The Android Open Source Project | 52d4c30 | 2009-03-03 19:29:09 -0800 | [diff] [blame^] | 1 | // Copyright 2006 The Android Open Source Project |
| 2 | |
| 3 | #ifndef CALL_STACK_H |
| 4 | #define CALL_STACK_H |
| 5 | |
| 6 | #include "opcode.h" |
| 7 | #include "armdis.h" |
| 8 | |
| 9 | class CallStackBase { |
| 10 | public: |
| 11 | int getId() { return mId; } |
| 12 | void setId(int id) { mId = id; } |
| 13 | |
| 14 | private: |
| 15 | int mId; |
| 16 | }; |
| 17 | |
| 18 | // Define a template class for the stack frame. The template parameter |
| 19 | // SYM is the symbol_type from the TraceReader<> template class. To |
| 20 | // use the CallStack class, the user derives a subclass of StackFrame |
| 21 | // and defines push() and pop() methods. This derived class is then |
| 22 | // passed as a template parameter to CallStack. |
| 23 | template <class SYM> |
| 24 | class StackFrame { |
| 25 | public: |
| 26 | |
| 27 | virtual ~StackFrame() {}; |
| 28 | |
| 29 | virtual void push(int stackLevel, uint64_t time, CallStackBase *base) {}; |
| 30 | virtual void pop(int stackLevel, uint64_t time, CallStackBase *base) {}; |
| 31 | |
| 32 | typedef SYM symbol_type; |
| 33 | static const uint32_t kCausedException = 0x01; |
| 34 | static const uint32_t kInterpreted = 0x02; |
| 35 | static const uint32_t kPopBarrier = (kCausedException | kInterpreted); |
| 36 | |
| 37 | symbol_type *function; // the symbol for the function we entered |
| 38 | uint32_t addr; // return address when this function returns |
| 39 | uint32_t flags; |
| 40 | uint32_t time; // for debugging when a problem occurred |
| 41 | uint32_t global_time; // for debugging when a problem occurred |
| 42 | }; |
| 43 | |
| 44 | template <class FRAME, class BASE = CallStackBase> |
| 45 | class CallStack : public BASE { |
| 46 | public: |
| 47 | typedef typename FRAME::symbol_type symbol_type; |
| 48 | typedef typename FRAME::symbol_type::region_type region_type; |
| 49 | typedef BASE base_type; |
| 50 | |
| 51 | CallStack(int id, int numFrames, TraceReaderType *trace); |
| 52 | ~CallStack(); |
| 53 | |
| 54 | void updateStack(BBEvent *event, symbol_type *function); |
| 55 | void popAll(uint64_t time); |
| 56 | void threadStart(uint64_t time); |
| 57 | void threadStop(uint64_t time); |
| 58 | |
| 59 | // Set to true if you don't want to see any Java methods |
| 60 | void setNativeOnly(bool nativeOnly) { |
| 61 | mNativeOnly = nativeOnly; |
| 62 | } |
| 63 | |
| 64 | int getStackLevel() { return mTop; } |
| 65 | |
| 66 | uint64_t getGlobalTime(uint64_t time) { return time + mSkippedTime; } |
| 67 | void showStack(); |
| 68 | void showSnapshotStack(); |
| 69 | |
| 70 | private: |
| 71 | enum Action { NONE, PUSH, POP }; |
| 72 | |
| 73 | Action getAction(BBEvent *event, symbol_type *function); |
| 74 | Action getMethodAction(BBEvent *event, symbol_type *function); |
| 75 | void doSimplePush(symbol_type *function, uint32_t addr, |
| 76 | uint64_t time); |
| 77 | void doSimplePop(uint64_t time); |
| 78 | void doPush(BBEvent *event, symbol_type *function); |
| 79 | void doPop(BBEvent *event, symbol_type *function, Action methodAction); |
| 80 | |
| 81 | void transitionToJava(); |
| 82 | void transitionFromJava(uint64_t time); |
| 83 | |
| 84 | TraceReaderType *mTrace; |
| 85 | bool mNativeOnly; |
| 86 | |
| 87 | symbol_type mDummyFunction; |
| 88 | region_type mDummyRegion; |
| 89 | |
| 90 | int mNumFrames; |
| 91 | FRAME *mFrames; |
| 92 | int mTop; // index of the next stack frame to write |
| 93 | |
| 94 | int mJavaTop; |
| 95 | |
| 96 | int mSnapshotNumFrames; |
| 97 | FRAME *mSnapshotFrames; |
| 98 | int mSnapshotTop; // index of the next stack frame to write |
| 99 | |
| 100 | symbol_type *mPrevFunction; |
| 101 | BBEvent mPrevEvent; |
| 102 | |
| 103 | symbol_type *mUserFunction; |
| 104 | BBEvent mUserEvent; // the previous user-mode event |
| 105 | |
| 106 | uint64_t mSkippedTime; |
| 107 | uint64_t mLastRunTime; |
| 108 | |
| 109 | static MethodRec sCurrentMethod; |
| 110 | static MethodRec sNextMethod; |
| 111 | }; |
| 112 | |
| 113 | template<class FRAME, class BASE> |
| 114 | MethodRec CallStack<FRAME, BASE>::sCurrentMethod; |
| 115 | template<class FRAME, class BASE> |
| 116 | MethodRec CallStack<FRAME, BASE>::sNextMethod; |
| 117 | |
| 118 | template<class FRAME, class BASE> |
| 119 | CallStack<FRAME, BASE>::CallStack(int id, int numFrames, TraceReaderType *trace) |
| 120 | { |
| 121 | mNativeOnly = false; |
| 122 | mTrace = trace; |
| 123 | BASE::setId(id); |
| 124 | mNumFrames = numFrames; |
| 125 | mFrames = new FRAME[mNumFrames]; |
| 126 | mTop = 0; |
| 127 | |
| 128 | mSnapshotNumFrames = numFrames; |
| 129 | mSnapshotFrames = new FRAME[mSnapshotNumFrames]; |
| 130 | mSnapshotTop = 0; |
| 131 | |
| 132 | memset(&mDummyFunction, 0, sizeof(symbol_type)); |
| 133 | memset(&mDummyRegion, 0, sizeof(region_type)); |
| 134 | mDummyFunction.region = &mDummyRegion; |
| 135 | mPrevFunction = &mDummyFunction; |
| 136 | memset(&mPrevEvent, 0, sizeof(BBEvent)); |
| 137 | mUserFunction = &mDummyFunction; |
| 138 | memset(&mUserEvent, 0, sizeof(BBEvent)); |
| 139 | mSkippedTime = 0; |
| 140 | mLastRunTime = 0; |
| 141 | mJavaTop = 0; |
| 142 | |
| 143 | // Read the first two methods from the trace if we haven't already read |
| 144 | // from the method trace yet. |
| 145 | if (sCurrentMethod.time == 0) { |
| 146 | if (mTrace->ReadMethod(&sCurrentMethod)) { |
| 147 | sCurrentMethod.time = ~0ull; |
| 148 | sNextMethod.time = ~0ull; |
| 149 | } |
| 150 | if (sNextMethod.time != ~0ull && mTrace->ReadMethod(&sNextMethod)) { |
| 151 | sNextMethod.time = ~0ull; |
| 152 | } |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | template<class FRAME, class BASE> |
| 157 | CallStack<FRAME, BASE>::~CallStack() |
| 158 | { |
| 159 | delete mFrames; |
| 160 | } |
| 161 | |
| 162 | template<class FRAME, class BASE> |
| 163 | void |
| 164 | CallStack<FRAME, BASE>::updateStack(BBEvent *event, symbol_type *function) |
| 165 | { |
| 166 | if (mNativeOnly) { |
| 167 | // If this is an interpreted function, then use the native VM function |
| 168 | // instead. |
| 169 | if (function->vm_sym != NULL) |
| 170 | function = function->vm_sym; |
| 171 | } |
| 172 | |
| 173 | Action action = getAction(event, function); |
| 174 | Action methodAction = getMethodAction(event, function); |
| 175 | |
| 176 | // Pop off native functions before pushing or popping Java methods. |
| 177 | if (action == POP && mPrevFunction->vm_sym == NULL) { |
| 178 | // Pop off the previous function first. |
| 179 | doPop(event, function, NONE); |
| 180 | if (methodAction == POP) { |
| 181 | doPop(event, function, POP); |
| 182 | } else if (methodAction == PUSH) { |
| 183 | doPush(event, function); |
| 184 | } |
| 185 | } else { |
| 186 | if (methodAction != NONE) { |
| 187 | // If the method trace has a push or pop, then do it. |
| 188 | action = methodAction; |
| 189 | } else if (function->vm_sym != NULL) { |
| 190 | // This function is a Java method. Don't push or pop the |
| 191 | // Java method without a corresponding method trace record. |
| 192 | action = NONE; |
| 193 | } |
| 194 | if (action == POP) { |
| 195 | doPop(event, function, methodAction); |
| 196 | } else if (action == PUSH) { |
| 197 | doPush(event, function); |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | // If the stack is now empty, then push the current function. |
| 202 | if (mTop == 0) { |
| 203 | uint64_t time = event->time - mSkippedTime; |
| 204 | doSimplePush(function, 0, time); |
| 205 | } |
| 206 | |
| 207 | mPrevFunction = function; |
| 208 | mPrevEvent = *event; |
| 209 | } |
| 210 | |
| 211 | template<class FRAME, class BASE> |
| 212 | void |
| 213 | CallStack<FRAME, BASE>::threadStart(uint64_t time) |
| 214 | { |
| 215 | mSkippedTime += time - mLastRunTime; |
| 216 | } |
| 217 | |
| 218 | template<class FRAME, class BASE> |
| 219 | void |
| 220 | CallStack<FRAME, BASE>::threadStop(uint64_t time) |
| 221 | { |
| 222 | mLastRunTime = time; |
| 223 | } |
| 224 | |
| 225 | template<class FRAME, class BASE> |
| 226 | typename CallStack<FRAME, BASE>::Action |
| 227 | CallStack<FRAME, BASE>::getAction(BBEvent *event, symbol_type *function) |
| 228 | { |
| 229 | Action action; |
| 230 | uint32_t offset; |
| 231 | |
| 232 | // Compute the offset from the start of the function to this basic |
| 233 | // block address. |
| 234 | offset = event->bb_addr - function->addr - function->region->base_addr; |
| 235 | |
| 236 | // Get the previously executed instruction |
| 237 | Opcode op = OP_INVALID; |
| 238 | int numInsns = mPrevEvent.num_insns; |
| 239 | uint32_t insn = 0; |
| 240 | if (numInsns > 0) { |
| 241 | insn = mPrevEvent.insns[numInsns - 1]; |
| 242 | if (mPrevEvent.is_thumb) { |
| 243 | insn = insn_unwrap_thumb(insn); |
| 244 | op = decode_insn_thumb(insn); |
| 245 | } else { |
| 246 | op = Arm::decode(insn); |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | // The number of bytes in the previous basic block depends on |
| 251 | // whether the basic block was ARM or THUMB instructions. |
| 252 | int numBytes; |
| 253 | if (mPrevEvent.is_thumb) { |
| 254 | numBytes = numInsns << 1; |
| 255 | } else { |
| 256 | numBytes = numInsns << 2; |
| 257 | } |
| 258 | |
| 259 | // If this basic block follows the previous one, then return NONE. |
| 260 | // If we don't do this, then we may be fooled into thinking this |
| 261 | // is a POP if the previous block ended with a conditional |
| 262 | // (non-executed) ldmia instruction. We do this check before |
| 263 | // checking if we are in a different function because we otherwise |
| 264 | // we might be fooled into thinking this is a PUSH to a new function |
| 265 | // when it is really just a fall-thru into a local kernel symbol |
| 266 | // that just looks like a new function. |
| 267 | uint32_t prev_end_addr = mPrevEvent.bb_addr + numBytes; |
| 268 | if (prev_end_addr == event->bb_addr) { |
| 269 | return NONE; |
| 270 | } |
| 271 | |
| 272 | // If this basic block is in the same function as the last basic block, |
| 273 | // then just return NONE (but see the exceptions below). |
| 274 | // Exception 1: if the function calls itself (offset == 0) then we |
| 275 | // want to push this function. |
| 276 | // Exception 2: if the function returns to itself, then we want |
| 277 | // to pop this function. We detect this case by checking if the last |
| 278 | // instruction in the previous basic block was a load-multiple (ldm) |
| 279 | // and included r15 as one of the loaded registers. |
| 280 | if (function == mPrevFunction) { |
| 281 | if (numInsns > 0) { |
| 282 | // If this is the beginning of the function and the previous |
| 283 | // instruction was not a branch, then it's a PUSH. |
| 284 | if (offset == 0 && op != OP_B && op != OP_THUMB_B) |
| 285 | return PUSH; |
| 286 | |
| 287 | // If the previous instruction was an ldm that loaded r15, |
| 288 | // then it's a POP. |
| 289 | if (offset != 0 && ((op == OP_LDM && (insn & 0x8000)) |
| 290 | || (op == OP_THUMB_POP && (insn & 0x100)))) { |
| 291 | return POP; |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | return NONE; |
| 296 | } |
| 297 | |
| 298 | // We have to figure out if this new function is a call or a |
| 299 | // return. We don't necessarily have a complete call stack (since |
| 300 | // we could have started tracing at any point), so we have to use |
| 301 | // heuristics. If the address we are jumping to is the beginning |
| 302 | // of a function, or if the instruction that took us there was |
| 303 | // either "bl" or "blx" then this is a PUSH. Also, if the |
| 304 | // function offset is non-zero and the previous instruction is a |
| 305 | // branch instruction, we will call it a PUSH. This happens in |
| 306 | // the kernel a lot when there is a branch to an offset from a |
| 307 | // label. A couple more special cases: |
| 308 | // |
| 309 | // - entering a .plt section ("procedure linkage table") is a PUSH, |
| 310 | // - an exception that jumps into the kernel vector entry point |
| 311 | // is also a push. |
| 312 | // |
| 313 | // If the function offset is non-zero and the previous instruction |
| 314 | // is a bx or some non-branch instruction, then it's a POP. |
| 315 | // |
| 316 | // There's another special case that comes up. The user code |
| 317 | // might execute an instruction that returns but before the pc |
| 318 | // starts executing in the caller, a kernel interrupt occurs. |
| 319 | // But it may be hard to tell if this is a return until after |
| 320 | // the kernel interrupt code is done and returns to user space. |
| 321 | // So we save the last user basic block and look at it when |
| 322 | // we come back into user space. |
| 323 | |
| 324 | const uint32_t kIsKernelRegion = region_type::kIsKernelRegion; |
| 325 | |
| 326 | if (((mPrevFunction->region->flags & kIsKernelRegion) == 0) |
| 327 | && (function->region->flags & kIsKernelRegion)) { |
| 328 | // We just switched into the kernel. Save the previous |
| 329 | // user-mode basic block and function. |
| 330 | mUserEvent = mPrevEvent; |
| 331 | mUserFunction = mPrevFunction; |
| 332 | } else if ((mPrevFunction->region->flags & kIsKernelRegion) |
| 333 | && ((function->region->flags & kIsKernelRegion) == 0)) { |
| 334 | // We just switched from kernel to user mode. |
| 335 | return POP; |
| 336 | } |
| 337 | |
| 338 | action = PUSH; |
| 339 | if (offset != 0 && mPrevFunction != &mDummyFunction) { |
| 340 | // We are jumping into the middle of a function, so this is |
| 341 | // probably a return, not a function call. But look at the |
| 342 | // previous instruction first to see if it was a branch-and-link. |
| 343 | |
| 344 | // If the previous instruction was not a branch (and not a |
| 345 | // branch-and-link) then POP; or if it is a "bx" instruction |
| 346 | // then POP because that is used to return from functions. |
| 347 | if (!isBranch(op) || op == OP_BX || op == OP_THUMB_BX) { |
| 348 | action = POP; |
| 349 | } else if (isBranch(op) && !isBranchLink(op)) { |
| 350 | // If the previous instruction was a normal branch to a |
| 351 | // local symbol then don't count it as a push or a pop. |
| 352 | action = NONE; |
| 353 | } |
| 354 | |
| 355 | if (function->flags & symbol_type::kIsVectorTable) |
| 356 | action = PUSH; |
| 357 | } |
| 358 | return action; |
| 359 | } |
| 360 | |
| 361 | |
| 362 | template<class FRAME, class BASE> |
| 363 | void CallStack<FRAME, BASE>::doPush(BBEvent *event, symbol_type *function) |
| 364 | { |
| 365 | uint64_t time = event->time - mSkippedTime; |
| 366 | |
| 367 | // Check for stack overflow |
| 368 | if (mTop >= mNumFrames) { |
| 369 | #if 0 |
| 370 | showStack(); |
| 371 | #endif |
| 372 | fprintf(stderr, "Error: stack overflow (%d frames)\n", mTop); |
| 373 | exit(1); |
| 374 | } |
| 375 | |
| 376 | // Compute the return address here because we may need to change |
| 377 | // it if we are popping off a frame for a vector table. |
| 378 | int numBytes; |
| 379 | if (mPrevEvent.is_thumb) { |
| 380 | numBytes = mPrevEvent.num_insns << 1; |
| 381 | } else { |
| 382 | numBytes = mPrevEvent.num_insns << 2; |
| 383 | } |
| 384 | uint32_t retAddr = mPrevEvent.bb_addr + numBytes; |
| 385 | |
| 386 | // If this is a Java method then set the return address to zero. |
| 387 | // We won't be using it for popping the method and it may lead |
| 388 | // to false matches when searching the stack. |
| 389 | if (function->vm_sym != NULL) { |
| 390 | retAddr = 0; |
| 391 | } |
| 392 | |
| 393 | #if 0 |
| 394 | if (function->flags & symbol_type::kIsVectorStart) { |
| 395 | printf("stack before entering exception\n"); |
| 396 | showStack(); |
| 397 | } |
| 398 | #endif |
| 399 | |
| 400 | // If the previous function was a vector table, then pop it |
| 401 | // off before pushing on the new function. Also, change the |
| 402 | // return address for the new function to the return address |
| 403 | // from the vector table. |
| 404 | if ((mPrevFunction->flags & symbol_type::kIsVectorTable) && mTop > 0) { |
| 405 | retAddr = mFrames[mTop - 1].addr; |
| 406 | doSimplePop(time); |
| 407 | } |
| 408 | |
| 409 | const uint32_t kIsKernelRegion = region_type::kIsKernelRegion; |
| 410 | |
| 411 | // The following code handles the case where one function, F1, |
| 412 | // calls another function, F2, but the before F2 can start |
| 413 | // executing, it takes a page fault (on the first instruction |
| 414 | // in F2). The kernel is entered, handles the page fault, and |
| 415 | // then returns to the called function. The problem is that |
| 416 | // this looks like a new function call to F2 from the kernel. |
| 417 | // The following code cleans up the stack by popping the |
| 418 | // kernel frames back to F1 (but not including F1). The |
| 419 | // return address for F2 also has to be fixed up to point to |
| 420 | // F1 instead of the kernel. |
| 421 | // |
| 422 | // We detect this case by checking if the previous basic block |
| 423 | // was in the kernel and the current basic block is not. |
| 424 | if ((mPrevFunction->region->flags & kIsKernelRegion) |
| 425 | && ((function->region->flags & kIsKernelRegion) == 0) |
| 426 | && mTop > 0) { |
| 427 | // We are switching from kernel mode to user mode. |
| 428 | #if 0 |
| 429 | printf(" doPush(): popping to user mode, bb_addr: 0x%08x\n", |
| 430 | event->bb_addr); |
| 431 | showStack(); |
| 432 | #endif |
| 433 | do { |
| 434 | // Pop off the kernel frames until we reach the one that |
| 435 | // caused the exception. |
| 436 | doSimplePop(time); |
| 437 | |
| 438 | // If the next stack frame is the one that caused an |
| 439 | // exception then stop popping frames. |
| 440 | if (mTop > 0 |
| 441 | && (mFrames[mTop - 1].flags & FRAME::kCausedException)) { |
| 442 | mFrames[mTop - 1].flags &= ~FRAME::kCausedException; |
| 443 | retAddr = mFrames[mTop].addr; |
| 444 | break; |
| 445 | } |
| 446 | } while (mTop > 0); |
| 447 | #if 0 |
| 448 | printf(" doPush() popping to level %d, using retAddr 0x%08x\n", |
| 449 | mTop, retAddr); |
| 450 | #endif |
| 451 | } |
| 452 | |
| 453 | // If we are starting an exception handler, then mark the previous |
| 454 | // stack frame so that we know where to return when the exception |
| 455 | // handler finishes. |
| 456 | if ((function->flags & symbol_type::kIsVectorStart) && mTop > 0) |
| 457 | mFrames[mTop - 1].flags |= FRAME::kCausedException; |
| 458 | |
| 459 | doSimplePush(function, retAddr, time); |
| 460 | } |
| 461 | |
| 462 | template<class FRAME, class BASE> |
| 463 | void CallStack<FRAME, BASE>::doSimplePush(symbol_type *function, |
| 464 | uint32_t addr, uint64_t time) |
| 465 | { |
| 466 | // Check for stack overflow |
| 467 | if (mTop >= mNumFrames) { |
| 468 | showStack(); |
| 469 | fprintf(stderr, "too many stack frames (%d)\n", mTop); |
| 470 | exit(1); |
| 471 | } |
| 472 | |
| 473 | // Keep track of the number of Java methods we push on the stack. |
| 474 | if (!mNativeOnly && function->vm_sym != NULL) { |
| 475 | // If we are pushing the first Java method on the stack, then |
| 476 | // save a snapshot of the stack so that we can clean things up |
| 477 | // later when we pop off the last Java stack frame. |
| 478 | if (mJavaTop == 0) { |
| 479 | transitionToJava(); |
| 480 | } |
| 481 | mJavaTop += 1; |
| 482 | } |
| 483 | |
| 484 | mFrames[mTop].addr = addr; |
| 485 | mFrames[mTop].function = function; |
| 486 | mFrames[mTop].flags = 0; |
| 487 | mFrames[mTop].time = time; |
| 488 | mFrames[mTop].global_time = time + mSkippedTime; |
| 489 | |
| 490 | // If the function being pushed is a Java method, then mark it on |
| 491 | // the stack so that we don't pop it off until we get a matching |
| 492 | // trace record from the method trace file. |
| 493 | if (function->vm_sym != NULL) { |
| 494 | mFrames[mTop].flags = FRAME::kInterpreted; |
| 495 | } |
| 496 | |
| 497 | mFrames[mTop].push(mTop, time, this); |
| 498 | mTop += 1; |
| 499 | } |
| 500 | |
| 501 | template<class FRAME, class BASE> |
| 502 | void CallStack<FRAME, BASE>::doSimplePop(uint64_t time) |
| 503 | { |
| 504 | if (mTop <= 0) { |
| 505 | return; |
| 506 | } |
| 507 | |
| 508 | mTop -= 1; |
| 509 | mFrames[mTop].pop(mTop, time, this); |
| 510 | |
| 511 | // Keep track of the number of Java methods we have on the stack. |
| 512 | symbol_type *function = mFrames[mTop].function; |
| 513 | if (!mNativeOnly && function->vm_sym != NULL) { |
| 514 | mJavaTop -= 1; |
| 515 | |
| 516 | // When there are no more Java stack frames, then clean up |
| 517 | // the client's stack. We need to do this because the client |
| 518 | // doesn't see the changes to the native stack underlying the |
| 519 | // fake Java stack until the last Java method is popped off. |
| 520 | if (mJavaTop == 0) { |
| 521 | transitionFromJava(time); |
| 522 | } |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | template<class FRAME, class BASE> |
| 527 | void CallStack<FRAME, BASE>::doPop(BBEvent *event, symbol_type *function, |
| 528 | Action methodAction) |
| 529 | { |
| 530 | uint64_t time = event->time - mSkippedTime; |
| 531 | |
| 532 | // Search backward on the stack for a matching return address. |
| 533 | // The most common case is that we pop one stack frame, but |
| 534 | // sometimes we pop more than one. |
| 535 | int stackLevel; |
| 536 | bool allowMethodPop = (methodAction == POP); |
| 537 | for (stackLevel = mTop - 1; stackLevel >= 0; --stackLevel) { |
| 538 | if (event->bb_addr == mFrames[stackLevel].addr) { |
| 539 | // We found a matching return address on the stack. |
| 540 | break; |
| 541 | } |
| 542 | |
| 543 | // If this stack frame caused an exception, then do not pop |
| 544 | // this stack frame. |
| 545 | if (mFrames[stackLevel].flags & FRAME::kPopBarrier) { |
| 546 | // If this is a Java method, then allow a pop only if we |
| 547 | // have a matching trace record. |
| 548 | if (mFrames[stackLevel].flags & FRAME::kInterpreted) { |
| 549 | if (allowMethodPop) { |
| 550 | // Allow at most one method pop |
| 551 | allowMethodPop = false; |
| 552 | continue; |
| 553 | } |
| 554 | } |
| 555 | stackLevel += 1; |
| 556 | break; |
| 557 | } |
| 558 | } |
| 559 | |
| 560 | // If we didn't find a matching return address then search the stack |
| 561 | // again for a matching function. |
| 562 | if (stackLevel < 0 || event->bb_addr != mFrames[stackLevel].addr) { |
| 563 | bool allowMethodPop = (methodAction == POP); |
| 564 | for (stackLevel = mTop - 1; stackLevel >= 0; --stackLevel) { |
| 565 | // Compare the function with the one in the stack frame. |
| 566 | if (function == mFrames[stackLevel].function) { |
| 567 | // We found a matching function. We want to pop up to but not |
| 568 | // including this frame. |
| 569 | stackLevel += 1; |
| 570 | break; |
| 571 | } |
| 572 | |
| 573 | // If this stack frame caused an exception, then do not pop |
| 574 | // this stack frame. |
| 575 | if (mFrames[stackLevel].flags & FRAME::kPopBarrier) { |
| 576 | // If this is a Java method, then allow a pop only if we |
| 577 | // have a matching trace record. |
| 578 | if (mFrames[stackLevel].flags & FRAME::kInterpreted) { |
| 579 | if (allowMethodPop) { |
| 580 | // Allow at most one method pop |
| 581 | allowMethodPop = false; |
| 582 | continue; |
| 583 | } |
| 584 | } |
| 585 | stackLevel += 1; |
| 586 | break; |
| 587 | } |
| 588 | } |
| 589 | if (stackLevel < 0) |
| 590 | stackLevel = 0; |
| 591 | } |
| 592 | |
| 593 | // Note that if we didn't find a matching stack frame, we will pop |
| 594 | // the whole stack (unless there is a Java method or exception |
| 595 | // frame on the stack). This is intentional because we may have |
| 596 | // started the trace in the middle of an executing program that is |
| 597 | // returning up the stack and we do not know the whole stack. So |
| 598 | // the right thing to do is to empty the stack. |
| 599 | |
| 600 | // If we are emptying the stack, then add the current function |
| 601 | // on top. If the current function is the same as the top of |
| 602 | // stack, then avoid an extraneous pop and push. |
| 603 | if (stackLevel == 0 && mFrames[0].function == function) |
| 604 | stackLevel = 1; |
| 605 | |
| 606 | #if 0 |
| 607 | if (mTop - stackLevel > 7) { |
| 608 | printf("popping thru level %d\n", stackLevel); |
| 609 | showStack(); |
| 610 | } |
| 611 | #endif |
| 612 | |
| 613 | // Pop the stack frames |
| 614 | for (int ii = mTop - 1; ii >= stackLevel; --ii) |
| 615 | doSimplePop(time); |
| 616 | |
| 617 | // Clear the "caused exception" bit on the current stack frame |
| 618 | if (mTop > 0) { |
| 619 | mFrames[mTop - 1].flags &= ~FRAME::kCausedException; |
| 620 | } |
| 621 | |
| 622 | // Also handle the case where F1 calls F2 and F2 returns to |
| 623 | // F1, but before we can execute any instructions in F1, we |
| 624 | // switch to the kernel. Then when we return from the kernel |
| 625 | // we want to pop off F2 from the stack instead of pushing F1 |
| 626 | // on top of F2. To handle this case, we saved the last |
| 627 | // user-mode basic block when we entered the kernel (in |
| 628 | // the getAction() function) and now we can check to see if |
| 629 | // that was a return to F1 instead of a call. We use the |
| 630 | // getAction() function to determine this. |
| 631 | const uint32_t kIsKernelRegion = region_type::kIsKernelRegion; |
| 632 | if ((mPrevFunction->region->flags & kIsKernelRegion) |
| 633 | && ((function->region->flags & kIsKernelRegion) == 0)) { |
| 634 | mPrevEvent = mUserEvent; |
| 635 | mPrevFunction = mUserFunction; |
| 636 | if (getAction(event, function) == POP) { |
| 637 | // We may need to pop more than one frame, so just |
| 638 | // call doPop() again. This won't be an infinite loop |
| 639 | // here because we changed mPrevEvent to the last |
| 640 | // user-mode event. |
| 641 | doPop(event, function, methodAction); |
| 642 | return; |
| 643 | } |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | template<class FRAME, class BASE> |
| 648 | void CallStack<FRAME, BASE>::popAll(uint64_t time) |
| 649 | { |
| 650 | time -= mSkippedTime; |
| 651 | while (mTop != 0) { |
| 652 | doSimplePop(time); |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | template<class FRAME, class BASE> |
| 657 | typename CallStack<FRAME, BASE>::Action |
| 658 | CallStack<FRAME, BASE>::getMethodAction(BBEvent *event, symbol_type *function) |
| 659 | { |
| 660 | if (function->vm_sym == NULL && mPrevFunction->vm_sym == NULL) { |
| 661 | return NONE; |
| 662 | } |
| 663 | |
| 664 | Action action = NONE; |
| 665 | uint32_t prevAddr = mPrevFunction->addr + mPrevFunction->region->base_addr; |
| 666 | uint32_t addr = function->addr + function->region->base_addr; |
| 667 | |
| 668 | // If the events get ahead of the method trace, then read ahead until we |
| 669 | // sync up again. This can happen if there is a pop of a method in the |
| 670 | // method trace for which we don't have a previous push. |
| 671 | while (event->time >= sNextMethod.time) { |
| 672 | sCurrentMethod = sNextMethod; |
| 673 | if (mTrace->ReadMethod(&sNextMethod)) { |
| 674 | sNextMethod.time = ~0ull; |
| 675 | } |
| 676 | } |
| 677 | |
| 678 | if (event->time >= sCurrentMethod.time) { |
| 679 | if (addr == sCurrentMethod.addr || prevAddr == sCurrentMethod.addr) { |
| 680 | action = (sCurrentMethod.flags == 0) ? PUSH : POP; |
| 681 | // We found a match, so read the next record. |
| 682 | sCurrentMethod = sNextMethod; |
| 683 | if (sNextMethod.time != ~0ull && mTrace->ReadMethod(&sNextMethod)) { |
| 684 | sNextMethod.time = ~0ull; |
| 685 | } |
| 686 | } |
| 687 | } |
| 688 | return action; |
| 689 | } |
| 690 | |
| 691 | // When the first Java method is pushed on the stack, this method is |
| 692 | // called to save a snapshot of the current native stack so that the |
| 693 | // client's view of the native stack can be patched up later when the |
| 694 | // Java stack is empty. |
| 695 | template<class FRAME, class BASE> |
| 696 | void CallStack<FRAME, BASE>::transitionToJava() |
| 697 | { |
| 698 | mSnapshotTop = mTop; |
| 699 | for (int ii = 0; ii < mTop; ++ii) { |
| 700 | mSnapshotFrames[ii] = mFrames[ii]; |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | // When the Java stack becomes empty, the native stack becomes |
| 705 | // visible. This method is called when the Java stack becomes empty |
| 706 | // to patch up the client's view of the native stack, which may have |
| 707 | // changed underneath the Java stack. The stack snapshot is used to |
| 708 | // create a sequence of pops and pushes to make the client's view of |
| 709 | // the native stack match the current native stack. |
| 710 | template<class FRAME, class BASE> |
| 711 | void CallStack<FRAME, BASE>::transitionFromJava(uint64_t time) |
| 712 | { |
| 713 | int top = mTop; |
| 714 | if (top > mSnapshotTop) { |
| 715 | top = mSnapshotTop; |
| 716 | } |
| 717 | for (int ii = 0; ii < top; ++ii) { |
| 718 | if (mSnapshotFrames[ii].function->addr == mFrames[ii].function->addr) { |
| 719 | continue; |
| 720 | } |
| 721 | |
| 722 | // Pop off all the rest of the frames from the snapshot |
| 723 | for (int jj = top - 1; jj >= ii; --jj) { |
| 724 | mSnapshotFrames[jj].pop(jj, time, this); |
| 725 | } |
| 726 | |
| 727 | // Push the new frames from the native stack |
| 728 | for (int jj = ii; jj < mTop; ++jj) { |
| 729 | mFrames[jj].push(jj, time, this); |
| 730 | } |
| 731 | break; |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | template<class FRAME, class BASE> |
| 736 | void CallStack<FRAME, BASE>::showStack() |
| 737 | { |
| 738 | fprintf(stderr, "mTop: %d skippedTime: %llu\n", mTop, mSkippedTime); |
| 739 | for (int ii = 0; ii < mTop; ++ii) { |
| 740 | fprintf(stderr, " %d: t %d gt %d f %x 0x%08x 0x%08x %s\n", |
| 741 | ii, mFrames[ii].time, mFrames[ii].global_time, |
| 742 | mFrames[ii].flags, |
| 743 | mFrames[ii].addr, mFrames[ii].function->addr, |
| 744 | mFrames[ii].function->name); |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | template<class FRAME, class BASE> |
| 749 | void CallStack<FRAME, BASE>::showSnapshotStack() |
| 750 | { |
| 751 | fprintf(stderr, "mSnapshotTop: %d\n", mSnapshotTop); |
| 752 | for (int ii = 0; ii < mSnapshotTop; ++ii) { |
| 753 | fprintf(stderr, " %d: t %d f %x 0x%08x 0x%08x %s\n", |
| 754 | ii, mSnapshotFrames[ii].time, mSnapshotFrames[ii].flags, |
| 755 | mSnapshotFrames[ii].addr, mSnapshotFrames[ii].function->addr, |
| 756 | mSnapshotFrames[ii].function->name); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | #endif /* CALL_STACK_H */ |