1311 }
1312#endif
1313
1314#if WITH_HPROF && WITH_HPROF_UNREACHABLE
1315 hprofDumpUnmarkedObjects(markBitmaps, objectBitmaps, numBitmaps);
1316#endif
1317
1318 dvmHeapBitmapXorWalkLists(markBitmaps, objectBitmaps, numBitmaps,
1319 sweepBitmapCallback, NULL);
1320
1321 *numFreed = origObjectsAllocated -
1322 dvmHeapSourceGetValue(HS_OBJECTS_ALLOCATED, NULL, 0);
1323 *sizeFreed = origBytesAllocated -
1324 dvmHeapSourceGetValue(HS_BYTES_ALLOCATED, NULL, 0);
1325
1326#ifdef WITH_PROFILER
1327 if (gDvm.allocProf.enabled) {
1328 gDvm.allocProf.freeCount += *numFreed;
1329 gDvm.allocProf.freeSize += *sizeFreed;
1330 }
1331#endif
1332}