| #!/usr/bin/python |
| # |
| # Copyright (C) 2013 The Android Open Source Project |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| |
| """Module for looking up symbolic debugging information. |
| |
| The information can include symbol names, offsets, and source locations. |
| """ |
| |
| import glob |
| import os |
| import re |
| import subprocess |
| |
| ANDROID_BUILD_TOP = os.environ["ANDROID_BUILD_TOP"] |
| if not ANDROID_BUILD_TOP: |
| ANDROID_BUILD_TOP = "." |
| |
| def FindSymbolsDir(): |
| saveddir = os.getcwd() |
| os.chdir(ANDROID_BUILD_TOP) |
| try: |
| cmd = ("CALLED_FROM_SETUP=true BUILD_SYSTEM=build/core " |
| "SRC_TARGET_DIR=build/target make -f build/core/config.mk " |
| "dumpvar-abs-TARGET_OUT_UNSTRIPPED") |
| stream = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True).stdout |
| return os.path.join(ANDROID_BUILD_TOP, stream.read().strip()) |
| finally: |
| os.chdir(saveddir) |
| |
| SYMBOLS_DIR = FindSymbolsDir() |
| |
| ARCH = "arm" |
| |
| TOOLCHAIN = None |
| |
| def ToolPath(tool, toolchain=None): |
| """Return a fully-qualified path to the specified tool""" |
| if not toolchain: |
| toolchain = FindToolchain() |
| return glob.glob(os.path.join(toolchain, "*-" + tool))[0] |
| |
| def FindToolchain(): |
| """Returns the toolchain matching ARCH. Assumes that you're lunched |
| such that the necessary toolchain is either your primary or secondary. |
| TODO: we could make this 'just work' for most users by just globbing the |
| newest toolchains for every architecture out of prebuilts/, but other |
| parts of this tool assume you're lunched correctly anyway.""" |
| global TOOLCHAIN |
| if TOOLCHAIN is not None: |
| return TOOLCHAIN |
| |
| # We use slightly different names from GCC, and there's only one toolchain |
| # for x86/x86_64. |
| gcc_arch = ARCH |
| if gcc_arch == "arm64": |
| gcc_arch = "aarch64" |
| elif gcc_arch == "mips": |
| gcc_arch = "mipsel" |
| elif gcc_arch == "x86": |
| gcc_arch = "x86_64" |
| |
| tc1 = os.environ["ANDROID_TOOLCHAIN"] |
| tc2 = os.environ["ANDROID_TOOLCHAIN_2ND_ARCH"] |
| |
| if ("/" + gcc_arch + "-linux-") in tc1: |
| toolchain = tc1 |
| elif ("/" + gcc_arch + "-linux-") in tc2: |
| toolchain = tc2 |
| else: |
| raise Exception("Could not find tool chain for %s" % (gcc_arch)) |
| |
| if not os.path.exists(ToolPath("addr2line", toolchain)): |
| raise Exception("No addr2line for %s" % (toolchain)) |
| |
| TOOLCHAIN = toolchain |
| print "Using toolchain from: %s" % TOOLCHAIN |
| return TOOLCHAIN |
| |
| def SymbolInformation(lib, addr): |
| """Look up symbol information about an address. |
| |
| Args: |
| lib: library (or executable) pathname containing symbols |
| addr: string hexidecimal address |
| |
| Returns: |
| A list of the form [(source_symbol, source_location, |
| object_symbol_with_offset)]. |
| |
| If the function has been inlined then the list may contain |
| more than one element with the symbols for the most deeply |
| nested inlined location appearing first. The list is |
| always non-empty, even if no information is available. |
| |
| Usually you want to display the source_location and |
| object_symbol_with_offset from the last element in the list. |
| """ |
| info = SymbolInformationForSet(lib, set([addr])) |
| return (info and info.get(addr)) or [(None, None, None)] |
| |
| |
| def SymbolInformationForSet(lib, unique_addrs): |
| """Look up symbol information for a set of addresses from the given library. |
| |
| Args: |
| lib: library (or executable) pathname containing symbols |
| unique_addrs: set of hexidecimal addresses |
| |
| Returns: |
| A dictionary of the form {addr: [(source_symbol, source_location, |
| object_symbol_with_offset)]} where each address has a list of |
| associated symbols and locations. The list is always non-empty. |
| |
| If the function has been inlined then the list may contain |
| more than one element with the symbols for the most deeply |
| nested inlined location appearing first. The list is |
| always non-empty, even if no information is available. |
| |
| Usually you want to display the source_location and |
| object_symbol_with_offset from the last element in the list. |
| """ |
| if not lib: |
| return None |
| |
| addr_to_line = CallAddr2LineForSet(lib, unique_addrs) |
| if not addr_to_line: |
| return None |
| |
| addr_to_objdump = CallObjdumpForSet(lib, unique_addrs) |
| if not addr_to_objdump: |
| return None |
| |
| result = {} |
| for addr in unique_addrs: |
| source_info = addr_to_line.get(addr) |
| if not source_info: |
| source_info = [(None, None)] |
| if addr in addr_to_objdump: |
| (object_symbol, object_offset) = addr_to_objdump.get(addr) |
| object_symbol_with_offset = FormatSymbolWithOffset(object_symbol, |
| object_offset) |
| else: |
| object_symbol_with_offset = None |
| result[addr] = [(source_symbol, source_location, object_symbol_with_offset) |
| for (source_symbol, source_location) in source_info] |
| |
| return result |
| |
| |
| def CallAddr2LineForSet(lib, unique_addrs): |
| """Look up line and symbol information for a set of addresses. |
| |
| Args: |
| lib: library (or executable) pathname containing symbols |
| unique_addrs: set of string hexidecimal addresses look up. |
| |
| Returns: |
| A dictionary of the form {addr: [(symbol, file:line)]} where |
| each address has a list of associated symbols and locations |
| or an empty list if no symbol information was found. |
| |
| If the function has been inlined then the list may contain |
| more than one element with the symbols for the most deeply |
| nested inlined location appearing first. |
| """ |
| if not lib: |
| return None |
| |
| |
| symbols = SYMBOLS_DIR + lib |
| if not os.path.exists(symbols): |
| return None |
| |
| cmd = [ToolPath("addr2line"), "--functions", "--inlines", |
| "--demangle", "--exe=" + symbols] |
| child = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE) |
| |
| result = {} |
| addrs = sorted(unique_addrs) |
| for addr in addrs: |
| child.stdin.write("0x%s\n" % addr) |
| child.stdin.flush() |
| records = [] |
| first = True |
| while True: |
| symbol = child.stdout.readline().strip() |
| if symbol == "??": |
| symbol = None |
| location = child.stdout.readline().strip() |
| if location == "??:0": |
| location = None |
| if symbol is None and location is None: |
| break |
| records.append((symbol, location)) |
| if first: |
| # Write a blank line as a sentinel so we know when to stop |
| # reading inlines from the output. |
| # The blank line will cause addr2line to emit "??\n??:0\n". |
| child.stdin.write("\n") |
| first = False |
| result[addr] = records |
| child.stdin.close() |
| child.stdout.close() |
| return result |
| |
| |
| def StripPC(addr): |
| """Strips the Thumb bit a program counter address when appropriate. |
| |
| Args: |
| addr: the program counter address |
| |
| Returns: |
| The stripped program counter address. |
| """ |
| global ARCH |
| |
| if ARCH == "arm": |
| return addr & ~1 |
| return addr |
| |
| def CallObjdumpForSet(lib, unique_addrs): |
| """Use objdump to find out the names of the containing functions. |
| |
| Args: |
| lib: library (or executable) pathname containing symbols |
| unique_addrs: set of string hexidecimal addresses to find the functions for. |
| |
| Returns: |
| A dictionary of the form {addr: (string symbol, offset)}. |
| """ |
| if not lib: |
| return None |
| |
| symbols = SYMBOLS_DIR + lib |
| if not os.path.exists(symbols): |
| return None |
| |
| symbols = SYMBOLS_DIR + lib |
| if not os.path.exists(symbols): |
| return None |
| |
| addrs = sorted(unique_addrs) |
| start_addr_dec = str(StripPC(int(addrs[0], 16))) |
| stop_addr_dec = str(StripPC(int(addrs[-1], 16)) + 8) |
| cmd = [ToolPath("objdump"), |
| "--section=.text", |
| "--demangle", |
| "--disassemble", |
| "--start-address=" + start_addr_dec, |
| "--stop-address=" + stop_addr_dec, |
| symbols] |
| |
| # Function lines look like: |
| # 000177b0 <android::IBinder::~IBinder()+0x2c>: |
| # We pull out the address and function first. Then we check for an optional |
| # offset. This is tricky due to functions that look like "operator+(..)+0x2c" |
| func_regexp = re.compile("(^[a-f0-9]*) \<(.*)\>:$") |
| offset_regexp = re.compile("(.*)\+0x([a-f0-9]*)") |
| |
| # A disassembly line looks like: |
| # 177b2: b510 push {r4, lr} |
| asm_regexp = re.compile("(^[ a-f0-9]*):[ a-f0-0]*.*$") |
| |
| current_symbol = None # The current function symbol in the disassembly. |
| current_symbol_addr = 0 # The address of the current function. |
| addr_index = 0 # The address that we are currently looking for. |
| |
| stream = subprocess.Popen(cmd, stdout=subprocess.PIPE).stdout |
| result = {} |
| for line in stream: |
| # Is it a function line like: |
| # 000177b0 <android::IBinder::~IBinder()>: |
| components = func_regexp.match(line) |
| if components: |
| # This is a new function, so record the current function and its address. |
| current_symbol_addr = int(components.group(1), 16) |
| current_symbol = components.group(2) |
| |
| # Does it have an optional offset like: "foo(..)+0x2c"? |
| components = offset_regexp.match(current_symbol) |
| if components: |
| current_symbol = components.group(1) |
| offset = components.group(2) |
| if offset: |
| current_symbol_addr -= int(offset, 16) |
| |
| # Is it an disassembly line like: |
| # 177b2: b510 push {r4, lr} |
| components = asm_regexp.match(line) |
| if components: |
| addr = components.group(1) |
| target_addr = addrs[addr_index] |
| i_addr = int(addr, 16) |
| i_target = StripPC(int(target_addr, 16)) |
| if i_addr == i_target: |
| result[target_addr] = (current_symbol, i_target - current_symbol_addr) |
| addr_index += 1 |
| if addr_index >= len(addrs): |
| break |
| stream.close() |
| |
| return result |
| |
| |
| def CallCppFilt(mangled_symbol): |
| cmd = [ToolPath("c++filt")] |
| process = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE) |
| process.stdin.write(mangled_symbol) |
| process.stdin.write("\n") |
| process.stdin.close() |
| demangled_symbol = process.stdout.readline().strip() |
| process.stdout.close() |
| return demangled_symbol |
| |
| def FormatSymbolWithOffset(symbol, offset): |
| if offset == 0: |
| return symbol |
| return "%s+%d" % (symbol, offset) |