blob: b869956f85732c7d32640a7345acf9824c3f7a4e [file] [log] [blame]
// Copyright 2006 The Android Open Source Project
#ifndef CALL_STACK_H
#define CALL_STACK_H
#include "opcode.h"
#include "armdis.h"
class CallStackBase {
public:
int getId() { return mId; }
void setId(int id) { mId = id; }
private:
int mId;
};
// Define a template class for the stack frame. The template parameter
// SYM is the symbol_type from the TraceReader<> template class. To
// use the CallStack class, the user derives a subclass of StackFrame
// and defines push() and pop() methods. This derived class is then
// passed as a template parameter to CallStack.
template <class SYM>
class StackFrame {
public:
virtual ~StackFrame() {};
virtual void push(int stackLevel, uint64_t time, CallStackBase *base) {};
virtual void pop(int stackLevel, uint64_t time, CallStackBase *base) {};
typedef SYM symbol_type;
static const uint32_t kCausedException = 0x01;
static const uint32_t kInterpreted = 0x02;
static const uint32_t kPopBarrier = (kCausedException | kInterpreted);
symbol_type *function; // the symbol for the function we entered
uint32_t addr; // return address when this function returns
uint32_t flags;
uint32_t time; // for debugging when a problem occurred
uint32_t global_time; // for debugging when a problem occurred
};
template <class FRAME, class BASE = CallStackBase>
class CallStack : public BASE {
public:
typedef typename FRAME::symbol_type symbol_type;
typedef typename FRAME::symbol_type::region_type region_type;
typedef BASE base_type;
CallStack(int id, int numFrames, TraceReaderType *trace);
~CallStack();
void updateStack(BBEvent *event, symbol_type *function);
void popAll(uint64_t time);
void threadStart(uint64_t time);
void threadStop(uint64_t time);
// Set to true if you don't want to see any Java methods
void setNativeOnly(bool nativeOnly) {
mNativeOnly = nativeOnly;
}
int getStackLevel() { return mTop; }
uint64_t getGlobalTime(uint64_t time) { return time + mSkippedTime; }
void showStack();
void showSnapshotStack();
private:
enum Action { NONE, PUSH, POP };
Action getAction(BBEvent *event, symbol_type *function);
Action getMethodAction(BBEvent *event, symbol_type *function);
void doSimplePush(symbol_type *function, uint32_t addr,
uint64_t time);
void doSimplePop(uint64_t time);
void doPush(BBEvent *event, symbol_type *function);
void doPop(BBEvent *event, symbol_type *function, Action methodAction);
void transitionToJava();
void transitionFromJava(uint64_t time);
TraceReaderType *mTrace;
bool mNativeOnly;
symbol_type mDummyFunction;
region_type mDummyRegion;
int mNumFrames;
FRAME *mFrames;
int mTop; // index of the next stack frame to write
int mJavaTop;
int mSnapshotNumFrames;
FRAME *mSnapshotFrames;
int mSnapshotTop; // index of the next stack frame to write
symbol_type *mPrevFunction;
BBEvent mPrevEvent;
symbol_type *mUserFunction;
BBEvent mUserEvent; // the previous user-mode event
uint64_t mSkippedTime;
uint64_t mLastRunTime;
static MethodRec sCurrentMethod;
static MethodRec sNextMethod;
};
template<class FRAME, class BASE>
MethodRec CallStack<FRAME, BASE>::sCurrentMethod;
template<class FRAME, class BASE>
MethodRec CallStack<FRAME, BASE>::sNextMethod;
template<class FRAME, class BASE>
CallStack<FRAME, BASE>::CallStack(int id, int numFrames, TraceReaderType *trace)
{
mNativeOnly = false;
mTrace = trace;
BASE::setId(id);
mNumFrames = numFrames;
mFrames = new FRAME[mNumFrames];
mTop = 0;
mSnapshotNumFrames = numFrames;
mSnapshotFrames = new FRAME[mSnapshotNumFrames];
mSnapshotTop = 0;
memset(&mDummyFunction, 0, sizeof(symbol_type));
memset(&mDummyRegion, 0, sizeof(region_type));
mDummyFunction.region = &mDummyRegion;
mPrevFunction = &mDummyFunction;
memset(&mPrevEvent, 0, sizeof(BBEvent));
mUserFunction = &mDummyFunction;
memset(&mUserEvent, 0, sizeof(BBEvent));
mSkippedTime = 0;
mLastRunTime = 0;
mJavaTop = 0;
// Read the first two methods from the trace if we haven't already read
// from the method trace yet.
if (sCurrentMethod.time == 0) {
if (mTrace->ReadMethod(&sCurrentMethod)) {
sCurrentMethod.time = ~0ull;
sNextMethod.time = ~0ull;
}
if (sNextMethod.time != ~0ull && mTrace->ReadMethod(&sNextMethod)) {
sNextMethod.time = ~0ull;
}
}
}
template<class FRAME, class BASE>
CallStack<FRAME, BASE>::~CallStack()
{
delete mFrames;
}
template<class FRAME, class BASE>
void
CallStack<FRAME, BASE>::updateStack(BBEvent *event, symbol_type *function)
{
if (mNativeOnly) {
// If this is an interpreted function, then use the native VM function
// instead.
if (function->vm_sym != NULL)
function = function->vm_sym;
}
Action action = getAction(event, function);
Action methodAction = getMethodAction(event, function);
// Pop off native functions before pushing or popping Java methods.
if (action == POP && mPrevFunction->vm_sym == NULL) {
// Pop off the previous function first.
doPop(event, function, NONE);
if (methodAction == POP) {
doPop(event, function, POP);
} else if (methodAction == PUSH) {
doPush(event, function);
}
} else {
if (methodAction != NONE) {
// If the method trace has a push or pop, then do it.
action = methodAction;
} else if (function->vm_sym != NULL) {
// This function is a Java method. Don't push or pop the
// Java method without a corresponding method trace record.
action = NONE;
}
if (action == POP) {
doPop(event, function, methodAction);
} else if (action == PUSH) {
doPush(event, function);
}
}
// If the stack is now empty, then push the current function.
if (mTop == 0) {
uint64_t time = event->time - mSkippedTime;
doSimplePush(function, 0, time);
}
mPrevFunction = function;
mPrevEvent = *event;
}
template<class FRAME, class BASE>
void
CallStack<FRAME, BASE>::threadStart(uint64_t time)
{
mSkippedTime += time - mLastRunTime;
}
template<class FRAME, class BASE>
void
CallStack<FRAME, BASE>::threadStop(uint64_t time)
{
mLastRunTime = time;
}
template<class FRAME, class BASE>
typename CallStack<FRAME, BASE>::Action
CallStack<FRAME, BASE>::getAction(BBEvent *event, symbol_type *function)
{
Action action;
uint32_t offset;
// Compute the offset from the start of the function to this basic
// block address.
offset = event->bb_addr - function->addr - function->region->base_addr;
// Get the previously executed instruction
Opcode op = OP_INVALID;
int numInsns = mPrevEvent.num_insns;
uint32_t insn = 0;
if (numInsns > 0) {
insn = mPrevEvent.insns[numInsns - 1];
if (mPrevEvent.is_thumb) {
insn = insn_unwrap_thumb(insn);
op = decode_insn_thumb(insn);
} else {
op = Arm::decode(insn);
}
}
// The number of bytes in the previous basic block depends on
// whether the basic block was ARM or THUMB instructions.
int numBytes;
if (mPrevEvent.is_thumb) {
numBytes = numInsns << 1;
} else {
numBytes = numInsns << 2;
}
// If this basic block follows the previous one, then return NONE.
// If we don't do this, then we may be fooled into thinking this
// is a POP if the previous block ended with a conditional
// (non-executed) ldmia instruction. We do this check before
// checking if we are in a different function because we otherwise
// we might be fooled into thinking this is a PUSH to a new function
// when it is really just a fall-thru into a local kernel symbol
// that just looks like a new function.
uint32_t prev_end_addr = mPrevEvent.bb_addr + numBytes;
if (prev_end_addr == event->bb_addr) {
return NONE;
}
// If this basic block is in the same function as the last basic block,
// then just return NONE (but see the exceptions below).
// Exception 1: if the function calls itself (offset == 0) then we
// want to push this function.
// Exception 2: if the function returns to itself, then we want
// to pop this function. We detect this case by checking if the last
// instruction in the previous basic block was a load-multiple (ldm)
// and included r15 as one of the loaded registers.
if (function == mPrevFunction) {
if (numInsns > 0) {
// If this is the beginning of the function and the previous
// instruction was not a branch, then it's a PUSH.
if (offset == 0 && op != OP_B && op != OP_THUMB_B)
return PUSH;
// If the previous instruction was an ldm that loaded r15,
// then it's a POP.
if (offset != 0 && ((op == OP_LDM && (insn & 0x8000))
|| (op == OP_THUMB_POP && (insn & 0x100)))) {
return POP;
}
}
return NONE;
}
// We have to figure out if this new function is a call or a
// return. We don't necessarily have a complete call stack (since
// we could have started tracing at any point), so we have to use
// heuristics. If the address we are jumping to is the beginning
// of a function, or if the instruction that took us there was
// either "bl" or "blx" then this is a PUSH. Also, if the
// function offset is non-zero and the previous instruction is a
// branch instruction, we will call it a PUSH. This happens in
// the kernel a lot when there is a branch to an offset from a
// label. A couple more special cases:
//
// - entering a .plt section ("procedure linkage table") is a PUSH,
// - an exception that jumps into the kernel vector entry point
// is also a push.
//
// If the function offset is non-zero and the previous instruction
// is a bx or some non-branch instruction, then it's a POP.
//
// There's another special case that comes up. The user code
// might execute an instruction that returns but before the pc
// starts executing in the caller, a kernel interrupt occurs.
// But it may be hard to tell if this is a return until after
// the kernel interrupt code is done and returns to user space.
// So we save the last user basic block and look at it when
// we come back into user space.
const uint32_t kIsKernelRegion = region_type::kIsKernelRegion;
if (((mPrevFunction->region->flags & kIsKernelRegion) == 0)
&& (function->region->flags & kIsKernelRegion)) {
// We just switched into the kernel. Save the previous
// user-mode basic block and function.
mUserEvent = mPrevEvent;
mUserFunction = mPrevFunction;
} else if ((mPrevFunction->region->flags & kIsKernelRegion)
&& ((function->region->flags & kIsKernelRegion) == 0)) {
// We just switched from kernel to user mode.
return POP;
}
action = PUSH;
if (offset != 0 && mPrevFunction != &mDummyFunction) {
// We are jumping into the middle of a function, so this is
// probably a return, not a function call. But look at the
// previous instruction first to see if it was a branch-and-link.
// If the previous instruction was not a branch (and not a
// branch-and-link) then POP; or if it is a "bx" instruction
// then POP because that is used to return from functions.
if (!isBranch(op) || op == OP_BX || op == OP_THUMB_BX) {
action = POP;
} else if (isBranch(op) && !isBranchLink(op)) {
// If the previous instruction was a normal branch to a
// local symbol then don't count it as a push or a pop.
action = NONE;
}
if (function->flags & symbol_type::kIsVectorTable)
action = PUSH;
}
return action;
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::doPush(BBEvent *event, symbol_type *function)
{
uint64_t time = event->time - mSkippedTime;
// Check for stack overflow
if (mTop >= mNumFrames) {
#if 0
showStack();
#endif
fprintf(stderr, "Error: stack overflow (%d frames)\n", mTop);
exit(1);
}
// Compute the return address here because we may need to change
// it if we are popping off a frame for a vector table.
int numBytes;
if (mPrevEvent.is_thumb) {
numBytes = mPrevEvent.num_insns << 1;
} else {
numBytes = mPrevEvent.num_insns << 2;
}
uint32_t retAddr = mPrevEvent.bb_addr + numBytes;
// If this is a Java method then set the return address to zero.
// We won't be using it for popping the method and it may lead
// to false matches when searching the stack.
if (function->vm_sym != NULL) {
retAddr = 0;
}
#if 0
if (function->flags & symbol_type::kIsVectorStart) {
printf("stack before entering exception\n");
showStack();
}
#endif
// If the previous function was a vector table, then pop it
// off before pushing on the new function. Also, change the
// return address for the new function to the return address
// from the vector table.
if ((mPrevFunction->flags & symbol_type::kIsVectorTable) && mTop > 0) {
retAddr = mFrames[mTop - 1].addr;
doSimplePop(time);
}
const uint32_t kIsKernelRegion = region_type::kIsKernelRegion;
// The following code handles the case where one function, F1,
// calls another function, F2, but the before F2 can start
// executing, it takes a page fault (on the first instruction
// in F2). The kernel is entered, handles the page fault, and
// then returns to the called function. The problem is that
// this looks like a new function call to F2 from the kernel.
// The following code cleans up the stack by popping the
// kernel frames back to F1 (but not including F1). The
// return address for F2 also has to be fixed up to point to
// F1 instead of the kernel.
//
// We detect this case by checking if the previous basic block
// was in the kernel and the current basic block is not.
if ((mPrevFunction->region->flags & kIsKernelRegion)
&& ((function->region->flags & kIsKernelRegion) == 0)
&& mTop > 0) {
// We are switching from kernel mode to user mode.
#if 0
printf(" doPush(): popping to user mode, bb_addr: 0x%08x\n",
event->bb_addr);
showStack();
#endif
do {
// Pop off the kernel frames until we reach the one that
// caused the exception.
doSimplePop(time);
// If the next stack frame is the one that caused an
// exception then stop popping frames.
if (mTop > 0
&& (mFrames[mTop - 1].flags & FRAME::kCausedException)) {
mFrames[mTop - 1].flags &= ~FRAME::kCausedException;
retAddr = mFrames[mTop].addr;
break;
}
} while (mTop > 0);
#if 0
printf(" doPush() popping to level %d, using retAddr 0x%08x\n",
mTop, retAddr);
#endif
}
// If we are starting an exception handler, then mark the previous
// stack frame so that we know where to return when the exception
// handler finishes.
if ((function->flags & symbol_type::kIsVectorStart) && mTop > 0)
mFrames[mTop - 1].flags |= FRAME::kCausedException;
doSimplePush(function, retAddr, time);
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::doSimplePush(symbol_type *function,
uint32_t addr, uint64_t time)
{
// Check for stack overflow
if (mTop >= mNumFrames) {
showStack();
fprintf(stderr, "too many stack frames (%d)\n", mTop);
exit(1);
}
// Keep track of the number of Java methods we push on the stack.
if (!mNativeOnly && function->vm_sym != NULL) {
// If we are pushing the first Java method on the stack, then
// save a snapshot of the stack so that we can clean things up
// later when we pop off the last Java stack frame.
if (mJavaTop == 0) {
transitionToJava();
}
mJavaTop += 1;
}
mFrames[mTop].addr = addr;
mFrames[mTop].function = function;
mFrames[mTop].flags = 0;
mFrames[mTop].time = time;
mFrames[mTop].global_time = time + mSkippedTime;
// If the function being pushed is a Java method, then mark it on
// the stack so that we don't pop it off until we get a matching
// trace record from the method trace file.
if (function->vm_sym != NULL) {
mFrames[mTop].flags = FRAME::kInterpreted;
}
mFrames[mTop].push(mTop, time, this);
mTop += 1;
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::doSimplePop(uint64_t time)
{
if (mTop <= 0) {
return;
}
mTop -= 1;
mFrames[mTop].pop(mTop, time, this);
// Keep track of the number of Java methods we have on the stack.
symbol_type *function = mFrames[mTop].function;
if (!mNativeOnly && function->vm_sym != NULL) {
mJavaTop -= 1;
// When there are no more Java stack frames, then clean up
// the client's stack. We need to do this because the client
// doesn't see the changes to the native stack underlying the
// fake Java stack until the last Java method is popped off.
if (mJavaTop == 0) {
transitionFromJava(time);
}
}
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::doPop(BBEvent *event, symbol_type *function,
Action methodAction)
{
uint64_t time = event->time - mSkippedTime;
// Search backward on the stack for a matching return address.
// The most common case is that we pop one stack frame, but
// sometimes we pop more than one.
int stackLevel;
bool allowMethodPop = (methodAction == POP);
for (stackLevel = mTop - 1; stackLevel >= 0; --stackLevel) {
if (event->bb_addr == mFrames[stackLevel].addr) {
// We found a matching return address on the stack.
break;
}
// If this stack frame caused an exception, then do not pop
// this stack frame.
if (mFrames[stackLevel].flags & FRAME::kPopBarrier) {
// If this is a Java method, then allow a pop only if we
// have a matching trace record.
if (mFrames[stackLevel].flags & FRAME::kInterpreted) {
if (allowMethodPop) {
// Allow at most one method pop
allowMethodPop = false;
continue;
}
}
stackLevel += 1;
break;
}
}
// If we didn't find a matching return address then search the stack
// again for a matching function.
if (stackLevel < 0 || event->bb_addr != mFrames[stackLevel].addr) {
bool allowMethodPop = (methodAction == POP);
for (stackLevel = mTop - 1; stackLevel >= 0; --stackLevel) {
// Compare the function with the one in the stack frame.
if (function == mFrames[stackLevel].function) {
// We found a matching function. We want to pop up to but not
// including this frame.
stackLevel += 1;
break;
}
// If this stack frame caused an exception, then do not pop
// this stack frame.
if (mFrames[stackLevel].flags & FRAME::kPopBarrier) {
// If this is a Java method, then allow a pop only if we
// have a matching trace record.
if (mFrames[stackLevel].flags & FRAME::kInterpreted) {
if (allowMethodPop) {
// Allow at most one method pop
allowMethodPop = false;
continue;
}
}
stackLevel += 1;
break;
}
}
if (stackLevel < 0)
stackLevel = 0;
}
// Note that if we didn't find a matching stack frame, we will pop
// the whole stack (unless there is a Java method or exception
// frame on the stack). This is intentional because we may have
// started the trace in the middle of an executing program that is
// returning up the stack and we do not know the whole stack. So
// the right thing to do is to empty the stack.
// If we are emptying the stack, then add the current function
// on top. If the current function is the same as the top of
// stack, then avoid an extraneous pop and push.
if (stackLevel == 0 && mFrames[0].function == function)
stackLevel = 1;
#if 0
if (mTop - stackLevel > 7) {
printf("popping thru level %d\n", stackLevel);
showStack();
}
#endif
// Pop the stack frames
for (int ii = mTop - 1; ii >= stackLevel; --ii)
doSimplePop(time);
// Clear the "caused exception" bit on the current stack frame
if (mTop > 0) {
mFrames[mTop - 1].flags &= ~FRAME::kCausedException;
}
// Also handle the case where F1 calls F2 and F2 returns to
// F1, but before we can execute any instructions in F1, we
// switch to the kernel. Then when we return from the kernel
// we want to pop off F2 from the stack instead of pushing F1
// on top of F2. To handle this case, we saved the last
// user-mode basic block when we entered the kernel (in
// the getAction() function) and now we can check to see if
// that was a return to F1 instead of a call. We use the
// getAction() function to determine this.
const uint32_t kIsKernelRegion = region_type::kIsKernelRegion;
if ((mPrevFunction->region->flags & kIsKernelRegion)
&& ((function->region->flags & kIsKernelRegion) == 0)) {
mPrevEvent = mUserEvent;
mPrevFunction = mUserFunction;
if (getAction(event, function) == POP) {
// We may need to pop more than one frame, so just
// call doPop() again. This won't be an infinite loop
// here because we changed mPrevEvent to the last
// user-mode event.
doPop(event, function, methodAction);
return;
}
}
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::popAll(uint64_t time)
{
time -= mSkippedTime;
while (mTop != 0) {
doSimplePop(time);
}
}
template<class FRAME, class BASE>
typename CallStack<FRAME, BASE>::Action
CallStack<FRAME, BASE>::getMethodAction(BBEvent *event, symbol_type *function)
{
if (function->vm_sym == NULL && mPrevFunction->vm_sym == NULL) {
return NONE;
}
Action action = NONE;
uint32_t prevAddr = mPrevFunction->addr + mPrevFunction->region->base_addr;
uint32_t addr = function->addr + function->region->base_addr;
// If the events get ahead of the method trace, then read ahead until we
// sync up again. This can happen if there is a pop of a method in the
// method trace for which we don't have a previous push.
while (event->time >= sNextMethod.time) {
sCurrentMethod = sNextMethod;
if (mTrace->ReadMethod(&sNextMethod)) {
sNextMethod.time = ~0ull;
}
}
if (event->time >= sCurrentMethod.time) {
if (addr == sCurrentMethod.addr || prevAddr == sCurrentMethod.addr) {
action = (sCurrentMethod.flags == 0) ? PUSH : POP;
// We found a match, so read the next record.
sCurrentMethod = sNextMethod;
if (sNextMethod.time != ~0ull && mTrace->ReadMethod(&sNextMethod)) {
sNextMethod.time = ~0ull;
}
}
}
return action;
}
// When the first Java method is pushed on the stack, this method is
// called to save a snapshot of the current native stack so that the
// client's view of the native stack can be patched up later when the
// Java stack is empty.
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::transitionToJava()
{
mSnapshotTop = mTop;
for (int ii = 0; ii < mTop; ++ii) {
mSnapshotFrames[ii] = mFrames[ii];
}
}
// When the Java stack becomes empty, the native stack becomes
// visible. This method is called when the Java stack becomes empty
// to patch up the client's view of the native stack, which may have
// changed underneath the Java stack. The stack snapshot is used to
// create a sequence of pops and pushes to make the client's view of
// the native stack match the current native stack.
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::transitionFromJava(uint64_t time)
{
int top = mTop;
if (top > mSnapshotTop) {
top = mSnapshotTop;
}
for (int ii = 0; ii < top; ++ii) {
if (mSnapshotFrames[ii].function->addr == mFrames[ii].function->addr) {
continue;
}
// Pop off all the rest of the frames from the snapshot
for (int jj = top - 1; jj >= ii; --jj) {
mSnapshotFrames[jj].pop(jj, time, this);
}
// Push the new frames from the native stack
for (int jj = ii; jj < mTop; ++jj) {
mFrames[jj].push(jj, time, this);
}
break;
}
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::showStack()
{
fprintf(stderr, "mTop: %d skippedTime: %llu\n", mTop, mSkippedTime);
for (int ii = 0; ii < mTop; ++ii) {
fprintf(stderr, " %d: t %d gt %d f %x 0x%08x 0x%08x %s\n",
ii, mFrames[ii].time, mFrames[ii].global_time,
mFrames[ii].flags,
mFrames[ii].addr, mFrames[ii].function->addr,
mFrames[ii].function->name);
}
}
template<class FRAME, class BASE>
void CallStack<FRAME, BASE>::showSnapshotStack()
{
fprintf(stderr, "mSnapshotTop: %d\n", mSnapshotTop);
for (int ii = 0; ii < mSnapshotTop; ++ii) {
fprintf(stderr, " %d: t %d f %x 0x%08x 0x%08x %s\n",
ii, mSnapshotFrames[ii].time, mSnapshotFrames[ii].flags,
mSnapshotFrames[ii].addr, mSnapshotFrames[ii].function->addr,
mSnapshotFrames[ii].function->name);
}
}
#endif /* CALL_STACK_H */