blob: 19b6e0b019636a8e46c2bcc9bdf24334cdc0f7b4 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ObjLoader.h"
#include <rsFileA3D.h>
#include <sstream>
ObjLoader::ObjLoader() :
mPositionsStride(3), mNormalsStride(3), mTextureCoordsStride(2) {
}
bool isWhitespace(char c) {
const char whiteSpace[] = { ' ', '\n', '\t', '\f', '\r' };
const uint32_t numWhiteSpaceChars = 5;
for (uint32_t i = 0; i < numWhiteSpaceChars; i ++) {
if (whiteSpace[i] == c) {
return true;
}
}
return false;
}
void eatWhitespace(std::istream &is) {
while(is.good() && isWhitespace(is.peek())) {
is.get();
}
}
bool getToken(std::istream &is, std::string &token) {
eatWhitespace(is);
token.clear();
char c;
while(is.good() && !isWhitespace(is.peek())) {
c = is.get();
if (is.good()){
token += c;
}
}
return token.size() > 0;
}
void appendDataFromStream(std::vector<float> &dataVec, uint32_t numFloats, std::istream &is) {
std::string token;
for (uint32_t i = 0; i < numFloats; i ++){
bool valid = getToken(is, token);
if (valid) {
dataVec.push_back((float)atof(token.c_str()));
} else {
fprintf(stderr, "Encountered error reading geometry data");
dataVec.push_back(0.0f);
}
}
}
bool checkNegativeIndex(int idx) {
if(idx < 0) {
fprintf(stderr, "Negative indices are not supported. Skipping face\n");
return false;
}
return true;
}
void ObjLoader::parseRawFaces(){
// We need at least a triangle
if (mRawFaces.size() < 3) {
return;
}
const char slash = '/';
mParsedFaces.resize(mRawFaces.size());
for (uint32_t i = 0; i < mRawFaces.size(); i ++) {
size_t firstSeparator = mRawFaces[i].find_first_of(slash);
size_t nextSeparator = mRawFaces[i].find_last_of(slash);
// Use the string as a temp buffer to parse the index
// Insert 0 instead of the slash to avoid substrings
if (firstSeparator != std::string::npos) {
mRawFaces[i][firstSeparator] = 0;
}
// Simple case, only one index
int32_t vIdx = atoi(mRawFaces[i].c_str());
// We do not support negative indices
if (!checkNegativeIndex(vIdx)) {
return;
}
// obj indices things beginning 1
mParsedFaces[i].vertIdx = (uint32_t)vIdx - 1;
if (nextSeparator != std::string::npos && nextSeparator != firstSeparator) {
mRawFaces[i][nextSeparator] = 0;
uint32_t nIdx = atoi(mRawFaces[i].c_str() + nextSeparator + 1);
if (!checkNegativeIndex(nIdx)) {
return;
}
// obj indexes things beginning 1
mParsedFaces[i].normIdx = (uint32_t)nIdx - 1;
}
// second case is where we have vertex and texture indices
if (nextSeparator != std::string::npos &&
(nextSeparator > firstSeparator + 1 || nextSeparator == firstSeparator)) {
uint32_t tIdx = atoi(mRawFaces[i].c_str() + firstSeparator + 1);
if (!checkNegativeIndex(tIdx)) {
return;
}
// obj indexes things beginning 1
mParsedFaces[i].texIdx = (uint32_t)tIdx - 1;
}
}
// Make sure a face list exists before we go adding to it
if (mMeshes.back().mUnfilteredFaces.size() == 0) {
mMeshes.back().appendUnfilteredFaces(mLastMtl);
}
// Now we have our parsed face, that we need to triangulate as necessary
// Treat more complex polygons as fans.
// This approach will only work only for convex polygons
// but concave polygons need to be addressed elsewhere anyway
for (uint32_t next = 1; next < mParsedFaces.size() - 1; next ++) {
// push it to our current mesh
mMeshes.back().mUnfilteredFaces.back().push_back(mParsedFaces[0]);
mMeshes.back().mUnfilteredFaces.back().push_back(mParsedFaces[next]);
mMeshes.back().mUnfilteredFaces.back().push_back(mParsedFaces[next + 1]);
}
}
void ObjLoader::checkNewMeshCreation(std::string &newGroup) {
// start a new mesh if we have some faces
// accumulated on the current mesh.
// It's possible to have multiple group statements
// but we only care to actually start a new mesh
// once we can have something we can draw on the previous one
if (mMeshes.back().mUnfilteredFaces.size()) {
mMeshes.push_back(ObjMesh());
}
mMeshes.back().mName = newGroup;
printf("Converting vertex group: %s\n", newGroup.c_str());
}
void ObjLoader::handleObjLine(char *line) {
const char* vtxToken = "v";
const char* normToken = "vn";
const char* texToken = "vt";
const char* groupToken = "g";
const char* mtlToken = "usemtl";
const char* faceToken = "f";
std::istringstream lineStream(line, std::istringstream::in);
std::string token;
bool valid = getToken(lineStream, token);
if (!valid) {
return;
}
if (token == vtxToken) {
appendDataFromStream(mObjPositions, 3, lineStream);
} else if (token == normToken) {
appendDataFromStream(mObjNormals, 3, lineStream);
} else if (token == texToken) {
appendDataFromStream(mObjTextureCoords, 2, lineStream);
} else if (token == groupToken) {
valid = getToken(lineStream, token);
checkNewMeshCreation(token);
} else if (token == faceToken) {
mRawFaces.clear();
while(getToken(lineStream, token)) {
mRawFaces.push_back(token);
}
parseRawFaces();
}
// Ignore materials for now
else if (token == mtlToken) {
valid = getToken(lineStream, token);
mLastMtl = token;
mMeshes.back().appendUnfilteredFaces(token);
}
}
bool ObjLoader::init(const char *fileName) {
std::ifstream ifs(fileName , std::ifstream::in);
if (!ifs.good()) {
fprintf(stderr, "Failed to read file %s.\n", fileName);
return false;
}
mMeshes.clear();
const uint32_t maxBufferSize = 2048;
char *buffer = new char[maxBufferSize];
mMeshes.push_back(ObjMesh());
std::string token;
bool isDone = false;
while(!isDone) {
ifs.getline(buffer, maxBufferSize);
if (ifs.good() && ifs.gcount() > 0) {
handleObjLine(buffer);
} else {
isDone = true;
}
}
ifs.close();
delete buffer;
reIndexGeometry();
return true;
}
void ObjLoader::reIndexGeometry() {
// We want to know where each vertex lands
mVertexRemap.resize(mObjPositions.size() / mPositionsStride);
for (uint32_t m = 0; m < mMeshes.size(); m ++) {
// clear the remap vector of old data
for (uint32_t r = 0; r < mVertexRemap.size(); r ++) {
mVertexRemap[r].clear();
}
for (uint32_t i = 0; i < mMeshes[m].mUnfilteredFaces.size(); i ++) {
mMeshes[m].mTriangleLists[i].reserve(mMeshes[m].mUnfilteredFaces[i].size() * 2);
for (uint32_t fI = 0; fI < mMeshes[m].mUnfilteredFaces[i].size(); fI ++) {
uint32_t newIndex = reIndexGeometryPrim(mMeshes[m], mMeshes[m].mUnfilteredFaces[i][fI]);
mMeshes[m].mTriangleLists[i].push_back(newIndex);
}
}
}
}
uint32_t ObjLoader::reIndexGeometryPrim(ObjMesh &mesh, PrimitiveVtx &prim) {
std::vector<float> &mPositions = mesh.mChannels[0].mData;
std::vector<float> &mNormals = mesh.mChannels[1].mData;
std::vector<float> &mTextureCoords = mesh.mChannels[2].mData;
float posX = mObjPositions[prim.vertIdx * mPositionsStride + 0];
float posY = mObjPositions[prim.vertIdx * mPositionsStride + 1];
float posZ = mObjPositions[prim.vertIdx * mPositionsStride + 2];
float normX = 0.0f;
float normY = 0.0f;
float normZ = 0.0f;
if (prim.normIdx != MAX_INDEX) {
normX = mObjNormals[prim.normIdx * mNormalsStride + 0];
normY = mObjNormals[prim.normIdx * mNormalsStride + 1];
normZ = mObjNormals[prim.normIdx * mNormalsStride + 2];
}
float texCoordX = 0.0f;
float texCoordY = 0.0f;
if (prim.texIdx != MAX_INDEX) {
texCoordX = mObjTextureCoords[prim.texIdx * mTextureCoordsStride + 0];
texCoordY = mObjTextureCoords[prim.texIdx * mTextureCoordsStride + 1];
}
std::vector<unsigned int> &ithRemapList = mVertexRemap[prim.vertIdx];
// We may have some potential vertices we can reuse
// loop over all the potential candidates and see if any match our guy
for (unsigned int i = 0; i < ithRemapList.size(); i ++) {
int ithRemap = ithRemapList[i];
// compare existing vertex with the new one
if (mPositions[ithRemap * mPositionsStride + 0] != posX ||
mPositions[ithRemap * mPositionsStride + 1] != posY ||
mPositions[ithRemap * mPositionsStride + 2] != posZ) {
continue;
}
// Now go over normals
if (prim.normIdx != MAX_INDEX) {
if (mNormals[ithRemap * mNormalsStride + 0] != normX ||
mNormals[ithRemap * mNormalsStride + 1] != normY ||
mNormals[ithRemap * mNormalsStride + 2] != normZ) {
continue;
}
}
// And texcoords
if (prim.texIdx != MAX_INDEX) {
if (mTextureCoords[ithRemap * mTextureCoordsStride + 0] != texCoordX ||
mTextureCoords[ithRemap * mTextureCoordsStride + 1] != texCoordY) {
continue;
}
}
// If we got here the new vertex is identical to the one that we already stored
return ithRemap;
}
// We did not encounter this vertex yet, store it and return its index
mPositions.push_back(posX);
mPositions.push_back(posY);
mPositions.push_back(posZ);
if (prim.normIdx != MAX_INDEX) {
mNormals.push_back(normX);
mNormals.push_back(normY);
mNormals.push_back(normZ);
}
if (prim.texIdx != MAX_INDEX) {
mTextureCoords.push_back(texCoordX);
mTextureCoords.push_back(texCoordY);
}
// We need to remember this mapping. Since we are storing floats, not vec3's, need to
// divide by position size to get the right index
int currentVertexIndex = (mPositions.size()/mPositionsStride) - 1;
ithRemapList.push_back(currentVertexIndex);
return currentVertexIndex;
}