| // Copyright 2006 The Android Open Source Project |
| |
| #ifndef CALL_STACK_H |
| #define CALL_STACK_H |
| |
| #include "opcode.h" |
| #include "armdis.h" |
| |
| class CallStackBase { |
| public: |
| int getId() { return mId; } |
| void setId(int id) { mId = id; } |
| |
| private: |
| int mId; |
| }; |
| |
| // Define a template class for the stack frame. The template parameter |
| // SYM is the symbol_type from the TraceReader<> template class. To |
| // use the CallStack class, the user derives a subclass of StackFrame |
| // and defines push() and pop() methods. This derived class is then |
| // passed as a template parameter to CallStack. |
| template <class SYM> |
| class StackFrame { |
| public: |
| |
| virtual ~StackFrame() {}; |
| |
| virtual void push(int stackLevel, uint64_t time, CallStackBase *base) {}; |
| virtual void pop(int stackLevel, uint64_t time, CallStackBase *base) {}; |
| |
| typedef SYM symbol_type; |
| static const uint32_t kCausedException = 0x01; |
| static const uint32_t kInterpreted = 0x02; |
| static const uint32_t kPopBarrier = (kCausedException | kInterpreted); |
| |
| symbol_type *function; // the symbol for the function we entered |
| uint32_t addr; // return address when this function returns |
| uint32_t flags; |
| uint32_t time; // for debugging when a problem occurred |
| uint32_t global_time; // for debugging when a problem occurred |
| }; |
| |
| template <class FRAME, class BASE = CallStackBase> |
| class CallStack : public BASE { |
| public: |
| typedef typename FRAME::symbol_type symbol_type; |
| typedef typename FRAME::symbol_type::region_type region_type; |
| typedef BASE base_type; |
| |
| CallStack(int id, int numFrames, TraceReaderType *trace); |
| ~CallStack(); |
| |
| void updateStack(BBEvent *event, symbol_type *function); |
| void popAll(uint64_t time); |
| void threadStart(uint64_t time); |
| void threadStop(uint64_t time); |
| |
| // Set to true if you don't want to see any Java methods |
| void setNativeOnly(bool nativeOnly) { |
| mNativeOnly = nativeOnly; |
| } |
| |
| int getStackLevel() { return mTop; } |
| |
| uint64_t getGlobalTime(uint64_t time) { return time + mSkippedTime; } |
| void showStack(); |
| void showSnapshotStack(); |
| |
| private: |
| enum Action { NONE, PUSH, POP }; |
| |
| Action getAction(BBEvent *event, symbol_type *function); |
| Action getMethodAction(BBEvent *event, symbol_type *function); |
| void doSimplePush(symbol_type *function, uint32_t addr, |
| uint64_t time); |
| void doSimplePop(uint64_t time); |
| void doPush(BBEvent *event, symbol_type *function); |
| void doPop(BBEvent *event, symbol_type *function, Action methodAction); |
| |
| void transitionToJava(); |
| void transitionFromJava(uint64_t time); |
| |
| TraceReaderType *mTrace; |
| bool mNativeOnly; |
| |
| symbol_type mDummyFunction; |
| region_type mDummyRegion; |
| |
| int mNumFrames; |
| FRAME *mFrames; |
| int mTop; // index of the next stack frame to write |
| |
| int mJavaTop; |
| |
| int mSnapshotNumFrames; |
| FRAME *mSnapshotFrames; |
| int mSnapshotTop; // index of the next stack frame to write |
| |
| symbol_type *mPrevFunction; |
| BBEvent mPrevEvent; |
| |
| symbol_type *mUserFunction; |
| BBEvent mUserEvent; // the previous user-mode event |
| |
| uint64_t mSkippedTime; |
| uint64_t mLastRunTime; |
| |
| static MethodRec sCurrentMethod; |
| static MethodRec sNextMethod; |
| }; |
| |
| template<class FRAME, class BASE> |
| MethodRec CallStack<FRAME, BASE>::sCurrentMethod; |
| template<class FRAME, class BASE> |
| MethodRec CallStack<FRAME, BASE>::sNextMethod; |
| |
| template<class FRAME, class BASE> |
| CallStack<FRAME, BASE>::CallStack(int id, int numFrames, TraceReaderType *trace) |
| { |
| mNativeOnly = false; |
| mTrace = trace; |
| BASE::setId(id); |
| mNumFrames = numFrames; |
| mFrames = new FRAME[mNumFrames]; |
| mTop = 0; |
| |
| mSnapshotNumFrames = numFrames; |
| mSnapshotFrames = new FRAME[mSnapshotNumFrames]; |
| mSnapshotTop = 0; |
| |
| memset(&mDummyFunction, 0, sizeof(symbol_type)); |
| memset(&mDummyRegion, 0, sizeof(region_type)); |
| mDummyFunction.region = &mDummyRegion; |
| mPrevFunction = &mDummyFunction; |
| memset(&mPrevEvent, 0, sizeof(BBEvent)); |
| mUserFunction = &mDummyFunction; |
| memset(&mUserEvent, 0, sizeof(BBEvent)); |
| mSkippedTime = 0; |
| mLastRunTime = 0; |
| mJavaTop = 0; |
| |
| // Read the first two methods from the trace if we haven't already read |
| // from the method trace yet. |
| if (sCurrentMethod.time == 0) { |
| if (mTrace->ReadMethod(&sCurrentMethod)) { |
| sCurrentMethod.time = ~0ull; |
| sNextMethod.time = ~0ull; |
| } |
| if (sNextMethod.time != ~0ull && mTrace->ReadMethod(&sNextMethod)) { |
| sNextMethod.time = ~0ull; |
| } |
| } |
| } |
| |
| template<class FRAME, class BASE> |
| CallStack<FRAME, BASE>::~CallStack() |
| { |
| delete mFrames; |
| } |
| |
| template<class FRAME, class BASE> |
| void |
| CallStack<FRAME, BASE>::updateStack(BBEvent *event, symbol_type *function) |
| { |
| if (mNativeOnly) { |
| // If this is an interpreted function, then use the native VM function |
| // instead. |
| if (function->vm_sym != NULL) |
| function = function->vm_sym; |
| } |
| |
| Action action = getAction(event, function); |
| Action methodAction = getMethodAction(event, function); |
| |
| // Pop off native functions before pushing or popping Java methods. |
| if (action == POP && mPrevFunction->vm_sym == NULL) { |
| // Pop off the previous function first. |
| doPop(event, function, NONE); |
| if (methodAction == POP) { |
| doPop(event, function, POP); |
| } else if (methodAction == PUSH) { |
| doPush(event, function); |
| } |
| } else { |
| if (methodAction != NONE) { |
| // If the method trace has a push or pop, then do it. |
| action = methodAction; |
| } else if (function->vm_sym != NULL) { |
| // This function is a Java method. Don't push or pop the |
| // Java method without a corresponding method trace record. |
| action = NONE; |
| } |
| if (action == POP) { |
| doPop(event, function, methodAction); |
| } else if (action == PUSH) { |
| doPush(event, function); |
| } |
| } |
| |
| // If the stack is now empty, then push the current function. |
| if (mTop == 0) { |
| uint64_t time = event->time - mSkippedTime; |
| doSimplePush(function, 0, time); |
| } |
| |
| mPrevFunction = function; |
| mPrevEvent = *event; |
| } |
| |
| template<class FRAME, class BASE> |
| void |
| CallStack<FRAME, BASE>::threadStart(uint64_t time) |
| { |
| mSkippedTime += time - mLastRunTime; |
| } |
| |
| template<class FRAME, class BASE> |
| void |
| CallStack<FRAME, BASE>::threadStop(uint64_t time) |
| { |
| mLastRunTime = time; |
| } |
| |
| template<class FRAME, class BASE> |
| typename CallStack<FRAME, BASE>::Action |
| CallStack<FRAME, BASE>::getAction(BBEvent *event, symbol_type *function) |
| { |
| Action action; |
| uint32_t offset; |
| |
| // Compute the offset from the start of the function to this basic |
| // block address. |
| offset = event->bb_addr - function->addr - function->region->base_addr; |
| |
| // Get the previously executed instruction |
| Opcode op = OP_INVALID; |
| int numInsns = mPrevEvent.num_insns; |
| uint32_t insn = 0; |
| if (numInsns > 0) { |
| insn = mPrevEvent.insns[numInsns - 1]; |
| if (mPrevEvent.is_thumb) { |
| insn = insn_unwrap_thumb(insn); |
| op = decode_insn_thumb(insn); |
| } else { |
| op = Arm::decode(insn); |
| } |
| } |
| |
| // The number of bytes in the previous basic block depends on |
| // whether the basic block was ARM or THUMB instructions. |
| int numBytes; |
| if (mPrevEvent.is_thumb) { |
| numBytes = numInsns << 1; |
| } else { |
| numBytes = numInsns << 2; |
| } |
| |
| // If this basic block follows the previous one, then return NONE. |
| // If we don't do this, then we may be fooled into thinking this |
| // is a POP if the previous block ended with a conditional |
| // (non-executed) ldmia instruction. We do this check before |
| // checking if we are in a different function because we otherwise |
| // we might be fooled into thinking this is a PUSH to a new function |
| // when it is really just a fall-thru into a local kernel symbol |
| // that just looks like a new function. |
| uint32_t prev_end_addr = mPrevEvent.bb_addr + numBytes; |
| if (prev_end_addr == event->bb_addr) { |
| return NONE; |
| } |
| |
| // If this basic block is in the same function as the last basic block, |
| // then just return NONE (but see the exceptions below). |
| // Exception 1: if the function calls itself (offset == 0) then we |
| // want to push this function. |
| // Exception 2: if the function returns to itself, then we want |
| // to pop this function. We detect this case by checking if the last |
| // instruction in the previous basic block was a load-multiple (ldm) |
| // and included r15 as one of the loaded registers. |
| if (function == mPrevFunction) { |
| if (numInsns > 0) { |
| // If this is the beginning of the function and the previous |
| // instruction was not a branch, then it's a PUSH. |
| if (offset == 0 && op != OP_B && op != OP_THUMB_B) |
| return PUSH; |
| |
| // If the previous instruction was an ldm that loaded r15, |
| // then it's a POP. |
| if (offset != 0 && ((op == OP_LDM && (insn & 0x8000)) |
| || (op == OP_THUMB_POP && (insn & 0x100)))) { |
| return POP; |
| } |
| } |
| |
| return NONE; |
| } |
| |
| // We have to figure out if this new function is a call or a |
| // return. We don't necessarily have a complete call stack (since |
| // we could have started tracing at any point), so we have to use |
| // heuristics. If the address we are jumping to is the beginning |
| // of a function, or if the instruction that took us there was |
| // either "bl" or "blx" then this is a PUSH. Also, if the |
| // function offset is non-zero and the previous instruction is a |
| // branch instruction, we will call it a PUSH. This happens in |
| // the kernel a lot when there is a branch to an offset from a |
| // label. A couple more special cases: |
| // |
| // - entering a .plt section ("procedure linkage table") is a PUSH, |
| // - an exception that jumps into the kernel vector entry point |
| // is also a push. |
| // |
| // If the function offset is non-zero and the previous instruction |
| // is a bx or some non-branch instruction, then it's a POP. |
| // |
| // There's another special case that comes up. The user code |
| // might execute an instruction that returns but before the pc |
| // starts executing in the caller, a kernel interrupt occurs. |
| // But it may be hard to tell if this is a return until after |
| // the kernel interrupt code is done and returns to user space. |
| // So we save the last user basic block and look at it when |
| // we come back into user space. |
| |
| const uint32_t kIsKernelRegion = region_type::kIsKernelRegion; |
| |
| if (((mPrevFunction->region->flags & kIsKernelRegion) == 0) |
| && (function->region->flags & kIsKernelRegion)) { |
| // We just switched into the kernel. Save the previous |
| // user-mode basic block and function. |
| mUserEvent = mPrevEvent; |
| mUserFunction = mPrevFunction; |
| } else if ((mPrevFunction->region->flags & kIsKernelRegion) |
| && ((function->region->flags & kIsKernelRegion) == 0)) { |
| // We just switched from kernel to user mode. |
| return POP; |
| } |
| |
| action = PUSH; |
| if (offset != 0 && mPrevFunction != &mDummyFunction) { |
| // We are jumping into the middle of a function, so this is |
| // probably a return, not a function call. But look at the |
| // previous instruction first to see if it was a branch-and-link. |
| |
| // If the previous instruction was not a branch (and not a |
| // branch-and-link) then POP; or if it is a "bx" instruction |
| // then POP because that is used to return from functions. |
| if (!isBranch(op) || op == OP_BX || op == OP_THUMB_BX) { |
| action = POP; |
| } else if (isBranch(op) && !isBranchLink(op)) { |
| // If the previous instruction was a normal branch to a |
| // local symbol then don't count it as a push or a pop. |
| action = NONE; |
| } |
| |
| if (function->flags & symbol_type::kIsVectorTable) |
| action = PUSH; |
| } |
| return action; |
| } |
| |
| |
| template<class FRAME, class BASE> |
| void CallStack<FRAME, BASE>::doPush(BBEvent *event, symbol_type *function) |
| { |
| uint64_t time = event->time - mSkippedTime; |
| |
| // Check for stack overflow |
| if (mTop >= mNumFrames) { |
| #if 0 |
| showStack(); |
| #endif |
| fprintf(stderr, "Error: stack overflow (%d frames)\n", mTop); |
| exit(1); |
| } |
| |
| // Compute the return address here because we may need to change |
| // it if we are popping off a frame for a vector table. |
| int numBytes; |
| if (mPrevEvent.is_thumb) { |
| numBytes = mPrevEvent.num_insns << 1; |
| } else { |
| numBytes = mPrevEvent.num_insns << 2; |
| } |
| uint32_t retAddr = mPrevEvent.bb_addr + numBytes; |
| |
| // If this is a Java method then set the return address to zero. |
| // We won't be using it for popping the method and it may lead |
| // to false matches when searching the stack. |
| if (function->vm_sym != NULL) { |
| retAddr = 0; |
| } |
| |
| #if 0 |
| if (function->flags & symbol_type::kIsVectorStart) { |
| printf("stack before entering exception\n"); |
| showStack(); |
| } |
| #endif |
| |
| // If the previous function was a vector table, then pop it |
| // off before pushing on the new function. Also, change the |
| // return address for the new function to the return address |
| // from the vector table. |
| if ((mPrevFunction->flags & symbol_type::kIsVectorTable) && mTop > 0) { |
| retAddr = mFrames[mTop - 1].addr; |
| doSimplePop(time); |
| } |
| |
| const uint32_t kIsKernelRegion = region_type::kIsKernelRegion; |
| |
| // The following code handles the case where one function, F1, |
| // calls another function, F2, but the before F2 can start |
| // executing, it takes a page fault (on the first instruction |
| // in F2). The kernel is entered, handles the page fault, and |
| // then returns to the called function. The problem is that |
| // this looks like a new function call to F2 from the kernel. |
| // The following code cleans up the stack by popping the |
| // kernel frames back to F1 (but not including F1). The |
| // return address for F2 also has to be fixed up to point to |
| // F1 instead of the kernel. |
| // |
| // We detect this case by checking if the previous basic block |
| // was in the kernel and the current basic block is not. |
| if ((mPrevFunction->region->flags & kIsKernelRegion) |
| && ((function->region->flags & kIsKernelRegion) == 0) |
| && mTop > 0) { |
| // We are switching from kernel mode to user mode. |
| #if 0 |
| printf(" doPush(): popping to user mode, bb_addr: 0x%08x\n", |
| event->bb_addr); |
| showStack(); |
| #endif |
| do { |
| // Pop off the kernel frames until we reach the one that |
| // caused the exception. |
| doSimplePop(time); |
| |
| // If the next stack frame is the one that caused an |
| // exception then stop popping frames. |
| if (mTop > 0 |
| && (mFrames[mTop - 1].flags & FRAME::kCausedException)) { |
| mFrames[mTop - 1].flags &= ~FRAME::kCausedException; |
| retAddr = mFrames[mTop].addr; |
| break; |
| } |
| } while (mTop > 0); |
| #if 0 |
| printf(" doPush() popping to level %d, using retAddr 0x%08x\n", |
| mTop, retAddr); |
| #endif |
| } |
| |
| // If we are starting an exception handler, then mark the previous |
| // stack frame so that we know where to return when the exception |
| // handler finishes. |
| if ((function->flags & symbol_type::kIsVectorStart) && mTop > 0) |
| mFrames[mTop - 1].flags |= FRAME::kCausedException; |
| |
| doSimplePush(function, retAddr, time); |
| } |
| |
| template<class FRAME, class BASE> |
| void CallStack<FRAME, BASE>::doSimplePush(symbol_type *function, |
| uint32_t addr, uint64_t time) |
| { |
| // Check for stack overflow |
| if (mTop >= mNumFrames) { |
| showStack(); |
| fprintf(stderr, "too many stack frames (%d)\n", mTop); |
| exit(1); |
| } |
| |
| // Keep track of the number of Java methods we push on the stack. |
| if (!mNativeOnly && function->vm_sym != NULL) { |
| // If we are pushing the first Java method on the stack, then |
| // save a snapshot of the stack so that we can clean things up |
| // later when we pop off the last Java stack frame. |
| if (mJavaTop == 0) { |
| transitionToJava(); |
| } |
| mJavaTop += 1; |
| } |
| |
| mFrames[mTop].addr = addr; |
| mFrames[mTop].function = function; |
| mFrames[mTop].flags = 0; |
| mFrames[mTop].time = time; |
| mFrames[mTop].global_time = time + mSkippedTime; |
| |
| // If the function being pushed is a Java method, then mark it on |
| // the stack so that we don't pop it off until we get a matching |
| // trace record from the method trace file. |
| if (function->vm_sym != NULL) { |
| mFrames[mTop].flags = FRAME::kInterpreted; |
| } |
| |
| mFrames[mTop].push(mTop, time, this); |
| mTop += 1; |
| } |
| |
| template<class FRAME, class BASE> |
| void CallStack<FRAME, BASE>::doSimplePop(uint64_t time) |
| { |
| if (mTop <= 0) { |
| return; |
| } |
| |
| mTop -= 1; |
| mFrames[mTop].pop(mTop, time, this); |
| |
| // Keep track of the number of Java methods we have on the stack. |
| symbol_type *function = mFrames[mTop].function; |
| if (!mNativeOnly && function->vm_sym != NULL) { |
| mJavaTop -= 1; |
| |
| // When there are no more Java stack frames, then clean up |
| // the client's stack. We need to do this because the client |
| // doesn't see the changes to the native stack underlying the |
| // fake Java stack until the last Java method is popped off. |
| if (mJavaTop == 0) { |
| transitionFromJava(time); |
| } |
| } |
| } |
| |
| template<class FRAME, class BASE> |
| void CallStack<FRAME, BASE>::doPop(BBEvent *event, symbol_type *function, |
| Action methodAction) |
| { |
| uint64_t time = event->time - mSkippedTime; |
| |
| // Search backward on the stack for a matching return address. |
| // The most common case is that we pop one stack frame, but |
| // sometimes we pop more than one. |
| int stackLevel; |
| bool allowMethodPop = (methodAction == POP); |
| for (stackLevel = mTop - 1; stackLevel >= 0; --stackLevel) { |
| if (event->bb_addr == mFrames[stackLevel].addr) { |
| // We found a matching return address on the stack. |
| break; |
| } |
| |
| // If this stack frame caused an exception, then do not pop |
| // this stack frame. |
| if (mFrames[stackLevel].flags & FRAME::kPopBarrier) { |
| // If this is a Java method, then allow a pop only if we |
| // have a matching trace record. |
| if (mFrames[stackLevel].flags & FRAME::kInterpreted) { |
| if (allowMethodPop) { |
| // Allow at most one method pop |
| allowMethodPop = false; |
| continue; |
| } |
| } |
| stackLevel += 1; |
| break; |
| } |
| } |
| |
| // If we didn't find a matching return address then search the stack |
| // again for a matching function. |
| if (stackLevel < 0 || event->bb_addr != mFrames[stackLevel].addr) { |
| bool allowMethodPop = (methodAction == POP); |
| for (stackLevel = mTop - 1; stackLevel >= 0; --stackLevel) { |
| // Compare the function with the one in the stack frame. |
| if (function == mFrames[stackLevel].function) { |
| // We found a matching function. We want to pop up to but not |
| // including this frame. |
| stackLevel += 1; |
| break; |
| } |
| |
| // If this stack frame caused an exception, then do not pop |
| // this stack frame. |
| if (mFrames[stackLevel].flags & FRAME::kPopBarrier) { |
| // If this is a Java method, then allow a pop only if we |
| // have a matching trace record. |
| if (mFrames[stackLevel].flags & FRAME::kInterpreted) { |
| if (allowMethodPop) { |
| // Allow at most one method pop |
| allowMethodPop = false; |
| continue; |
| } |
| } |
| stackLevel += 1; |
| break; |
| } |
| } |
| if (stackLevel < 0) |
| stackLevel = 0; |
| } |
| |
| // Note that if we didn't find a matching stack frame, we will pop |
| // the whole stack (unless there is a Java method or exception |
| // frame on the stack). This is intentional because we may have |
| // started the trace in the middle of an executing program that is |
| // returning up the stack and we do not know the whole stack. So |
| // the right thing to do is to empty the stack. |
| |
| // If we are emptying the stack, then add the current function |
| // on top. If the current function is the same as the top of |
| // stack, then avoid an extraneous pop and push. |
| if (stackLevel == 0 && mFrames[0].function == function) |
| stackLevel = 1; |
| |
| #if 0 |
| if (mTop - stackLevel > 7) { |
| printf("popping thru level %d\n", stackLevel); |
| showStack(); |
| } |
| #endif |
| |
| // Pop the stack frames |
| for (int ii = mTop - 1; ii >= stackLevel; --ii) |
| doSimplePop(time); |
| |
| // Clear the "caused exception" bit on the current stack frame |
| if (mTop > 0) { |
| mFrames[mTop - 1].flags &= ~FRAME::kCausedException; |
| } |
| |
| // Also handle the case where F1 calls F2 and F2 returns to |
| // F1, but before we can execute any instructions in F1, we |
| // switch to the kernel. Then when we return from the kernel |
| // we want to pop off F2 from the stack instead of pushing F1 |
| // on top of F2. To handle this case, we saved the last |
| // user-mode basic block when we entered the kernel (in |
| // the getAction() function) and now we can check to see if |
| // that was a return to F1 instead of a call. We use the |
| // getAction() function to determine this. |
| const uint32_t kIsKernelRegion = region_type::kIsKernelRegion; |
| if ((mPrevFunction->region->flags & kIsKernelRegion) |
| && ((function->region->flags & kIsKernelRegion) == 0)) { |
| mPrevEvent = mUserEvent; |
| mPrevFunction = mUserFunction; |
| if (getAction(event, function) == POP) { |
| // We may need to pop more than one frame, so just |
| // call doPop() again. This won't be an infinite loop |
| // here because we changed mPrevEvent to the last |
| // user-mode event. |
| doPop(event, function, methodAction); |
| return; |
| } |
| } |
| } |
| |
| template<class FRAME, class BASE> |
| void CallStack<FRAME, BASE>::popAll(uint64_t time) |
| { |
| time -= mSkippedTime; |
| while (mTop != 0) { |
| doSimplePop(time); |
| } |
| } |
| |
| template<class FRAME, class BASE> |
| typename CallStack<FRAME, BASE>::Action |
| CallStack<FRAME, BASE>::getMethodAction(BBEvent *event, symbol_type *function) |
| { |
| if (function->vm_sym == NULL && mPrevFunction->vm_sym == NULL) { |
| return NONE; |
| } |
| |
| Action action = NONE; |
| uint32_t prevAddr = mPrevFunction->addr + mPrevFunction->region->base_addr; |
| uint32_t addr = function->addr + function->region->base_addr; |
| |
| // If the events get ahead of the method trace, then read ahead until we |
| // sync up again. This can happen if there is a pop of a method in the |
| // method trace for which we don't have a previous push. |
| while (event->time >= sNextMethod.time) { |
| sCurrentMethod = sNextMethod; |
| if (mTrace->ReadMethod(&sNextMethod)) { |
| sNextMethod.time = ~0ull; |
| } |
| } |
| |
| if (event->time >= sCurrentMethod.time) { |
| if (addr == sCurrentMethod.addr || prevAddr == sCurrentMethod.addr) { |
| action = (sCurrentMethod.flags == 0) ? PUSH : POP; |
| // We found a match, so read the next record. |
| sCurrentMethod = sNextMethod; |
| if (sNextMethod.time != ~0ull && mTrace->ReadMethod(&sNextMethod)) { |
| sNextMethod.time = ~0ull; |
| } |
| } |
| } |
| return action; |
| } |
| |
| // When the first Java method is pushed on the stack, this method is |
| // called to save a snapshot of the current native stack so that the |
| // client's view of the native stack can be patched up later when the |
| // Java stack is empty. |
| template<class FRAME, class BASE> |
| void CallStack<FRAME, BASE>::transitionToJava() |
| { |
| mSnapshotTop = mTop; |
| for (int ii = 0; ii < mTop; ++ii) { |
| mSnapshotFrames[ii] = mFrames[ii]; |
| } |
| } |
| |
| // When the Java stack becomes empty, the native stack becomes |
| // visible. This method is called when the Java stack becomes empty |
| // to patch up the client's view of the native stack, which may have |
| // changed underneath the Java stack. The stack snapshot is used to |
| // create a sequence of pops and pushes to make the client's view of |
| // the native stack match the current native stack. |
| template<class FRAME, class BASE> |
| void CallStack<FRAME, BASE>::transitionFromJava(uint64_t time) |
| { |
| int top = mTop; |
| if (top > mSnapshotTop) { |
| top = mSnapshotTop; |
| } |
| for (int ii = 0; ii < top; ++ii) { |
| if (mSnapshotFrames[ii].function->addr == mFrames[ii].function->addr) { |
| continue; |
| } |
| |
| // Pop off all the rest of the frames from the snapshot |
| for (int jj = top - 1; jj >= ii; --jj) { |
| mSnapshotFrames[jj].pop(jj, time, this); |
| } |
| |
| // Push the new frames from the native stack |
| for (int jj = ii; jj < mTop; ++jj) { |
| mFrames[jj].push(jj, time, this); |
| } |
| break; |
| } |
| } |
| |
| template<class FRAME, class BASE> |
| void CallStack<FRAME, BASE>::showStack() |
| { |
| fprintf(stderr, "mTop: %d skippedTime: %llu\n", mTop, mSkippedTime); |
| for (int ii = 0; ii < mTop; ++ii) { |
| fprintf(stderr, " %d: t %d gt %d f %x 0x%08x 0x%08x %s\n", |
| ii, mFrames[ii].time, mFrames[ii].global_time, |
| mFrames[ii].flags, |
| mFrames[ii].addr, mFrames[ii].function->addr, |
| mFrames[ii].function->name); |
| } |
| } |
| |
| template<class FRAME, class BASE> |
| void CallStack<FRAME, BASE>::showSnapshotStack() |
| { |
| fprintf(stderr, "mSnapshotTop: %d\n", mSnapshotTop); |
| for (int ii = 0; ii < mSnapshotTop; ++ii) { |
| fprintf(stderr, " %d: t %d f %x 0x%08x 0x%08x %s\n", |
| ii, mSnapshotFrames[ii].time, mSnapshotFrames[ii].flags, |
| mSnapshotFrames[ii].addr, mSnapshotFrames[ii].function->addr, |
| mSnapshotFrames[ii].function->name); |
| } |
| } |
| |
| #endif /* CALL_STACK_H */ |