| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "ObjLoader.h" |
| #include <rsFileA3D.h> |
| #include <sstream> |
| |
| ObjLoader::ObjLoader() : |
| mPositionsStride(3), mNormalsStride(3), mTextureCoordsStride(2) { |
| |
| } |
| |
| bool isWhitespace(char c) { |
| const char whiteSpace[] = { ' ', '\n', '\t', '\f', '\r' }; |
| const uint32_t numWhiteSpaceChars = 5; |
| for (uint32_t i = 0; i < numWhiteSpaceChars; i ++) { |
| if (whiteSpace[i] == c) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void eatWhitespace(std::istream &is) { |
| while(is.good() && isWhitespace(is.peek())) { |
| is.get(); |
| } |
| } |
| |
| bool getToken(std::istream &is, std::string &token) { |
| eatWhitespace(is); |
| token.clear(); |
| char c; |
| while(is.good() && !isWhitespace(is.peek())) { |
| c = is.get(); |
| if (is.good()){ |
| token += c; |
| } |
| } |
| return token.size() > 0; |
| } |
| |
| void appendDataFromStream(std::vector<float> &dataVec, uint32_t numFloats, std::istream &is) { |
| std::string token; |
| for (uint32_t i = 0; i < numFloats; i ++){ |
| bool valid = getToken(is, token); |
| if (valid) { |
| dataVec.push_back((float)atof(token.c_str())); |
| } else { |
| fprintf(stderr, "Encountered error reading geometry data"); |
| dataVec.push_back(0.0f); |
| } |
| } |
| } |
| |
| bool checkNegativeIndex(int idx) { |
| if(idx < 0) { |
| fprintf(stderr, "Negative indices are not supported. Skipping face\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| void ObjLoader::parseRawFaces(){ |
| // We need at least a triangle |
| if (mRawFaces.size() < 3) { |
| return; |
| } |
| |
| const char slash = '/'; |
| mParsedFaces.resize(mRawFaces.size()); |
| for (uint32_t i = 0; i < mRawFaces.size(); i ++) { |
| size_t firstSeparator = mRawFaces[i].find_first_of(slash); |
| size_t nextSeparator = mRawFaces[i].find_last_of(slash); |
| |
| // Use the string as a temp buffer to parse the index |
| // Insert 0 instead of the slash to avoid substrings |
| if (firstSeparator != std::string::npos) { |
| mRawFaces[i][firstSeparator] = 0; |
| } |
| // Simple case, only one index |
| int32_t vIdx = atoi(mRawFaces[i].c_str()); |
| // We do not support negative indices |
| if (!checkNegativeIndex(vIdx)) { |
| return; |
| } |
| // obj indices things beginning 1 |
| mParsedFaces[i].vertIdx = (uint32_t)vIdx - 1; |
| |
| if (nextSeparator != std::string::npos && nextSeparator != firstSeparator) { |
| mRawFaces[i][nextSeparator] = 0; |
| uint32_t nIdx = atoi(mRawFaces[i].c_str() + nextSeparator + 1); |
| if (!checkNegativeIndex(nIdx)) { |
| return; |
| } |
| // obj indexes things beginning 1 |
| mParsedFaces[i].normIdx = (uint32_t)nIdx - 1; |
| } |
| |
| // second case is where we have vertex and texture indices |
| if (nextSeparator != std::string::npos && |
| (nextSeparator > firstSeparator + 1 || nextSeparator == firstSeparator)) { |
| uint32_t tIdx = atoi(mRawFaces[i].c_str() + firstSeparator + 1); |
| if (!checkNegativeIndex(tIdx)) { |
| return; |
| } |
| // obj indexes things beginning 1 |
| mParsedFaces[i].texIdx = (uint32_t)tIdx - 1; |
| } |
| } |
| |
| // Make sure a face list exists before we go adding to it |
| if (mMeshes.back().mUnfilteredFaces.size() == 0) { |
| mMeshes.back().appendUnfilteredFaces(mLastMtl); |
| } |
| |
| // Now we have our parsed face, that we need to triangulate as necessary |
| // Treat more complex polygons as fans. |
| // This approach will only work only for convex polygons |
| // but concave polygons need to be addressed elsewhere anyway |
| for (uint32_t next = 1; next < mParsedFaces.size() - 1; next ++) { |
| // push it to our current mesh |
| mMeshes.back().mUnfilteredFaces.back().push_back(mParsedFaces[0]); |
| mMeshes.back().mUnfilteredFaces.back().push_back(mParsedFaces[next]); |
| mMeshes.back().mUnfilteredFaces.back().push_back(mParsedFaces[next + 1]); |
| } |
| } |
| |
| void ObjLoader::checkNewMeshCreation(std::string &newGroup) { |
| // start a new mesh if we have some faces |
| // accumulated on the current mesh. |
| // It's possible to have multiple group statements |
| // but we only care to actually start a new mesh |
| // once we can have something we can draw on the previous one |
| if (mMeshes.back().mUnfilteredFaces.size()) { |
| mMeshes.push_back(ObjMesh()); |
| } |
| |
| mMeshes.back().mName = newGroup; |
| printf("Converting vertex group: %s\n", newGroup.c_str()); |
| } |
| |
| void ObjLoader::handleObjLine(char *line) { |
| const char* vtxToken = "v"; |
| const char* normToken = "vn"; |
| const char* texToken = "vt"; |
| const char* groupToken = "g"; |
| const char* mtlToken = "usemtl"; |
| const char* faceToken = "f"; |
| |
| std::istringstream lineStream(line, std::istringstream::in); |
| |
| std::string token; |
| bool valid = getToken(lineStream, token); |
| if (!valid) { |
| return; |
| } |
| |
| if (token == vtxToken) { |
| appendDataFromStream(mObjPositions, 3, lineStream); |
| } else if (token == normToken) { |
| appendDataFromStream(mObjNormals, 3, lineStream); |
| } else if (token == texToken) { |
| appendDataFromStream(mObjTextureCoords, 2, lineStream); |
| } else if (token == groupToken) { |
| valid = getToken(lineStream, token); |
| checkNewMeshCreation(token); |
| } else if (token == faceToken) { |
| mRawFaces.clear(); |
| while(getToken(lineStream, token)) { |
| mRawFaces.push_back(token); |
| } |
| parseRawFaces(); |
| } |
| // Ignore materials for now |
| else if (token == mtlToken) { |
| valid = getToken(lineStream, token); |
| mLastMtl = token; |
| |
| mMeshes.back().appendUnfilteredFaces(token); |
| } |
| } |
| |
| bool ObjLoader::init(const char *fileName) { |
| |
| std::ifstream ifs(fileName , std::ifstream::in); |
| if (!ifs.good()) { |
| fprintf(stderr, "Failed to read file %s.\n", fileName); |
| return false; |
| } |
| |
| mMeshes.clear(); |
| |
| const uint32_t maxBufferSize = 2048; |
| char *buffer = new char[maxBufferSize]; |
| |
| mMeshes.push_back(ObjMesh()); |
| |
| std::string token; |
| bool isDone = false; |
| while(!isDone) { |
| ifs.getline(buffer, maxBufferSize); |
| if (ifs.good() && ifs.gcount() > 0) { |
| handleObjLine(buffer); |
| } else { |
| isDone = true; |
| } |
| } |
| |
| ifs.close(); |
| delete buffer; |
| |
| reIndexGeometry(); |
| |
| return true; |
| } |
| |
| void ObjLoader::reIndexGeometry() { |
| // We want to know where each vertex lands |
| mVertexRemap.resize(mObjPositions.size() / mPositionsStride); |
| |
| for (uint32_t m = 0; m < mMeshes.size(); m ++) { |
| // clear the remap vector of old data |
| for (uint32_t r = 0; r < mVertexRemap.size(); r ++) { |
| mVertexRemap[r].clear(); |
| } |
| |
| for (uint32_t i = 0; i < mMeshes[m].mUnfilteredFaces.size(); i ++) { |
| mMeshes[m].mTriangleLists[i].reserve(mMeshes[m].mUnfilteredFaces[i].size() * 2); |
| for (uint32_t fI = 0; fI < mMeshes[m].mUnfilteredFaces[i].size(); fI ++) { |
| uint32_t newIndex = reIndexGeometryPrim(mMeshes[m], mMeshes[m].mUnfilteredFaces[i][fI]); |
| mMeshes[m].mTriangleLists[i].push_back(newIndex); |
| } |
| } |
| } |
| } |
| |
| uint32_t ObjLoader::reIndexGeometryPrim(ObjMesh &mesh, PrimitiveVtx &prim) { |
| |
| std::vector<float> &mPositions = mesh.mChannels[0].mData; |
| std::vector<float> &mNormals = mesh.mChannels[1].mData; |
| std::vector<float> &mTextureCoords = mesh.mChannels[2].mData; |
| |
| float posX = mObjPositions[prim.vertIdx * mPositionsStride + 0]; |
| float posY = mObjPositions[prim.vertIdx * mPositionsStride + 1]; |
| float posZ = mObjPositions[prim.vertIdx * mPositionsStride + 2]; |
| |
| float normX = 0.0f; |
| float normY = 0.0f; |
| float normZ = 0.0f; |
| if (prim.normIdx != MAX_INDEX) { |
| normX = mObjNormals[prim.normIdx * mNormalsStride + 0]; |
| normY = mObjNormals[prim.normIdx * mNormalsStride + 1]; |
| normZ = mObjNormals[prim.normIdx * mNormalsStride + 2]; |
| } |
| |
| float texCoordX = 0.0f; |
| float texCoordY = 0.0f; |
| if (prim.texIdx != MAX_INDEX) { |
| texCoordX = mObjTextureCoords[prim.texIdx * mTextureCoordsStride + 0]; |
| texCoordY = mObjTextureCoords[prim.texIdx * mTextureCoordsStride + 1]; |
| } |
| |
| std::vector<unsigned int> &ithRemapList = mVertexRemap[prim.vertIdx]; |
| // We may have some potential vertices we can reuse |
| // loop over all the potential candidates and see if any match our guy |
| for (unsigned int i = 0; i < ithRemapList.size(); i ++) { |
| |
| int ithRemap = ithRemapList[i]; |
| // compare existing vertex with the new one |
| if (mPositions[ithRemap * mPositionsStride + 0] != posX || |
| mPositions[ithRemap * mPositionsStride + 1] != posY || |
| mPositions[ithRemap * mPositionsStride + 2] != posZ) { |
| continue; |
| } |
| |
| // Now go over normals |
| if (prim.normIdx != MAX_INDEX) { |
| if (mNormals[ithRemap * mNormalsStride + 0] != normX || |
| mNormals[ithRemap * mNormalsStride + 1] != normY || |
| mNormals[ithRemap * mNormalsStride + 2] != normZ) { |
| continue; |
| } |
| } |
| |
| // And texcoords |
| if (prim.texIdx != MAX_INDEX) { |
| if (mTextureCoords[ithRemap * mTextureCoordsStride + 0] != texCoordX || |
| mTextureCoords[ithRemap * mTextureCoordsStride + 1] != texCoordY) { |
| continue; |
| } |
| } |
| |
| // If we got here the new vertex is identical to the one that we already stored |
| return ithRemap; |
| } |
| |
| // We did not encounter this vertex yet, store it and return its index |
| mPositions.push_back(posX); |
| mPositions.push_back(posY); |
| mPositions.push_back(posZ); |
| |
| if (prim.normIdx != MAX_INDEX) { |
| mNormals.push_back(normX); |
| mNormals.push_back(normY); |
| mNormals.push_back(normZ); |
| } |
| |
| if (prim.texIdx != MAX_INDEX) { |
| mTextureCoords.push_back(texCoordX); |
| mTextureCoords.push_back(texCoordY); |
| } |
| |
| // We need to remember this mapping. Since we are storing floats, not vec3's, need to |
| // divide by position size to get the right index |
| int currentVertexIndex = (mPositions.size()/mPositionsStride) - 1; |
| ithRemapList.push_back(currentVertexIndex); |
| |
| return currentVertexIndex; |
| } |